用字母表示数课件优秀课件PPT
合集下载
人教版用字母表示数ppt优秀课件

2
3
3+30=33
4
4+30=34
5
5+30=35
6
6+30=36
……
……
2+30=32
能只用一个式子 就简明地表示出 任何一年爸爸的 年龄吗?
a
a+30
一定要用a表示小红的年龄吗?
这里a表示什么?“a+30”又表示什么?
为什么要用“a+30”表示爸爸的年龄呢?
小红的年龄/岁
爸爸的年龄/岁
a+30
(1)用字母表示加减法的数量关系 (2)用字母表示乘除法的数量关系
1
课堂探究点
2
课时流程
课后作业
探索新知
课堂总结
当堂检测
新课导入
Let’s…
探究点 1
用字母表示加减法的数量关系
我比小红大30岁。
从图中你知道了什么?
数量关系式:小红的年龄+30岁=爸爸的年龄
我比小红大30岁。
当小红1岁时,爸爸多少岁? 你能用一个式子表示吗?
在地球上我只 能举起15kg。
在月球上你真 是个大力士。
自学提示: 1.根据例题1的学习思路,自己独立完成教材53页。 2.完成后,先与同桌交流,然后在小组内讨论交流。 3.时间为6分钟。
数量关系式: 人在月球上能举起物体的质量=人在地球上能举起的物体的质量×6
我比小红大30岁。
当小红2岁时、 3岁时,爸爸多少岁? 你怎样用一个式子表示呢?
小红的年龄/岁
爸爸的年龄/岁
1
1+30=31
2
3
3+30=33
4
4+30=34
5
5+30=35
6
6+30=36
……
……
3
3+30=33
4
4+30=34
5
5+30=35
6
6+30=36
……
……
2+30=32
能只用一个式子 就简明地表示出 任何一年爸爸的 年龄吗?
a
a+30
一定要用a表示小红的年龄吗?
这里a表示什么?“a+30”又表示什么?
为什么要用“a+30”表示爸爸的年龄呢?
小红的年龄/岁
爸爸的年龄/岁
a+30
(1)用字母表示加减法的数量关系 (2)用字母表示乘除法的数量关系
1
课堂探究点
2
课时流程
课后作业
探索新知
课堂总结
当堂检测
新课导入
Let’s…
探究点 1
用字母表示加减法的数量关系
我比小红大30岁。
从图中你知道了什么?
数量关系式:小红的年龄+30岁=爸爸的年龄
我比小红大30岁。
当小红1岁时,爸爸多少岁? 你能用一个式子表示吗?
在地球上我只 能举起15kg。
在月球上你真 是个大力士。
自学提示: 1.根据例题1的学习思路,自己独立完成教材53页。 2.完成后,先与同桌交流,然后在小组内讨论交流。 3.时间为6分钟。
数量关系式: 人在月球上能举起物体的质量=人在地球上能举起的物体的质量×6
我比小红大30岁。
当小红2岁时、 3岁时,爸爸多少岁? 你怎样用一个式子表示呢?
小红的年龄/岁
爸爸的年龄/岁
1
1+30=31
2
3
3+30=33
4
4+30=34
5
5+30=35
6
6+30=36
……
……
《用字母表示数》PPT优质课件

3. 聪聪有x本课外读物,红红比聪聪多 9本。 (1)红红有( x+9 )本课外读物。 (2)他们俩一共有(2x+9 )本课外读物。
用字母表示数 用字母表示数
巩固练习
河北教育出版社 四年级 | 下册
4. 学校图书馆买来35本《数学游戏》 和20本《科学家的故事》。
(1)买《数学游戏》 花了( 35x )元钱。 (2)买《科学家的故事》 花了( 20y )元钱。
新知探究
河北教育出版社 四年级 | 下册
丫丫和妞妞年龄的有什么关系?
