锐角三角函数教学设计教案
28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
![28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册](https://img.taocdn.com/s3/m/6dc0f54f6fdb6f1aff00bed5b9f3f90f77c64d1e.png)
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。
九年级数学锐角三角函数教案
![九年级数学锐角三角函数教案](https://img.taocdn.com/s3/m/1f86d3c5e43a580216fc700abb68a98271feacb1.png)
一、教学目标:1.知识与技能目标:(1)了解什么是锐角三角函数;(2)掌握正弦、余弦和正切在锐角范围内的性质和计算方法;(3)能够运用锐角三角函数解决相关实际问题。
2.过程与方法目标:(1)运用课堂讲解、练习、小组合作和课堂展示相结合的方式,培养学生的学习兴趣;(2)通过解决实际问题的方式,培养学生的分析和解决问题的能力;(3)通过小组合作的方式,培养学生的合作和交流能力。
3.情感、态度与价值观目标:(1)通过展示数学的应用场景,培养学生对数学的兴趣和好奇心;(2)通过小组合作和课堂展示的方式,培养学生的合作和交流能力;(3)通过解决实际问题的方式,培养学生的分析和解决问题的能力。
二、教学重点和难点1.教学重点(1)正弦、余弦和正切的定义和性质;(2)正弦、余弦和正切的计算方法;(3)运用锐角三角函数解决相关实际问题。
2.教学难点(1)运用锐角三角函数解决实际问题的能力;(2)理解正弦、余弦和正切的定义和性质。
三、教学过程安排第一课时:1.导入(10分钟)让学生回顾之前学过的角度、弧度和三角比的相关知识,引出锐角三角函数的概念,并介绍本节课的学习内容和目标。
2.讲解(20分钟)(1)通过幻灯片和板书,讲解正弦、余弦和正切的定义和性质。
(2)讲解正弦、余弦和正切的计算方法,并解答学生提出的疑问。
3.练习(15分钟)(1)在黑板上出示锐角三角函数的计算练习题,让学生在纸上计算并互相讨论答案。
(2)随机抽选几位学生上台讲解解题过程,并进行讲解和点评。
4.小组合作(10分钟)(1)将学生分成小组,每个小组由3-4人组成,让他们一起解决一个实际问题。
(2)每个小组将解决过程和结果展示给全班,并进行评价和讨论。
5.总结(5分钟)(1)对本节课的内容进行总结概括。
(2)布置课后作业,让学生复习和巩固锐角三角函数的内容。
第二课时:1.复习(10分钟)让学生回顾之前学过的锐角三角函数的知识点,并进行简单的小测验。
锐角三角函数教案
![锐角三角函数教案](https://img.taocdn.com/s3/m/2b7005743a3567ec102de2bd960590c69ec3d832.png)
锐角三角函数教案
一、教学内容
1. 锐角三角函数的概念
2. 正弦函数的图像和性质
3. 余弦函数的图像和性质
4. 正切函数的图像和性质
二、教学目标
1. 了解锐角三角函数的概念
2. 掌握正弦函数、余弦函数、正切函数的图像性质
3. 运用锐角三角函数求解相关问题
三、教学重点
1. 正弦函数、余弦函数和正切函数的性质
2. 锐角三角函数的应用
四、教学过程
1.思考题:让学生交流他对三角函数的认识,把三角函数的定义和变量概念讨论出来。
2.学生讨论关于正弦函数,余弦函数和正切函数的定义;它们的关系,观察它们在相等三角形中弧度和角度的关系;和定义域、图像、单调性和范围等。
3.学生结合实际例题,练习三角函数的小应用;继续对三角函数相连函数的使用。
4.学生进行习题训练,重点讨论正弦函数的变形,正弦函数的锐角度和余弦函数的钝角区别,正切函数的极值,以及锐角三角函数的图形解释。
5.学生分组综合积累应用题,运用各种应用题求解相关问题。
五、总结
1. 总结锐角三角函数的定义和变量概念;
2. 总结正弦函数、余弦函数和正切函数的性质;
3. 总结锐角三角函数的应用;
4. 最后总结重点概念。
六、板书设计
y=sin x, y=cos x, y=tan x。
锐角三角函数的教案
![锐角三角函数的教案](https://img.taocdn.com/s3/m/a8a0ec508e9951e79b8927ff.png)
锐角三角函数的教案【篇一:锐角三角函数教案】第二十八章锐角三角函数【篇二:人教版九年级锐角三角函数全章教案】第二十八章锐角三角函数教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。
锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。
研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学相似三角形勾股定理等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。
难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina 、cosa 、 tana 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
28.1 锐角三角函数(1)第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力.情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.重难点:1.重点:理解认识正弦(sina)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实.2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实.教学过程:一、复习旧知、引入新课【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。
