高中数学必修三概率单元测试题及答案
高中数学人教A版必修三 第三章 概率 章末综合测评及答案
会,估计运动会期间不.下.雨.的概率. 【解】 (1)在容量为 30 的样本中,不下雨的天数是 26,以频率
估计概率,4 月份任选一天,西安市不下雨的概率为 2360=1153. (2)称相邻的两个日期为“互邻日期对”(如,1 日与 2 日,2 日与 3
日等).这样,在 4 月份中,前一天为晴天的互邻日期对有 16 个,其中 后一天不下雨的有 14 个,所以晴天的次日不下雨的频率为 78.
(2)该班成绩在[60,100]内的概率是 P(A∪B∪C∪D)=P(A)+P(B)
+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.
19.(本小题满分 12 分)小王、小李两位同学玩掷骰子(骰子质地均 匀)游戏,规则:小王先掷一枚骰子,向上的点数记为 x;小李后掷一 枚骰子,向上的点数记为 y.
【答案】 C
二、填空题(本大题共 4 小题,每小题 5 分,共 20 分,把答案填在
题中横线上).
13.一个袋子中有 5 个红球,3 个白球,4 个绿球,8 个黑球,如
果随机地摸出一个球,记 A={摸出黑球},B={摸出白球},C={摸出
绿球},D={摸出红球},则 P(A)=________;P(B)=________;P(C∪D)
A,B,C 和 3 名女同学 X,Y,Z,其年级情况如下表:
一年级 二年级 三年级
男同学 A
=________.
【解析】 由古典概型的算法可得 P(A)=280=25,P(B)=230,P(C∪D)
=P(C)+P(D)=240+250=290.
【答案】
2 5
3 20
9 20
14.在区间(0,1)内任取一个数 a,能使方程 x2+2ax+12=0 有两
高中数学必修三第三章《概率》单元测试题
高中数学必修三第三章《概率》单元测试题(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P16.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-10.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间[0,20) [20,40) [40,60) [60,80) [80,100) (分钟)人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.高中数学必修三第三章《概率》单元测试题参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为( )A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( )A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一 3 0二 2 1三 1 2四0 3对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则( )A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为( )A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为( )A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是( )A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为( )A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)[0,20) [20,40) [40,60) [60,80) [80,100) 人数25 50 15 5 5公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A.0.5B.0.7C.0.8D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)= .(结果用最简分数表示)【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=.答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为. 【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量100~150 150~200 200~250 250~300 (单位:mm)概率0.12 0.25 0.16 0.14(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团8 5未参加演讲社团 2 30(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.。
(好题)高中数学必修三第三章《概率》测试卷(答案解析)
一、选择题1.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与另一段GN GN 的比例中项,即满足512MG NG MN MG -==,后人把这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.在矩形ABCD 中,E ,F 是线段AB 的两个“黄金分割”点.在矩形ABCD 内任取一点M ,则该点落在DEF 内的概率为( )A .52- B .51- C .52- D .51- 2.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .153.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .655.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 6.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-7.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5128.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35C .34D .129.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为( )A.964B.449C.225D.2710.如图所示,在一个边长为2.的正方形AOBC内,曲2y x=和曲线y x=围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是()A.12B.14C.13D.1611.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为()A.15B.25C.35D.4512.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.13二、填空题13.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.14.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.15.某学校高三年级有A 、B 两个自习教室,甲、乙、丙3名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.16.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.17.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.18.在区间[,]22ππ-上随机取一个实数x ,则事件“13sin cos 2x x -≤+≤”发生的概率是__________.19.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.20.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________三、解答题21.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)22.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A组,使用手机且成绩优秀的同学记为B组,计划从A组推选的4人和B组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A组、另一人来自B组的概率.23.某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.24.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a,b的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.25.在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.(1)求跳绳次数落在区间[150,160)内的频率;(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率.26.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],其中第1组[20,30)有6人,得到的频率分布直方图如图所示.(1)求m ,n 的值,并估计抽取的n 名群众中年龄在[40,60)的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别求出对应的面积,进而求得结论. 【详解】解:设正方形ABCD 的边长为1,则51AF BE -==,∴2152EF AF =-=, ∴所求的概率为21522DEFABCDEF ADSP S AD ⨯⨯-===正方形 故选:C . 【点睛】本题主要考查几何概型,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量” ()N A ,再求出总的基本事件对应的“几何度量” N ,最后根据()N A PN求解,属于中档题. 2.C解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题.【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.5.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.6.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e. 故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.7.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=,这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.8.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.9.B解析:B 【分析】求得120ADB ∠=︒,在ABD 中,运用余弦定理,求得AB ,以及DE ,根据三角形的面积与边长之间的关系即可求解. 【详解】 解:18060120ADB ∠=︒-︒=︒,在ABD 中,可得2222cos AB AD BD AD BD ADB =+-⋅∠, 即为222153253492AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得7AB =, 2DE AD BD =-=,224()749DEF ABCSS∴==. 故选:B . 【点睛】本题考查三角形的余弦定理,同时也考查了利用几何概型的概率公式计算概率,考查方程思想和运算能力,属于基础题.10.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S(A )3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.11.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.12.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.二、填空题13.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.14.【分析】利用几何概型的面积型概率计算作出边长为24的正方形面积求出部分的面积即可求得答案【详解】设甲乙两艘轮船到达的时间分为则记事件为两船中有一艘在停靠泊位时另一艘船必须等待则即∴故答案为:【点睛】解析:59【分析】利用几何概型的面积型概率计算,作出边长为24的正方形面积,求出||8x y -≤部分的面积,即可求得答案. 【详解】设甲乙两艘轮船到达的时间分为,x y ,则024,024x y ≤≤≤≤,记事件A 为两船中有一艘在停靠泊位时、另一艘船必须等待,则||8x y -≤, 即8,8,y x y x ≥-⎧⎨≤+⎩∴2222241625()1()2439S P A S -===-=阴影正方形. 故答案为:59.【点睛】本题考查几何概型,考查转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意对概率模型的抽象成面积型.15.【分析】利用乘法计数原理可计算出甲乙丙名学生各自随机选择其中一个教室自习共有种利用分步乘法计数原理计算出甲乙两人不在同一教室上自习的排法种数然后利用古典概型的概率公式可计算出所求事件的概率【详解】由解析:1 2【分析】利用乘法计数原理可计算出甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,利用分步乘法计数原理计算出甲、乙两人不在同一教室上自习的排法种数,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】由题意可知,甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,甲、乙两人不在同一教室上自习,可先考虑甲在A、B两个自习教室选一间教室自习,然后乙在另一间教室自习,则丙可在A、B两个自习教室随便选一间自习教室自习,由分步计数原理可知,有224⨯=种选择.因此,甲、乙两人不在同一教室上自习的概率为41 82 =.故答案为:1 2 .【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了分步计数原理的应用,考查计算能力,属于中等题.16.【分析】根据数据统计击中目标的次数再用古典概型概率公式求解【详解】由数据得射击4次至少击中3次的次数有15所以射击4次至少击中3次的概率为故答案为:【点睛】本题考查古典概型概率公式考查基本分析求解能解析:3 4【分析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为153 204=.故答案为:3 4【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.17.【解析】【分析】列出所有的基本事件并找出事件所取三条线段能构成一个三角形所包含的基本事件再利用古典概型的概率公式计算出所求事件的概率【详解】所有的基本事件有:共个其中事件所取三条线段能构成一个三角形 解析:310【解析】 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()2,3,5、()2,3,7、()2,3,9、()2,5,7、()2,5,9、()2,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故答案为310. 【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.18.【分析】用辅助角公式化简题目所给不等式解三角不等式求得点的取值范围利用几何概型的概率公式求得所求的概率【详解】由得故解得根据几何概型概率计算公式有概率为【点睛】本小题主要考查三角不等式的解法考查三角 解析:512【分析】用辅助角公式化简题目所给不等式,解三角不等式求得x 点的取值范围,利用几何概型的概率公式求得所求的概率. 【详解】由1cos x x -≤+≤π12sin 6x ⎛⎫-≤+≤ ⎪⎝⎭1πsin 262x ⎛⎫-≤+≤⎪⎝⎭,故πππ664x -≤+≤,解得ππ312x -≤≤,根据几何概型概率计算公式有概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭.【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.19.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.20.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.三、解答题21.(Ⅰ)25;(Ⅱ)详见解析;(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【分析】(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;(Ⅱ)由题意首先确定X 可能的取值,然后结合超几何概型计算公式得到分布列,然后求解其数学期望即可;(Ⅲ)由题意结合方差的性质和所给的图形确定方差的最大值即可. 【详解】(Ⅰ)设A 表示事件“从2007年至2016年随机选出1年,该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.由题意可知,2009年,2011年,2015年,2016年满足要求, 故42()105P A ==. (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,3,且36310C 1(0)=C 6P X ==;1246310C C 1(1)=C 2P X ==;2146310C C 3(2)=C 10P X ==;34310C 1(3)=C 30P X ==.所以X 的分布列为:故X 的期望11316()01236210305E X =⨯+⨯+⨯+⨯=. (Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【点睛】本题主要考查统计图表的识别,超几何概型计算公式,离散型随机变量的分布列与期望的计算,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力. 22.(1)99.5%;(2)815. 【分析】(1)根据22⨯列联表中的数据,代入卡方计算,即可求解; (2)根据古典概型,列出基本时间,根据概率公式,即可求解. 【详解】 (1)根据公式得2280(28261412)9.8257.87942384040K ⨯⨯-⨯==≥⨯⨯⨯.所以有99.5%的把握认为中学生使用手机对学习有影响.(2)记A 组推选的4人为a ,b ,c ,d ,B 组推选的2人为e ,f , 则从这6人中任取两人有15种取法:()()()()(),,,,,a b a c a d a e a f ()()()(),,,,b c b d b e b f ()()()c,,,d c e c f ()(),,d e d f(),e f其中一人来自A 组、另一人来自B 组有8种取法, 故概率为815p =. 【点睛】本题考查(1)独立性检验(2)古典概型概率计算,考查计算能力,属于中等题型. 23.(1)50人,0.04;(2)18【分析】(1)先根据频数计算在[50,60)上的频率,继而求得全班总人数,再根据[70,80)之间的人数求得[70,80)之间的频率与高即可.(2)根据题意求得[50,60)中的人数与[90,100)分数段内的人数,再编号利用枚举法求解即可. 【详解】(1)由茎叶图知分数在[50,60)上的频数为4, 频率为0.008×10=0.08, 故全班的学生人数为40.08=50人, ∵分数在[70,80)间的频数为:50﹣(4+14+8+4)=20, ∴频率是200.450=,∴矩形的高是0.410=0.04. (2)成绩在[50,60)分数段内的人数有4人,记为甲、A 、B 、C , 成绩在[90,100)分数段内的人数有4人,记为乙、a ,b ,c , 则“二帮一”小组有以下24种分组办法:甲乙a ,甲乙b ,甲乙c ,甲ab ,甲ac ,甲bc ,A 乙a ,A 乙b , A 乙c ,Aab ,Aac ,Abc ,B 乙a ,B 乙b ,B 乙c ,Bab , Bac ,Bbc ,C 乙a ,C 乙b ,C 乙c ,Cab ,Cac ,Cbc ,其中,甲、乙两同学被分在同一小组有3种办法:甲乙a ,甲乙b ,甲乙c , ∴甲乙两同学恰好被安排在同一小组的概率为P 31248==. 【点睛】本题主要考查了茎叶图与频率分布直方图的应用,同时也考查了枚举法解决古典概型问题,属于基础题.24.(1)a=0.11,b=0.04;(2)23. 【分析】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,由此能求出a ,课外阅读时间落在[2,4)的有8人,频率为0.08,由此能求出b ;(2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,由此利用列举法能求出从课外阅读时间落在[14,18)的学生中任选2人,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率. 【详解】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,所以0.220.112a == 课外阅读时间落在[2,4)的有8人,频率为0.08, 所以0.080.042b == (2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,。