丫丫的年龄=妞妞的年龄+3 丫丫的年龄=a+3
用字母表示数 用字母表示数
新知探究
河北教育出版社 四年级 | 下册
妞妞18岁时,丫丫多少岁呢? 妞妞18岁:a=18
丫丫的年龄:18+3=21
用字母表示数 用字母表示数
新知探究
河北教育出版社 四年级 | 下册
56 420 117 28x 176
6
4
用字母表示数 用字母表示数
巩固练习
河北教育出版社 四年级 | 下册
2. 一大箱牛奶比一小箱牛奶贵x元。
(1)一大箱牛奶的价格是(52+x )元。 (2)大、小各买一箱共需要(104+x)元。
用字母表示数 用字母表示数
巩固练习
河北教育出版社 四年级 | 下册
冀用教字版母表数示学数 用四字 年母级表示下数册
2 用字母表示数
用字母表示数
情境导入
探究新知
课堂练习
课堂小结
课后作业
用字母表示数 用字母表示数
情境导入
仔细想一想你在生活 中,见过那些使用 字母表示的例子?
这样的例子 有很多的, 例如……
返回
用字母表示数 用字母表示数
用字母表示数优质课ppt课件

02 代数方程
含有未知数的等式叫做方程,这里主要指代数方 程,即方程中的未知数是代数数(可以是实数或 复数)。
03 代数式与代数方程的关系
代数式是代数方程的基础,代数方程是代数式的 应用。通过设立代数式,可以方便地表示数学关 系,进而建立代数方程求解未知数。
字母表示数的运算规则
加法规则
同类项可以合并,例如 $3a + 2a = 5a$。
• 函数关系中的代数表示:在函数关系中,自变量和因变量之间的关系可以用代数式来表示。例如,在一次函数 中,我们可以用 $y = kx + b$ 来表示自变量 $x$ 和因变量 $y$ 之间的关系。
• 概率统计中的代数表示:在概率统计中,我们经常需要用代数式来表示概率和统计量之间的关系。例如,在二 项分布中,我们可以用 $P(X=k) = C_n^k p^k (1-p)^{n-k}$ 来表示事件 $X=k$ 发生的概率。
通过拓展性问题或挑战性任务,如“用字母表 示数的历史”、“字母表示数在其他学科中的 应用”等,激发学生的探究欲望和创新精神。
THANKS
感谢观看
字母表示数在数学中的应用 03
课程目标与要求
01 掌握字母表示数的基本概念和性质 02 能够运用字母表示数解决简单的数学问题 02 培养学生的数学思维和符号意识
教学方法与手段
采用讲解、示范、练习等 多种教学方法
组织学生进行小组讨论和 合作学习,提高学习效果
利用多媒体手段,如PPT 课件、数学软件等辅助教 学
字母表示数的应用举例
• 实际问题中的数学模型:在实际问题中,我们经常需要建立数学模型来解决问题。通过设立代数式,可以方便 地表示问题中的数学关系,进而求解问题。例如,在行程问题中,我们可以用 $s = vt$ 来表示路程、速度和 时间之间的关系。
含有未知数的等式叫做方程,这里主要指代数方 程,即方程中的未知数是代数数(可以是实数或 复数)。
03 代数式与代数方程的关系
代数式是代数方程的基础,代数方程是代数式的 应用。通过设立代数式,可以方便地表示数学关 系,进而建立代数方程求解未知数。
字母表示数的运算规则
加法规则
同类项可以合并,例如 $3a + 2a = 5a$。
• 函数关系中的代数表示:在函数关系中,自变量和因变量之间的关系可以用代数式来表示。例如,在一次函数 中,我们可以用 $y = kx + b$ 来表示自变量 $x$ 和因变量 $y$ 之间的关系。
• 概率统计中的代数表示:在概率统计中,我们经常需要用代数式来表示概率和统计量之间的关系。例如,在二 项分布中,我们可以用 $P(X=k) = C_n^k p^k (1-p)^{n-k}$ 来表示事件 $X=k$ 发生的概率。
通过拓展性问题或挑战性任务,如“用字母表 示数的历史”、“字母表示数在其他学科中的 应用”等,激发学生的探究欲望和创新精神。
THANKS
感谢观看
字母表示数在数学中的应用 03
课程目标与要求
01 掌握字母表示数的基本概念和性质 02 能够运用字母表示数解决简单的数学问题 02 培养学生的数学思维和符号意识
教学方法与手段
采用讲解、示范、练习等 多种教学方法
组织学生进行小组讨论和 合作学习,提高学习效果
利用多媒体手段,如PPT 课件、数学软件等辅助教 学
字母表示数的应用举例
• 实际问题中的数学模型:在实际问题中,我们经常需要建立数学模型来解决问题。通过设立代数式,可以方便 地表示问题中的数学关系,进而求解问题。例如,在行程问题中,我们可以用 $s = vt$ 来表示路程、速度和 时间之间的关系。
五年级上册数学人教版 用字母表示数(课件)(共19张PPT)

学习反思
1、学了本节课,你对“字母表示数” 有什么感受?