《锐角三角函数》教学设计
![《锐角三角函数》教学设计](https://img.taocdn.com/s3/m/871f9d9a77eeaeaad1f34693daef5ef7bb0d127a.png)
《锐角三角函数》教学设计一、引言三角函数是高中数学的重要内容之一。
而锐角三角函数则是三角函数中的一个重要分支,涉及到正弦函数、余弦函数和正切函数。
本教学设计旨在帮助学生全面理解锐角三角函数的基本概念、性质和应用,并通过多种教学方法来提高学生的学习兴趣和掌握程度。
二、教学目标1. 理解锐角三角函数的定义及其基本性质;2. 掌握锐角三角函数的计算方法,并能在实际问题中应用;3. 培养学生的空间观念和逻辑思维能力。
三、教学重点1. 锐角三角函数的定义及基本性质;2. 锐角三角函数的计算方法;3. 锐角三角函数在实际问题中的应用。
四、教学内容及方法1. 锐角三角函数的定义及基本性质1.1 正弦函数的定义及性质1.2 余弦函数的定义及性质1.3 正切函数的定义及性质1.4 锐角三角函数的周期性质教学方法:通过课堂讲述、示意图和实例演示来介绍每个函数的定义及其性质,引导学生从几何角度理解函数的含义。
2. 锐角三角函数的计算方法2.1 正弦函数的计算2.2 余弦函数的计算2.3 正切函数的计算教学方法:以求解简单的三角函数值为例,引导学生利用单位圆、特殊角和三角函数定义来计算锐角三角函数的值,并通过练习巩固掌握。
3. 锐角三角函数在实际问题中的应用3.1 三角函数的应用于三角恒等变换3.2 三角函数在直角三角形中的应用3.3 三角函数在航空航天中的应用教学方法:通过实际例子和应用场景,引导学生将锐角三角函数应用于实际问题中,培养学生的问题解决能力和数学思维。
五、教学过程安排1. 引入锐角三角函数的概念和意义,解释本节课的教学目标。
2. 讲解锐角三角函数的定义及性质,通过示意图和实例演示来帮助学生理解。
3. 引导学生进行锐角三角函数的计算练习,提供不同难度的题目进行巩固。
4. 探究三角函数的恒等变换及其应用,让学生发现三角函数之间的关系。
5. 教学直角三角形中的三角函数应用,以实例演示和问题解决为主,培养学生的问题分析与解决能力。
九年级数学下册《锐角三角函数》教案、教学设计
![九年级数学下册《锐角三角函数》教案、教学设计](https://img.taocdn.com/s3/m/a49ee22903768e9951e79b89680203d8ce2f6abc.png)
2.教学方法:
采用讲解法、示例教学法,结合几何画板演示,帮助学生形象地理解锐角三角函数的定义和性质。
3.教学过程:
(1)通过回顾勾股定理,引导学生发现锐角三角函数的定义。
(2)利用几何画板,动态演示锐角三角函数随角度变化的规律,帮助学生理解其性质。
(4)注重情感教育,关注学生的学习情感,激发学生的学习兴趣和内在动力。
4.教学评价:
(1)过程性评价:关注学生在课堂上的参与程度、合作交流、问题解决等方面,全面评价学生的学习过程。
(2)终结性评价:通过测试、作业等方式,评价学生对本章知识的掌握程度。
(3)增值性评价:关注学生的进步,鼓励学生自我评价,激发学生的学习潜能。
九年级数学下册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义及其相互关系。
2.学会使用计算器或手工计算方法,解决直角三角形中锐角三角函数值的问题。
3.掌握用锐角三角函数解决实际问题的方法,如测量物体的高度、计算物体之间的距离等。
4.能够运用锐角三角函数的性质,解决一些简单的几何问题,如求角的度数、证明线段相等等。
3.利用计算器、几何画板等教学辅助工具,帮助学生直观地理解锐角三角函数的图像和变化规律,提高学生的数学思维能力。
4.设计丰富的例题和练习题,巩固学生对锐角三角函数知识的掌握,培养学生分析问题、解决问题的能力。
5.通过课堂小结,引导学生总结本章所学内容,形成知识体系,提高学生的概括和表达能力。
(三)情感态度与价值观
3.思考题:
(1)思考锐角三角函数的定义在解决实际问题中的作用,举例说明。
锐角三角函数教案设计
![锐角三角函数教案设计](https://img.taocdn.com/s3/m/d5ab0d256fdb6f1aff00bed5b9f3f90f76c64d81.png)
锐角三角函数教案设计锐角三角函数教案设计锐角三角函数教案设计篇1知识目的:1.理解锐角的正弦函数、余弦函数、正切函数、余切函数的意义。
2.会由直角三角形的边长求锐角的正、余弦,正、余切函数值。
才能、情感目的:1.经历由情境引出问题,探究掌握数学知识,再运用于理论过程,培养学生学数学、用数学的意识与才能。
2.体会数形结合的数学思想方法。
3.培养学生自主探究的精神,进步合作交流才能。
重点、难点:1.直角三角形锐角三角函数的意义。
2.由直角三角形的边长求锐角三角函数值。
教学过程:一、创设情境前面我们利用相似和勾股定理解决一些实际问题中求一些线段的长度问题。
但有些问题单靠相似与勾股定理是无法解决的。
同学们放过风筝吗?你能测出风筝离地面的高度吗?学生讨论、答复各种方法。
老师加以评论。
总结:前面我们学习了勾股定理,对于以上的问题中,我们求的是BC的长,而的AB的长是可知的,只要知道AC的长就可要求BC了,但实际上要测量AC是很难的。
因此,我们换个角度,假如可测量出风筝的线与地面的夹角,能不能解决这个问题呢?学了今天这节课的内容,我们就可以很好地解决这个问题了。
〔由一个学生比拟熟悉的事例入手,引起学生的学习兴趣,调动起学生的学习热情。