数学必修3第三章概率测试题(附答案)
高中数学必修3第三章 概率单元检测一、选择题1.任取两个不同的1位正整数,它们的和是8的概率是( ). A .241 B .61C .83D .121 2.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ).A .31B .π2C .21D .32 3.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103B .51C .101D .121 5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513B .12516C .12518D .12519 6.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21B .31C .41D .161 7.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ).A .51 B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61 B .31C .21D .32 9.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61D .121 二、填空题10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为 .13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为 .14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是 .15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b .则a +b 能被3整除的概率为 .三、解答题16.射手张强在一次射击中射中10环、9环、8环、7环、7环以下的概率分别是0.24、0.28、0.19、0.16、0.13.计算这个射手在一次射击中:(1)射中10环或9环的概率;(2)至少射中7环的概率;(3)射中环数小于8环的概率.17.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h,乙船停泊时间为2 h,求它们中的任意一艘都不需要等待码头空出的概率.18.同时抛掷两枚相同的骰子(每个面上分别刻有1~6个点数,抛掷后,以向上一面的点数为准),试计算出现两个点数之和为6点、7点、8点的概率分别是多少?19.从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.参考答案一、选择题 1.D解析:1位正整数是从1到9共9个数,其中任意两个不同的正整数求和有8+7+6+5+4+3+2+1=36种情况,和是8的共有3种情况,即(1,7),(2,6),(3,5),所以和是8的概率是121. 2.A解析: 在区间⎥⎦⎤⎢⎣⎡2π2π- ,上随机取一个数x ,即x ∈⎥⎦⎤⎢⎣⎡2π2π- ,时,要使cos x 的值介于0到21之间,需使-2π≤x ≤-3π或3π≤x ≤2π,两区间长度之和为3π,由几何概型知cos x 的值介于0到21之间的概率为π3π=31.故选A.3.D解析:从5个数中选出3个数的选法种数有10种,列举出各种情形后可发现,和等于6的两个数有1和5,2和4两种情况,故选出的3个数中任何两个数的和不等于6的选法有(10-3×2)种,故所求概率为104=52. 4.A解析:从五个球中任取两个共有10种情形,而取出的小球标注的数字之和为3或6的只有3种情况:即1+2=3,2+4=6,1+5=6,,故取出的小球标注的数字之和为3或6的概率为103. 5.D解析:由于一个三位数,各位数字之和等于9,9是一个奇数,因此这三个数必然是“三个奇数”或“一个奇数两个偶数”.又由于每位数字从1,2,3,4,5中抽取,且允许重复,因此,三个奇数的情况有两种:(1)由1,3,5组成的三位数,共有6种;(2)由三个3组成的三位数,共有1种.一个奇数两个偶数有两种:(1)由1,4,4组成的三位数,共有3种;(2)由3,2,4组成的三位数,共有6种;(3)由5,2,2组成的三位数,共有3种.再将以上各种情况组成的三位数的个数加起来,得到各位数字之和等于9的三位数,共有19种.又知从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数共有53=125种.因此,所求概率为12519. 6.D解析:所求概率为224π1π⨯⨯ =161. 7.B解析:区域Ω为区间[-2,3],子区域A 为区间(1,3],而两个区间的长度分别为5,2. 8.A解析:所求概率即为四棱锥O -ABCD 与正方体的体积之比. 9.B解析:A ,B 为互斥事件,故采用概率的加法公式P (A +B )=P (A )+(B )=61+61=31. 二、填空题 10.61. 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于10分钟,只有当他打开收音机的时间正好处于13∶50至14∶00之间才有可能,相应的概率是6010=61. 11.31.解析:基本事件有A ,B ;A ,C ;B ,C 共3个,A 未被照看的事件是B ,C ,所以A未被照看的概率为31.12.32. 解析:A ,B 为互斥事件,故采用概率的加法公式得P (A +B )=31,1-P (A +B )=32.13.32. 解析:因为f (x )≥0,即log 2 x 0≥0,得x 0≥1,故使f (x )≥0的x 0的区域为[1,2]. 14.34. 解析:从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P =43. 15.13.解析:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(2,1),(1,5),(2,4),(3,3),(4,2),(5,1),(3,6),(4,5),(5,4),(6,3),(6,6),共12个.P (A )=13.三、解答题16.解:设“射中10环”、“射中9环”、“射中8环”、“射中7环”、“射中7环以下”的事件分别为A ,B ,C ,D ,E ,则(1)P (A ∪B )=P (A )+P (B )=0.24+0.28=0.52. 所以,射中10环或9环的概率为0.52.(2)P (A ∪B ∪C ∪D )= P (A )+P (B )+P (C )+P (D )=0.24+0.28+0.19+0.16=0.87. 所以,至少射中7环的概率为0.87.(3)P (D ∪E )=P (D )+P (E )=0.16+0.13=0.29. 所以,射中环数小于8环的概率为0.29.17.解:这是一个几何概型问题.设甲、乙两艘船 到达码头的时刻分别为x 与y ,A 为“两船都不需要等待 码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要 等待码头空出,当且仅当甲比乙早到达1h 以上或乙比甲 早到达2h 以上,即y -x ≥1或x -y ≥2.故所求事件构 成集合A ={(x ,y )| y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 对应图中阴影部分,全部结果构成集合Ω为边长是24的正方形. 由几何概型定义,所求概率为P (A )=的面积的面积ΩA =22224212-24211-24⨯⨯+)()(=5765.506=0.879 34.18.解:将两只骰子编号为1号、2号,同时抛掷,则可能出现的情况有6×6=36种,即n =36.出现6点的情况有(1,5),(5,1),(2,4),(4,2),(3,3).∴m 1=5, ∴概率为P 1=n m 1=365. 出现7点的情况有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3).23 22∴m 2=6, ∴概率为P 2=n m 2=366=61. 出现8点的情况有(2,6),(6,2),(3,5),(5,3),(4,4). ∴m 3=5, ∴概率为P 3=n m 3=365. 19.解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b ),(a 2,a 1),(a 2,b ),(b ,a 1),(b ,a 2)。
(好题)高中数学必修三第三章《概率》测试卷(包含答案解析)(3)
一、选择题1.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是( ) A .至少有一个白球;都是白球 B .两个白球;至少有一个红球 C .红球、白球各一个;都是白球D .红球、白球各一个;至少有一个白球2.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12 C .34D .13.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .164.已知点A 是圆M 的圆周上一定点,若在圆M 的圆周上的其他位置任取一点B ,连接AB ,则“线段AB 的长度大于圆M 的半径”的概率约为( )A .12 B .16 C .13D .23 5.假设△ABC 为圆的内接正三角形,向该圆内投一点,则点落在△ABC 内的概率为( ) A 33B .2πC .4πD 33π6.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.19367.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为A 3B.31π-C.3πD.31π-8.连续掷两次骰子,先后得到的点数,m n为点(,)P m n的坐标,那么点P在圆2217x y+=内部的概率是()A.13B.25C.29D.499.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n个人说“能”,而有m个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为()A.mm n+B.nm n+C.4mm n+D.4nm n+10.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.1311.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A.12B.1C.56D.111212.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD内任取一点,该点取自阴影部分的概率为( )A .14B .8π C .34D .4π 二、填空题13.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.14.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P CE =;⑤()()P B P C =.15.已知函数2()22f x x =-M ,(())y f f x =的定义域为P ,在M 上随机取一个数x ,则x P ∈的概率是____________.16.中国文化中有很多东西喜欢9或9的倍数.如:九连环、九阴白骨爪、降龙十八掌(1892=⨯)、三十六计(3694=⨯)、孙悟空七十二变(8972⨯=)、八十一难(9981⨯=)等.若一个三位数的各位数字之和为9,如207,126,则这样的三位数共有________.17.过点(0,0)O 作直线与圆22(5)(8)169x y -+-=相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________. 18.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.19.一只口袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则2只球颜色相同的概率为____.20.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X 次球,则(4)P X ==_______. 三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15 ,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:甲种生产方式:指标区间[65,70)[70,75)[75,80)[80,85)[85,90)[90,95]频数51520301515乙种生产方式:指标区间[70,75)[75,80)[80,85)[85,90)[90,95)[95,100]频数51520302010(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?23.追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如下:AQI[0,50](50,100](100,150](150,200](200,250](250,300]空气质量优良轻度污染中度污染重度污染严重污染天数61418272510(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率.(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为0,0100,220,100250,1480,250300.xy xx⎧⎪=<⎨⎪<⎩假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为16,13,16,112,112,16,9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.24.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11 107a<<综合得分k的范围节排器等级节排器利润率85k≥一级品a7585k≤<二级品25a7075k≤<三级品2a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大?25.将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为a ,第二次出的点数为b ,且已知关于x 、y 的方程组322ax by x y +=⎧⎨+=⎩.(1)求此方程组有解的概率;(2)若记此方程组的解为00x x y y =⎧⎨=⎩,求00x >且00y >的概率.26.为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了n 人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的34,男生喜欢看该节目的占男生总人数的13.随后,该小组采用分层抽样的方法从这n 份问卷中继续抽取了5份进行重点分析,知道其中喜欢看该节目的有3人.(1) 现从重点分析的5人中随机抽取了2人进行现场调查,求这两人都喜欢看该节目的概率;(2) 若有99%的把握认为“爱看该节目与性别有关”,则参与调查的总人数n 至少为多少? 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论.【详解】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,对于A,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B两个白球;至少有一个红球,是互斥事件,但也是对立事件,故不符合.对于C红球、白球各一个;都是白球是互斥事件,但不是对立事件,故符合.对于D红球、白球各一个;至少有一个白,不是互斥事件.故不符合.故选:C.【点睛】本题主要考查互斥事件与对立事件的定义,意在考查学生对这些知识的理解掌握水平.2.B解析:B【分析】求出函数的导数,根据函数的极值点的个数求出m的范围,通过判断a,b,c,d的范围,得到满足条件的概率值即可.【详解】f′(x)=x2+2mx+1,若函数f(x)有极值点,则f′(x)有2个不相等的实数根,故△=4m2﹣4>0,解得:m>1或m<﹣1,而a=log0.55<﹣2,0<b=log32<1、c=20.3>1,0<d=(12)2<1,满足条件的有2个,分别是a,c,故满足条件的概率p21 42 ==,故选:B.