2、用字母表示数可以反映出一些普遍 带有规律性的问题,揭示出由特殊到 一般的认知过程;
用字母表示数,可以把运算律、图形 的面积、周长、体积等数量关系和一 些式子或图形的规律简明地表示出来, 形式简单,使用方便。
作业
• P92页 习题3.1 1, 2,3题
•3.1.1 用字母表示数
情景
• 我校课外制作小组 同学准备制作一座房子 模型,它的窗框如图所 示,该窗是这样设计的:
上半部分为半圆,下 半部分为六个大小一样 的长方形,长方形的长 与宽之比为3:2。
问题:至少需要多长的 材料?
1、若每个长方形的长是30cm, 你能够算出所需要的材料长是多 少吗?试一试
下落高度 40 50 80 100 150
弹起高度 20 25 40 50 75
请观察:1、弹起高度与之下落高度间存在着什么 样的规律?
答:弹起高度为下落高度的一半。
2、如果下落的高度为bcm,弹起的高度为acm , 请问a和b之间有什么样的关系?
请发现下面式子的规律,并用n表示 出来
1、 12+1=1×2 2、 22+2=2×3 3、 32+3=3×4
练一练 1.填空:
(1) 一打铅笔有12枝,n打铅笔有 12n 枝; (2) 三角形的三边长分别为3a 、4a 、5a,则其周
长为 (3a+4a+5a) ; (3) 如图,某广场四角铺上了四分之一圆形的草地,
若圆形的半径为r米,则共有草地 π r2 平方米.
2. 我们知道: 若某三位数十位数字为a,
答:至少需要材料(350+30∏)cm
2、如果每个长方形的长不知道是多少,我们 可以用什么来表示?它所需要的材料是多少可 以表示出来吗?试一试
用字母表示数教学完整版PPT课件

七星关区八寨小学 韩丽霞
课堂探究
例1
……
摆 1 个三角形用 3 根小棒: 1×3 摆 2 个三角形用小棒的根数是: 2×3 摆 3 个三角形用小棒的根数是:( 3 )×3 摆 4 个三角形用小棒的根数是:( 4 )×3 ……
三角形的个数和小棒的根数有什么 关系? 你能用一个式子表示吗?
如果用 a 表示三角形的个数,小棒的根数是 ( a )×( 3 )
正正方方形形周的长周= 长边和长×4 正面方积形如面何积计= 算边?长×边长
例3 如果正方形的边长用 a 表示,C 表示周长,S 表示面积,你能写出正 方形的周长和面积公式吗?
正方形的周长是:C = a×4
正方形的面积是:S = a×a
注意:
1.在含有字母的式子里,式子 中间的乘号可以记作“·” , 也可省略不写。如: a×2 可 以写成 2·a 或者 2a 。
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
这里这的里的a 可a 可以以表表示示任哪意些的数?自然数,但 是不能表示小数
例2 甲、乙两地之间的公路长 280 千米,一辆汽车 从甲地开往乙地。你能用式子表示行驶了一段路程 后剩下的千米数吗?
已经行驶了 50 千米,剩下的千米数是:280-50 已经行驶了 74.5 千米,剩下的千米数是:280-74.5 已经行驶了 b 千米,剩下的千米数是:280-b
可以表示哪些数?
如果 b = 120,剩下多少千米?如果 b = 200 呢?
280-b = 280-120 = 160
280-b = 280-200 = 80
含有字母的式子
当 b=120 或 200 时,280-b 的值
例3 如果正方形的边长用 a 表示,C 表示周长,S 表示面积,你能写出正 方形的周长和面积公式吗?
课堂探究
例1
……
摆 1 个三角形用 3 根小棒: 1×3 摆 2 个三角形用小棒的根数是: 2×3 摆 3 个三角形用小棒的根数是:( 3 )×3 摆 4 个三角形用小棒的根数是:( 4 )×3 ……
三角形的个数和小棒的根数有什么 关系? 你能用一个式子表示吗?