由此导入新课〕二、新课讲述在Rt△ABC中与Rt△A1B1C1中∠C=90°,C1=90°∠A=∠A1,∠A的对边、斜边分别是BC、AB,∠A1的对边、斜边分别是B1C1、A1B2 〔学生探究,引导学生积极考虑,利用相似发现比值相等〕〔〕假设在Rt△A2B2C2中,∠A2=∠A,那么问题1:从以上的探究问题的过程,你发现了什么?〔学生讨论〕结论:这说明在直角三角形中,只要一个锐角的大小不变,那么无论这个直角三角形的大小如何,该锐角的对边与斜边的比值是一个固定值。
在一个直角三角形中,只要角的大小一定,它的对边与斜边的比值也就确定了,与这个角所在的三角形的大小无关,我们把这个比值叫做这个角的正弦,即∠A的正弦= ,记作sin A,也就是:sin A=几个注意点:①sin A是整体符号,不能所把看成sinA;②在一个直角三角形中,∠A正弦值是固定的,与∠A的两边长短无关,当∠A发生变化时,正弦值也发生变化;③sin A 表示用一个大写字母表示的一个角的正弦,对于用三个大写字母表示的角的正弦时,不能省略角的符号“∠”;例如表示“∠ABC”的正弦时,应该写成“sin∠ABC”;④ Sin A= 可看成一个等式。
《锐角三角函数》教学设计
![《锐角三角函数》教学设计](https://img.taocdn.com/s3/m/4ed1ce713868011ca300a6c30c2259010302f375.png)
《锐角三角函数》教学设计一、教学目标:1.了解什么是锐角三角函数;2.掌握正弦、余弦、正切的定义和计算方法;3.掌握锐角三角函数的性质和图像特点;4.能够应用锐角三角函数求解实际问题。
二、教学重点:1.正弦、余弦、正切的定义和计算方法;2.锐角三角函数的性质和图像特点。
三、教学难点:1.锐角三角函数的性质和图像特点。
四、教学过程:1.导入新知识向学生提问:“你们知道什么是三角函数吗?”接着引导学生回忆正弦、余弦、正切的定义和计算方法。
2.学习正弦、余弦、正切的定义和计算方法首先,给出锐角的定义:“锐角是指小于90°的角”。
然后,给出三角函数的定义:正弦(sin):在锐角∠A中,它的对边与斜边的比值叫做∠A的正弦,记作sinA。
余弦(cos):在锐角∠A中,它的邻边与斜边的比值叫做∠A的余弦,记作cosA。
正切(tan):在锐角∠A中,它的对边与邻边的比值叫做∠A的正切,记作tanA。
接着,通过例题进行讲解,让学生掌握如何计算正弦、余弦、正切。
3.学习锐角三角函数的性质和图像特点介绍锐角三角函数的性质:正弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递增。
余弦函数的性质:定义域是全体实数,值域在[-1,1]之间,单调递减。
正切函数的性质:定义域是全体非零实数,值域是全体实数,在每个周期内都是振荡的。
然后,通过绘制锐角的基本函数图像,让学生观察锐角三角函数的图像特点。
4.练习运用锐角三角函数设计练习题,让学生运用锐角三角函数求解实际问题,如航空导弹的打击角度、建筑物的高度等。
五、教学总结对本节课的内容进行总结,强调重点。
六、板书设计锐角三角函数正弦:sinA = 对边/斜边余弦:cosA = 邻边/斜边正切:tanA = 对边/邻边锐角三角函数的性质:正弦函数:定义域是全体实数,值域在[-1,1]之间,单调递增。
余弦函数:定义域是全体实数,值域在[-1,1]之间,单调递减。
正切函数:定义域是全体非零实数,值域是全体实数,振荡。
锐角三角函数教学设计
![锐角三角函数教学设计](https://img.taocdn.com/s3/m/1bfc9739f56527d3240c844769eae009581ba20c.png)
锐角三角函数教学设计一、教学目标:1.理解锐角三角函数的概念和定义。
2.掌握锐角三角函数的计算方法和相互之间的关系。
3.能够应用锐角三角函数解决相关的实际问题。
4.培养学生的逻辑思维和数学推理能力。
二、教学重点:1.锐角三角函数的定义和性质。
2.锐角三角函数之间的关系。
3.锐角三角函数的计算方法。
三、教学难点:1.锐角三角函数的定义和计算方法。
2.锐角三角函数的相互关系和应用。
四、教学内容和教学过程:1.导入(5分钟)引入锐角三角函数的概念,提出锐角三角函数与直角三角函数之间的关系,并通过几个生活中常见的三角形图片引起学生的兴趣。
板书:锐角三角函数的概念。
2.锐角的定义(10分钟)介绍锐角的定义和性质,引导学生理解什么是锐角,并进行举例说明。
板书:锐角定义及性质。
3.锐角三角函数的定义(10分钟)介绍正弦、余弦、正切的定义,并与三角形的边长、角度的关系进行对照说明。
板书:正弦、余弦、正切的定义。
4.锐角三角函数的计算方法(20分钟)a.通过具体的锐角三角函数的计算问题,进行步骤的详细讲解。
b.引导学生理解计算中的基本思路和注意事项。
c.讲解计算中的常用技巧和方法,如利用三角函数的周期性、对称性等进行计算简化。
板书:锐角三角函数的计算方法。
5.锐角三角函数的相互关系(25分钟)a.对正弦、余弦、正切三个函数的性质进行详细说明,引导学生理解它们之间的相互关系。
b.针对特殊角的计算进行实例讲解,引导学生理解锐角三角函数之间的关系。
板书:正弦、余弦、正切的相互关系。
6.锐角三角函数的应用(20分钟)a.通过实际问题的解决,让学生理解锐角三角函数的应用。
b.引导学生利用锐角三角函数去解决各类实际问题,如测量高楼的高度、距离等。
板书:锐角三角函数的应用。
7.拓展与归纳(10分钟)归纳总结锐角三角函数的概念、定义、性质、计算方法和应用,培养学生的逻辑思维能力,并鼓励学生发散性思维进行扩展,如讨论其他角度三角函数的概念和性质。
锐角三角函数教案
![锐角三角函数教案](https://img.taocdn.com/s3/m/e58fa8c43968011ca20091b0.png)