【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.3.C解析:C【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.4.D解析:D 【分析】求出B 点位置所有基本事件的弧长,再求出满足条件AB 长度大于圆半径的基本事件对应的弧长,根据几何概型概率的计算公式,即可得到答案. 【详解】设圆M 的半径为R ,B 为圆上的任意一点, 则B 点位置所有情况对应的弧长为圆的圆周长2R π, 其中满足条件AB 长度大于圆半径长对应的弧长为223R π⋅, 则“线段AB 的长度大于圆M 的半径”的概率约为222323RR ππ⋅=. 故选:D 【点睛】本题考查几何概型概率的求法,其中根据条件计算出所有基本事件的几何量和满足条件的基本事件对应的几何量是解题的关键,属于中档题.5.A解析:A 【分析】设圆的半径为R,且由题意可得是与面积有关的几何概率构成试验的全部区域的面积及正三角形的面积代入几何概率的计算公式可求. 【详解】解:设圆的半径为R构成试验的全部区域的面积:2S R π=记“向圆O 内随机投一点,则该点落在正三角形内”为事件A , 则构成A22) 由几何概率的计算公式可得, ()224P A R π==故选:A . 【点睛】本题主要考查了与面积有关的几何概型概率的计算公式的简单运用,关键是明确满足条件的区域面积,属于基础试题.6.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率. 【详解】根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93()76,68、()76,72、()76,73、()76,85、()76,89、()76,93 ()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.7.D解析:D 【分析】由半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,求得十二边形的面积,利用面积比的几何概型,即可求解. 【详解】由题意,半径为1的圆内接正十二边形,可分割为12个顶角为6π,腰为1的等腰三角形,所以该正十二边形的面积为21121sin 326S π=⨯⨯⨯=, 由几何概型的概率计算公式,可得所求概率31P π=-,故选D. 【点睛】本题主要考查了几何概型的概率的计算问题,解决此类问题的步骤:求出满足条件A 的基本事件对应的“几何度量()N A ”,再求出总的基本事件对应的“几何度量N ”,然后根据()N A PN求解,着重考查了分析问题和解答问题的能力. 8.C解析:C 【分析】所有的点(,)P m n 共有6636⨯=个,用列举法求得其中满足2217x y +<的点(,)P m n 有8个,由此求得点P 在圆2217x y +=内部的概率.【详解】所有的点(,)P m n 共有6636⨯=个,点P 在圆2217x y +=内部,即点(,)P m n 满足2217x y +<,故满足此条件的点(,)P m n 有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故点P 在圆2217x y +=内部的概率是82369=, 故选C. 【点睛】该题考查的是有关古典概型概率的求解问题,涉及到的知识点有古典概型概率公式,在解题的过程中,正确找出基本事件的个数以及满足条件的基本事件数是关键.9.C解析:C 【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。
高中数学必修3第三章概率试题训练[1]
高中数学必修3第三章概率试题训练1.下列说法正确的是( )A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定 2.掷一枚骰子,则掷得奇数点的概率是( )A. 61B. 21C. `31 D. 413. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( )A. 9991B. 10001C. 1000999 D. 214.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )A. 0.62B. 0.38C. 0.02D. 0.68 6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )A. 21B. 41C. 31D. 817.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A. 31. B. 41 C. 21 D.无法确定8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是A. 1B. 21C. 31D. 329.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A. 21B. 31C. 41D. 5210.现有五个球分别记为A 、C 、J 、K 、S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( )A.101 B. 53 C. 103 D. 10911、对某种产品的5件不同正品和4件不同次品一一进行检测,直到区分出所有次品为止. 若所有次品恰好经过五次检测被全部发现,则这样的检测方法有( )A .20种B .96种C .480种D .600种12、若连掷两次骰子,分别得到的点数是m 、n ,将m 、n 作为点P 的坐标,则点P落在区域2|2||2|≤-+-y x 内的概率是 A.3611B.61C.41D.367 13、要从10名男生和5名女生中选出6人组成啦啦队,若按性别依比例分层抽样且某男生担任队长,则不同的抽样方法数是A.2539C C B . 25310C C C. 25310A A D. 25410C C 14、在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A. 0.5 B. 0.4C. 0.004D. 不能确定15、如图所示,随机在图中撒一把豆子,则它落到阴影部分的概率是( )A.12B.34C.38D.1816、两个事件互斥是两个事件对立的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要17、下列事件中,随机事件的个数是( )①如果a 、b 是实数,那么b+a=a+b ;②某地1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院栽天的上座率超过50%。
(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)
一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。
北师大版高二数学必修三第三章概率综合检测题(附答案)
北师大版高二数学必修三第三章概率综合检测题(附答案)数学是研讨理想世界空间方式和数量关系的一门迷信。
小编预备了高二数学必修三第三章概率综合检测题,详细请看以下内容。
一、选择题(本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只要一项为哪一项契合标题要求的)1.以下说法正确的选项是()A.假设一事情发作的概率为一百万分之一,说明此事情不能够发作B.假设一事情发作的概率为310,那么在10次实验中,该事情发作了3次C.假设某奖券的中奖率是10%,那么购置一张奖券中奖的能够性是10%D.假设一事情发作的概率为99.999 999 9%,说明此事情肯定发作【解析】某一事情发作的概率很小或很大,都还说明此事情是随机事情,概率描画描写了该事情发作能够性大小,所以A,D均不正确,B不正确,C正确,应选C.【答案】C2.从装有十个红球和十个白球的罐子里任取2个球,以下状况是互斥而不统一的两个事情是()A.至少有一个红球,至少有一个白球B.恰有一个红球,都是白球C.至少有一个红球,都是白球D.至少有一个红球,都是红球【解析】A中,至少有一个红球能够为一红一白,至少有一个白球,能够为一白一红,两事情能够同时发作,故不是互斥事情.B中恰有一个红球,那么另一个必是白球,与都是白球是互斥事情,而任选两球还有两球都是红球的状况,故不是统一事情.C为统一事情,D为统一事情.【答案】B3.(2021吉安检测)取一个正方形及其外接圆,随机向圆内抛一颗豆子,那么豆子落在正方形外的概率为()A.2 -2C.2 4【解析】设圆的半径为a,那么S圆=a2,S正方形=(2a)2=2a2,故豆子落在正方形外的概率为a2-2a2-2.【答案】B图14.如图1所示,在面积为S的△ABC的边AB上任取一点P,那么△PBC 的面积大于S4的概率是()A.14B.12C.34D.23【解析】作PEBC,ADBC,垂足区分为E,D.当△PBC的面积刚好等于S4时,PE=14AD,要想S△PBC14S,那么PB14AB,故概率为P=34ABAB=34.【答案】C5.设a是甲抛掷一枚骰子失掉的点数,那么方程x2+ax+2=0有两个不相等的实数根的概率为()A.23B.13C.12D.512【解析】假定方程有实根,那么a2-80.a的一切取值状况共6种,满足a2-80的有4种状况,故P=46=23.【答案】A6.在一个袋子中装有区分标注着数字1,2,3,4,5,6的六个小球,这些小球除标注的数字外,完全相反.现从中随机地一次取出两个小球,那么取出的小球标注的数字之和为5或6的概率是()A.215B.15C.415D.13【解析】用(x,y)表示取出两球上标注的数字,那么一切的基身手情是:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共有15个.数字之和为5或6包括的基身手情有:(1,4),(1,5),(2,3),(2,4),共有4个.那么所求概率为415.【答案】C7.(2021九江检测)在三棱锥的六条棱中恣意选择两条,那么这两条棱是一对异面直线的概率为()A.120B.115C.15D.16【解析】在三棱锥的六条棱中恣意选择两条直线共有15种状况,其中异面的状况有3种,那么两条棱异面的概率为P=315=15.8.甲、乙两人玩猜数字,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b{1,2,3,4,5,6},假定|a-b|1.就称甲乙心有灵犀,现恣意找两人玩这个游戏,那么他们心有灵犀的概率为()A.19B.29C.718D.49【解析】由于a,b{1,2,3,4,5,6},那么满足要求的事情能够的结果有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种.而依题意得基身手情的总数有36种.故P=1636=49.【答案】D9.从装有4粒相反的玻璃球的瓶中,随意倒出假定干粒玻璃球(至少1粒),记倒出奇数粒玻璃球的概率为P1,倒出偶数粒玻璃球的概率为P2,那么()A.P1P2C.P1=P2D.P1,P2大小不能确定【解析】我们将4粒玻璃球编号为1、2、3、4号,倒出1粒有4种状况,倒出2粒有6种状况,倒出3粒有4种状况,倒出4粒有1种状况,我们可以为基身手情总数为4+6+4+1=15,那么倒出奇数粒玻璃球的概率为815,倒出偶数粒玻璃球的概率为715.10.(2021安徽高考)假定某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的时机均等,那么甲或乙被录用的概率为()A.23B.25C.35D.910【解析】由题意,从五位大学毕业生中录用三人,一切不同的能够结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中甲与乙均未被录用的一切不同的能够结果只要(丙,丁,戊)这1种,故其统一事情甲或乙被录用的能够结果有9种,所求概率P=910.【答案】D二、填空题(本大题共5小题,每题5分,共25分,将答案填在题中的横线上)11.假定以延续掷两次骰子区分失掉的点数m,n作为点p的坐标,那么点p落在圆x2+y2=25外的概率是________.【解析】易知p(x,y)共有36种,其中p落在x2+y2=25外的有(1,5),(5,1),(1,6),(6,1),(2,5),(5,2),(2,6),(6,2),(3,5),(5,3),(3,6),(6,3),(4,4),(4,5),(4,6),(5,4),(6,4),(5,5),(5,6),(6,5),(6,6)共有21种,P=2136=712.【答案】71212.在正方形ABCD内任取一点P,那么使90的概率是________.【解析】如下图,以AB为直径作半圆,当点P落在AB上时,APB=90,所以使90的点落在图中的阴影局部.设正方形的边长为1,在正方形ABCD内任取一点P,那么使90为事情A,那么=1,A=1-12(12)2=1-8,P(A)=1-8.【答案】1-813.先后2次抛掷一枚骰子,所得点数区分为x,y,那么xy是整数的概率是________.【解析】先后两次抛掷一枚骰子,失掉的点数区分为x,y的状况一共有36种,其中xy是整数的状况有(1,1),(2,1),(2,2),(3,1),(3,3),(4,1),(4,2),(4,4),(5,1),(5,5),(6,1),(6,2),(6,3),(6,6)共14种.故xy是整数的概率为718.【答案】718图214.如图2,一只蚂蚁在不时角边长为1 cm的等腰直角三角形ABC(B为直角)的边长匍匐,那么蚂蚁距A点不超越1 cm的概率为________.【解析】该效果属于几何概型,蚂蚁沿△ABC的边匍匐的总长度为2+2,其中距A点不超越1 cm时的长度为1+1=2,依据几何概型概率计算公式得P=22+2=2-2.【答案】2-215.设集合A={1,2},B={1,2,3},区分从集合A和B中随机取一个数a 和b,确定平面上的一个点P(a,b),记点P(a,b)落在直线x+y=n上为事情Cn(25,nN),假定事情Cn的概率最大,那么n的一切能够值为________.【解析】点P的一切能够值为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),点P(a,b)落在直线x+y=n上(25,nN),且事情Cn的概率最大,当n=3时,P点能够是(1,2),(2,1).当n=4时,P点能够为(1,3),(2,2),即事情C3,C4的概率最大,故n=3或4.【答案】3或4高中是人生中的关键阶段,大家一定要好好掌握高中,编辑教员为大家整理的高二数学必修三第三章概率综合检测题,希望大家喜欢。
2019—2020年最新苏教版高中数学必修三《概率》单元综合测试题及答案.docx
(新课标)2019—2020学年苏教版高中数学必修三概率综合时间:120分钟;满分:160分)一、填空题(本大题共14小题,每小题5分,共70分,)1.已知5只球中有2只红球和3只白球,从中任取3只球,写出一个必然事件: .2.某厂产品的合格率为97%,估计该厂5000件产品中不合格的件数约为3.在如图所示的正方形中随机掷一粒豆子,豆子落在正方形内切圆的上半圆(图中阴影部分)中的概率是 .4 .从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 5.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________. 6.一根绳子长为6米, 绳上有5个节点将绳子6等分, 现从5个节点中随机选一个将绳子剪断, 则所得的两段绳长均不小于2米的概率为 .7.将甲、乙两个球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有1个球的概率为 .8.袋中装有大小相同且形状一样的四个球,四个球上分别标有2,3,4,6这四个数,现从中随机选取三个球,则所选的三个球上的数恰好能构成一个等差数列的概率是 . 9.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为22的概率是 . 10.甲、乙两人街头约会,约定谁先到后须等待10分钟,这时若另一个人还没有来就可离开.如果甲1点半到达.假设乙在1点到2点之间何时到达是等可能的,则甲、乙能会面的概率为 .11.沿田字型的路线从A 往N 走,且只能向右或向下走,随机地选一种走法,则经过点C 的概率是______12 .若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为 .13.设a ∈[0,10)且a ≠1,则函数()x x f a log =在(0,+∞)内为增函数,且()xa x g 2-=在(0,+∞)内也为增函数的概率为________.14 .已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB ∆的最大边是AB ”发生的概率为.21,则ADAB=____ ( )二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤...................) 15.(本题14分)从装有编号分别为b a ,的2个黄球和编号分别为d c , 的2个红球的袋中无放回地摸球,每次任摸一球,求: (1)第1次摸到黄球的概率; (2)第2次摸到黄球的概率.16.(本题满分14分)5张奖券中有2张是中奖的,首先由甲抽一张,然后由乙抽一张,求: (1)甲中奖的概率P (A ). (2)甲、乙都中奖的概率P (B ). (3)只有乙中奖的概率P (C ). (4)乙中奖的概率P (D ).17.(本题14分)(2013年高考天津卷(文))某产品的三个质量指标分别为z y x ,,, 用综合指标z y x S ++=评价该产品的等级. 若4≤S ,则该产品为一等品. 先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下: 产品编号 A 1A 2A 3A 4A 5质量指标()z y x ,,(1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1)产品编号A 6 A 7 A 8 A 9 A 10质量指标(1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2) ()z y x,,(Ⅰ) 利用上表提供的样本数据估计该批产品的一等品率;(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.、、、、五位同学,他18.(本题16分)(2013年高考山东卷(文))某小组共有A B C D E 们的身高(单位:米)以及体重指标(单位:千克/米2),如下表所示:A B C D E身高 1.69 1.73 1.75 1.79 1.82体重指标19.2 25.1 18.5 23.3 20.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率.(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.19.(本题满分16分)甲、乙二人用4张扑克牌(分别是红桃2, 红桃3, 红桃4, 方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的数字,写出甲、乙二人抽到的牌的所有情况.(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜;反之,则乙胜.你认为此游戏是否公平?说明你的理由.20.