如果用 a 表示三角形的个数,小棒的根数是 ( a )×( 3 )
正正方方形形周的长周= 长边和长×4 正面方积形如面何积计= 算边?长×边长
例3 如果正方形的边长用 a 表示,C 表示周长,S 表示面积,你能写出正 方形的周长和面积公式吗?
正方形的周长是:C = a×4
正方形的面积是:S = a×a
注意:
1.在含有字母的式子里,式子 中间的乘号可以记作“·” , 也可省略不写。如: a×2 可 以写成 2·a 或者 2a 。
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
这里这的里的a 可a 可以以表表示示任哪意些的数?自然数,但 是不能表示小数
例2 甲、乙两地之间的公路长 280 千米,一辆汽车 从甲地开往乙地。你能用式子表示行驶了一段路程 后剩下的千米数吗?
已经行驶了 50 千米,剩下的千米数是:280-50 已经行驶了 74.5 千米,剩下的千米数是:280-74.5 已经行驶了 b 千米,剩下的千米数是:280-b
可以表示哪些数?
如果 b = 120,剩下多少千米?如果 b = 200 呢?
280-b = 280-120 = 160
280-b = 280-200 = 80
含有字母的式子
当 b=120 或 200 时,280-b 的值
例3 如果正方形的边长用 a 表示,C 表示周长,S 表示面积,你能写出正 方形的周长和面积公式吗?
人教版《用字母表示数》_课件(共张PPT)

【获奖课件ppt】人教版《用字母表示 数》_ 课件(共 17张PP T)-课 件分析 下载
2、为了测试一种皮球的弹跳高度与下落高度 的关系,通过试验,得到下列一组数据(单位: 厘米):
下落高度 40 50 80 100 150
弹跳高度 20 25 40 50
75
这个问题中,如果我们用b(厘米)表示下落高度,那
么相应的弹跳高度为
(厘米)
解: b 2
【获奖课件ppt】人教版《用字母表示 数》_ 课件(共 17张PP T)-课 件分析 下载
【获奖课件ppt】人教版《用字母表示 数》_ 课件(共 17张PP T)-课 件分析 下载
3、如果用a、b表示任意两个有理数,那么加法交换律
可以用字母表示为
,乘法交换律可以用字母表
5、我们知道:
…44¯¯×¯¯(¯4¯+¯1¯)¯10
2
123455(51)15 2
12310 100 (1 00 1 )0 5050 2
…………………………………………….
123n______
【获奖课件ppt】人教版《用字母表示 数》_ 课件(共 17张PP T)-课 件分析 下载
【获奖课件ppt】人教版《用字母表示 数》_ 课件(共 17张PP T)-课 件分析 下载
示为
。
解:a + b = b + a, a b = b a (a,b表示任两个有理数)
文字叙述:1、加法交换律:两数相加,交换加数的位置, 和不变。 2、乘法交换律:两个数相乘,交换因数的位置, 积不变。
举例说明:例如:加法交换律:
2332
( 0 .2 ) 3 .4 3 .4 ( 0 .2 )
1(1)(1)1 2 3 32
《用字母表示数》ppt课件

04
2024/1/24
05
顶点坐标(-b/2a, c b^2/4a)决定了抛物线的位
置
21
反比例函数表示法及图像特点
反比例函数表示法:y = k/x(k ≠ 0)
双曲线以原点为中心对称
k的正负决定了双曲线所在的象限(k>0 时在第一、三象限,k<0时在第二、四 象限)
2024/1/24
图像特点
是两条分别位于第一、三象限和第二、 四象限的双曲线
掌握用字母表示数的基本方法,理解 字母表示数的意义,能够用字母表示 简单的数学公式和实际问题中的数量 关系。
过程与方法目标
情感态度与价值观目标
激发学生的学习兴趣和探究欲望,培 养学生的创新意识和实践能力。
通过观察、比较、分析、归纳等数学 活动,培养学生的数学思维和解决问 题的能力。
2024/1/24
方程与不等式表示法
2024/1/24
15
一元一次方程表示法
定义
只含有一个未知数,且未知数的最高次数为1的方 程。
标准形式
ax + b = 0(a ≠ 0)。
解法
通过移项、合并同类项等步骤,求得未知数的值 。
2024/1/24
16
一元二次方程表示法
1 2
定义
只含有一个未知数,且未知数的最高次数为2的 方程。
5
教材分析与选用
教材分析
本课程选用的是人教版初中数学 教材,该教材注重知识的系统性 和逻辑性,通过丰富的实例和练 习帮助学生掌握用字母表示数的
基本方法。
教学内容选择
本课程主要选择用字母表示数的 基本概念、方法和应用实例作为 教学内容,同时结合学生的实际 情况和认知水平进行适当的拓展
课件用字母表示数_人教版七年级数学上册PPT课件_优秀版

m;
(2)用代数式表示带有花纹的地面砖块数n与走廊的
长度Ln(m)之间的关系 Ln=0.5(2n+1).