第一章 直角三角形的边角关系1.1 锐角三角函数(2)一、知识点1. 认识锐角三角函数——正弦、余弦2. 用sinA,cosA 表示直角三角形中直角边与斜边的比, 用正弦、余弦进行简单的计算. 二、教学目标 知识与技能1. 能利用相似的直角三角形,探索并认识锐角三角函数——正弦、余弦,理解锐角的正弦与余弦和梯子倾斜程度的关系.2. 能够用sinA,cosA 表示直角三角形中直角边与斜边的比,能够用正弦、余弦进行简单的计算. 过程与方法1. 经历类比、猜想等过程.发展合情推理能力,能有条理地、清晰地阐述自己的观点. 2、体会解决问题的策略的多样性,发展实践能力和创新精神. 情感态度与价值观1. 积极参与数学活动,对数学产生好奇心和求知欲,学有用的数学. 2、形成实事求是的态度以及交流分享的习惯. 三、重点与难点重点:理解正弦、余弦的数学定义,感受数学与生活的联系. 难点:体会正弦、余弦的数学意义,并用它来解决生活中的实际问题. 四、复习引入设计意图:以练代讲,让学生在练习中回顾正切的含义,避免死记硬背带来的负面作用(大脑负担重,而不会实际运用),测量旗杆高度的问题引发学生的疑问,激起学生的探究欲望. 五、探究新知探究活动1(出示幻灯片4):如图,请思考: (1)Rt △AB 1C 1和Rt △AB 2C 2的关系是 ; (2)的关系是和222111AB C B AB C B ; (3)如果改变B 2在斜边上的位置,则的关系是和222111AB C B AB C B ; 思考:从上面的问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值__________,根据是______________________________________.B 1B 2AC 1C 2它的邻边与斜边的比值呢?设计意图:1、在相似三角形的情景中,让学生探究发现:当直角三角形的一个锐角大小确定时,它的对边与斜边的比值也随之确定了.类比学习,可以知道,当直角三角形的一个锐角大小确定时,它的邻边与斜边的比值也是不变的.2、在探究活动中发现的规律,学生能记忆得更加深刻,这比老师帮助总结,学生被动接受和记忆要有用得多.归纳概念1、正弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边BC与斜边AB的比叫做∠A的正弦,记作sinA,即sinA=________.2、余弦的定义:如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边AC与斜边AB的比叫做∠A的余弦,记作cosA,即cosA=_ _____.3、锐角A的正弦,余弦,正切和余切都叫做∠A的三角函数.温馨提示(1)sinA,cosA是在直角三角形中定义的,∠A是一个锐角;(2)sinA,cosA中常省去角的符号“∠”.但∠BAC的正弦和余弦表示为: sin∠BAC,cos∠BAC.∠1的正弦和余弦表示为: sin∠1,cos∠1;(3)sinA,cosA没有单位,它表示一个比值;(4)sinA,cosA是一个完整的符号,不表示“sin”,“cos”乘以“A”;(5)sinA,cosA的大小只与∠A的大小有关,而与直角三角形的边长没有必然的关系.设计意图:1、类比正切的定义,让学生理解正弦和余弦的含义;2、让学生了解:求一个角的三角函数,是指求这个角的正切、正弦和余弦,不是单指某一个值;3、正弦和余弦容易出现一些不规范的表示方法,在这里先进行明确,可以减少日后不必要的错误.探究活动2:我们知道,梯子的倾斜程度与tanA有关系,tanA越大,梯子越陡,那么梯子的倾斜程度与sinA和cosA有关系吗?是怎样的关系?设计意图:在探究中进一步让学生理解正弦和余弦的含义,体会正弦和余弦的生活意义,避免数学知识的枯燥无味,通过利用正弦和余弦来描述梯子的倾斜程度拓展了学生思维,感受到从不同角度去解释一件事物的合理性,感受数学与生活的联系.探索发现:梯子的倾斜程度与sinA,cosA的关系:sinA越大,梯子;cosA 越,梯子越陡.探究活动3:如图,在Rt△ABC中,∠C=90°,AB=20,,求BC和cosB.BA C通过上面的计算,你发现sinA与cosB有什么关系呢? sinB与cosA呢?在其它直角三角形中是不是也一样呢?请举例说明.小结规律:在直角三角形中,一个锐角的正弦等于另一个锐角的 .设计意图:在探究中进一巩固正弦和余弦的定义,同时发现直角三角形中两个锐角的三角函数值之间存在一定的关系,拓展学生的知识储备.六、归类提升类型一:已知直角三角形两边长,求锐角三角函数值例1、在Rt△ABC中,∠C=90°, BC=3,AB=5,求A的三个三角函数值.类型二:利用三角函数值求线段的长度例2、如图,在Rt△ABC中,∠B=90°,AC=200,sinA= ,求BC的长七、总结延伸1、锐角三角函数定义:sinA= ,cosA= ,tanA= ;2、温馨提示:(1)sinA,cosA,tanA,是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形);(2)sinA,cosA,tanA是一个完整的符号,表示∠A的正切,习惯省去“∠”号;(3)sinA,cosA,tanA都是一个比值,注意区别,且sinA,cosA,tanA均大于0,无单位;(4)sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长没有必然关系;(5)角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.3、在用三角函数解决一般三角形或四边形的实际问题中,应注意构造直角三角形.设计意图:课堂小结,检查学生掌握情况,同时能对知识进行及时梳理,有利于学生归纳和消化,特别对于重要的方法提示和要注意的细节,能再次呈现,使学生印象深刻..八、 随堂小测1、下图中∠ACB=90° ,CD ⊥AB 指出∠A2、1题中如果CD=5,AC=10,则sin ∠ACD= sin ∠DCB=3、如图:在等腰△ABC 中,AB=AC=5,BC=6.求: sinB,cosB,tanB设计意图:设计各种题型,可以检验学生的方法掌握情况,同时巩固学生的知识,提高学生的运用能力,若时间不允许该部分也可作为课后作业完成.BCABCsin a A c=cos b A c =sin b B c=cos a B c=bABCa┌csinA=cosB ,cosA=sinB (∠A+∠B=90。