(本题满分16分)已知函数()()R b a a bx ax x f ∈+-=,22(1)若a 从集合{}3,2,1,0中任取一个元素,b 从集合{}3,2,1,0中任取一个元素,求方程()0=x f 恰有两个不相等实根的概率;(2)若b 从区间[]2,0中任取一个数,a 从区间[]3,0中任取一个数,求方程()0=x f 没有实根的概率.参考答案一、填空题(本大题共14小题,每小题5分,共70分,)1.至少有一只白球;2.150;3.4π;;4.31;5.3;6.35;7.92; 8.12;9.52;10.31;11.23;12.910;13.110;14.74二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤...................) 15. (1)第1次摸球有4个可能的结果:d c b a ,,,,其中第1次摸到黄球的结果包括:b a ,,故第1次摸到黄球的概率是.=2054. (2)先后两次摸球有12种可能的结果:(b a ,)(c a ,)(a ,d )(b ,a )(b ,c )(b ,d )(c ,a )(c ,b )(c ,d )(d ,a )(d ,b )(d ,c ),其中第2次摸到黄球的结果包括:(a ,b )(b ,a )(c ,a )(c ,b )(d ,a )(d ,b ),故第2次摸到黄球的概率为.=60512. 16.将5张奖券编号为1,2,3,4,5,其中4、5为中奖奖券,用(x ,y )表示甲抽到号码x ,乙抽到号码y ,则所有的基本事件有: (1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4).(1)甲中奖包含8个基本事件,∴P (A )=820=25.(2)甲、乙都中奖包含2个基本事件,∴P (B )=220=110.(3)只有乙中奖包含6个基本事件,∴P (C )=620=310.(4)乙中奖包含8个基本事件,∴P (D )=820=25.17.解(1)计算10件产品的综合指标S ,如下表:产品编号A 1A 2A 3A 4A 5A 6A 7A 8A 9A 10S4 4 6 3 45 4 5 3 5其中4≤S 的有975421,,,,,A A A A A A 共6件,故该样本的一等品率为6.0106=.从而可估计该批产品的一等品率为0.6.(2)①在该样品的一等品中,随机抽取2件产品的所有可能结果为),(),,(),,(),,(),,(9171514121A A A A A A A A A A ),(),,(),,(),,(92725242A A A A A A A A ),(),,(),,(947454A A A A A A ,),(),,(),,(979575A A A A A A 共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为7521,,,A A A A ,则事件B 发生的所有可能结果为),(),,(),,(),,(),,(),,(757252715121A A A A A A A A A A A A 共6种,所以32156)(==B P . 18.解 (1)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:),(),,(),,(),,(),,(),,(D C D B C B D A C A B A 共6个.由于每个人被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在 1.78以下的事件有:),(),,(),,(C B C A B A 共3个,因此选到的2人身高都在1.78以下的概率为2163==P .(2)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:),(),,(),,(),,(),,(),,(),,(),,(),,(),,(E D E C D C E B D B C B E A D A C A B A 共10个,由于每个人被选的到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:),(),,(),,(E D E C D C 共3个,因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率为103. 19.解(1)甲、乙二人抽到的牌的所有情况(方片4用4′表示)为:(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),( 4′,2),(4′,3),(4′,4),共12种不同情况.(2)甲抽到红桃3,则乙抽到的牌只能是红桃2,红桃4,方片4,因此乙抽到的牌的数字大于3的概率为23. (3)不公平.由甲抽到牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3)5种, 甲胜的概率为15P 12=,乙胜的概率为27P 12=.∵571212<, 所以此游戏不公平.20.解 a 从集合{}3,2,1,0中任取一个元素,b 从集合{}3,2,1,0中任取一个元素,其基本事件有:(0,0),(0,1),(0,2)(0,3),(1,0),(1,1)(1,2)(1,3),(2,0),(2,1)(2,2),(2,3),(3,0)(3,1),(,3,2)(3,3),其中第一个数表示a 的取值,第二个数表示b 的取值,即基本事件总数为16.设“方程()0=x f 恰有两个不相等实根”为事件A ,满足04422>-a b ,又0,0≥≥b a ,从而有0>>a b ,故事件A 包含的基本事件为(1,2)(1,3),(2,3)共3个,所以方程()0=x f 恰有两个不相等实根的概率163)(=A P . (2)根据题意,试验的全部结果构成区域()⎭⎬⎫⎩⎨⎧⎩⎨⎧≤≤≤≤2030|,b a b a ,这是一个矩形区域,其面积为6.设“方程()0=x f 没有实根”为事件B ,则事件B 所构成的区域为()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧>≤≤≤≤b a b a b a 2030|,,其面积为4.故所求概率3264)(==B P .。
(好题)高中数学必修三第三章《概率》测试(答案解析)(1)
一、选择题1.将曲线22x y x y +=+围成的区域记为Ⅰ,曲线1x y +=围成的区域记为Ⅱ,在区域Ⅰ中随机取一点,此点取自区域Ⅱ的概率为( ) A .12π+ B .11π+ C .22π+ D .21π+ 2.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为( ) A .2764B .916C .81256D .7163.已知sin y x =,在区间[],ππ-上任取一个实数x ,则y ≥12-的概率为( ) A .712B .23C .34D .564.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .565.如图,长方形的四个顶点为(0,0)O ,(4,0)A ,(4,2)B ,(0,2)C ,曲线y x =经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域外的概率是( )A .13B .12C .23D .346.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14 B .13C .17 D .4137.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于x 的回归方程为ˆˆ0.65yx a =+落在回归直线下方的概率为( ) A .25B .35C .34D .128.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .169.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3510.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A.116B.18C.38D.31611.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A.15B.625C.825D.2512.连续掷两次骰子,先后得到的点数,m n为点(,)P m n的坐标,那么点P在圆2217x y+=内部的概率是()A.13B.25C.29D.49二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.14.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为___________.15.如图,在长方形OABC内任取一点(,)P x y,则点P落在阴影部分BCD内的概率为________.16.十六个图钉组成如图所示的四行四列的方阵,从中任取三个图钉,则至少有两个位于同行或同列的概率为______.17.某种产品每箱装6个,其中有4个合格,2个不合格,现质检人员从中随机抽取2个进行检测,则检测出至少有一个不合格产品的概率是_______.18.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.19.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.20.从一堆产品(正品与次品都多于2件)中任取2件,观察正品件数和次品件数,则下列说法:①“恰好有1件次品”和“恰好2件都是次品”是互斥事件②“至少有1件正品”和“全是次品”是对立事件③“至少有1件正品”和“至少有1件次品”是互斥事件但不是对立事件 ④“至少有1件次品”和“全是正品”是互斥事件也是对立事件其中正确的有______(填序号).三、解答题21.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:甲种生产方式:乙种生产方式:(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?22.互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.23.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++24.追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如下:(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率.(2)已知某企业每天因空气质量造成的经济损失y(单位:元)与空气质量指数x的关系式为0,0100,220,100250,1480,250300.xy xx⎧⎪=<⎨⎪<⎩假设该企业所在地7月与8月每天空气质量为优、良、轻度污染、中度污染、重度污染、严重污染的概率分别为16,13,16,112,112,16,9月每天的空气质量对应的概率以表中100天的空气质量的频率代替.(i)记该企业9月每天因空气质量造成的经济损失为X元,求X的分布列;(ii)试问该企业7月、8月、9月这三个月因空气质量造成的经济损失总额的数学期望是否会超过2.88万元?说明你的理由.25.某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高; (2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.26.某商场有奖销售中,购满100元商品得1张奖券,多购多得,100张奖券为一个开奖单位,每个开奖单位设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,可知其概率平分别为1(),1000P A =101(),1000100P B ==501()100020P C ==. (1)求1张奖券中奖的概率;(2)求1张奖券不中特等奖且不中一等奖的概率. 【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】画出曲线22x y x y +=+与曲线1x y +=的图像,再根据几何概型的方法求解即可. 【详解】当0,0x y >>时,曲线22x y x y +=+、曲线1x y +=分别为2222111222x y x y x y ⎛⎫⎛⎫+=+⇒-+-= ⎪ ⎪⎝⎭⎝⎭,1x y +=.又22x y x y +=+、1x y +=均关于,x y 轴,原点对称.故两曲线围成的区域Ⅰ(正方形和四个半圆)、Ⅱ(正方形)如图:可知区域Ⅰ的面积为22222S ππ⎛⎫+⋅=+ ⎪ ⎪⎝⎭正方形;区域Ⅱ的面积为()222=;∴由几何概率公式得:22p π=+.故选:C. 【点睛】本题主要考查了几何概型的运用,需要根据题意去绝对值画出一象限的图像,再根据对称性补全图像.同时也考查了几何概型中面积型的问题.属于中档题.2.B解析:B 【分析】求出4名同学去旅游的所有情况种数,再求出恰有一个地方未被选中的种数,由概率公式计算出概率. 【详解】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有2113424322144C C C A A ⋅⋅=种情况; 所以恰有一个地方未被选中的概率:144925616p ==; 故选:B. 【点睛】本题考查古典概型,解题关键是求出基本事件的个数,本题属于中档题.3.B解析:B 【分析】 求出满足12y ≥-的角x 的范围,由长度比,即可得到该几何概型的概率. 【详解】1sin ,[,]2y x x ππ=≥-∈-,5[,][,]66x ππππ∴∈--⋃-, 则满足12y ≥-的概率为: 5()()266()3P ππππππ---+--==--.故选:B. 【点睛】本题考查了三角不等式的求解,几何概型的计算,属于中档题.4.B解析:B 【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B . 【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.5.A解析:A 【分析】计算长方形面积,利用定积分计算阴影部分面积,由面积测度的几何概型计算概率即可. 【详解】由已知易得:34200216=42=8=[]|33S S x ⨯==⎰阴影长方形,,由面积测度的几何概型:质点落在图中阴影区域外的概率11=3S P S =-阴影长方形 故选:A 【点睛】本题考查了面积测度的几何概型,考查了学生转化划归,数学运算的能力,属于基础题.6.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.7.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.8.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y y x ⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形,满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.9.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.10.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B. 【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.11.A解析:A 【分析】阳数:1,3,5,7,9,阴数:2,4,6,8,10,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率. 【详解】因为阳数:1,3,5,7,9,阴数:2,4,6,8,10,所以从阴数和阳数中各取一数差的绝对值有:5525⨯=个,满足差的绝对值为5的有:()()()()()1,6,3,8,5,10,7,2,9,4共5个,则51255P ==. 故选A. 【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:P =目标事件的个数基本本事件的总个数.12.C解析:C 【分析】所有的点(,)P m n 共有6636⨯=个,用列举法求得其中满足2217x y +<的点(,)P m n 有8个,由此求得点P 在圆2217x y +=内部的概率.【详解】所有的点(,)P m n 共有6636⨯=个,点P 在圆2217x y +=内部,即点(,)P m n 满足2217x y +<,故满足此条件的点(,)P m n 有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故点P 在圆2217x y +=内部的概率是82369=, 故选C. 【点睛】该题考查的是有关古典概型概率的求解问题,涉及到的知识点有古典概型概率公式,在解题的过程中,正确找出基本事件的个数以及满足条件的基本事件数是关键.二、填空题13.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:710基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.14.【解析】从分别写有12345的5张卡片中随机抽取1张放回后再随机抽取1张基本事件总数n=5×5=25抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(21)(31)(32)(41)(42解析:2 5【解析】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,基本事件总数n=5×5=25,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有m=10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率p=2.5故答案为2 5 .15.【分析】利用微积分基本定理先计算出阴影部分的面积根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率即可计算出概率值【详解】由几何概型的知识可知:阴影部分的面积与长方形的面积之比等于所解析:1 e【分析】利用微积分基本定理先计算出阴影部分的面积,根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率,即可计算出概率值.由几何概型的知识可知:阴影部分的面积与长方形OABC 的面积之比等于所求概率, 记阴影部分面积为1S ,长方形面积为2S , 所以()1110111xx S e e dx e ee e =⨯-=-=--=⎰,21S e e =⨯=,所以所求概率为121S P S e==. 故答案为:1e. 【点睛】本题考查几何概型中的面积模型以及利用微积分基本定理求解定积分的值,属于综合型问题,难度一般.几何概型中的面积模型的计算公式:()A A P =构成事件的区域面积全部试验结果所构成的区域面积.16.【分析】先求出从16个图钉中任取3个的所有方法数再求出三个图钉分别位于三行或三列的情况的数量利用排除法即得解【详解】从16个图钉中任取3个共有种取法;三个图钉分别位于三行或三列的情况的数量:种至少有 解析:2935【分析】先求出从16个图钉中任取3个的所有方法数,再求出三个图钉分别位于三行或三列的情况的数量,利用排除法,即得解. 【详解】从16个图钉中任取3个共有316560C =种取法;三个图钉分别位于三行或三列的情况的数量:34432=96C ⨯⨯⨯种 至少有两个位于同行或者同列的情况的数量:56096464-=种. 所以至少有两个位于同行或同列的概率为2935. 故答案为:2935【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.17.【分析】首先明确试验发生包含的事件是从6个产品中抽2个共有种结果满足条件的事件是检测出至少有一个不合格产品共有种结果根据古典概型概率公式得到结果【详解】由题意知本题是一个等可能事件的概率因为试验发生解析:35首先明确试验发生包含的事件是从6个产品中抽2个,共有26C 种结果,满足条件的事件是检测出至少有一个不合格产品,共有112242C C C +种结果,根据古典概型概率公式得到结果.【详解】由题意知本题是一个等可能事件的概率,因为试验发生包含的事件是6个产品中抽取2个,共有2615C =种结果, 满足条件的事件是检测出至少有一个不合格产品,共有1122429C C C +=种结果,所以检测出至少有一个不合格产品的概率是93155=, 故答案是:35. 【点睛】该题考查的是有关等可能事件的概率的求解问题,在解题的过程中,注意对试验所包含的基本事件数以及满足条件的基本事件数,以及概率公式,属于简单题目.18.【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有28种所 解析:725【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -所有可能情况,代入公式得到结果。
