七年级数学上学期期中考试试题
广西壮族自治区北海市合浦县2024-2025学年七年级上学期11月期中考试数学试题(含答案)

2024-2025学年第一学期期中教学质量检测七年级数学卷(满分:120分 考试时间:120分钟)一、选择题(每小题3分,共36分)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家,若收入550元记作+550元,则支出450元记作( )A .-450元B .-100元C .+100元D .+450元2.如图,数轴上点表示的数是()A .-2B .-1C .0D .13.已知,则的值为( )A .-6或4B .5C .-5D .5或-54.将写成省略正号和括号的形式,正确的是( )A .B .C .D .5.汽车油箱中有汽油30L ,行驶的平均耗油量为,则汽车最多能行驶()A .100kmB .200kmC .300kmD .400km6.某市去年完成了城市绿化面积,数86300000用科学记数法可表示( )A .B .C .D .7.一台微波炉成本价是元,销售价比成本价增加,则销售价应是( )A.元B .元C .元D .元8.按如图所示用小圆图拼图案,图1中有2个小圆圈,图2中有4个小圆圈,图3中有6个小圆圈,…,按此规律,则图7中小圆圈的个数是()A .8B .10C .12D .149.下列说法正确的是()A .单项式的次数是9B .不是单项式C .是三次三项式D .单项式的系数是P ||5a =a 5(6)(7)(8)-+--+-5678--+-5678---5678-+-5678--+0.15L /km 286300000m 586310⨯586.310⨯78.6310⨯686.310⨯a 22%122%a-22%a (122%)a +122%a +2342x y 1ax x ++322223x x y y -+232r π3210.计算的结果是( )A .-1B .C .1D .11.池塘里的荷花面积每天长大一倍,经过12天就长满整个池塘,则这些荷花长满半个池塘需要()A .6天B .8天C .7天D .11天12.若与互为相反数,则等于()A .0B .C .D .二、填空题(每小题2分,共12分)13.已知-3与的值互为相反数,则的值为______.14.气温从上升后的温度为______.15.某商店有三袋面粉,上面分别写着()千克,()千克,千克的字样,从中任意取出两袋面粉,它们质量相差最大的可能是______千克。
河北省石家庄市2023-2024学年七年级上学期期中考试数学试卷(含解析)

2023—2024学年度第一学期期中考试初一数学注意事项:本试卷共6页,总分120分,考试时间90分钟.一、选择题(本题共16个小题,1—10题,每题3分:11—16题,每题2分,共42分,在每个小题的四个选项中只有一项是符合题目要求的)1. 的倒数是( )A. B. 2 C. -2 D.【答案】C解析:∵-0.5×(-2)=1,∴的倒数是是-2.故选C.2. 数轴上到表示的点的距离为3的点表示的数为()A. 1B.C. 5或D. 1或【答案】D解析:解:若要求的点在的左边,则其表示的数为;若要求的点在的右边,则其表示的数为.所以数轴上到-2点距离为3的点所表示的数是或1.故选:D.3. 如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是( )A. ﹣2B. 2C. ﹣6D. 6.【答案】D解析:,故选D.4. 若m、n满足|m+3|+(n+2)2=0,则mn的值为( )A. ﹣1B. 1C. 6D. ﹣6【答案】C解析:∵|m+3|+(n+2)2=0,∴m+3=0,n+2=0,解得,m=﹣3,n=﹣2,∴mn=﹣3×(﹣2)=6,故选:C.5. 下列空间图形中是圆柱的为( )A. B. C. D.【答案】A解析:解:A是圆柱,B是圆锥,C是圆台,D是棱柱.故选A.6. 值日生每天值完日后,总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆得整整齐齐,他们这样做的道理是()A. 两点之间,线段最短B. 两点确定一条直线C. 两点的距离最短D. 以上说法都不对【答案】B解析:解:把每一列最前和最后的课桌看作两个点,∴这样做的道理是:两点确定一条直线.故选:B7. 下列计算正确的是()A. B.C. D.【答案】C解析:A选项,,错误;B选项,,错误;C选项,,正确;D选项,,错误;故选:C.8. 下列说法正确是( )A. 射线比直线短B. 两点确定一条直线C. 经过三点只能作一条直线D. 两点间的长度叫两点间的距离【答案】B解析:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、两点确定一条直线,是公理,正确;C、经过不在一条直线的三点能作三条直线,错误;D、两点间线段的长度叫两点间的距离,错误.故选B9. 如图,能用、、三种方法表示同一个角的是( )A. B.C. D.【答案】A解析:解:A、、、三种方法表示的是同一个角,故此选项正确;B、、、三种方法表示的不一定是同一个角,故此选项错误;C、、、三种方法表示的不一定是同一个角,故此选项错误;D、、、三种方法表示的不一定是同一个角,故此选项错误;故选:A.10. 如果,则的补角等于( )A.B.C.D.【答案】C解析:解:∵,∴的补角,故选:C.11. 有个填写运算符号的游戏:在“”中的“□”内,填入+,﹣,×,÷中的某一个,然后计算结果,可使计算结果最小的符号为( )A + B. ﹣ C. × D. ÷【答案】B解析:解:;;;,∵,∴使计算结果最小的符号为“”.故选:B.12. 下列说法正确的是()A. 同号两数相乘,取原来的符号B. 一个数与相乘,积为该数的相反数C. 一个数与相乘仍得这个数D. 两个数相乘,积大于任何一个乘数【答案】B解析:、两数相乘,同号得正,此选项错误,不符合题意;、一个数与相乘,积为该数的相反数,此选项正确,符合题意;、一个数与相乘得,此选项错误,不符合题意;、两个数相乘,积不一定大于任何一个乘数,如,此选项错误,不符合题意;故选:.13. 如图,在数轴上,若点表示一个负数,则原点可以是()A. 点B. 点C. 点D. 点【答案】D解析:解:∵负数<0,∴在数轴上负数一定在原点的左侧,若点B表示负数,原点只能是点A.故选D.14. 如图,点C在的边上,用尺规作出了,作图痕迹中,弧是( )A. 以点C为圆心,为半径的弧B. 以点C为圆心,为半径的弧C. 以点E为圆心,为半径的弧D. 以点E为圆心,为半径的弧【答案】D解析:解:作图痕迹中,弧是以点为圆心,为半径的弧,故选:D.15. 如图,将三角形ABC绕点A逆时针旋转85°得到三角形AB′C′,若∠C′AB′=60°,则∠CAB=( )A. 60°B. 85°C. 25°D. 15°【答案】A解析:三角形ABC绕点A逆时针旋转85°得到三角形AB′C′,即故选:A.16. 如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数的点与圆周上表示数字( )的点重合.A. 0B. 1C. 2D. 3【答案】D解析:解:由题意得,在逆时针环绕时,圆周上表示的数字以0,3,2,1为一个循环组,依次循环,∵,且,∴数轴上表示数的点与圆周上表示数字3的点重合.故选:D.二、填空题(本题共计3小题,17、18题各3分,19题4分,共计10分)17. 数轴上与原点的距离不大于5 的表示整数的点有______个.【答案】11解析:∵数轴上到原点距离不大于5的所有数为:∣x-0∣≤5,即-5≤x≤5,∴满足条件的整数有:±5,±4,±3,±2,±1,0;共11个,故答案为1118. 已知a与b互为相反数,c与d互为倒数,x的绝对值等于2,则的值为___________【答案】±2解析:由题意得:a+b=0,cd=1,x=±2,当x=2时,a+b-cdx=0-1×2=-2,当x=-2时,a+b-cdx=0-1×(-2)=2,故答案±2.19. 如图所示是一个运算程序示意图,若开始输入的值为81,则第一次输出的结果为____,则第2023次输出的结果为____.【答案】①. 27 ②. 3解析:解:若开始输入的值为81,第1次:,第2次:,第3次:,第4次:,第5次:,第6次:,…,∴从第3次开始,奇数次运算输出的结果是3,偶数次运算输出的结果是1,∵2023是奇数,∴第2023次输出的结果为3,故答案为:27,3.20. 计算下列各式(1);(2);(3);(4).【答案】(1)(2)(3)(4)【小问1详解】【小问2详解】【小问3详解】;【小问4详解】;21. 一只小虫从某点出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:,,,,,,(1)通过计算说明小虫是否回到起点;(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【答案】(1)小虫回到起点(2)小虫共爬行了108秒【小问1详解】解:(厘米)答:小虫回到起点.【小问2详解】(秒);答:小虫共爬行了108秒.22. 如图,是线段上一点,是的中点,是的中点.(1)若,,求的长度.(2)若,求的长度.【答案】(1)3;(2)3.解析:解:(1)∵是的中点,是的中点,,,∴,,∴.(2)∵是的中点,是的中点,,∴.23. 请先阅读下列内容,然后解答问题:因为:,,,…,所以:++…+=+++…+==(1)猜想并写出:= ;(为正整数)(2)直接写出下面式子计算结果:++…+= ;(3)探究并计算:++…+【答案】(1);(2);(3)解析:解:(1),故答案为:(2)++…+===,故答案为:(3)原式=++…+=…+===24. (1)如图.在一条不完整的数轴上一动点向左移动4个单位长度到达点,再向右移动7个单位长度到达点.①若点表示的数为0,求点表示的数是 ,点表示的数是 ;②如果点、表示的数互为相反数,求点表示的数是 .(2)如图1.在一块长方形区域中布置了图中阴影部分所示的展区,其中的展台有三种不同的形状,其规格如图2所示.①该长方形区域的长可以用式子表示为 ;②根据图中信息,用等式表示,,满足的关系为 .【答案】(1)①,3;②;(2)①;②解析:解:(1)①点表示的数是,点表示的数为:;故答案为:;②设表示的数为,则:表示的数为,∴,∴,∴点表示的数为,∴点表示的数为;故答案为:;(2)①由图可知:长方形的长为:;故答案为:;②由图可知,长方形的宽可表示为:或,∴,∴;故答案为:.25. 将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起.(1)若,则的度数为 ;(2)若,求的度数;(3)猜想与之间存在什么数量关系?并说明理由:【答案】(1)(2)(3),理由见解析【小问1详解】解:由题意可得:,∵,∴,∵,∴;故答案为:;【小问2详解】解:∵,∴,∴;【小问3详解】解:猜想:,理由如下:∵,又∵,∴,即.26. 如图,点A、C、B在数轴上表示的数分别是-3、1、5.动点P、Q同时出发,动点P从点A出发,以每秒4个单位的速度沿匀速运动回到点A停止运动.动点Q从点C出发,以每秒1个单位的速度沿向终点B匀速运动,设点P的运动时间为.(1)当点P到达点B时,点Q表示的数为____________.(2)当时,求点P、Q之间的距离.(3)当点P在上运动时,用含t的代数式表示点P、Q之间的距离.(4)当点P、Q到点C的距离相等时,直接写出t的值.【答案】(1)3;(2)1;(3)当时,PQ=4-3t,当时,PQ=3t-4;(4),或,或,或.【解析】解析:(1),Q点运动距离为,Q点表示的数为,所以点Q表示的数为3;(2)当t=1时,P点表示的数为,Q点表示的数为,∴P、Q之间的距离为.(3)P点表示的数为,Q点表示的数为,.当时,PQ=4-3t.当时,PQ= 3t-4.(4),①PQ第一次相遇前:,解得:,②PQ第一次相遇:,解得:③PQ第二次相遇:,解得:,④PQ第二次相遇后:,解得:,综上,,或,或,或.。