锐角三角函数-正切教学设计
![锐角三角函数-正切教学设计](https://img.taocdn.com/s3/m/ea60eca97d1cfad6195f312b3169a4517723e5b9.png)
23.1锐角的三角函数1. 锐角的三角函数第一课时正切教学目标◆知识与技能1.初步了解角度与数值的一一对应的函数关系。
2.会求直角三角形中某个锐角的正切值。
3.了解坡度的有关概念。
◆过程与方法让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维习惯,提高学生运用数学知识解决实际问题的能力。
◆情感态度通过探究活动激发学生学习的积极性和主动性,引导学生自主探索,合作交流,培养学生的创新意识。
教学重点:1.从现实情境中探索直角三角形的边角关系。
2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系。
教学难点:锐角三角函数的概念的理解。
教学准备多媒体课件制作教学设计一、导入新课导语:因为这座桥的设计让它成为了旅游新热点,火起来的原因不是因为怪异的设计或者美不胜收的景色,而是大家都很好奇这个桥的坡度到底有多陡?陡峭堪比过山车!不少人给这座桥赋予了极不靠谱的数据,实际上这个坡的斜率仅为6.1%,如果按咱们口头常用单位来讲还不足4度。
大家看到这个图片后一定很吃惊,那我们要想了解这副图的背景故事,我们就要来学习这里出现的数据6.1%和4度代表了什么?(导入课题锐角三角函数)二、推进新课1.交流合作【问题1】在图23-2中有两个直角三角形,直角边AC与A1C1表示水平面,斜边AB与A1B1分别表示两个不同的坡面,哪个更陡?你是怎么判断的?学生可由水平长度相等,铅直高度不同进行判断.【问题2】当水平长度和铅直高度都不相等时,类似的在图23-3中,坡面AB与A1B 1哪个更陡?你又是如何判断呢?设计意图:引发学生的争论,激发学生的求知欲.从而教师可提出能否用铅直高度与水平长度的比值进行衡量呢?【问题3】 如图,在锐角A 的一边上任取一点B ,自点B 向另一边作垂线,垂足为C ,得到Rt △ABC ;再任取一点B 1,自点B 1向另一边作垂线,垂足为C 1,得到Rt △33AB C ……,这样,我们可以得到无数个直角三角形.在这些直角三角形中,锐角A 的对边与邻边之比BC AC ,111B C AC ,222B C AC ……有怎样的关系?请同学们小组合作测量并计算它们的近似值,看看会有什么发现?同学们得到近似相等的值,我们猜测它们是相等的,是不是这样的呢,下面我们从理论角度来验证。
人教版九年级锐角三角函数全章教案
![人教版九年级锐角三角函数全章教案](https://img.taocdn.com/s3/m/7e68d2cef71fb7360b4c2e3f5727a5e9856a27ba.png)
人教版九年级锐角三角函数全章教案【人教版九年级锐角三角函数全章教案】一、教学目标:1. 理解锐角三角函数的概念和性质;2. 掌握正弦、余弦、正切函数的定义和计算方法;3. 能够应用三角函数解决实际问题;4. 培养学生的逻辑思维和解决问题的能力。
二、教学重点:1. 掌握锐角三角函数的定义和性质;2. 理解三角函数在坐标系中的几何意义;3. 能够应用三角函数解决实际问题。
三、教学难点:1. 理解三角函数的周期性和图像特点;2. 运用三角函数解决实际问题。
四、教学准备:1. 教材:人教版九年级数学教材;2. 教具:黑板、白板、书写工具、计算器等。
五、教学过程:1. 引入(10分钟)通过提问和讨论的方式引导学生回顾和复习之前学过的角的概念和性质,引出锐角的概念,并与直角、钝角进行对比。
2. 基本概念的引入(20分钟)a. 讲解锐角三角函数的定义:正弦、余弦、正切。
b. 讲解三角函数的计算方法和性质。
c. 通过例题演示如何计算三角函数的值。
3. 几何意义的理解(30分钟)a. 介绍三角函数在坐标系中的几何意义。
b. 讲解三角函数的周期性和图像特点。
c. 通过绘制图像和实例分析,让学生理解三角函数的变化规律。
4. 实际问题的应用(40分钟)a. 引导学生通过实例,学习如何应用三角函数解决实际问题,如测量高度、距离等。
b. 给学生一些练习题,让他们独立解决实际问题。
5. 总结与拓展(10分钟)a. 总结本节课所学的内容和方法。
b. 引导学生思考,如何进一步拓展和应用锐角三角函数的知识。
六、教学反思:本节课通过引导学生回顾和复习角的概念和性质,引入锐角的概念,并讲解了锐角三角函数的定义、计算方法和性质。
通过绘制图像和实例分析,让学生理解三角函数的几何意义和变化规律,并应用三角函数解决实际问题。
通过这样的教学过程,学生能够更好地掌握锐角三角函数的知识,提高他们的逻辑思维和解决问题的能力。
同时,教师需要根据学生的实际情况,灵活调整教学方法和教学内容,确保教学效果的最大化。
九年级数学上册《锐角三角函数》教案、教学设计
![九年级数学上册《锐角三角函数》教案、教学设计](https://img.taocdn.com/s3/m/7cd7e4486fdb6f1aff00bed5b9f3f90f77c64d6e.png)
4.作业完成后,请学生认真检查,确保答案的正确性。
4.利用信息技术手段,如动态课件、网络资源等,丰富教学手段,提高学生的学习兴趣和积极性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,提高学生的自主学习能力。