(易错题)高中数学必修三第三章《概率》测试(有答案解析)(2)
一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin2sin52θθ⎛⎫++=⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为().A.14B.15C.25D.352.中国是发现、研究和运用勾股定理最古老的国家之一,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,他创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,已知四个直角三角形的两条直角边的长度之比为12,若向大正方形中随机投入一点,则该点落入小正方形的概率为()A.125B.19C.15D.133.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为()A.13B.49C.59D.234.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为()A.35B.45C.1 D.655.如图,正方形ABNH、DEFM的面积相等,23CN NG AB==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A.1 2B.3 4C.2 7D.3 86.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到如下数据:x4681012y12356由表中数据求得y 关于x 的回归方程为ˆˆ0.65yx a =+,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35C .34D .127.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 8.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .169.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29210.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .12711.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成. 如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )A .14B .316C .38D .71612.某人午觉醒来,发现表停了,他打开收音机,想听电台整点报时,则他等待的时间不多于15分钟的概率为( ) A .13B .14C .15D .16二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 488 932 812 458 989 431 257 390 024 556 734 113 537 569 683 907 966 191 925 271据此估计,这三天中恰有两天下雨的概率近似为__________.15.如图,C 是以AB 为直径的半圆周上一点,已知在半圆内任取一点,该点恰好在ABC 内部的概率为1π,则ABC 的较小的内角为________.16.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A 的概率分别为56、78、34,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A 的概率为____17.设每门高射炮命中飞机的概率为0.06,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______门高射炮射击,才能以至少99%的概率命中它.18.若正方体1111ABCD A B C D -的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.19.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一准时响的概率是________ .20.三位同学参加跳高、跳远、铅球项目的比赛.若每人只选择一个项目,则有且仅有两人选择的项目完全相同的概率是(结果用最简分数表示).三、解答题21.袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求:(1)从中任取一球,得到黑球、黄球、绿球的概率各是多少?(2)从中任取两个球,得到的两个球颜色不相同的概率是多少?22.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15 ,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?23.某校疫情期间“停课不停学”,实施网络授课,为检验学生上网课的效果,高三年级进行了一次网络模拟考试.全年级共1500人,现从中抽取了100人的数学成绩,绘制成频率分布直方图(如图所示).已知这100人中[110,120)分数段的人数比[100,110)分数段的人数多6人.(1)根据频率分布直方图,求a,b的值;并估计抽取的100名同学数学成绩的平均数(假设同一组中的每个数据可用该组区间的中点值代替);(2)现用分层抽样的方法从分数在[130,140),[140,150]的两组同学中随机抽取6名同学,从这6名同学中再任选2名同学作为“网络课堂学习优秀代表”发言,求这2名同学的分数恰在同一组内的概率.24.将一枚六个面的编号为1,2,3,4,5,6的质地均匀的正方体骰子先后掷两次,记第一次出的点数为a ,第二次出的点数为b ,且已知关于x 、y 的方程组322ax by x y +=⎧⎨+=⎩.(1)求此方程组有解的概率;(2)若记此方程组的解为00x x y y =⎧⎨=⎩,求00x >且00y >的概率.25.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择: 方案一:一次性...抽取两球,若颜色相同,则获得奖品; 方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品. (1)写出按方案一抽奖的试验的所有基本事件; (2)哪种方案获得奖品的可能性更大?26.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y (单位:个)与一定范围内的温度x (单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m ,n ,求“事件m ,n 均不小于24”的概率?(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y 关于x 的线性回归方程?②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?附公式:ˆybx a =+,()()()121niii nii x x y y b x x ==--=-∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭,可以求得sin()1θϕ+=,tan 2ϕ=,求出小正方形的边长和直角三角形两直角边的长,进而得到大正方形的边长,然后根据几何概型概率公式求解即可. 【详解】由πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭可得sin 2cos 5θθ+=,即5sin()5θϕ+=,即sin()1θϕ+=,且tan 2ϕ=,所以2πθϕ+=,所以直角三角形较大的锐角为ϕ,较小的锐角为θ,如图,设小正方形的边长为a ,直角三角形较大的锐角为θ、较大的锐角为为ϕ, 较小的直角的边长b ,则直角三角形较大的直角边长为+a b ,∵tan 2a bbϕ+==, ∴a b =,∴22(2)5a a a +=, 由几何概型概率公式可得,所求概率为2215(5)P a ==. 故选:B . 【点睛】解答几何概型概率的关键是分清概率是属于长度型的、面积型的、还是体积型的,然后再根据题意求出表示基本事件的点构成的线段的长度(或区域的面积、空间几何体的体积),最后根据公式计算即可.解析:C 【分析】由已知的线段的长度比,得出两正方形的面积,运用概率公式可得选项. 【详解】设直角三角形的两直角边分别为1和2所以小正方形的边长为211-=,面积为1,大正方形的面积为25=. 所以飞镖落在小正方形内的概率为15. 故选:C. 【点睛】本题考查几何概型,关键在于由长度的关系得出大正方形和小正方形的面积,属于中档题.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点, 则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.6.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =,故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.7.B解析:B 【分析】利用复数模的公式可得点(),x y 在以()1,0为圆心,以1为半径的圆上及圆的内部,结合y x ≥表示的是图中直线上方且在圆内的弓形,求出圆的面积与弓形的面积利用几何概型可得结果. 【详解】因为()()1,,a x y x y R =-∈,且1a ≤, 所以()2211x y -+≤,∴点(),x y 在以()1,0为圆心,以1为半径的圆上及圆的内部,y x ≥表示的是图中直线上方且在圆内的弓形,而圆的面积为S π=,11=42S π-弓, y x ∴≥的概率为111142=42S P S πππ-==-弓, 故选:B. 【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A 的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.8.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.9.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.10.C解析:C 【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解. 【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=. 故选:C .【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.B解析:B 【分析】设正方形的边长为2,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率. 【详解】设正方形的边长为2,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为42=,对应每个小等腰三角形的面积1124S ==, 则阴影部分的面积之和为13344⨯=,正方形的面积为4, 若在此正方形中任取一点,则此点取自黑色部分的概率为344631=,故选:B . 【点睛】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.12.B解析:B 【分析】由电台整点报时的时刻是任意的知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于15分钟的事件包含的时间长度是15,利用时间的长度比即可求出所求. 【详解】解:由题意知这是一个几何概型, ∵电台整点报时,∴事件总数包含的时间长度是60,∵满足他等待的时间不多于15分钟的事件包含的时间长度是15, 由几何概型公式得到151604P ==, 故选B . 【点睛】本题主要考查了几何概型,本题先要判断该概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于中档题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数根据概率公式得到结果【详解】由题意知模拟三天的下雨情况经随机模拟产生了20组随机数在20组随机数中表示三天中恰有两天下雨解析:3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数,根据概率公式,得到结果.【详解】由题意知模拟三天的下雨情况,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:932、812、024、734、191、271,共6组随机数,∴所求概率为60.320P==.故答案为:0.3【点睛】本题主要考查了模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用,属于中档题.15.【分析】由几何概型中的面积型圆的面积公式三角形的面积公式及直角三角形的射影定理可得:设则又不妨设即所以得:所以所以得解【详解】过作设则由在半圆内任取一点该点恰好在内部的概率为则则即又不妨设即所以得: 解析:12π【分析】由几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理可得:设2AB a =,则22a S π=半圆,||2aCD =,又2||||||CD AD BD =⨯, 不妨设||||AD BD <,即CBA CAB ∠<∠,所以得:23||BD a +=,所以||tan 23||CD CBA BD ∠==-,所以12CBA π∠=,得解. 【详解】 过C 作CD AB ⊥,设2AB a =, 则22a S π=半圆,由在半圆内任取一点,该点恰好在ABC ∆内部的概率为1π, 则212ABC S a ∆=, 则211||||22AB CD a =, 即||2aCD =, 又2||||||CD AD BD =⨯,不妨设||||AD BD <,即CBA CAB ∠<∠, 所以得:23||BD +=, 所以||tan 23||CD CBA BD ∠== 所以12CBA π∠=,故答案为:12π.【点睛】本题考查了几何概型中的面积型、圆的面积公式,三角形的面积公式及直角三角形的射影定理,属中档题.16.【分析】先求对立事件概率:三门科目考试成绩都不是A 再根据对立事件概率关系求结果【详解】这位考生三门科目考试成绩都不是A 的概率为所以这位考生至少得1个A 的概率为故答案为:【点睛】本题考查利用对立事件求 解析:191192【分析】先求对立事件概率:三门科目考试成绩都不是A ,再根据对立事件概率关系求结果. 【详解】这位考生三门科目考试成绩都不是A 的概率为5731(1)(1)(1)684192---=, 所以这位考生至少得1个A 的概率为11911192192-= 故答案为:191192【点睛】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.17.【分析】设需要门高射炮由题意得出解出的取值范围可得出正整数的最小值【详解】设需要门高射炮则命不中的概率为由题意得出得解得而因此至少需要门高射炮故答案为:【点睛】本题考查独立事件概率乘法公式的应用在涉 解析:75【分析】设需要n 门高射炮,由题意得出()110.060.99n--≥,解出n 的取值范围,可得出正整数n 的最小值.【详解】设需要n 门高射炮,则命不中的概率为()10.06n-,由题意得出10.940.99n-≥,得0.940.01n≤,解得0.942log 0.01lg 0.94n ≥=-, 而274.43lg 0.94-≈,因此,至少需要75门高射炮. 故答案为:75. 【点睛】本题考查独立事件概率乘法公式的应用,在涉及“至少”问题时,可以利用对立事件的概率公式来进行计算,考查运算求解能力,属于中等题.18.【解析】【分析】先求出满足题意的体积运用几何概型求出结果【详解】由题意可知总的基本事件为正方体内的点可用其体积满足的基本事件为为球心3为半径的求内部在正方体中的部分其体积为故则的长度大于3的概率【点 解析:16π-【解析】 【分析】先求出满足题意的体积,运用几何概型求出结果 【详解】由题意可知总的基本事件为正方体内的点,可用其体积3327=, 满足||3AE 的基本事件为A 为球心3为半径的求内部在正方体中的部分, 其体积为31493832V ππ=⨯⨯=,故则AE 的长度大于3的概率9211276P ππ=-=-.【点睛】本题考查了几何概型,读懂题意并计算出结果,较为基础19.98【解析】设甲闹钟准时响为事件A 乙闹钟准时响为事件B 则两个闹钟没有一个准时响为事件事件A 与事件B 相互独立得两个闹钟至少有一个准时响与事件对立故两个闹钟至少有一个准时响的概率为解析:98 【解析】设甲闹钟准时响为事件A ,乙闹钟准时响为事件B ,则两个闹钟没有一个准时响为事件,事件A 与事件B 相互独立,得,,.两个闹钟至少有一个准时响与事件对立,故两个闹钟至少有一个准时响的概率为.20.【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种有且仅有两人选择的项目完全相同有种其中表示3个同学中选2个同学选择的项目表示从三种组合中选一个表示剩下的解析:23【详解】每个同学都有三种选择:跳高与跳远;跳高与铅球;跳远与铅球三个同学共有3×3×3=27种,有且仅有两人选择的项目完全相同有21133218C C C ⨯⨯=种,其中23C 表示3个同学中选2个同学选择的项目,13C 表示从三种组合中选一个,12C 表示剩下的一个同学有2中选择,故有且仅有两人选择的项目完全相同的概率是182273=.考点:古典概型及其概率计算公式.三、解答题21.(1)黑球、黄球、绿球的概率分别是13,29,49;(2)1318.