(2)a的立方与-1的和
;
一个长方形、下部是一个正方形的窗户,相关 (2)由(1)可知,摆成第n个图形需要3n个五角星.
(例3)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,……,按这个规律,搭n个这样的
三角形需要火柴的根数为
.
如图,一个窗户的上部是由4个相同的扇形组成的半圆形,下部是由边长为a的4个完全相同的小正方形组成的大正方形,则做这个窗户
()
(例2)如图,表示阴影部分面积的代数式是( )
第2个图有五角星6个(3×2);
(1)依照此规律,第20个图形共有几个五 (1)某商品售价为a元,打八折后又降价20元,则现价为
元;
将不规则图形的周长、面积转化为规则图形(如长方形、圆、三角形等)的周长、面积的和或差来解决实际问题.
角星? (2)一艘轮船在静水中的速度是50千米/时,水流速度是a千米/时,则该轮船在逆水中航行3小时的路程为
占全班人数的40%,则全班人数是( A ) A.
B. 40%m
C.
D.(1-40%)m
8. 某商品原价为p元,由于供不应求,先提价10%
进行销售,后因供应逐步充足,价格又一次性 降价10%,则最后的实际售价为( B )
A. p元 B. 0.99p元 C. 1.01p元 D. 1.2p元
三级检测练
学校新建教学大楼拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位:米)如图所示,那么制造这
个窗户所需不锈钢的总长是( )
p元
6. 找规律,并写出第n个式子.
人教版数学五年级上册用字母表示数课件(共24张PPT)

乘法交换律:a×b=b×a 可以简写成:a∙b=b∙a 或 ab=ba
在含有字母的式子里,字母中间的乘号 可以记作“.”,也可以省略不写。
用字母表示运算定律,简明易记、便于应用。
你能把乘法结合律和乘法分配律写成简写情势吗 ?
1.只有“×”可以简写成“·”或者省略不写,“+、— 、÷”都不可以省略不写。
2.只有字母与字母、数字与字母之间的“×”才能简写成 “·” 或者省略不写,数字与数字之间的“×”不能 省略。例如: a×b可以写成a·b或ab,2×m可以写成 2·m或2m。
知识提炼
知识点: 用字母表示运算定律,简明易记、便于应用,字母中间的乘号可以记作 “·”,也可以省略不写。
(2)用字母表示出正方形的面积和周长。
试一试: 用字母表示学过的计算公式。 用S表示面积、
用C表示周长
a S=——a×——a— C=——4×—a——
a
a S=——a×——a— C=——4×—a——
a
你能把上面的公式写成简写情势吗?
S=——a2——— C=——4a———
注意a2不要 写成a2哦。
计算下面正方形的周长和面积。
C=(a+b)×2 =(8+5)×2 =13×2 =26(cm)
1.用字母表示运算定律,简明易记、便于应用,要注意 运算定律中相同的量要用同一个字母表示;在含有字母的式 子里,字母中间的乘号可以记作“·”,也可以省略不写。
2.计算公式可用字母表示,如长方形的周长可表示为 C=2(a+b),长方形的面积可表示为S=ab。
a=6 cm
6 cm
6 cm S=a2 =6×6 =36(cm2)
C=4a =4×6 =24(cm)
你能用字母表示长方形的面 积和周长计算公式吗?
用字母表示数(42张PPT)数学

18
n-1
答案
n+1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
9.某商品的原价为a元,现加价10%后出售,则每件商品的售价是_____元.
1.1a
解析 商品原价为a(元),加价10%,售价变为a+a×10%=a+0.1a=1.1a(元).
解析
答案
10.某校男学生人数为x,女学生人数为y,教师与学生的比例为1∶12,则共有教师______人.