2.通过解决实际问题,使学生认识到数学知识在实际生活中的重要作用,增强学生的应用意识。
3.培养学生勇于探索、克服困难的精神,提高学生的自信心和自尊心。
九年级数学上册《锐角三角函数》教案、教学设计
一、教学目标
(一)知识与技能
1.使学生掌握锐角三角函数的定义,理解正弦、余弦、正切函数的概念,并能够运用这些概念进行简单的计算。
2.培养学生运用三角函数解决实际问题的能力,如测量物体的高度、计算角度等。
3.使学生掌握特殊角的三角函数值,并能熟练运用到实际问题中。
(2)运用三角函数解决实际问题,尤其是将实际问题抽象为数学模型,并运用三角函数进行求解;
(3)掌握特殊角的三角函数值,并能灵活运用到实际问题中。
(二)教学设想
1.教学策略:
(1)采用情境教学法,创设实际问题情境,引导学生主动探究锐角三角函数的定义和性质;
(2)运用任务驱动法,设计具有挑战性的任务,让学生在实践中掌握三角函数的计算方法和应用;
(3)了解三角函数在其他学科领域的应用,如物理、工程等。
4.小组合作题:
(1)分组讨论:如何利用三角函数解决实际问题?举例说明;
(2)小组合作完成一份关于锐角三角函数在实际问题中应用的报告。
作业要求:
1.学生需独立完成基础题,提高题和拓展题可根据个人能力选择完成;
2.作业过程中,要求学生注重解题思路和方法的总结,养成良好的学习习惯;
人教版九年级数学下册《锐角三角函数(第2课时)》示范教学设计
![人教版九年级数学下册《锐角三角函数(第2课时)》示范教学设计](https://img.taocdn.com/s3/m/e99f4884cf2f0066f5335a8102d276a2002960a8.png)
锐角三角函数(第2课时)教学目标1.感知当直角三角形的锐角度数确定时,它的邻边与斜边、对边与邻边的比值也都确定这一事实.2.理解锐角的余弦、正切的定义,知道锐角三角函数的概念,能应用锐角的正弦、余弦、正切进行证明和计算.3.经历对余弦、正切的概念及应用的探究过程,逐步培养观察、比较、分析、概括的思维能力.教学重点理解并掌握锐角的余弦、正切的定义,并能灵活应用它们进行证明和计算.教学难点余弦、正切的概念的探究过程;会选择适合的方法求锐角三角函数.教学过程知识回顾如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=A的对边斜边=ac.【设计意图】回顾上节课学习的“锐角的正弦”,为本节课的学习作铺垫.新知探究一、探究学习【问题】如图,在Rt△ABC中,∠C=90°,当∠A确定时,∠A的对边与斜边的比随之确定.此时,其他边之间的比是否也随之确定呢?为什么?【师生活动】教师引导学生思考、交流,并用准确的数学语言归纳自己的猜想.【猜想】在Rt△ABC中,当∠A确定时,∠A的邻边与斜边的比、∠A的对边与邻边的比都是确定的.【探究】如图,任意画Rt△ABC和Rt△A′B′C′,使得∠C=∠C′=90°,∠A=∠A′,那么ACAB与A CA B''''相等吗?BCAC与B CA C''''呢?你能解释一下吗?【师生活动】学生先独立思考,再小组讨论,完成作答.【答案】解:ACAB=A CA B'''',BCAC=B CA C''''.理由如下:∵∠C=∠C′=90°,∠A=∠A′,∴Rt△ABC∽Rt△A′B′C′.∴ABA B''=ACA C''=BCB C''.即ACAB=A CA B'''',BCAC=B CA C''''.【新知】类似正弦的情况,如图,在Rt△ABC中,当∠A确定时,∠A的邻边与斜边的比、∠A的对边与邻边的比都是确定的.我们把∠A的邻边与斜边的比叫做∠A的余弦,记作cos A,即cos A=A∠的邻边斜边=bc;把∠A的对边与邻边的比叫做∠A的正切,记作tan A,即tan A=AA∠∠的对边的邻边=ab.【提醒】(1)余弦、正切是在直角三角形中相对于锐角定义的,反映了直角三角形边与角的关系,不能在非直角三角形中套用;(2)余弦、正切是一个比值,是两条线段长度的比,是没有单位的数值,只与角的大小有关,与三角形的大小无关.【新知】对于锐角A的每一个确定的值,sin A有唯一确定的值与它对应,所以sin A是A的函数.同样地,cos A,tan A也是A的函数.∠A的正弦、余弦、正切都是∠A的锐角三角函数.【提醒】锐角三角函数的实质是一个比值,这些比值只与锐角的大小有关.当锐角A 的大小确定后,sin A,cos A,tan A就都确定了,所以sin A,cos A,tan A都是以锐角A为自变量的函数.【设计意图】引导学生仿照研究锐角的正弦的思路和方法,自己完成锐角的余弦、正切的探索过程,培养学生的推理论证意识,让学生更好地理解锐角三角函数的概念.二、典例精讲【例1】如图,在Rt△ABC中,∠C=90°,AB=10,BC=6,求sin A,cos A,tan A 的值.【师生活动】学生独立完成,教师指导、讲解.【答案】解:由勾股定理,得AC8.∴sin A=BCAB=610=35,cos A=ACAB=810=45,tan A=BCAC=68=34.【归纳】直接用定义法求锐角三角函数值:第1步:根据已知条件,选择合适的定理(如勾股定理等)求出所需的边长;第2步:根据锐角三角函数的定义进行求解.【设计意图】通过例1,考察学生是否会直接用定义法求出锐角三角函数值.【例2】已知α是锐角,且cos α=45,求sin α及tan α的值.【师生活动】学生小组讨论,尝试作答,教师指导、讲解.【答案】解:如图,在Rt△ABC中,令∠A=α,∠C=90°.∵cos α=45,∴可设AC=4k,AB=5k(k>0).∴BC3k.∴sin α=BCAB=35kk=35,tan α=BCAC=34kk=34.【归纳】设参数法求锐角三角函数值.已知锐角的一个三角函数值,求该角的另外两个三角函数值,可设参数解答.