【分析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由已知列出()()()P A P B P C、、的方程组可得答案;(2)求出从9个球中取出2个球的样本空间中共有的样本点,再求出两个球同色的样本点可得答案.【详解】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由于A,B,C为互斥事件,根据已知,得()()()()()()()()()()59231 P A B P A P BP B C P B P CP A B C P A P B P C⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩,解得() () ()132949P AP BP C⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49.(2)由(1)知黑球、黄球、绿球个数分别为3,2,4,从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个,于是,两个球同色的概率为3165 3618 ++=,则两个球颜色不相同的概率是513 11818 -=.【点睛】本题考查互斥事件和对立事件的概率,一般地,如果事件A1、A2、…、A n彼此互斥,那么事件A1+A2+…+A n发生(即A1、A2、…、A n中有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).22.乙商场中奖的可能性大.【解析】试题分析:分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到. 试题如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积2R π,阴影部分的面积为224153606R R ππ⨯=, 则在甲商场中奖的概率为212166R P R ππ==; 如果顾客去乙商场,记3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(x ,y )为一次摸球的结果,则一切可能的结果有:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()13,a b ,()23,a a ,()21,a b ,()22,a b ,()23,a b ,()31,a b ,()32,a b ,()33,a b ,()12,b b ,()13,b b ,()23,b b ,共15种, 摸到的是2个红球有()12,b b ,()13,b b ,()23,b b ,共3种,则在乙商场中奖的概率为231155P ==, 又12p p <,则购买该商品的顾客在乙商场中奖的可能性大. 23.(1)a =0.020,b =0.026,112;(2)715. 【分析】(1)根据频率分布直方图中所有频率之和为1可得+a b ,再由人数差可求得,a b ; (2)计算出分数为[130,140)的同学中抽取4人,分别用a 1,a 2,a 3,a 4表示,在分数为[140,150]的同学中抽取2人,分别用b 1,b 2表示,用列举法写出任取2人所有基本事件,并得出这2名同学的分数恰在同一组内的基本事件,计数后可计算出概率. 【详解】解:(1)依题意a +b =0.046,100×10×(b ﹣a )=6, 解得a =0.020,b =0.026, 平均数为:750.02850.08950.141050.21150.261250.151350.11450.05⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 整理得平均数为112(2)设“抽取的2名同学的分数恰在同一组内”为事件A由题意,在分数为[130,140)的同学中抽取4人,分别用a 1,a 2,a 3,a 4表示, 在分数为[140,150]的同学中抽取2人,分别用b 1,b 2表示,从这6名同学中抽取2人所有可能出现的结果有:(a 1,a 2),(a 1,a 3),(a 1,a 4)(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,a 4),(a 2,b 1),(a 2,b 2),(a 3,a 4),(a 3,b 1),(a 3,b 2),(a 4,b 1),(a 4,b 2),(b 1,b 2)共15种,。
高中数学必修三第三章《概率》单元测试卷及答案
高中数学必修三第三章《概率》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()①选出1人是班长的概率为140;②选出1人是男生的概率是125;③选出1人是女生的概率是115;④在女生中选出1人是班长的概率是0.A.①②B.①③C.③④D.①④3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A.12B.13C.14D.184.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不是对立事件D.以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A.110B.310C.710D.9106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?( ) A .①②B .①③C .②③D .①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为( ) A .16B .16.32C .16.34D .15.968.在区间(15,25]内的所有实数中随机取一个实数a ,则这个实数满足17<a <20的概率是( ) A .13B .12C .310D .7109.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A .0.45B .0.67C .0.64D .0.3210.一只猴子任意敲击电脑键盘上的0到9这十个数字键,则它敲击两次(每次只敲击一个数字键)得到的两个数字恰好都是3的倍数的概率为( ) A .9100B .350C .3100D .2911.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A .710B .310 C .35D .2512.如图,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是( )A .4πB .12π C .14π-D .112π-二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.从一箱苹果中任取一个,如果其重量小于200克的概率为0.2,重量在[]200,300内的概率为0.5,那么重量超过300克的概率为________.14.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A B +发生的概率为________.(B 表示B 的对立事件)15.先后两次抛掷同一枚骰子,将得到的点数分别记为a ,b .将a ,b ,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.16.设b和c分别是先后抛掷一颗骰子得到的点数,则方程x2-bx+c=0有实根的概率为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:(1(2)至少3人排队等候的概率是多少?18.(12分)为了了解某市工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C 三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂.(1)求从A,B,C区中分别抽取的工厂个数;(2)若从抽得的7个工厂中随机地抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率.19.(12分)在区间(0,1)上随机取两个数m,n,求关于x的一元二次方程20+=有x m实根的概率.20.(12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x,y)表示“甲在x号车站下车,乙在y号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来;(2)求甲、乙两人同在第3号车站下车的概率;(3)求甲、乙两人在不同的车站下车的概率.21.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一天能赚多少钱?22.(12分)汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):10辆.(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】D【解析】A选项,此概率只说明发生的可能性大小,具有随机性,并非一定是5场胜3场;B选项,此治愈率只说明发生的可能性大小,具有随机性,并非10人一定有人治愈;C选项,试验的频率可以估计概率,并不等于概率;D选项,概率为90%,即可能性为90%.故选D.2.【答案】D【解析】本班共有40人,1人为班长,故①对;而“选出1人是男生”的概率为255408=;“选出1人为女生”的概率为153408=,因班长是男生,∴“在女生中选班长”为不可能事件,概率为0.故选D.3.【答案】C【解析】抛掷两枚质地均匀的硬币,可能出现“正、正”、“反、反”、“正、反”、“反、正”,因此两个正面朝上的概率14P =.故选C . 4.【答案】C【解析】由互斥事件的定义可知:甲、乙不能同时得到红牌,由对立事件的定义可知:甲、乙可能都得不到红牌,即“甲、乙分得红牌”的事件可能不发生.故选C . 5.【答案】B【解析】从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),∴选出的火炬手的编号相连的概率为310P =.故选B . 6.【答案】A【解析】从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A “两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.A 选项正确. 7.【答案】B 【解析】由题意204300S S =阴矩,∴204=24=16.32300S ⨯阴.故选B . 8.【答案】C【解析】∵(]15,25a ∈,∴()201731720251510P a -<<==-.故选C .9.【答案】D【解析】摸出红球的概率为45.45100=0,因为摸出红球,白球和黑球是互斥事件,因此摸出黑球的概率为10.450.230.32--=.故选D . 10.【答案】A【解析】任意敲击0到9这十个数字键两次,其得到的所有结果为(0,i )(i =0,1,2,…,9);(1,i )(i =0,1,2,…,9);(2,i )(i =0,1,2,…,9);…;(9,i )(i =0,1,2,…,9).故共有100种结果.两个数字都是3的倍数的结果有(3,3),(3,6),(3,9),(6,3),(6,6),(6,9),(9,3),(9,6),(9,9).共有9种. 故所求概率为9100.故选A . 11.【答案】A 【解析】建立平面直角坐标系(如图所示),则由图可知满足m >n 的点应在梯形OABD 内, 所以所求事件的概率为7=10OABD OABCS P S =梯形矩形.故选A . 12.【答案】C 【解析】4144P --ππ===-正方形面积圆锥底面积正方形面积.故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】0.3【解析】所求的概率10.20.50.3P =--=. 14.【答案】23【解析】事件A 包含的基本事件为“出现2点”或“出现4点”;B 表示“大于等于5的点数出现”,包含的基本事件为“出现5点”或“出现6点”.显然A 与B 是互斥的,故()()()112333P A B P A P B +==+=.15.【答案】718【解析】基本事件的总数为6×6=36.∵三角形的一边长为5,∴当a =1时,b =5符合题意,有1种情况; 当a =2时,b =5符合题意,有1种情况; 当a =3时,b =3或5符合题意,即有2种情况; 当a =4时,b =4或5符合题意,有2种情况; 当a =5时,b ∈{1,2,3,4,5,6}符合题意, 即有6种情况;当a =6时,b =5或6符合题意,即有2种情况. 故满足条件的不同情况共有14种, 所求概率为1473618=.36【解析】基本事件总数为36个,若使方程有实根,则Δ=b 2-4c ≥0,即b 2≥4c .当c =1时,b =2,3,4,5,6;当c =2时,b =3,4,5,6; 当c =3时,b =4,5,6;当c =4时,b =4,5,6; 当c =5时,b =5,6;当c =6时,b =5,6.符合条件的事件个数为5+4+3+3+2+2=19,因此方程x 2-bx +c =0有实根的概率为1936.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)0.56;(2)0.44.【解析】记“有0人等候”为事件A ,“有1人等候”为事件B ,“有2人等候”为事件C ,“有3人等候”为事件D ,“有4人等候”为事件E ,“有5人及5人以上等候”为事件F ,则易知A 、B 、C 、D 、E 、F 互斥.(1)记“至多2人排队等候”为事件G ,则G =A ∪B ∪C , 所以()()()()()=0.10.160.30.56P G P ABC P A P B P C =++=++=.(2)记“至少3人排队等候”为事件H ,则H =D ∪E ∪F ,所以P (H )=P (D ∪E ∪F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44. 也可以这样解,G 与H 互为对立事件, 所以()()110.560.44P H P G --===.18.【答案】(1)A ,B ,C 分别抽取2人,3人,2人;(2)1121. 【解析】(1)工厂总数为18+27+18=63,样本容量与总体中的个体数比为71639=,所以从A ,B ,C 三个区中应分别抽取的工厂个数为2人,3人,2人.(2)设A 1,A 2为在A 区中抽得的2个工厂,B 1,B 2,B 3为在B 区中抽得的3个工厂,C 1,C 2为在C 区中抽得的2个工厂,在这7个工厂中随机抽取2个,全部可能的结果有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共有21种.随机地抽取的2个工厂至少有1个来自A 区的结果(记为事件X )有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 1,C 2),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,C 1),(A 2,C 2)共有11种,所以这2个工厂中至少有1个来自A 区的概率为()1121P X =.8【解析】在平面直角坐标系中,以x 轴和y 轴分别表示m ,n 的值,因为m ,n 在(0,1)内与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件A 表示方程20x nx m +=有实根,则事件()40,0101n m A m n m n ⎧⎫-≥⎧⎪⎪⎪=<<⎨⎨⎬⎪⎪⎪<<⎩⎩⎭,所对应的区域为图中的阴影部分,且阴影部分的面积为18,故()18S P A S ==阴影正方形,即关于x的一元二次方程20x nx m +=有实根的概率为18.20.【答案】(1)见解析;(2)19;(3)23.【解析】(1)甲、乙两人下车的所有可能的结果为:(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4). (2)设甲、乙两人同在第3号车站下车的事件为A ,则()19P A =.(3)设甲、乙两人在不同的车站下车的事件为B ,则()121393P B =-⨯=.21.【答案】(1)0.05;(2)40元.【解析】(1)把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3. 从6个球中随机摸出3个的基本事件为:ABC 、AB 1、AB 2、AB 3、AC 1、AC 2、AC 3、A 12、A 13、A 23、BC 1、BC 2、BC 3、B 12、B 13、B 23、C 12、C 13、C 23、123, 共20个.事件E ={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123, ()10.0520P E ==. (2)事件F ={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P (F )=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件F 发生有10次,不发生90次.则一天可赚90×1-10×5=40,每天可赚40元. 22.【答案】(1)400;(2)710;(3)34. 【解析】(1)设该厂这个月共生产轿车n 辆, 由题意得5010100300n =+,所以n =2000. 则z =2 000-(100+300)-(150+450)-600=400. (2)设所抽样本中有a 辆舒适型轿车, 由题意得40010005a=,即a =2. 因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车.用A 1,A 2表示2辆舒适型轿车,用B 1,B 2,B 3表示3辆标准型轿车,用E 表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”, 则基本事件空间包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3)共10个.事件E 包含的基本事件有:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3)共7个.故()710P E =,即所求概率为710. (3)样本平均数()19.48.69.29.68.79.39.08.298x =⨯+++++++=.设D 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D 包括的基本事件有: 9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以()6384P D ==,即所求概率为34. 单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军; ②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4°C 时结冰. A .1B .2C .3D .42.平面上有一组平行线,且相邻平行线间的距离为3 cm ,把一枚半径为1 cm 的硬币任意抛掷在这个平面上,则硬币不与任何一条平行线相碰的概率是( ) A .14B .13C .12D .233.某班有50名学生,其中男、女各25名,若这个班的一个学生甲在街上碰到一位同班同学,假定每两名学生碰面的概率相等,那么甲碰到异性同学的概率大还是碰到同性同学的概率大( ) A .