解
课时作业
1.下列各式中,规范书写字母表示数的是( )
C
B.数字与字母相乘省略乘号时,数字应在前,故此选项不符合题意;C.数字与字母相乘时,乘号可以省略,故此选项符合题意;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
答案
解析
2.在下列表达式中,不能表示“6a”意义的是( )A.6个a相乘 B.a的6倍C.6个a相加 D.6的a倍
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
(3a+4b)
17.如图,请你求出阴影部分的面积(用含有x的式子表示).
解 由图可得,阴影部分的面积是:x2+3x+3×2=x2+3x+6.
1
2
3
4
5
6
7
n-1
答案
n+1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
9.某商品的原价为a元,现加价10%后出售,则每件商品的售价是_____元.
1.1a
解析 商品原价为a(元),加价10%,售价变为a+a×10%=a+0.1a=1.1a(元).
解析
答案
10.某校男学生人数为x,女学生人数为y,教师与学生的比例为1∶12,则共有教师______人.
解
课时作业
1.下列各式中,规范书写字母表示数的是( )
C
B.数字与字母相乘省略乘号时,数字应在前,故此选项不符合题意;C.数字与字母相乘时,乘号可以省略,故此选项符合题意;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
答案
解析
2.在下列表达式中,不能表示“6a”意义的是( )A.6个a相乘 B.a的6倍C.6个a相加 D.6的a倍
答案
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
(3a+4b)
17.如图,请你求出阴影部分的面积(用含有x的式子表示).
解 由图可得,阴影部分的面积是:x2+3x+3×2=x2+3x+6.
1
2
3
4
5
6
7
《用字母表示数》优秀课件(共17张PPT)

解:5,9,8,4
c120b1 0a
返回
1、用字母表示数有什么好处? 答:使一些数量关系更加简明、更具有普遍意义。
2、举出身边日常生活中或以前学过的数学知识中 用字母表示数的例子,并把它写下来与同学分享。 例:(1)、小明骑自行车的速度为每小时15公里,n小时后
他走的路程为多少公里?
(2)、一间教室里有四把风扇,m间教室里有多少把风扇? (3)、1,4,9,16,… 在这组数中,第10个数是什么?第n个呢? ……………………………………………………..
返回
课本P92习题3.1 第 1、2、3题
返回
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
2、为了测试一种皮球的弹跳高度与下落高度 的关系,通过试验,得到下列一组数据(单位: 厘米):
下落高度 40 50 80 100 150
弹跳高度 20 25 40 50
c120b1 0a
返回
1、用字母表示数有什么好处? 答:使一些数量关系更加简明、更具有普遍意义。
2、举出身边日常生活中或以前学过的数学知识中 用字母表示数的例子,并把它写下来与同学分享。 例:(1)、小明骑自行车的速度为每小时15公里,n小时后
他走的路程为多少公里?
(2)、一间教室里有四把风扇,m间教室里有多少把风扇? (3)、1,4,9,16,… 在这组数中,第10个数是什么?第n个呢? ……………………………………………………..
返回
课本P92习题3.1 第 1、2、3题
返回
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。
3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。
15、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要在路上,就没有到不了的地方。 16、你若坚持,定会发光,时间是所向披靡的武器,它能集腋成裘,也能聚沙成塔,将人生的不可能都变成可能。 17、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者
2、为了测试一种皮球的弹跳高度与下落高度 的关系,通过试验,得到下列一组数据(单位: 厘米):
下落高度 40 50 80 100 150
弹跳高度 20 25 40 50
用字母表示数 课件(共15张PPT)

_1_2__a__; (3)如图,某广场四角铺上了四分之
一圆形的草地,若圆形的半径为
r m,则共有草地__π_r_2_m2.
2.“比a的 3
2
倍大1的数”用式子表示为(
A
)
A. 3 a+1
2
B. 2 a+1
3
C. 5 a
2
D. 3 (a+1)
2
课堂小结
知识点 用字母表示数
(1)用字母表示长度、面积和体积等; (2)用字母表示运算律; (3)用字母表示计算公式; (4)用字母表示数字规律;
第2章 整式及其加减
• 2.1 列代数式 • 2.1.1 用字母表示数
知识回顾 例题讲解 课堂小结
获取新知 随堂演练
知识回顾
加法交换律: a+b=b+a 加法结合律: (a+b)+c=a+(b+c) 这里的a、b、c可以代表任何数,这样描述的运算律就具有普遍意义了. 可见,用字母表示数能够更方便地表示一般规律.