没有给出图形的题目,一般应先根据题目已知条件画出符合题意的图形,再采用设参数法,并结合勾股定理及锐角三角函数的定义来解决,注意在最后计算时约去参数.【设计意图】通过例2,让学生学会用参数法求锐角三角函数值.【例3】如图,在△ABC中,AB=AC=8,BC=12,求∠B的三角函数值.【师生活动】教师提示:求锐角的三角函数值必须在直角三角形中,若题目中没有直角三角形,则可作辅助线构造直角三角形解决问题.学生根据提示,思考作答,教师指导、讲解.【答案】解:如图,过点A 作AD ⊥BC 于点D .∵AB =AC ,AD ⊥BC ,∴BD =12BC =6.在Rt △ABD 中,AD =∴sin B =AD AB , cos B =BD AB =68=34,tan B =AD BD . 【归纳】构造直角三角形求锐角三角函数值的步骤:第1步:观察所要求的锐角是否在某一个直角三角形中;第2步:若在直角三角形中,则根据锐角三角函数的定义直接求出其锐角三角函数值;若在锐角(或钝角)三角形中,则应先作辅助线构造以该角为内角的直角三角形,再根据锐角三角函数的定义求其锐角三角函数值.【设计意图】通过例3,让学生学会构造直角三角形求锐角三角函数值.【例4】如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,求tan D 的值.【师生活动】学生独立思考,尝试作答,教师指导、讲解.【答案】解:如图,连接BC .∵AB 为⊙O 的直径,∴∠ACB =90°.∵AB =2×3=6,∴BC∵∠D =∠A (圆周角定理的推论),∴tan D =tan A =BC AC = 【归纳】用等角转化法求锐角三角函数值.求锐角三角函数值的方法有很多,如设参数法、构造法等,但当直接利用这些方法都不能求解时,可将角进行转化,把所求角转化为与之相等的角.找相等的角的方法有很多种,可借助平行线、等腰三角形、同弧所对的圆周角相等、三角形全等(或相似)等知识来寻找,要根据题目中的条件灵活选用方法.【设计意图】通过例4,让学生学会用等角转化法求锐角三角函数值,能根据题中的条件灵活选用求锐角三角函数的方法. 课堂小结板书设计一、锐角三角函数二、求锐角三角函数的方法课后作业完成教材第65页练习第1~2题.。
人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案
![人教版九年级数学下册:28锐角三角函数《锐角三角函数优秀教学案例》教案](https://img.taocdn.com/s3/m/11014899ab00b52acfc789eb172ded630a1c987c.png)
2.能够运用锐角三角函数解决实际问题,提高学生的应用能力。
3.学会使用三角板和直尺等工具进行角度测量,培养学生的动手操作能力。
4.能够运用信息技术辅助学习,提高学生的信息素养。
(二)过程与方法
1.通过观察、实验、探究等方法,引导学生主动发现锐角三角函数的规律。
四、教学内容与过程
(一)导入新课
1.生活实例引入:教师通过展示一些实际生活中的图片,如建筑物的设计图、物理实验场景等,让学生观察并思考其中涉及到的角度问题。
2.提问引导:教师向学生提出问题,如“这些图片中的角度是如何计算的?”“你能想到一些与角度相关的实际问题吗?”等,激发学生的思考兴趣。
3.学生回答:鼓励学生积极回答问题,分享自己的观点和思考。
三、教学策略
(一)情景创设
1.生活情境:通过设置一些与生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.问题情境:设计一些具有挑战性的问题,让学生在解决问题的过程中自然地引入锐角三角函数的知识,引导学生主动探究。
3.互动情境:创设轻松、愉快的课堂氛围,鼓励学生积极参与课堂讨论,培养学生主动表达自己观点的能力。
2.作业反馈:教师及时批改学生的作业,给予反馈和评价,指出学生的错误和不足,帮助学生提高。
3.学生自我检查:学生对自己的作业进行自我检查,总结自己在作业中的优点和不足,不断提高自己的学习效果。
五、案例亮点
1.生活情境的引入:通过展示与学生生活密切相关的实例,如建筑设计、物理实验等,让学生了解锐角三角函数在实际生活中的应用,使学生感受到数学的实用性,激发学生的学习兴趣。这种生活情境的引入,不仅能够引起学生的兴趣,还能够增强学生对知识的理解和记忆。
锐角三角函数数学教案
![锐角三角函数数学教案](https://img.taocdn.com/s3/m/88c67414a7c30c22590102020740be1e650eccbe.png)
锐角三角函数数学教案锐角三角函数数学教案1教学目的1,使学生了解本章所要解决的新问题是:直角三角形的一条边和另一个元素〔一边或一锐角〕,求这个直角三角形的其他元素。
2,使学生了解“在直角三角形中,当锐角A取固定值时,它的对边与斜边的比值也是一个固定值。
重点、难点、关键1,重点:正弦的概念。
2,难点:正弦的概念。
3,关键:相似三角形对应边成比例的性质。
教学过程一、复习提问1、什么叫直角三角形?2,如果直角三角形ABC中∠C为直角,它的直角边是什么?斜边是什么?这个直角三角形可用什么记号来表示?二、新授1,让学生阅读教科书第一页上的插图和引例,然后答复以下问题:〔1〕这个有关测量的实际问题有什么特点?〔有一个重要的测量点不可能到达〕〔2〕把这个实际问题转化为数学模型后,其图形是什么图形?〔直角三角形〕〔3〕显然本例不能用勾股定理求解,那么能不能根据条件,在地面上或纸上画出另一个与它全等的直角三角形,并在这个全等图形上进行测量?〔不一定能,因为斜边即水管的长度是一个较大的数值,这样做就需要较大面积的平地或纸张,再说画图也不方便。
〕〔4〕这个实际问题可归结为怎样的数学问题?〔在Rt△ABC中,锐角A和斜边求∠A的对边BC。
〕但由于∠A不一定是特殊角,难以运用学过的定理来证明BC的长度,因此考虑能否通过式子变形和计算来求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的对边与斜边的比值都等于1/2,根据这个比值,斜边AB的长,就能算出∠A的对边BC的长。