七年级上册数学期中考试试题含答案

七年级上册数学期中考试试卷2022年一、单选题1.-5的相反数是()A .15-B .15C .5D .-52.下列运算正确的是()A .2334a a a +=B .()33a b a b --=-+C .540a a -=D .2222ab a b a b -=-3.下列是一元一次方程的是()A .231x y -=B .2331x x -=+C .35x +D .2320x x -+=4.若233n a b +-与144m b a -可以合并,那么2m n -的值是()A .2-B .1-C .0D .15.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,该舰的满载排水量为6.75×104吨,这个用科学记数法表示的数据的原数为()A .6750吨B .67500吨C .675000吨D .6750000吨6.某商品先按批发价a 元提高20%零售,后又按零售价降低20%出售,则它最后的单价是()元.A .aB .0.8aC .0.96aD .1.44a7.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.有理数a ,b 在数轴上的对应点的位置如图所示,则下列选项正确的是()A .0a b +>B .0a b +<C .-0a b <D .-0a b =9.定义运算2a b ab a b =--★,如13132132=⨯-⨯-=★,则()24-★的值为()A .8B .-8C .16D .-1610.下列说法:①符号相反的数互为相反数,②两个四次多项式的和一定是四次多项式:③若abc >0,则a b c abc++的值为3或-1,④如果a 大于b ,那么a 的倒数小于b 的倒数.其中正确的个数有()A .4个B .3个C .2个D .1个二、填空题11.比较大小:13-______0.3-(填“>”或“<”)12.计算:(﹣124)÷(237348-+)=_____.13.若352x y 与153n x y +-是同类项,则n =______.14.已知方程()2350m m x---=是关于x 的一元一次方程,则m 的值是______.15.已知2320210a b -+=,则462021a b -+=______.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(2021)个图案中有小正方形的个数是______.17.已知2m n x y 与43x y 是同类项,则m-n=________.三、解答题18.计算.(1)()121821---;(2)()()20212223251--⨯-----.19.化简下列各式.(1)222262x y xy x y x y +--.(2)()()5234x y x y ++-.20.已知a ,b 互为相反数,且0a ≠,c ,d 互为倒数,2m =,求()21m a b cdm --++-的值.21.先化简,后求值.求()()22222512a b ab ab a b +--+-的值,其中1a =,2b =-.22.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“﹣”表示成绩小于14秒.-1.2+0.7-1-0.3+0.2+0.3+0.5(1)求这个小组男生百米测试的达标率是多少?(2)求这个小组8名男生的平均成绩是多少?23.某城市鼓励市民节约用水,对自来水用户按以下标准收费:若每月用户用水不超过a 立方米,则每立方米的水价按3元收费;若超过a 立方米,则超过的部分每立方米按4元收费.(1)某用户居民在一个月内用水20立方米,那么他该缴多少水费?(2)在第(1)小题的基础上,若15a =,求该用户的水费是多少元?24.小明同学做一道题“已知两个多项式A 、B ,计算2A B -”,小黄误将2A B -看作2A B -,求得结果是C .若213322B x x =+-,2325C x x =--+,请你帮助小明求出2A B -的正确答案.25.(1)一天数学老师布置了一道数学题:已知2021x =,求整式()()()322332678323541xx x x x x x x x --+---+-+++-的值,小明观察后提出:“已知2021x =是多余的”,你认为小明的说法有道理吗?请解释.(2)已知整式2531M x ax x =+--,整式M 与整式N 之差是234x ax x +-.①求出整式N .②若a 是常数,且2M N +的值与x 无关,求a 的值.26.如图,在数轴A 、B 上两点对应的数分别为−40、20,数轴上一点P 对应的数为x .(1)若点P 在A 、B 两点之间,则点P 到A 、B 两点的距离的和为(2)如图,数轴上一点Q 在点P 的右侧,且与点P 始终保持相距18个单位长度.当x 取何值时,点A 与点P 的距离、点B 与点Q 的距离的和为48?(3)结合对前面问题的思考,若()()42530x x y y ++-⋅+-≤,求2x y -的最大值和最小值.参考答案1.C 【解析】【分析】根据相反数的定义解答即可.【详解】-5的相反数是5.故选C .【点睛】本题考查了相反数,熟记相反数的定义:只有符号不同的两个数互为相反数是关键.2.D【解析】【分析】根据同类项,合并同类项,去括号法则判断即可.【详解】解:A、3a2和a不能合并,故本选项错误;B、结果是-3a+3b,故本选项错误;C、结果是a,故本选项错误;D、结果是-a2b,故本选项正确;故选:D.【点睛】本题考查了同类项,合并同类项,去括号法则的应用,能熟记法则是解此题的关键.3.B【解析】【分析】一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式【详解】A:含有两个未知数x和y,不满足只含有一个未知数x+=,符合一元一次方程的定义B:移项,合并同类项后为40C:35x+为代数式,不是一元一次方程D:2320-+=不满足未知数的最高次数为1x x故选择:B【点睛】明确一元一次方程的定义是解题的关键4.C【解析】【分析】利用3an+2b3与4bm-1a4可以合并得出关于m,n的方程,进而得出m,n的值,然后代值计算即可得出答案.【详解】解:∵-3an+2b3与4bm-1a4可以合并,∴2413 nm+=⎧⎨-=⎩,解得:42 mn=⎧⎨=⎩,∴m-2n=4-2×2=0.故选:C.【点睛】本题考查了合并同类项,掌握同类项的定义是解题的关键.5.B【解析】【分析】科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.【详解】6.75×104吨,这个用科学记数法表示的数据的原数为67500吨.故选B.【点睛】本题考查了科学记数法﹣原数,把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.6.C【解析】【分析】先求出零售价,然后求出降价之后的价钱.【详解】解:零售价为:1.2a,降价之后价钱为:1.2a(1-20%)=0.96a.故选C .【点睛】本题考查了列代数式的知识,解答本题的关键是按照步骤分别求出零售价和降价之后的价钱.7.D 【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.A 【解析】【分析】由数轴可知:b <0<a ,结合有理数a 、b 在数轴上的对应点的位置进行求解即可.【详解】由数轴观察到-1<b <0<1<a ,所以a+b >0,故A 正确;a+b >0,故B 错误;a-b >0,故C 、D 错误.故选:A .【点睛】本题考查了数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.9.A 【解析】【分析】由新定义的运算法则进行计算,即可得到答案.【详解】解:∵2a b ab a b =--★,∴()()()242422488-=-⨯-⨯--=-=★;故选:A .【点睛】本题考查了新定义的运算法则,解题的关键是熟练掌握新定义的运算法则进行解题.10.D 【解析】【分析】利用相反数,绝对值,以及倒数的性质判断即可.【详解】①只有符号相反的数互为相反数,不符合题意;②两个四次多项式的和不一定是四次多项式,不符合题意;③若abc>0,则a b c a b c++的值为3或一1,符合题意;④如果a 大于b ,那么a 的倒数不一定小于b 的倒数,不符合题意,故选D .【点睛】此题考查了整式的加减,相反数,绝对值,以及倒数,熟练掌握各自的性质是解本题的关键.11.<【解析】【分析】两个负数比较大小,其绝对值大的反而小,据此判断即可.【详解】解:∵110.333-== ,|0.3|0.3-=,又∵10.33>,∴10.33-<-,故答案为:<.【点睛】本题考查了有理数的大小比较,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.12.﹣1 19【解析】【分析】根据有理数的加减法和除法法则计算即可.