异性B .同性C .同样大D .无法确定4.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13B .2πC .12D .235.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为( ) A .0.35B .0.25C .0.20D .0.156.12本相同的书中,有10本语文书,2本英语书,从中任意抽取3本的必然事件是( ) A .3本都是语文书 B .至少有一本是英语书 C .3本都是英语书D .至少有一本是语文书7.某人射击4枪,命中3枪,3枪中有且只有2枪连中的概率是( ) A .34B .14 C .13D .128.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,则这个两位数大于40的概率为( ) A .15B .25 C .35D .459.已知集合{}9,7,5,3,1,0,2,4,6,8A =-----,从集合A 中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件A ={点落在x 轴上}与事件B ={点落在y 轴上}的概率关系为( ) A .P (A )>P (B )B .P (A )<P (B )C .P (A )=P (B )D .P (A )、P (B )大小不确定10.如图所示,△ABC 为圆O 的内接三角形,AC =BC ,AB 为圆O 的直径,向该圆内随机投一点,则该点落在△ABC 内的概率是( ) A .1πB .2πC .4πD .12π11.若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n ),则点P 在圆x 2+y 2=25外的概率是( ) A .536B .712C .512 D .1312.如图所示,两个圆盘都是六等分,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29C .23 D .13二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知半径为a 的球内有一内接正方体,若球内任取一点,则该点在正方体内的概率为________.14.在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点, 则落入E 中的概率为________.15.在半径为1的圆的一条直径上任取一点,过这个点作垂直于直径的弦,则弦长超过圆内接等边三角形边长的概率是________.16.在体积为V 的三棱锥S ABC -的棱AB 上任取一点P ,则三棱锥S APC -的体积大于3V 的概率是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知函数f(x)=-x2+ax-b.若a,b都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率.18.(12分)假设向三个相邻的军火库投掷一个炸弹,炸中第一个军火库的概率为0.025,其余两个各为0.1,只要炸中一个,另两个也发生爆炸,求军火库发生爆炸的概率.19.(12分)如右图所示,OA=1,在以O为圆心,OA为半径的半圆弧上任取一点B,求使△AOB的面积大于等于14的概率.20.(12分)甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽到的牌面数字比3大的概率是多少?(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.21.(12分)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率;(2)求B 1和C 1不全被选中的概率.22.(12分)已知实数a ,{}2,1,1,2b ∈--. (1)求直线y =ax +b 不经过第四象限的概率; (2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率.答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】C【解析】①张涛获得冠军有可能发生也有可能不发生,所以为随机事件; ②抽到的学生有可能是李凯,也有可能不是,所以为随机事件; ③有可能抽到1号签也有可能抽不到,所以为随机事件;④标准大气压下,水在4°C 时不会结冰,所以是不可能事件,不是随机事件. 故选C . 2.【答案】B 3.【答案】A【解析】记“甲碰到同性同学”为事件A ,“甲碰到异性同学”为事件B ,则()2449P A =,()2549P B =,故P (A )<P (B ),即学生甲碰到异性同学的概率大.故选A . 4.【答案】A【解析】在区间,22ππ⎡⎤-⎢⎥⎣⎦,10cos ,,22332x x ππππ⎛⎫⎛⎫<<⇔∈-- ⎪ ⎪⎝⎭⎝⎭,其区间长度为3π,又已知区间,22ππ⎡⎤-⎢⎥⎣⎦的长度为π,由几何概型知133P π==π.故选A .5.【答案】B【解析】由题意知在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393,共5组随机数,故所求概率为51.25204==0.B 选项正确. 6.【答案】D【解析】由于只有2本英语书,从中任意抽取3本,其中至少有一本是语文书. 故选D . 7.【答案】D【解析】4枪命中3枪共有4种可能,其中有且只有2枪连中有2种可能, 所以2142P ==.故选D . 8.【答案】B【解析】可能构成的两位数的总数为5×4=20(种),因为是“任取”两个数,所以每个数被取到的概率相同,可以采用古典概型公式求解,其中大于40的两位数有以4开头的:41,42,43,45共4种;以5开头的:51,52,53,54共4种,所以82205P ==. 故选B . 9.【答案】C【解析】横坐标与纵坐标为0的可能性是一样的.故选C . 10.【答案】A【解析】连接OC ,设圆O 的半径为R ,记“所投点落在△ABC 内”为事件A ,则()2112AB OCP A R⋅⋅==ππ.故选A . 11.【答案】B【解析】本题中涉及两个变量的平方和,类似于两个变量的和或积的情况,可以用列表法,使x 2+y 2>25的次数与总试验次数的比就近似为本题结果.即2173612=. B 选项正确. 12.【答案】A【解析】可求得同时落在奇数所在区域的情况有4×4=16(种),而总的情况有6×6=36(种),于是由古典概型概率公式,得164369P ==.故选A .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】233π【解析】因为球半径为a ,则正方体的对角线长为2a ,设正方体的边长为x , 则23a x =,∴23a x =,由几何概型知,所求的概率3323433V x P V a ===ππ正方体球. 14.【答案】16π【解析】如图所示,区域D 表示边长为4的正方形的内部(含边界),区域E 表示单位圆及其内部,因此214416P π⨯π==⨯.15.【答案】12【解析】记“弦长超过圆内接等边三角形的边长”为事件A ,如图所示,不妨在过等边三角形BCD 的顶点B 的直径BE 上任取一点F 作垂直于直径的弦,当弦为CD 时,就是等边三角形的边长,弦长大于CD 的充要条件是圆心O 到弦的距离小于OF ,由几何概型的概率公式得()121222P A ⨯==. 16.【答案】23【解析】由题意可知1>3S APC S ABC V V --,如图所示,三棱锥S ABC -与三棱锥S APC -的高相同,因此1>3S APC APC S ABC ABC V S PM V S BN --==△△ (PM ,BN 为其高线),又PM APBN AB=, 故1>3AP AB ,故所求概率为23(长度之比).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】1225P =. 【解析】a ,b 都是从0,1,2,3,4五个数中任取的一个数的基本事件总数为N =5×5=25个.函数有零点的条件为Δ=a 2-4b ≥0,即a 2≥4b .因为事件“a 2≥4b ”包含()0,0,()1,0,()2,0,()2,1,()3,0,()3,1,()3,2,()4,0,()4,1,()4,2,()4,3,()4,4,共12个.所以事件“a 2≥4b ”的概率为1225P =. 18.【答案】0.225P =.【解析】设A 、B 、C 分别表示炸中第一、第二、第三军火库这三个事件. 则P (A )=0.025,P (B )=P (C )=0.1,设D 表示军火库爆炸这个事件,则有 D =A ∪B ∪C ,其中A 、B 、C 是互斥事件,∴P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225. 19.【答案】23P =. 【解析】因为1OA =,14AOB S ≥△,所以11111sin sin 242AOB AOB ⨯⨯⨯∠≥⇒∠≥, 所以566AOB ππ≤∠≤,所以14AOB S ≥△的概率为526603ππ-=π-. 20.【答案】(1)见解析;(2)23;(3)公平,见解析. 【解析】(1)甲、乙二人抽到的牌的所有情况(方片4用4′表示,其他用相应的数字表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),()4,4',(4′,2),(4′,3),(4′,4),共12种不同情况.(2)甲抽到红桃3,乙抽到的牌的牌面数字只能是2,4,4′,因此乙抽到的牌的牌面数字比3大的概率为23. (3)甲抽到的牌的牌面数字比乙大的情况有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种,故甲胜的概率1512P =,同理乙胜的概率2512P =.因为P 1=P 2, 所以此游戏公平.21.【答案】(1)13;(2)56.【解析】(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件为(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2),共18个基本事件.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的. 用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}, 事件M 由6个基本事件组成,因而()61183P M ==. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于()()(){}111211311,,,,,,,,A B C A B C A B N C =,事件N 由3个基本事件组成,所以()31186P N ==,由对立事件的概率公式得:()()151166P N P N =-=-=. 22.【答案】(1)14;(2)34. 【解析】(1)由于实数对(a ,b )的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种. 设“直线y =ax +b 不经过第四象限”为事件A ,若直线y =ax +b 不经过第四象限,则必须满足00a b ≥⎧⎨≥⎩,即满足条件的实数对(a ,b )有(1,1),(1,2),(2,1),(2,2),共4种.∴()41164P A ==.故直线y =ax +b 不经过第四象限的概率为14. (2)设“直线y =ax +b 与圆x 2+y 2=1有公共点”为事件B ,若直线y =ax +b 与圆x 2+y 2=11≤,即b 2≤a 2+1.若a =-2,则b =-2,-1,1,2符合要求,此时实数对(a ,b )有4种不同取值; 若a =-1,则b =-1,1符合要求,此时实数对(a ,b )有2种不同取值; 若a =1,则b =-1,1符合要求,此时实数对(a ,b )有2种不同取值,若a =2,则b =-2,-1,1,2符合要求,此时实数对(a ,b )有4种不同取值. ∴满足条件的实数对(a ,b )共有12种不同取值.∴()123164P B ==. 故直线y =ax +b 与圆x 2+y 2=1有公共点的概率为34。
高一数学必修3第三章《概率》测试题(北师
高一数学必修3第三章《概率》测试题(北师一、选择题(每小题5分,共计50分)1、下列说法正确的是()A、任何事件的概率总是在(0,1)之间B、频率是客观存在的,与试验次数无关C、随着试验次数的增加,频率一般会越来越接近概率D、概率是随机的,在试验前不能确定2、掷一枚骰子,则掷得奇数点的概率是()A、B、C、D、3、从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是()A、至少有一个黒球与都是黒球B、至少有一个黒球与都是黒球C、至少有一个黒球与至少有个红球D、恰有个黒球与恰有个黒球4、在根纤维中,有根的长度超过,从中任取一根,取到长度超过的纤维的概率是()A、B、C、D、以上都不对5、从一批羽毛球产品中任取一个,其质量小于4、8g的概率为0、3,质量小于4、85g的概率为0、32,那么质量在[4、8,4、85]( g )范围内的概率是()A、0、62B、0、38C、0、02D、0、686、同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A、B、C、D、7、甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是()A、B、C、D、无法确定8、从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A、 1B、C、D、9、一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是()A、B、C、D、10、现有五个球分别记为A,C,J,K,S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是()A、B、C、D、二、填空题(每小题5分,共计20分)11、在件产品中,有件一级品,件二级品,则下列事件:①在这件产品中任意选出件,全部是一级品;②在这件产品中任意选出件,全部是二级品;③在这件产品中任意选出件,不全是一级品;④在这件产品中任意选出件,其中不是一级品的件数小于,其中是必然事件;是不可能事件;是随机事件。
(好题)高中数学必修三第三章《概率》测试(有答案解析)
一、选择题1.如图,在菱形ABCD 中,3AB =,60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A .07.74pB .07.76pC .07.79pD .07.81p2.2020年新型肺炎疫情期间,山东省某市派遣包含甲,乙两人的12名医护人员支援湖北省黄冈市,现将这12人平均分成两组,分别分配到黄冈市区定点医院和黄冈市英山县医院,则甲、乙不在同一组的概率为( ) A .511B .611C .12D .233.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 4.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( ) A .16πB .4π C 322- D .14π-5.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-6.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .237.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .588.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .1279.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x ,y ,则满足()()22lg 2lg 3lg x y x y +=+的概率为( )A .18B .14C .13D .1210.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()23323ππ-- B ()323π-C ()323π+ D ()3323π+11.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .531712.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .14B .8π C .34D .4π 二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.15.在区间[]0,2上分别任取两个数m ,n ,若向量(),a m n =,()1,1b =,则满足1a b -≤的概率是______ .16.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.17.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a .现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为14,则cos α=_____________.18.农历戊戌年即将结束,为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡,设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,则事件“至少有两张心愿卡放入对应的漂流瓶”的概率为___19.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.20.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.三、解答题21.在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成[)5,15,[)15,25,[)25,35,[)35,45,[]45,555组,绘制成如图所示的频率分布直方图.(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在[]45,55的概率.22.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆.轿车A 轿车B 轿车C 舒适型 100 150 z标准型300450600(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数a , 记这8辆轿车的得分的平均数为x ,定义事件{|0.5E a a x =-≤,且函数2() 2.31f x ax ax =-+没有零点},求事件E 发生的概率.23.为了响应市政府迎接全国文明城市创建活动的号召,某学校组织学生举行了文明城市创建知识类竞赛,为了了解本次竞赛中学生的成绩情况,从中抽取50名学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[]50,100之内)作为样本进行统计,按照[)[)[)[)[]50,6060,7070,8080,9090,100,,,,分成5组,并作出如下频率分布直方图,已知得分在[)80,90的学生有5人.