类似地,在所有等腰的那块三角尺中,由勾股定理可得∠A的对边/斜边=BC/AB=BC/=1/=/2 这就是说,当∠A=450时,∠A的对边与斜边的比值等于/2,根据这个比值,斜边AB的长,就能算出∠A的对边BC的长。
那么,当锐角A取其他固定值时,∠A的对边与斜边的比值能否也是一个固定值呢?〔引导学生答复;在这些直角三角形中,∠A的对边与斜边的比值仍是一个固定值。
笫二十八章《锐角三角函数》教案
![笫二十八章《锐角三角函数》教案](https://img.taocdn.com/s3/m/bff66a3424c52cc58bd63186bceb19e8b8f6ecb8.png)
一、教学内容
第二十八章《锐角三角函数》教案:
1.理解锐角三角函数的定义,掌握正弦、余弦、正切函数的概念。
-教材章节:第28章第1节
2.学会使用锐角三角函数进行简单图形的求解,如直角三角形中的角度和边长计算。
-教材章节:第28章第2节
3.掌握锐角三角函数的图像和性质,了解函数值随角度变化的规律。
其次,计算方法也是学生学习的另一个难点。尽管我总结了计算口诀,但学生在实际操作中仍然容易混淆。针对这一点,我认为在课堂上增加一些实际例题的讲解和练习是非常有必要的。通过大量的练习,让学生熟练掌握各个函数的计算方法,提高他们的运算能力。
此外,在教授锐角三角函数的性质时,我发现学生对于周期性和增减性的理解不够深入。这可能是因为我在这部分的讲解和引导不够到位。在以后的教学中,我需要通过绘制更详细的图像和列举更多实例,帮助学生更好地理解函数性质。
4.培养学生的数学运算能力,使学生熟练掌握锐角三角函数的计算方法,并能够准确解决相关数学问题。
-教材关联:第28章锐角三角函数的计算及应用
5.激发学生的创新意识,鼓励学生探索三角函数在其他领域的应用,拓展知识视野。
-教材关联:第28章拓展学习内容
三、教学难点与重点
1.教学重点
(1)锐角三角函数的定义及记忆
-突破方法:通过绘制直角三角形,让学生直观地看到函数值与三角形边长的关系。
(2)锐角三角函数的计算方法
-学生在计算锐角三角函数值时,可能难以确定使用哪个函数,或者容易混淆各函数的计算方法。
-突破方法:总结计算方法,如“正弦对边比斜边,余弦邻边比斜边,正切对边比邻边”,并辅以大量练习。
(3)锐角三角函数性质的理解
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§19.3锐角三角函数(一)
学习目标:1.通过实例认识直角三角形的边角关系,即锐角的四个
三角函数的概念.
2.已知直角三角形的两边,会求这个直角三角形的一个锐角的四个三角函数值.
学习过程:
一、复习引人:
1.如图,请说出Rt △ABC 所具有的性质。
2.在Rt △ABC 中,∠C =90°,
①已知a=2,b=3,求c; ②已知a=5,c=13,求b; ③已知b=6,c=10,求a 。
二.新课学习
1.回忆书上P98测量操场旗杆的高度BC 的情形,其中出现了两个相似的直角三角形,即
△ ∽△
∴ AC
C A BC C B '
'''= ∴ AC
BC C A C B ='''' 2.直角三角形ABC 可以简记
为 ,直角∠C 所对的边AB
称为 ,用 表示,另两
条直角边分别为∠A 的
与 ,用 表示(如图).
3.结论①:在Rt △ABC 中,只要一个锐角的大小不变(如∠A =34°),那么不管这个直角三角形大小如何,该锐角的对边与邻边的比值是一个固定的值.
4.思 考:在Rt △ABC 中,当锐角A 取其他固定值时,∠A 的对边与邻边的比值还会是一个固定值吗?
观察右图中的Rt △AB 1C 1、Rt △AB 2C 2和Rt △AB 3C 3,易 Rt △AB 1C 1∽Rt △_______∽Rt △ _________. ∴1
11AC C B =__________=__________. 5.对于其他边的比值关系又有什么样的
关系呢?同学们可以思考一下?小组之间
互相交流一下。
6.结论③:对于锐角A 的每一个确定的值,其对边与斜边、邻边与斜边、邻边与对边的比值也是惟一确定的.
7.归纳:①这几个比值都是锐角∠A 的函数,记作 ,即
的 , , , ,统称为锐角∠A 的三角函数.
②锐角三角函数值都是正实数,并且
<sin A < , <cos A < 。
③根据三角函数的定义,我们还可得出
tan A •cot A =
三.应用举例
例1:求出如图所示的Rt △ABC 中∠A 的四个三角函数值.
解:在Rt △ABC 中,BC=8,AC=15, 由勾股定理得AB = = = ,
sin A = = ,cos A = = ,
tan A = = ,cot A = = 。
四.分组练 习
A 组:1如图,在Rt △MNP 中,∠N =90゜.
∠P 的对边是__________,∠P 的邻边是_______________; ∠M 的对边是__________,∠M 的邻边是_______________;
(第1题)
2.求出如图所示的Rt △DEC (∠E =90゜)中∠D 的四个三角函数值.
3.设Rt △ABC 中,∠C =90゜,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,根据下列所给条件求∠B 的四个三角函数值.
(1)a =3,b =4; (2)a =6,c =10.
解:
(第2题)
B 组:1、如图,∠
C =90゜,AC =3,BC =2,(1)求∠A 、∠B 的四个三角函数值;(2)比较求值结果,你发现什么?
2.在Rt △ABC 中,∠C =90゜,3AC=3BC,求sin ∠B 的值。
3.已知:在Rt △ABC 中,∠C =90゜,sin ∠A =4
3,求cosA 的值。