【详解】解:原式=1161821 24242424⎛⎫⎛⎫-÷-+⎪ ⎪⎝⎭⎝⎭=119 2424⎛⎫-÷⎪⎝⎭=124 2419⎛⎫-⨯⎪⎝⎭=1 19 -故答案为:﹣1 19.【点睛】本题主要考查有理数的混合运算,掌握有理数混合运算的顺序和法则是关键.13.2【解析】【分析】根据同类项的意义列方程求解即可.所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:由同类项的意义得,n+1=3,解得:n=2,故答案为:2.【点睛】本题考查同类项的意义,掌握含有的字母相同且相同字母的指数也相同的项是同类项是解决问题的关键.14.-3【解析】【分析】根据一元一次方程的定义即可求出答案.只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.【详解】解:∵(m-3)x |m |-2-5=0是关于x 的一元一次方程,∴m−3≠0且|m|−2=1,解得m=-3.故答案为:-3.【点睛】本题考查一元一次方程,解题的关键是正确运用一元一次方程的定义.15.-2021【解析】【分析】先将已知等式变形为232021a b -=-,再将所求式子变形,整体代入计算即可.【详解】解:∵2320210a b -+=,∴232021a b -=-,∴()()46202122320212202120212021a b a b -+=-+=⨯-+=-,故答案为:-2021.【点睛】本题考查了代数式求值,解题的关键是掌握整体思想的熟练运用.16.8081【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(n-1)+1个小正方形.【详解】解:由图片可知:第(1)个图案中有4×0+1=1个小正方形,第(2)个图案中有4×1+1=5个小正方形,第(3)个图案中有4×2+1=1个小正方形,…∴规律为小正方形的个数=4(n-1)+1=4n-3.n=2021时,小正方形的个数=4n-3=8081.故答案为:8081.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n-1)+1个小正方形.17.3【解析】【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而判断得出答案.【详解】∵2x m y n与3x4y是同类项,∴m=4,n=1,∴m-n=4-1=3.故答案为3.【点睛】此题主要考查了同类项,正确把握定义是解题关键.18.(1)9(2)0【解析】【分析】(1)从左往右计算即可求解;(2)先算乘方,再算乘法,最后算加减.(1)解:()121821---=121821+-=3021-=9;(2)()()20212223251--⨯-----=()4631-+---=4631-+-+=0【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)3x 2y+xy 2;(2)11x-7y 【解析】【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项.【详解】解:(1)6x 2y+xy 2-x 2y-2x 2y=(6x 2y-x 2y-2x 2y )+xy 2=3x 2y+xy 2;(2)(5x+y )+2(3x-4y )=5x+y+6x-8y=11x-7y .【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.20.3或7【分析】由题意可知a+b=0,cd=1,m=±2,然后代入所求代数式进行计算即可.【详解】解:∵a ,b 互为相反数,∴a+b=0,∵c ,d 互为倒数,∴cd=1,∵|m|=2,∴m=±2,当m=2时,原式=4+1+0-2=3;当m=-2时,原式=4+1+0-(-2)=7.故m 2-(-1)+|a+b|-cdm 的值为3或7.【点睛】本题主要考查的是有理数的混合运算,求代数式的值、相反数、倒数、绝对值,求得a+b=0,cd=1,m=±2是解题的关键.21.22333a b ab --+,-3【解析】【分析】原式去括号、合并同类项化简,再将a ,b 的值代入计算可得.【详解】解:原式=2222225552a b ab ab a b +-+--=22333a b ab --+,当a=1,b=-2时,原式=()()223123123-⨯⨯--⨯⨯-+=3-【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握去括号、合并同类项法则.22.(1)这个小组男生百米测试的达标率是62.5%;(2)这个小组8名男生的平均成绩是【解析】【分析】(1)根据非正数是达标数,解得达标数,再将达标数除以总人数即可解题;(2)计算数据的总和,再除以8即可解题.【详解】解:(1)达标人数为5,达标率为58×100%=62.5%.答:这个小组男生百米测试的达标率是62.5%;(2)1.20.7010.30.20.30.58-++--+++=﹣0.1(秒),14﹣0.1=13.9(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】本题考查正数、负数的实际应用,掌握非正数是达标数是解题关键.23.(1)若a≥20,应缴60元;若a<20,应缴(80-a)元(2)65元【解析】【分析】(1)分a≥20,a<20两种情况,根据收费方案列出水费;(2)将a=15代入(1)中对应情况求值即可.(1)解:由题意可得:若a≥20,则该缴3×20=60元;若a<20,则该缴3a+4(20-a)=(80-a)元;(2)当a=15时,该用户的水费是80-15=65元.【点睛】此题主要考查了列代数式,代数式求值,关键是正确理解题意,理清题目中的收费方式.24.-92x2+12x+1.【解析】【分析】将B代入A-2B中计算,根据结果为C,求出A,列出正确的算式,去括号合并即可得到正确结果.【详解】解:根据题意得:A-2B=C,即A-2(12x2+32x-3)=-3x2-2x+5,所以A=-3x2-2x+5+2(12x2+32x-3)=-3x2-2x+5+x2+3x-6 =-2x2+x-1,则2A-B=2(-2x2+x-1)-(12x2+32x-3)=-4x2+2x-2-12x2-32x+3=-92x2+12x+1.【点睛】本题考查了整式的加减,属于常考题型,熟练掌握整式加减的运算法则是解题的关键.25.(1)有道理,过程见解析;(2)①-2x2+(a-2)x-1;②8 11【解析】【分析】(1)根据整式的加减,可得答案.(2)①根据题意,可得N=(x2+5ax-3x-1)-(3x2+4ax-x),去括号合并即可;②把M与N代入2M+N,去括号合并得到最简结果,由结果与x值无关,求出a的值即可.【详解】解:(1)整式的值与x的取值无关,所以小明说的有道理,理由如下:原式=x3-6x2-7x+8+x2+3x-2x3+3+x3+5x2+4x-1=(1-2+1)x3+(-6+1+5)x2+(-7+3+4)x+(8+3-1)=10,由此可知整式的值与x 的取值无关,所以小明说的有道理.(2)①N=(x 2+5ax-3x-1)-(3x 2+4ax-x )=x 2+5ax-3x-1-3x 2-4ax+x=-2x 2+(a-2)x-1;②∵M=x 2+5ax-3x-1,N=-2x 2+(a-2)x-1,∴2M+N=2(x 2+5ax-3x-1)-2x 2+(a-2)x-1=2x 2+10ax-6x-2-2x 2+(a-2)x-1=(10a-6+a-2)x-3=(11a-8)x-3由结果与x 值无关,得到11a-8=0,解得:a=811.【点睛】本题考查了整式的加减,熟练掌握去括号与合并同类项法则是解本题的关键.26.(1)60;(2)43x =-或5;(3)最大值为2,最小值为-14.【解析】【分析】(1)用B 点表示的数减去A 点表示的数即可求解;(2)根据题意Q 点表示的数为()18x +,分为四种情况讨论:①P 在A 点左边、②P Q 、都在A B 、点中间、③P 在A B 、中间,Q 在B 点右边、④P Q 、都在B 点右边,列出方程求解即可;(3)根据绝对值的意义和前两问的结果得到426x x ++-≥,55y y +-≥,结合题意得到()()42530x x y y ++-+-= ,根据数轴解该方程即可,然后分类讨论即可求解.【详解】(1)()204060--=∴距离为60个单位长度;(2)①若P 在A 点左边,则点P 与点A 的距离为40x --,点Q 与点B 的距离为()()201840201848x x x -+--+-+=,得43x =-,②若P Q 、都在AB 、点中间,此时距离和为601842-=,不符合题意;③若P 在AB 、中间,Q 在B 点右边,则点P 与点A 的距离为()40x --,点Q 与点B 的距离为()1820x +-,()()40182048x x --++-=,得5x =,④若P Q 、都在B 点右边,此时仅点P 与点A 的距离60>,不符合题意;综上所述,当43x =-或5时,满足题意.(3)由前面可知,426x x ++-≥,55y y +-≥,∴()()42530x x y y ++-+-≥ ,∵已知()()42530x x y y ++-+-≤ ,∴()()42530x x y y ++-+-= ,∴42x -≤≤,05y ≤≤,当2x =,0y =时,2x y -有最大值:2-0=2,当4x =-,5y =时,2x y -有最小值:42514--⨯=-,综上所述,2x y -的最大值为2,最小值为-14.。