如果购买这种大米nkg(n为正数),那么需付款__4_._8_n__元.
用这个式子,可由
购买大米的千克数(n),
算出所需的付款数.
(3)我们知道,长方形的面积等于长与宽的积.如果用a、b分 别表示长方形的长和宽,用S表示长方形的面积,则有长之间的关系用含 有字母的式子表示,看上去更加简明,更具有普遍意义了.
t
(t≠0).
(4)带分数与字母相乘时,带分数要写成假分数.如
1 1xy应写成 2
3 2
xy
.
(5)式子中有加减运算,且后面有单位时,式子要加 上括号,如(5m+2m)元.
随堂演练
1 填空:
一圆形的草地,若圆形的半径为
r m,则共有草地__π_r_2_m2.
2.“比a的 3
2
倍大1的数”用式子表示为(
A
)
A. 3 a+1
2
B. 2 a+1
3
C. 5 a
2
D. 3 (a+1)
2
课堂小结
知识点 用字母表示数
(1)用字母表示长度、面积和体积等; (2)用字母表示运算律; (3)用字母表示计算公式; (4)用字母表示数字规律;
第2章 整式及其加减
• 2.1 列代数式 • 2.1.1 用字母表示数
知识回顾 例题讲解 课堂小结
获取新知 随堂演练
知识回顾
加法交换律: a+b=b+a 加法结合律: (a+b)+c=a+(b+c) 这里的a、b、c可以代表任何数,这样描述的运算律就具有普遍意义了. 可见,用字母表示数能够更方便地表示一般规律.
如果购买这种大米nkg(n为正数),那么需付款__4_._8_n__元.
用这个式子,可由
购买大米的千克数(n),
算出所需的付款数.
(3)我们知道,长方形的面积等于长与宽的积.如果用a、b分 别表示长方形的长和宽,用S表示长方形的面积,则有长之间的关系用含 有字母的式子表示,看上去更加简明,更具有普遍意义了.
t
(t≠0).
(4)带分数与字母相乘时,带分数要写成假分数.如
1 1xy应写成 2
3 2
xy
.
(5)式子中有加减运算,且后面有单位时,式子要加 上括号,如(5m+2m)元.
随堂演练
1 填空:
用字母表示数PPT课件(华师大版)

2 和下落高度之间的数量关系.
1.你能从表中发现弹起髙度与下落高度之间有什么 数量关系吗?
2.让我们再看几个用字母表示数的例子: 如果用a、b表示任意两个有理数,那么加法交 换律可以表示为:a + b = b + a. 乘法交换律 可以表示为:ab = ba. 你能用字母 表示有理数的其他几个运算律吗?
1 500米跑步测试,如果某同学跑完全程的成绩是t秒,
1500 那么他跑步的平均速度是____t___米/秒.
总结
式子中出现的乘号,通常写作“ •”或省略不写,如
这里5×n常写作5 • n或5n;
数字与字母相乘时,数字通常写在字母前面,如5n
一 般不写成n5; 除法运算写成分数情势,如1 500÷t通常写作
例1 填空: 某地为了治理河山,改造环境,计划在第十 二个五年计划期间植树绿化荒山,如果每年 植树绿化n公顷,那么这五年内可以植树绿化 荒山___5_n__公顷;
每本练习本m元,甲买了5本,乙买了2本,两人一共
花了_(_5_m__+__2_m__) _元,甲比乙多花了__(5_m__-__2_m__)_元;
9
总结
列含字母的式子时,要注意书写规范.
1 下列是数与字母相乘,符合书写规范的是( )
A.1×a
B.-1×a
C.a×(-1)
D.-a
2 下列是分数与字母相乘,不符合书写规范的是( )
A.
3 2
a
C. 1 1 a
2
B.3 a
2
D.- 3 a
2
3 下列含有字母的式子符合书写规范的是( )
A.1a
B.5 1 b
2 (中考·南昌)在下列表述中,不能表示“4a”的意义
的是( )
1.你能从表中发现弹起髙度与下落高度之间有什么 数量关系吗?
2.让我们再看几个用字母表示数的例子: 如果用a、b表示任意两个有理数,那么加法交 换律可以表示为:a + b = b + a. 乘法交换律 可以表示为:ab = ba. 你能用字母 表示有理数的其他几个运算律吗?