()1求频率分布直方图中的的, x y 值,并估计学生分数的众数、平均数和中位数: ()2如果从[)[)[)60,7070,8080,90,,三个分数段的学生中,按分层抽样的方法抽取8人参与座谈会,然后再从[)[)70,8080,90,两组选取的人中随机抽取2人作进一步的测试,求这2人中恰有一人得分在[)80,90的概率.24.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A 组,使用手机且成绩优秀的同学记为B 组,计划从A 组推选的4人和B 组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A 组、另一人来自B 组的概率.25.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a << 综合得分k 的范围节排器等级 节排器利润率85k ≥一级品a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大?26.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率; (2)恰有两支一等品的概率; (3)没有三等品的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为菱形的内角和为360°,所以阴影部分的面积为半径为1的圆的面积, 故由几何概型可知20p =, 解得0004.5 1.7327.7912p p p π=≈⨯=.选C . 2.B解析:B 【分析】设“甲、乙不在同一组”为事件M ,12名医护人员平均分配到两所医院的基本事件总数为n 612C ==924,甲、乙在同一组包含的基本事件个数m 4102C ==420,由此能求出甲、乙不在同一组的概率. 【详解】解:设“甲、乙不在同一组”为事件M ,12名医护人员平均分配到两所医院的基本事件总数为n 612C ==924, 甲、乙在同一组包含的基本事件个数m 4102C ==420,∴甲、乙不在同一组的概率P =14206192411m n -=-=. 故选:B 【点睛】本题考查古典概型的应用问题,重点考查分组分配题型,属于基础题型,本题的关键善于用所求事件的对立事件求概率.3.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.4.D解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.5.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e. 故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.6.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.7.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。
高中数学必修三第三章《概率》章节练习题(含答案)
高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。
A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。
A。
B。
C。
D。
补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。
A。
B。
C。
D。
3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。
若从中任选3人,则选出的火炬手的编号相连的概率为()。
A。
B。
C。
D。
4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。
A。
B。
C。
D。
5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。
A。
B。
C。
D。
6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。
A。
P1=P2 B。
P1>P2 C。
P1<P2 D。
无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。
8.已知函数f(x)=log2x,x∈R。
在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。
补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。
A。
B。
C。
D。
9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。
北师大版高中数学必修三第三章《概率》测试卷(有答案解析)(1)
一、选择题1.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率()A.110B.310C.12D.7102.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是()A.518B.718C.716D.5163.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为()A.13B.49C.59D.234.抛掷一枚质地均匀的骰子,记事件A为“向上的点数是偶数”,事件B为“向上的点数不超过3”,则概率()P A B=()A.12B.13C.23D.565.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为()A.910B.710C.310D.1106.如图,正方形ABNH、DEFM的面积相等,23CN NG AB==,向多边形ABCDEFGH内投一点,则该点落在阴影部分内的概率为()A .12B .34C .27D .387.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4138.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12 C .34D .19.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A .15 B .625 C .825D .2510.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x ,y ,则满足()()22lg 2lg 3lg x y x y +=+的概率为( )A .18B .14C .13D .1211.下图来自古希腊数学家希波克拉底所研究的平面几何图形.此图由两个圆构成,O 为大圆圆心,线段AB 为小圆直径.△AOB 的三边所围成的区域记为I ,黑色月牙部分记为Ⅱ,两小月牙之和(斜线部分)部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p 1,p 2,p 3,则()A .123p p p >>B .123p p p =+C .213p p p >>D .123p p p =>12.下列命题中正确的是( )A .事件A 发生的概率()P A 等于事件A 发生的频率()n f AB .一个质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点C .掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =D .对于两个事件A 、B ,若()()()P AB P A P B =+,则事件A 与事件B 互斥二、填空题13.掷一颗骰子,向上的点数第一次记为x ,第二次记为y ,则()2log 3x y +=的概率________.14.十六个图钉组成如图所示的四行四列的方阵,从中任取三个图钉,则至少有两个位于同行或同列的概率为______.15.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC 内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.16.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______.17.根据党中央关于“精准脱贫”的要求,石嘴山市农业经济部门派3位专家对大武口、惠农2个区进行调研,每个区至少派1位专家,则甲,乙两位专家派遣至惠农区的概率为_____.18.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.19.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.20.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________三、解答题21.在最强大脑的舞台上,为了与国际X 战队PK ,假设某季Dr.魏要从三名擅长速算的选手A 1,A 2,A 3,三名擅长数独的选手B 1,B 2,B 3,两名擅长魔方的选手C 1,C 2中各选一名组成中国战队.假定两名魔方选手中更擅长盲拧的选手C 1已确定入选,而擅长速算与数独的选手入选的可能性相等.(Ⅰ)求A 1被选中的概率;(Ⅱ)求A1,B1不全被选中的概率.22.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22⨯列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:22()()()()()n ad bcKa b c d a c b d-=++++.23.一种疫苗在正式上市之前要进行多次人体临床试验接种,假设每次接种之间互不影响,每人每次接种成功的概率相等.某医学研究院研究团队研发了新冠疫苗,并率先开展了新冠疫苗Ⅰ期和Ⅱ期临床试验.Ⅰ期试验为了解疫苗接种剂量与接种成功之间的关系,选取了两种剂量接种方案(0.5ml/次剂量组(低剂量)与1ml/次剂量组(中剂量)),临床试验免疫结果对比如下:(1)根据数据说明哪种方案接种效果好?并判断是否有90%的把握认为该疫苗接种成功与两种剂量接种方案有关?(2)若以数据中的频率为概率,从两组不同剂量组中分别抽取1名试验者,以X表示这2人中接种成功的人数,求X的分布列和数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++附表:24.为了研究玉米品种对产量的 ,某农科院对一块试验田种植的一批玉米共10000株的生长情况进行研究,现采用分层抽样方法抽取50株作为样本,统计结果如下:(1)现采用分层抽样的方法,从该样本所含的圆粒玉米中取出6株玉米,再从这6株玉米中随机选出2株,求这2株之中既有高茎玉米又有矮茎玉米的概率;(2)根据玉米生长情况作出统计,是否有95%的把握认为玉米的圆粒与玉米的高茎有关?附:()()()()()22n ad bc K a b c d a c b d -=++++25.某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标x 和y ,制成下图,其中“*”表示男同学,“+”表示女同学. 若00.6x <<,则认定该同学为“初级水平”,若0.60.8x ≤≤,则认定该同学为“中级水平”,若0.81x <≤,则认定该同学为“高级水平”;若100y ≥,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.(1)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;(2)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;(3)试比较这100名同学中,男、女生指标y的方差的大小(只需写出结论). 26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率.【详解】所有的基本事件有:()1,3,5、()1,3,7、()1,3,9、()1,5,7、()1,5,9、()1,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故选:B . 【点睛】本题考查古典概型的概率计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.2.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =. 故选:D . 【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.D解析:D 【分析】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况,得到答案. 【详解】满足向上的点数是偶数或向上的点数不超过3的点数有:1,2,3,4,6五种情况, 故5()6P AB =. 故选:D . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.5.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.6.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点, 则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.7.C解析:C 【分析】由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.8.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.9.A解析:A 【分析】阳数:1,3,5,7,9,阴数:2,4,6,8,10,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率. 【详解】因为阳数:1,3,5,7,9,阴数:2,4,6,8,10,所以从阴数和阳数中各取一数差的绝对值有:5525⨯=个,满足差的绝对值为5的有:()()()()()1,6,3,8,5,10,7,2,9,4共5个,则51255P ==. 故选A. 【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:P =目标事件的个数基本本事件的总个数.10.B解析:B 【分析】 先化简()()22lg 2lg 3lg x yx y +=+,得到x y =或2x y =.利用列举法和古典概型概率计算公式可计算出所求的概率. 【详解】 由22320xxy y ,有()()20x y x y --=,得x y =或2x y =,则满足条件的(),x y 为()1,1,()2,2,()3,3,()4,4,()5,5,()6,6,()2,1,()4,2,()6,3,所求概率为91364p == .故选B. 【点睛】本小题主要考查对数运算,考查列举法求得古典概型概率有关问题,属于基础题.11.D解析:D 【解析】 【分析】设OA =2,则AB 22=,分别求出三个区域的面积,由测度比是面积比得答案. 【详解】设OA =2,则AB 22=,12222AOBS=⨯⨯=, 以AB 中点为圆心的半圆的面积为21(2)2ππ⨯=, 以O 为圆心的大圆面积的四分之一为2124ππ⨯=, 以AB 为弦的大圆的劣弧所对弓形的面积为π﹣2, 黑色月牙部分的面积为π﹣(π﹣2)=2, 图Ⅲ部分的面积为π﹣2. 设整个图形的面积为S ,则p 12S =,p 22S =,p 32S π-=. ∴p 1=p 2>p 3, 故选D .【点睛】本题考查几何概型概率的求法,考查数形结合的解题思想方法,正确求出各部分面积是关键,是中档题.12.C解析:C 【分析】根据频率与概率的关系判断即可得A 选项错误;根据概率的意义即可判断B 选项错误;根据古典概型公式计算即可得C 选项正确;举例说明即可得D 选项错误. 【详解】解:对于A 选项,频率与实验次数有关,且在概率附近摆动,故A 选项错误; 对于B 选项,根据概率的意义,一个质地均匀的骰子掷一次得到3点的概率是16,表示一次实验发生的可能性是16,故骰子掷6次出现3点的次数也不确定,故B 选项错误; 对于C 选项,根据概率的计算公式得()1112222P A =⨯⨯=,()111224P B =⨯=,故()()2P A P B =,故C 选项正确;对于D 选项,设[]3,3x ∈-,A 事件表示从[]3,3-中任取一个数x ,使得[]1,3x ∈的事件,则()13P A =,B 事件表示从[]3,3-中任取一个数x ,使得[]2,1x ∈-的事件,则()12P A =,显然()()()511632P A B P A P B ==+=+,此时A 事件与B 事件不互斥,故D 选项错误. 【点睛】 本题考查概率与频率的关系,概率的意义,互斥事件等,解题的关键在于D 选项的判断,适当的举反例求解即可.二、填空题13.【分析】计算得到列举共有5种情况计算得到概率【详解】则故解有共5种情况故故答案为:【点睛】本题考查了概率的计算意在考查学生的计算能力和应用能力解析:536【分析】计算得到8x y +=,列举共有5种情况,计算得到概率. 【详解】()2log 3x y +=,则8x y +=,故解有()()()()()2,6,3,5,4,4,5,3,6,2共5种情况,故556636p ==⨯. 故答案为:536. 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.14.【分析】先求出从16个图钉中任取3个的所有方法数再求出三个图钉分别位于三行或三列的情况的数量利用排除法即得解【详解】从16个图钉中任取3个共有种取法;三个图钉分别位于三行或三列的情况的数量:种至少有 解析:2935【分析】先求出从16个图钉中任取3个的所有方法数,再求出三个图钉分别位于三行或三列的情况的数量,利用排除法,即得解. 【详解】从16个图钉中任取3个共有316560C =种取法;三个图钉分别位于三行或三列的情况的数量:34432=96C ⨯⨯⨯种 至少有两个位于同行或者同列的情况的数量:56096464-=种. 所以至少有两个位于同行或同列的概率为2935. 故答案为:2935【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.15.【分析】先求出三块扇形的面积再由概率计算公式求出的面积进而求出阴影部分的面积【详解】∵∴三块扇形的面积为:设的面积为∵在内任取一点点落在这三个扇形内的概率为∴图中阴影部分的面积为:故答案为:【点睛】 解析:4π【分析】先求出三块扇形的面积,再由概率计算公式求出ABC ∆的面积,进而求出阴影部分的面积. 【详解】∵180A B C ︒++=, ∴三块扇形的面积为:21222ππ⨯⨯=, 设ABC 的面积为S ,∵在ABC 内任取一点P ,点P 落在这三个扇形内的概率为13, 2163S S ππ∴=⇒=, ∴图中阴影部分的面积为:624πππ-=, 故答案为:4π. 【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.16.【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有28种所 解析:725【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -所有可能情况,代入公式得到结果。