七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达680000000元,这个数用科学记数法表示正确的是()A .6.8×109元B .6.8×108元C .6.8×107元D .6.8×106元2.如果向东为正,那么-50m 表示的意义是()A .向东行进50mB .向南行进50mC .向西行进50mD .向北行进50m 3.下列计算正确..的是()A .(3)21-+=B .(3)21--=-C .(2)(1)(2)-⨯-=-D .(6)23-÷=-4.2--的相反数是()A .12-B .2-C .12D .25.已知有理数a 、b 在数轴上对应的点如图所示,则下列式子正确的是()A .a•b >0B .a+b <0C .|a|<|b|D .a ﹣b >06.下列代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有()个.A .3B .4C .5D .67.下列各组是同类项的一组是()A .xy 2与﹣12x 2yB .3x 2y 与﹣3xyzC .﹣a 3b 与12ba 3D .a 3与b 38.一个多项式与x 2﹣2x+1的和是3x ﹣2,则这个多项式为()A .x 2﹣5x+3B .﹣x 2+x ﹣3C .﹣x 2+5x ﹣3D .x 2﹣5x ﹣139.对于有理数a ,b ,定义一种新运算,规定a※b =﹣a 2﹣b ,则(﹣2)※(﹣3)=()A .7B .1C .﹣7D .﹣110.某公园计划砌一个形状如图(1)的喷水池(图中长度单位:m ),后来有人建议改为图(2)的形状,且外圆的直径不变,请你比较两种方案,砌各圆形水池的周边需要的材料多的是()(提示:比较两种方案中各圆形水池周长的和)A .图(1)B .图(2)C .一样多D .无法确定二、填空题11.计算:4ab 2﹣5ab 2=_______,(﹣25)﹣(﹣35)=_______,10÷3×13=______.12.多项式1﹣3x ﹣2xy ﹣4xy 2是___次___项式,其中二次项是___.13.数轴上有一点A 对应的数为﹣2,在该数轴上有另一点B ,点B 与点A 相距3个单位长度,则点B 所对应的有理数是_______.14.列代数式表示:“a ,b 和的平方减去它们差的平方”为________________.15.若ab =﹣2,a+b =3,那么2a ﹣ab+2b 的值为___.16.单项式2332a b π的系数是__,次数是__.17.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为_____个.三、解答题18.计算题:(1)13﹣(﹣18)+(﹣7)﹣15;(2)﹣24+(﹣3)3﹣(﹣1)10;(3)12﹣6÷(﹣3)﹣22332⨯;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-).19.整式的计算:(1)4x 2﹣5x+2+x 2+3x ﹣4;(2)(8a ﹣7b )﹣2(4a ﹣5b );(3)3x 2﹣[5x ﹣(12x ﹣3)+2x 2].20.有8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:2,﹣3,1.5,﹣0.5,1,﹣2,﹣1.5,﹣2.5.(1)这8筐白菜中,最重的一筐白菜比最轻的一筐白菜重了多少千克?(2)若白菜每千克售价3元,则出售这8筐白菜可卖多少元?21.已知多项式A =2x 2-xy ,B =x 2+xy -6,求:(1)4A -B ;(2)当x =1,y =-2时,求4A -B 的值.22.化简求值:4xy-(2x 2+5xy-y 2)+2(x 2+3xy),其中212(02x y ++-=..23.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是akm/h .(1)3h 后两船相距多远?(2)4h 后甲船比乙船多航行多少千米?24.阅读理解,并解答问题:观察下列各式:11112122==-⨯,111162323==-⨯,1111123434==-⨯,......,请利用上述规律计算(要求写出计算过程):(1)1111111261220304256++++++;(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯.25.阅读下列材料:我们知道(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式12x x ++-时,令10x +=,求得1x =-;令20x -=,求得2x =(称-1,2分别为1x +,2x -的零点值).在有理数范围内,零点值-1和2可将全体有理数分成不重复且不遗漏的如下3种情况:①当1x <-时,原式()()1221x x x =-+--=-+;②当12x -≤≤时,原式()123x x =+--=;③当2x >时,原式1221x x x =++-=-.综上所述,21(1)123(12)21(2)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩通过以上阅读,请你解决以下问:(1)分别求出2x +和4x -的零点值;(2)化简代数式24x x ++-.26.探究性问题:在数学活动中,小明为了求23411112222++++……+12n 的值(结果用含n 的式子表示).设计了如图1所示的几何图形.(1)利用这个几何图形,求出23411112222++++ (12)的值为;(2)利用图2,再设计一个能求23411112222++++ (12)的值的几何图形.参考答案1.B 【解析】【详解】680000000元=6.8×108元.故选:B .【点睛】考点:科学记数法—表示较大的数.2.C 【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】∵向东为正,∴-50m表示的意义为向西50m.故选C.【点睛】本题考查正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.D【解析】【分析】根据有理数加、减、乘、除运算法则计算出各项的结果,再进行判断即可.【详解】-+=--=-,选项A计算错误,故不符合题意;解:A.(3)2(32)1--=-+=-,选项B计算错误,故不符合题意;B.(3)2(32)5-⨯-=⨯=,选项C计算错误,故不符合题意;C.(2)(1)212-÷=-÷=-,计算正确,符合题意.D.(6)2(62)3故选:D.【点睛】本题考查了有理数的混合运算,解答本题的关键是有理数混合运算的计算方法.4.D【解析】【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.5.D【解析】【详解】试题解析:由数轴可知:10,1 2.b a -<<<<A.0,ab <故错误.B.0.a b +>故错误.C.,a b >故错误.D.0.a b ->正确.故选:D .6.C 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,根据定义逐一判断即可得到答案.【详解】解:代数式3a ,﹣xy ,2x,10,x ﹣y ,b ,2x 2y 3中,单项式有:23,,10,,2,3axy b x y -共5个,故选C 【点睛】本题考查的是单项式的定义,熟练的运用单项式的概念判断代数式是否是单项式是解本题的关键.7.C 【解析】【分析】根据同类项是字母相同,且相同的字母的指数也相同解答即可.【详解】解:A .字母相同,但相同的字母的指数不相同,不是同类项,故此选项不符合题意;B .所含字母不尽相同,不是同类项,故此选项不符合题;C .字母相同,且相同的字母的指数也相同,故此选项符合题意;D .字母不同,不是同类项,故此选项不符合题意;故选:C .【点睛】本题考查了同类项,关键是根据同类项是所含字母相同,并且相同字母的指数也相同解答.8.C 【解析】【分析】设这个多项式为A ,根据整式的加减即可求出答案.【详解】解:设这个多项式为A ,∴A+(x 2﹣2x+1)=3x ﹣2∴A =3x ﹣2﹣(x 2﹣2x+1)=3x ﹣2﹣x 2+2x ﹣1=﹣x 2+5x ﹣3故选C .【点睛】本题考查整式的加减,掌握去括号和合并同类项是关键.9.D 【解析】【分析】由新定义列式可得:()()223,----再先计算乘方,最后计算加减运算即可.【详解】解: a※b =﹣a 2﹣b ,(﹣2)※(﹣3)=()()223431,----=-+=-故选D 【点睛】本题考查的是新定义运算,含乘方的有理数的混合运算,理解新定义的运算法则是解本题的关键.10.C 【分析】利用圆的周长公式直接计算即可得到答案.11.2ab -15或者0.2109或者1110【解析】【分析】把同类项的系数相减,字母与字母的指数不变,可得第一空的答案;先把减法转化为加法,再计算加法可得第二空的答案;先把除法转化为乘法,再计算乘法运算即可得到第三空的答案.【详解】解:4ab 2﹣5ab 2=()2245,ab ab -=-(﹣25)﹣(﹣35)=231,555-+=10÷3×13=111010,339⨯⨯=故答案为:2110,,59ab -【点睛】本题考查的是合并同类项,有理数的减法运算,有理数的乘除混合运算,易错点是计算乘除同级运算时,不注意运算顺序.12.三四−2xy .【解析】【分析】直接利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,进而得出答案.【详解】解:多项式1﹣3x ﹣2xy ﹣4xy 2是三次四项式,其中二次项是:−2xy .故答案为:三,四,−2xy .【点睛】此题主要考查了多项式,正确掌握多项式的相关次数确定方法是解题关键.13.1或5-##5-或1【解析】【分析】由数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,则把表示2-的点向左边或右边移动3个单位即可得到答案.【详解】解: 数轴上有一点A 对应的数为﹣2,数轴上有另一点B ,点B 与点A 相距3个单位长度,231∴-+=或235,--=-B ∴对应的数为:1或5-故答案为:1或5-【点睛】本题考查的是数轴上两点之间的距离,有理数的加法与减法运算,掌握“数轴上两点之间的距离的含义”是解题的关键.14.(a +b )2−(a−b )2【解析】【分析】先列两个数和再平方,然后减去它们差的平方即可列出代数式.【详解】解:a ,b 和的平方减去它们差的平方,列出代数式为:(a +b )2−(a−b )2,故答案为:(a +b )2−(a−b )2.【点睛】本题考查了列代数式,解题的关键是理解题意准确列出代数式.15.8【解析】【分析】先把原式化为:()2,a b ab +-再整体代入代数式求值即可.【详解】解: ab =﹣2,a+b =3,∴2a ﹣ab+2b ()2a b ab=+-()=232628,´--=+=故答案为:8【点睛】本题考查的是代数式的值,掌握“整体代入法求解代数式的值”是解题的关键.16.32π5【解析】【分析】根据单项式的定义即可得【详解】因为单项式中的数字因数叫单项式的系数,所有字母的指数和叫单项式的次数,所以32πa2b3.的系数是32π,次数是5.