1 500米跑步测试,如果某同学跑完全程的成绩是t秒,
1500 那么他跑步的平均速度是____t___米/秒.
总结
式子中出现的乘号,通常写作“ •”或省略不写,如
这里5×n常写作5 • n或5n;
数字与字母相乘时,数字通常写在字母前面,如5n
一 般不写成n5; 除法运算写成分数情势,如1 500÷t通常写作
例1 填空: 某地为了治理河山,改造环境,计划在第十 二个五年计划期间植树绿化荒山,如果每年 植树绿化n公顷,那么这五年内可以植树绿化 荒山___5_n__公顷;
每本练习本m元,甲买了5本,乙买了2本,两人一共
花了_(_5_m__+__2_m__) _元,甲比乙多花了__(5_m__-__2_m__)_元;
9
总结
列含字母的式子时,要注意书写规范.
1 下列是数与字母相乘,符合书写规范的是( )
A.1×a
B.-1×a
C.a×(-1)
D.-a
2 下列是分数与字母相乘,不符合书写规范的是( )
A.
3 2
a
C. 1 1 a
2
B.3 a
2
D.- 3 a
2
3 下列含有字母的式子符合书写规范的是( )
A.1a
B.5 1 b
2 (中考·南昌)在下列表述中,不能表示“4a”的意义
的是( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本月的收入是
(2( a+1元0)。
7、请你结合图形表示出该草坪的
面积 ac+bc或c(a+b) 。
c
a
b
7、为了测试一种皮球的弹跳高度与下落高度之间的关系,通过 试验,得到下列一组数据(单位:厘米)
下落高度 40
50
80
100
弹跳高度 下落高度,那么相对应的弹跳高
2、搭二个正方形需要__7__根火
柴棒
动手摆图形 动脑想方法 动口来表述
3、搭三个正方形需要_1_0__ 根火柴棒
(1)搭建正方形的个数与火柴棒的根 数之间有什么关系?你能说说你的计算 方法吗?小组讨论
(2)如果用x表示所搭
看谁的 方法多!
正方形的个数,那么搭x个
这样的正方形需要多少根
火柴棒?
收
b 度为 2 (厘米)
8、已知:45的个位数是5,十位数是4,且45=4×10+5 236的个位数是6,十位数是3,百位数是2, 且236=2 ×100+3 ×10+6。类似的,某个位数是a,十位数是b,百 位数是c,则这个三位数是 100c+10b+a 。
动手做一做
用火柴棒搭如下图形:
1、搭一个正方形需要__4__根火柴棒
(3)从(2)的结果中减 去你想好的那个两位数。
观察与发现
-2+(-3)=(-3)+(-2)
1 2
1 3
12=
1 3
1
+( 2
)13
3.5+5.6=5.6+(3.5)
由以上几个等式你发现了 什么规律?
牛刀小试:
1、明明步行上学,速度为v米/秒;亮亮骑自行车上学,速度 是明明的3倍,则亮亮的速度可以表示为3_v _米/秒。
用字母表示数
王海云
儿歌
一首永远也唱不完的儿歌。
1只青蛙1张嘴,2只眼睛4条腿, 扑通一声跳下水;
2只青蛙2张嘴,4只眼睛8条腿, 扑通扑通跳下水;
3只青蛙3张嘴,6只眼睛12条腿,扑通
… 扑通扑通跳下水;
速算比赛
(1)在你心中想好一 个两位数,将此数加上 95;
(2)将所得和得百位 数抹去,再加上8;
品
获
味
果
快
实
乐
ac
bd (1)如果涂色框中是如图的4个数,你会 用字母把它们的关系表示出来吗?
观察下列各式:
12+1=1×2 22+2=2×3 32+3=3×4 ┆┆┆ 你能否把此规律用字母表示出来。
成功的秘诀是什么
A =X+Y+Z
A=成功
X=艰苦劳动 Y=使用正确方法 Z=少说空话
再见
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成
s
2、明明用t秒走了s米,他的速度为__t 米/秒。 3、如果正方体的棱长是a-1,那么正方体的体积是(_a-_1)3,表
面积是_6(_a-1)2.
4、温度由t℃下降2℃后是 (t-2)℃ 5、今年李华m岁,去年李华(m-1) 岁;五年后李华(m+5)岁
6、某商店上月收入为a元,本月的收入比上月的2倍还多10元,