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式. 17.3n+2【解析】【详解】解:第一个图案为3+2=5个窗花;第二个图案为2×3+2=8个窗花;第三个图案为3×3+2=11个窗花;…从而可以探究:第n个图案所贴窗花数为(3n+2)个.故答案为:3n+218.(1)9;(2)44-;(3)10;(4)11 12 -【解析】【分析】(1)先把运算统一为省略加号的和的形式,再计算即可;(2)先计算乘方运算,再计算减法运算即可;(3)先计算乘除运算,再计算加减运算即可;(4)先化简绝对值与计算括号内的运算,再计算减法运算即可.【详解】解:(1)13﹣(﹣18)+(﹣7)﹣151318715=+--31229=-=;(2)﹣24+(﹣3)3﹣(﹣1)10 1627144=---=-;(3)12﹣6÷(﹣3)﹣223 32⨯83 12232 =+-⨯14410 =-=;(4)﹣|﹣23|﹣|﹣12÷32|﹣(1341-)212132312=--⨯-2113312=---11111212=--=-【点睛】本题考查的是含乘方的有理数的混合运算,掌握“有理数的混合运算的运算顺序与运算法则”是解题的关键.19.(1)2522x x--;(2)3b;(3)293 2x x--【解析】【分析】(1)直接把同类项的系数相加减,字母与字母的指数不变,从而可得答案;(2)先去括号,再合并同类项即可;(3)先去小括号,再去中括号,再合并同类项即可得到答案.【详解】解:(1)4x2﹣5x+2+x2+3x﹣42522x x=--(2)(8a﹣7b)﹣2(4a﹣5b)87810a b a b=--+3b=(3)3x2﹣[5x﹣(12x﹣3)+2x2]22135322x x x x ⎛⎫=--++ ⎪⎝⎭22135322x x x x =-+--2932x x =--【点睛】本题考查的是整式的化简求值,熟练的运用去括号,合并同类项是解本题的关键.20.(1)4.5千克;(2)585元【解析】【分析】(1)由超过最多的一筐减去不足最多的一筐可得答案;(2)先求解这8筐白菜的总重量,再乘以单价即可得到答案.【详解】解:(1)8筐白菜中,最重的一筐白菜比最轻的一筐白菜重:()1.53 1.53 4.5--=+=千克.(2)()()()()()23 1.50.512 1.5 2.5+-++-++-+-+-Q 5,=-∴这8筐白菜的总重量为:8255195´-=千克,所以白菜每千克售价3元,出售这8筐白菜可卖:1953=585´元.【点睛】本题考查的是正负数的应用,有理数的加法与乘法的实际应用,理解题意,列出正确的运算式是解本题的关键.21.(1)7x 2-5xy +6;(2)23【解析】【分析】(1)本题考查了整式的加减,列式时注意加括号,然后去括号合并同类项;(2)本题考查了求代数式的值,把x=1,y=﹣2代入到(1)化简得结果中求值即可.【详解】解:(1)∵多项式A=2x 2﹣xy ,B=x 2+xy ﹣6,∴4A ﹣B=4(2x 2﹣xy )﹣(x 2+xy ﹣6)=8x 2﹣4xy ﹣x 2﹣xy+6=7x 2﹣5xy+6;(2)∵由(1)知,4A ﹣B=7x 2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23.22.25xy y +,﹣434【解析】【分析】首先去括号合并同类项,再得出x ,y 的值代入即可.【详解】解:原式=22242523xy x xy y x xy -+-++()()22242526xy x xy y x xy =--+++25xy y =+,∵21202x y ++-=(,∴x=﹣2,y=12,故原式=5×(﹣2)×12+14=﹣434.23.(1)240km ;(2)8a km 【解析】【分析】(1)先表示顺水,逆水航行的速度,再求解两船航行3小时的路程和即可;(2)利用甲船航行4小时的路程减去乙船航行4小时的路程即可.【详解】解:(1) 船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h ,∴3h 后两船相距:()()34034012031203240a a a a ++-=++-=km.(2)4h 后甲船比乙船多航行:()()440440*********a a a a a +--=+-+=km.本题考查的是列代数式,整式的加减运算,掌握“船在顺水中的速度为:()40a +km/h ,船在逆水中的速度为:()40a -km/h”是解本题的关键.24.(1)78;(2)715【解析】【分析】(1)运用题干中的裂项变形法计算即可;(2)仿照题目规律可得111=11323⎛⎫⨯- ⎪⨯⎝⎭,按照此方法裂项计算即可.【详解】(1)1111111261220304256++++++1111111111111=12233445566778-+-+-+-+-+-+-1=18-7=8(2)11111111335577991111131315++++++⨯⨯⨯⨯⨯⨯⨯11111111111111=12335577991111131315⎛⎫-+-+-+-+-+- ⎪⎝⎭11=1215⎛⎫- ⎪⎝⎭7=15【点睛】本题考查了有理数的运算,解题的关键是找到规律,运用裂项求和的方法.25.(1)2x +的零点值为-2, 4x -的零点值是4.(2)当2x <-时,原式22x =-+;当-2≤x≤4,原式6=;当4x >时,原式22x =-.【解析】【分析】(1)根据题中所给材料,求出零点值;(2)将全体实数分成不重复且不遗漏的三种情况解答;解:(1)令20x +=,解得2x =-,所以2x +的零点值为-2,令40x -=,解得4x =,所以4x -的零点值是4.(2)当2x <-时,原式()()242422x x x x x =-+--=---+=-+;当-2≤x≤4,原式()()24246x x x x =+--=+-+=;当4x >时,原式()()2422x x x =++-=-.综上所述:22(2)246(24)22(4)x x x x x x x -+<-⎧⎪++-=-≤≤⎨⎪->⎩。
江苏省南通市启东市2024-2025学年七年级上学期11月期中数学试题(含答案)

2024~2025学年度第一学期期中质量测试七年级数学试题注意事项考生在答题前请认真阅读本注意事项1.本试卷共6页,满分为150分,考试时间为120分钟.考试结束后,请将本试卷和答题纸一并交回.2.答题前,请务必将自己的姓名、考试证号用0.5毫米黑色字迹的签字笔填写在试卷及答题纸指定的位置.3.答案必须按要求填涂、书写在答题纸上,在试卷、草稿纸上答题一律无效.一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题纸上.1.某种食品保存的温度是,下列温度中,适合储存这种食品的是( )A. B. C. D.2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为440000000人,将这个数用科学记数法表示为( )A. B. C. D.3.下列计算正确的是( )A. B.C. D.4.下列代数式,满足表中条件的是0123代数式的值-3-113A. B. C. D.5.有理数在数轴上的对应点的位置如图所示,若有理数满足,则的值可能是( )A.-1B.0C.-3D.26.已知,则多项式的值为( )A.2027B.2028C.2029D.20307.若整式化简后是关于,的三次二项式,则的值为( )22C -±1℃8-℃4C1C-84410⨯84.410⨯94.410⨯104.410⨯()()4936-⨯-=-()3224-÷-=32221÷=()2390-+=x3x --223x x +-23x -223x x --a b b a ->b 233m m =+2262024m m -+313223b ax y xyx y --+-x y b aA.-8B.-16C.8D.168.如图是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,……,则图⑩中棋子的个数为( )A.75B.86C.88D.989.将两边长分别为和的正方形纸片按图1,图2两种方式置于长方形中(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图I 中阴影部分的周长为,图2中阴影部分的周长为,则的值为( )A.0B. C. D.10.对于数133,规定第一次操作为,第二次操作为,按此规律操作下去,则第2024次操作后得到的数是( )A.250B.133C.55D.24二、填空题(本题共8小题,第1120题每小题3分,第1320题每小题4分,共30分)不需写出解答过程,把最后结果填在答题纸对应的位置上.11.在有理数-0.7,-2,11,中,其中可以写成负分数形式的数为__________.12.比的倍多5的式子为__________.13.用四舍五入法把0.0571精确到千分位为________.14.下表中和两个量成反比例关系,则“△”处应填_________.7△51415.关于,的多项式与多项式的差的值与字母的取值无关,则代数式的值为________.16.如图1,点,,是数轴上从左到右排列的三个点,分别对应的数为-5,,4.某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点,发现点对齐刻度,点对齐刻度.则a ()b a b >ABCD 1C 2C 12C C -a b-22a b-22b a-33313355++=3355250+=23x 12x y x yx y 2x ax y b +-+2363bx x y -+-x ()()2223274a ab a ab b---++A B C b A B 1.8cm C 5.4cm数轴上点所对应的数为_____.17.有一列数,记第个数为(是大于1的整数),已知,当为偶数时,,当为奇数时,,则的值为__________.18.定义一种正整数的“新运算”:①当它是奇数时,则该数乘以3再加上13为一次“新运算”;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止为一次“新运算”.如:数3经过1次“新运算”的结果是22,经过2次“新运算”的结果为11,经过3次“新运算”的结果为46.则数28经过2024次“新运算”得到的结果是________.三、解答题(本题共8小题,共90分)解答时应写出文字说明、证明过程或演算步骤.请在答题纸对应的位置和区域内解答.19.(本小题满分10分)(1)计算:;(2)化简:.20.(本小题满分10分)在数轴上有三个点,,,回答下列问题:(1)若将点向右移动6个单位后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点,使点到,两点的距离相等,请写出点表示的数;(3)在点左侧找一点,使点到点的距离是到点的距离的2倍,并写出点表示的数.21.(本小题满分10分)如图,学校要利用围墙建一长方形的自行车存车场,其它三面用护栏围起.其中与围墙平行的一边长(虚线部分为车场门)为米(含门,门与其它护栏统一),与围墙垂直的边长比它少米.(1)用,表示与围墙垂直的边长;(2)求护栏的长度;B b n n a n 12a =n 11n n a a -=n 111n n a a -=-2024a ()()()2024113252-+⨯---÷()222132222x y x y ⎛⎫----- ⎪⎝⎭A B C B D D A C D B E E A B E ()23m n +()m n -m n(3)若,,每米护栏造价80元,求建此自行车存车场所需的费用.22.(本小题满分10分)外卖送餐为我们生活带来了许多便利.某学习小组调查了一名外卖小哥一周的送餐情况,规定送餐量超过50单(送一次外卖称为一单)的部分记为“+”,低于50单的部分记为“-”,下表是该外卖小哥一周的送餐量:星期一二三四五六日送餐量(单位:单)-3+4-5+14-8+7+12(1)该外卖小哥这一周送餐量最多一天比最少一天多送________单;(2)求该外卖小哥这一周平均每天送餐多少单?(3)外卖小哥每天的工资由底薪60元加上送单补贴构成,送单补贴的方案如下:每天送餐量不超过50单的部分,每单补贴2元;超过50单但不超过60单的部分,每单补贴4元;超过60单的部分,每单补贴6元.求该外卖小哥这一周工资收入多少元?23.(本小题满分12分)用长的绳子分别围出1个,2个,3个,…,正方形如图:(1)在下表“△”处填上具体数值:正方形个数1234…每个正方形的边长(dm )126△△…所有正方形的顶点总数47△△…所有正方形的总面积14472△△…(2)正方形的个数与边长成_____关系;正方形的边长与总面积成_____关系;(3)若正方形的个数是,顶点总数是,试用一个等式表示与的关系.24.(本小题满分12分)小明有以下8张卡牌,第一组卡牌上标有数,第二组卡牌上标有多项式,请你根据要求完成以下任务.任务1:请在第一组卡牌中选择3张卡牌,使所标数的积最小,请列出算式并求得结果;任务2:请在第一组中选择1张卡牌,在第二组中选择2张卡牌,使这3张卡牌上所标的数与多项式相加,化简后结果为二项式,请列出算式并求其结果.25.(本小题满分13分)某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.30m =10n =48dm ()2dmn m n m方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的付款.现某客户要到该卖场购买微波炉2台,电磁炉台(是大于2的整数).(1)若该客户按方案一购买,需付款_____元.(用含的代数式表示),若该客户按方案二购买,需付款_____元(用含的代数式表示);(2)若时,通过计算说明此时按哪种方案购买较为合算?26.(本小题满分13分)综合与实践【问题背景】:数学活动课上,老师提出问题:用式子表示十位上数字是,个位上数字是的两位数,再把这个两位数的十位数字与个位数字交换位置,计算所得数与原数的和.这个和能够被11整除吗?【解决思路】:原数是,交换位置后,两个两位数相加的结果是:;由于与均为整数,所以这个和能够被11整除.【问题提出】:某同学根据上述解题思路提出一个猜想:把一个三位正整数的百位上数字与个位上数字交换位置,十位上数字不变,原数与所得数的差等于99乘原数的百位上数字与个位上数字的差.例如:.请聪明的你来回答问题:(1)这位同学的猜想是否正确?若正确,对任意情况进行说明;若不正确,说明理由.(2)已知一个五位正整数的万位上数字为,个位上数字为,把万位上数字与个位上数字交换位置,其余数位上的数字不变,求原数与所得数的差.(用含,的代数式表示)90%x x x x 5x =a b 10a b +10b a +()111111a b a b +=+a b ()7822879972-=⨯-m n m n2024~2025学年度第一学期期中质量测试七年级数学参考答案与评分标准一、选择题(本题共10小题,每小题3分,共30分)1.D2.C3.B4.C5.C6.D7.A8.B9.A 10.A二、填空题(本题共8小题,第1120题每小题3分,第1320题每小题4分,共30分)11.-0.7,-2 12.13. 0.057 14. 2.5 15. -10 16. -2 17. 18. 16三、解答题(本题共8小题,共90分)19.(1)解:原式.(2)解:原式.20.解:(1)点表示的数为,,三个点所表示的数最小的数是-1;(2)点表示的数为;(3)点在点的左侧时,根据题意可知点是的中点,则点表示的数是.(只要结果正确即得分)21.解:(1)依题意得;(2)护栏的长度;(3)由(2)知,护栏的长度是.则依题意得(元).答:若,每米护栏造价80元,建此车场所需的费用是18400元.22.解:(1)送餐最多的一天比送餐最少的一天多送(单).(2)由题意,得:(单),.答:该外卖小哥这一周平均每天送餐53单;(3)由题意,得:(元),答:该外卖小哥这一周工资收入1248元.23.解:(1)完成表格如下:正方形个数1234…每个正方形的边长(dm )12643…所有正方形的顶点总数471013…152x +121610=-+5=22223x y x y =--++223y y =-+B 561-+=112-<< ∴D ()122120.5-+÷=÷=E B B AE E ()5159---+=-()()234m n m n m n +--=+()()2423411m n m n m n =+++=+411m n +()43011108018400⨯+⨯⨯=30,10m n ==()14822--=()()()()()()()503451487127⎡⎤+-+++-+++-++++÷⎣⎦503=+53=()()()5073582471024426607⨯---⨯+++⨯⨯++⨯+⨯66812436420=+++1248=所有正方形的总面积()144724836…(2)反比例;反比例; (3).24.解:任务1:选出1,-4,2,;任务2:选出,.25.解:(1);;(每空3分)(2)当时,方案一;(元);方案二:(元),因为,所以按方案一购买较合算.26.解:(1)这位同学的猜想正确,理由:设这个三位正整数的百位数字,十位数字,个位数字分别为、、,这个三位正整数为,交换位置后的正整数为,原数与所得数的差为,原数与所得数的差等于99乘原数的百位上的数与个位上的数的差;(2)设这个五位正整数的千位数字,百位数字,十位数字分别为、、,这个五位正整数为,交换位置后的正整数为,原数与所得数的差为:.,2dm 13m n =+()1428⨯-⨯=-21,1,22a a +-()()2211221122a a a a +++-=+++-22a a =+()2001200x +()1801440x +5x =200512002200⨯+=180514402340⨯+=22002340<a b ()0c a ≠∴10010a b c ++∴10010c b a ++∴()()1001010010999999a b c c b a a c a c ++-++=-=-∴a b c ∴10000100010010m a b c n ++++∴10000100010010n a b c m ++++∴()1000010001001010000100010010m a b c n n a b c m ++++-++++1000010001001010000100010010m a b c n n a b c m =++++-----()9999m n =-。
七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.-12的绝对值是()A .-12B .2C .-2D .122.下列说法正确的是()A .-2不是单项式B .单项式223x y-的系数是2,次数是3C .1x +是整式D .多项式22345x x +-的常数项是53.下列各组中的两项是同类项的是()A .0.5a 和0.5bB .2x -和3xC .2m n -和2mn D .3xy 和yx-4.数轴上点A 表示-2,将点A 在数轴上移动5个单位得到点B ,则点B 表示的数是()A .3B .-7C .7或-3D .-7或35.下列去括号正确的是:()A .(2)2a b c a b c -+-=+-B .2(3)226a b c a b c -+-=--+C .()a b c a b c ---+=-++D .()a b c a b c---=-+-6.计算:()3232-+-的值是()A .0B .-17C .1D .-17.下列运算中,正确的是()A .235a b ab +=B .223a a a +=C .235a a a +=D .2222x y x y x y-=-8.已知8x =,6y =,且x y >,则x y -的值为()A .2B .14C .2或14D .-2或-149.a 、b 两数在数轴上的位置如图所示,则下列各式正确的有()个.①0ab >②0a b +>③0a b ->④220a b ->⑤11b b-=-A .2B .3C .4D .510.根据流程图中的程序,当输入数值为-6时,输出数值y 为()A .2B .8C .-8D .-2二、填空题11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示67500,其结果应是___________.12.用四舍五入法将数51804精确到千位的近似数为______.13.若a ,b 互为倒数,m ,n 互为相反数,则()232m n ab ++=______.14.已知01x <<,试比较大小:x _____1x.15.若关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,则m =_____,n =____.16.小明家的住房结构如图所示,爸妈在装修房子时欲将地面铺上瓷砖,试计算他家需要铺设___平方米的瓷砖.17.若规定2*1a b a b =-,则()2*3-的值为________________.三、解答题18.将以下各数填在相应的集合内:-15,6,227,-3.25,0,π,0.01,132-.整数集合:(,……)负分数集合:(,……)19.请在数轴上表示下列各数.并用“<”连接起来2-,()3--,1.5,132-20.计算:()()22228623a b aba b ab ---21.计算:(1)()()1512187-+--+-(2)511.5244⎛⎫⨯÷- ⎪⎝⎭.22.计算:()()2320214220.2541013⎡⎤⎛⎫-⨯-÷-+-+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦23.已知()2221mx ym xy --+是关于x ,y 的四次三项式,求2325m m -+的值.24.阅读理解,并解决问题:“整体思想”是中学数学中的一种重要思想,贯穿于中学数学的全过程,比如整体代入,整体换元,整体约减,整体求和,整体构造,…,有些问题若从局部求解,采取各个击破的方式,很难解决,而从全局着眼,整体思考,会使问题化繁为简,化难为易,复杂问题也能迎刃而解.因而“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛尝试应用.例:当代数式235x x ++的值为7时,求代数式2392x x +-的值.解:因为2357x x ++=,所以232x x +=.所以()223923323224x x x x +-=+-=⨯-=.请根据阅读材料,解决下列问题:(1)把()2x y -看成一个整体,计算()()()222364x y x y x y ---+-的结果是;(2)设22xx y -=,则()2362x x y --+=.(用含y 的代数式表示);(3)已知2320x x +-=,求()22515302021x x x x +⋅++的值.25.我们知道,4a ﹣3a+a =(4﹣3+1)a =2a ,类似地,我们把(x+y )看成一个整体,则4(x+y )﹣3(x+y )+(x+y )=(4﹣3+1)(x+y )=2(x+y ).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.请尝试:(1)把(m ﹣n )2看成一个整体,合并2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2的结果是;(2)已知x 2﹣4x =2,求3x 2﹣12x ﹣152的值;(3)已知a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,求(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )的值.26.某超市在国庆期间对顾客实行优惠,规定如表所示:一次性购物金额优惠办法少于200元不予优惠低于500元但不低于200元九折优惠500元或超过500元其中500元部分给予九折优惠,超过500元部分给予八折优惠(1)如果王叔叔一次性购物700元.那么他实际付款多少元;(2)若顾客在该超市一次性购物x 元,当x 小于500但不小于200时,他实际付款元,当x 大于或等于500时,他实际付款元(用含x 的代数式表示);(3)如果王叔叔两次购物货款合计840元,第一次购物的货款为a 元()0300a <<,用含a 的式子表示两次购物王叔叔实际付款多少元?参考答案1.D 2.C 3.D 4.D 5.B 6.B 7.D 8.C 9.A 10.B 11.6.75×104【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:67500=6.75×104.故答案为:6.75×104.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.45.210⨯【分析】根据近似数和有效数字计算即可;【详解】∵451804 5.180410=⨯,∴51804精确到千位的近似数为45.210⨯;故答案是:45.210⨯.【点睛】本题主要考查了近似数和有效数字,准确计算是解题的关键.13.2【解析】【分析】利用倒数,相反数的定义确定出m+n 与ab 的值,代入计算即可求出值.【详解】解:∵a ,b 互为倒数,m ,n 互为相反数,∴1+0ab m n ==,,∴()232m n ab ++==3×20212+⨯=,故答案为:2.【点睛】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.14.<【解析】【分析】根据倒数的性质,求得1x的范围,即可求解.【详解】解:∵01x <<∴11x>∴11x x<<,即1x x <故答案为<【点睛】此题考查了倒数的性质,根据题意求得1x的范围是解题的关键.15.1212-【解析】【分析】根据题意可得:(21)0m --=,0m n +=,求解即可.【详解】解:∵关于x 的多项式()()32211x m x m n x --++-不含二次项和一次项,∴(21)0m --=,0m n +=,解得:12m =,12n =-,故答案为:12;12-.【点睛】本题考查了多项式,熟知不含哪一项,则哪一项的系数为0是解题的关键.16.15xy 【解析】【分析】分别求出卫生间面积、卧室面积、厨房面积以及客厅面积,相加即可.【详解】解:卫生间面积=xy ,卧室面积=224y x xy ⋅=,厨房面积=22x y xy ⋅=,客厅面积=248x y xy ⋅=,∴铺地砖的面积=42815xy xy xy xy xy +++=,故答案为:15xy .【点睛】本题考查了列代数式,理解题意,能够根据图形列出正确的代数式是解本题的关键.17.11【解析】【分析】先根据规定的新运算列出运算式子,再计算有理数的乘方、乘法与减法即可得.【详解】解:由规定的新运算得:()2*3-()2231=-⨯-431=⨯-121=-11=故答案为:11.【点睛】本题考查了含乘方的有理数混合运算,理解新运算的定义是解题关键.18.15,6,0-;13.25,32--.【解析】【分析】根据整数(正整数、负整数和0统称为整数)和负分数的定义(小于0的分数即为负分数,或是可以化成分数的负有限小数和负无限循环小数)即可得.【详解】解:整数集合:(15,6,0-,……),负分数集合:(13.25,32--,……),故答案为:15,6,0-;13.25,32--.【点睛】本题考查了整数和负分数的概念,熟记定义是解题关键.19.见解析,()13 1.5232-<<-<--【解析】【分析】先计算,再将各数表示在数轴上,然后根据数轴上右边的数总比左边的数大解答即可.【详解】解:2-=2,()3--=3,数轴如图所示:由图知:()13 1.5232-<<-<--.【点睛】本题考查数轴、绝对值、相反数,会用数轴上的点表示有理数以及利用数轴比较有理数的大小是解答的关键.20.2224a b ab -【解析】【分析】先去括号,然后合并同类项即可.【详解】解:原式()22228662ab ab a b ab =---22228662a b ab a b ab =--+()()228662a b ab =-+-+2224a b ab =-.【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解本题的关键.21.(1)8;(2)56-【解析】【分析】(1)根据有理数加减法法则计算即可得答案;(2)根据有理数乘法及除法法则计算即可得答案.【详解】(1)()()1512187-+--+-1512187=-++-2230=-+8=.(2)511.5244⎛⎫⨯÷- ⎪⎝⎭359244=-⨯÷354249=-⨯⨯56=-.【点睛】本题考查有理数加减法法则及乘除法法则,同号两数相加,取与加数相同的符号,并把绝对值相加;异号相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;减去一个数,等于加上这个数的相反数;两数相乘,同号得正,异号得负,并把绝对值相乘;除以一个不为0的数,等于乘这个数的倒数;熟练掌握运算法则是解题关键.22.986【解析】【分析】根据有理数混合运算法则计算即可.【详解】解:原式()()141641000149⎡⎤=-⨯-÷+-+-⎢⎥⎣⎦944100014⎡⎤=--⨯--⎢⎥⎣⎦[]4910001=----()49911=----49911=-+-986=.【点睛】本题考查了有理数的混合运算,熟练掌握相关运算法则以及运算顺序是解本题的关键.23.21【解析】【分析】首先根据题意列出m 所满足的条件,然后求解m 的值,最后代入代数式求解即可.【详解】解:∵()2221m x y m xy --+是关于x ,y 的四次三项式,∴m 应满足:()2420m m ⎧+=⎪⎨--≠⎪⎩①②,由①解得:2m =±,由②解得:2m ≠,∴2m =-,∴()()22325322253445124521m m -+=⨯--⨯-+=⨯++=++=.【点睛】本题考查多项式的定义,以及代数式求值问题,理解“几次几项式”的定义,准确求出参数的值是解题关键.24.(1)()2x y -;(2)22y -;(3)2041【解析】【分析】(1)把()2x y -看成一个整体,合并同类项即可求解;(2)设22x x y -=,逆用分配律将236x x -化为()232x x -,代入化简即可求解;(3)根据2320x x +-=得到232x x +=,再逆用分配律即可求解.【详解】解:(1)()()()222364x y x y x y ---+-()()2=364x y -+-()2=x y -,故答案为:()2x y -;(2)设22x x y -=,则()()()223623223222x x y x x y y y y --+=--+=--=-,故答案为:22y -;(3)解:∵2320x x +-=,∴232x x +=,∴251510x x +=,原式()2210302021103202110220212020212041x x x x =++=++=⨯+=+=.【点睛】本题考查了整体思想的应用,理解题意,灵活运用整体思想,能正确逆用分配律是解题关键.25.(1)﹣(m ﹣n )2;(2)32-;(3)-4【解析】【分析】(1)把(m ﹣n )2看成一个整体,合并同类项即可;(2)将3x 2﹣12x ﹣152的前两项运用乘法分配律可化为x 2﹣4x 的3倍,再将x 2﹣4x =2整体代入计算即可;(3)对(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )去括号,再合并同类项,将a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10三个式子相加,即可得到a ﹣d 的值,则问题得解.【详解】(1)2(m ﹣n )2﹣4(m ﹣n )2+(m ﹣n )2=﹣(m ﹣n )2,故答案为:﹣(m ﹣n )2;(2)3x 2﹣12x ﹣152=3(x 2﹣4x )﹣152,∵x 2﹣4x =2,(3)(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=2b ﹣d ﹣2b+c+a ﹣c=a ﹣d ,∵a ﹣2b =3,c ﹣d =3,2b ﹣c =﹣10,∴a ﹣2b+c ﹣d+2b ﹣c =3+3﹣10,∴a ﹣d =﹣4,∴(2b ﹣d )﹣(2b ﹣c )+(a ﹣c )=﹣4.【点睛】本题考查了合并同类项,整式的化简求值,关键是运用整体思想来解决.26.(1)610元;(2)0.9x ,0.850x +;(3)当0200a <<时,0.2722a +;当200300a ≤<时,0.1722a +【解析】【分析】(1)让500元部分按9折付款,剩下的200元按8折付款即可;(2)等量关系为:当x 小于500元但不小于200元时,实际付款=购物款×9折;当x 大于或等于500元时,实际付款=500×9折+超过500的购物款×8折;(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款−第一次购物款−第二次购物款500)×8折,把相关数值代入即可求解.【详解】解:(1)()5000.97005000.8450160610⨯+-⨯=+=∴他实际付款610元.(2)解:当x 小于500但不小于200时,打九折优惠,故需付款0.9x ;当x 大于或等于500时,其中500元部分给予九折优惠,超过500元部分给予八折优惠,故需付款()5000.90.854500.84004504000.8500.8x x x x ⨯+-=+-=-+=+故答案为:0.9x ;0.850x +;(3)①当0200a <<时,()5000.98405000.80.2722a a a +⨯+--⨯=+⎡⎤⎣⎦.②当200300a ≤<时()0.95000.98405000.80.1722a a a +⨯+--⨯=+⎡⎤⎣⎦.。
2024-2025学年七年级第一学期期中考试试题(数学)

七年级数学试题(时间:90分钟 满分:100分)卷面要求:1.整张试卷整洁美观,格式规范,布局和谐;2.字迹清晰工整,标点符号准确;3.避免随意勾画,胡乱涂改.卷首语:相信你会静心、尽力做好答卷,动手就有希望,努力就会成功!一、 选择题:本大题共10道小题,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,填入下表,每小题选对得3分、不选或选出的答案超过一个均记零分,本大题共30分.题号 1 2 3 4 5 6 7 8 9 10 答案1. 在跳远测试时,合格的标准是4.00米,王杨跳出了4.20米,记为+0.2米,小伟跳出了3.95米,记作:A.-0.05米B.-3.95米C.+0.05米D.+3.95米 2. 下列各组数中相等的是:A.-2与)2(--B.-2与2-C.2-与2--D.2-与2 3. 如果x=2是方程21x+a=-1的解,则a 的值是( ) A.0 B.2 C.-2 D.-6 4.下列变形正确的是:A.由3+x=7,得x=7+3B. 由3=x-2,得x=2+3C. 由3x=-2,得x=23-D. 由3443=x ,得x=1 5. 已知a 、b 都是有理数,且021=++-b a ,则a+b 的值是: A.-1 B.1 C.3 D.5 6.下列各式中正确的是:A.33a a = B.a 3=(-a)3 C. –a 2=2a - D. a 2=(-a)27.用四舍五入法按要求对0.05019分别取近似值,其中错误的是: A.0.1(精确到0.1) B.0.05(精确到百分位) C.0.05(精确到千分位) D.0.0502(精确到0.0001) 8. 计算20092008)1()1(-+-所得结果是:A.-2B.0C.1D.29. 一个两位数,十位数字是x ,个位数字比十位数字的2倍少3,这个两位数是: A.x(2x-3) B.x(2x+3) C. 12x+3 D. 12x-310.如图是超市中“丝美”洗发水的价格标签,服务员不小心将墨水滴在了标签上,使得原价看不清楚,请你帮助算一算,该洗发水的原价是: A.22元 B.23元 C.24元 D.26元二、填空题:本大题共8道小题,每小题3分,共24分,要求只写出最后结果.11. 已知甲地的海拔高度是300m,乙地的海拔高度是-50m,那么甲地比乙地高m. 12. 太阳光的速度是300000000米/秒,用科学记数法表示为米/秒. 13. 设三个连续整数的中间一个数是n,则它们三个数的和是. 14.比较有理数的大小:109-1110-. 15. 计算⨯++-)6143121(12=. 16. 规定一种关于a 、b 的运算:a*b=22b a -,那么3 *(-2)=. 17.如果a=b,那么=1-43b. 18.甲、乙两人都从A 地去B 地,甲每小时行18千米,甲出发2小时后乙才出发,结果乙用了3小时追上甲,则乙每小时行 千米.三、解答题:本大题共7道小题,满分46分,解答应写出文字说明和推理步骤. 19.(6分)计算: (1)214314)211(321-+-+ (2)()2431513297-⨯--÷-)(20.(4分)解方程:3x+7=32-2x21.(6分)(1)在数轴上表示出:0, -1.5, -2, 311; (2)将(1)中各数用“<”号连接起来.22.(4分)求.32,2)3123()31(22122=-=+-+--y x y x y x x 的值,其中23.(8分)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9. (1)最后一名老师送到目的地时,小王距出租车出发点的距离是多少?在什么地方?(2)若汽车耗油量为0.4升/千米,这天下午小王的汽车共耗油多少升?24.(8分)某金融机构发行两种债券:甲种债券面值1000元,买入价为1000元,一年到期本息和为1140元;乙种面值为1000元,但买入价为880元,一年到期本息和为1000元,收益率=(到期本息和-买入价)÷(到期日期-买入日期)÷买入价×100%,日期以年为单位,你能利用已学过的知识分析哪种债券收益率更大吗?25.(10分)下表所示是某年11月份的日历表.星期六星期日星期一星期二星期三星期四星期五1 2 3 4 5 6 78 9 10 11 12 13 1415 16 17 18 19 20 2122 23 24 25 26 27 2829 30请回答下列问题:(1)若一竖列的三个数的和为42,则这三个数分别是多少?若和为44,你能求出这三天是几号吗?为什么?(2)若一竖列的四个数之和为74,这四个数分别是多少?(3)若上表中一个2×2的矩形块四个数之和为80,求出这四个数;七年级数学参考答案及评分标准一、选择题:ACCBA DCBDC二、填空题:11、350 12、3×108 13、3n 14、> 15、10 16、5 17、1―a 4318、30. 解答题:19.解:(1)214314)211(321-+-+=)()(214211314321+-+…………………2分 =6―6=0……………………………3分 (2)()2431513297-⨯--÷-)(=3161531097--÷……………………………2分 =311-……………………………3分 20.解:移项,得 3x+2x=32―7, ……………………………2分 合并,得 5x=25, ……………………………3分 系数化为1,得 x=5……………………………4分 21.解:(1)表示正确,……………………………3分(2)―2<―1.5<0<321.……………………………6分 22.解:)3123()31(22122y x y x x +-+--=22312332221y x y x x +-+- =23y x +-……………………………3分当x=―2,y=32时,原式=―3×(―2)+232)(=946……………………………4分23.解(1)+5+(―4)+3+(―10)+3+(―9)= ―12∴最后一名老师送到目的地时,小王在出租车出发点西12米的地方.………………………4分 (2)4.09310345⨯-+++-+++-++)( =34×0.4=13.6(升).∴这天下午小王的汽车共耗油13.6升. ……………………………8分 24.解:甲种债券的收益率=(1140-1000)÷1÷1000×100% =140÷1000×100%=14%……………………………3分乙种债券的收益率=(1000-880)÷1÷880×100%=120÷880×100%≈13.64%……………………………7分∴甲种债券的收益率更大些. …………………………………………8分25.解:(1)设中间的一个数为x,则上面的一个数为x-7,下面的一个数为x+7.根据题意,得x-7+ x + x+7=42,解得x=14,因此这三天分别是7号、14号、21号. ……………………………3分若和为44,则x的解不是整数,所以不能求出这三天是几号. ……………………………4分(2)设这四个依次是为:x+14,x+7,x,x-7.根据题意,得x+14+x+7+x+x-7=74,解得x=15,因此这四天分别是8号、15号、22号、29号. ……………………………7分(3)设这四个数分别是x,x+1,x+7,x+8.根据题意,得x+ x +1 + x +7+x+8=80,解得x=16,因此这四天分别是16号、17号、23号、24号. ……………………………10分。
山东省济南章丘市2024-2025学年七年级上学期期中考试数学试题(文档版)

章丘区2024-2025学年第一学期期中考试七年级数学试题本试题分选择题和非选择题两部分.选择题部分共2页,满分为40分;非选择题部分共6页,满分为110分.本试题共8页,满分为150分.考试时间120分钟.本考试不允许使用计算器.选择题部分 共40分一、选择题(本大题共10小题,每小题4分,共40分.每个小题给出四个选项中,只有一项符合题目要求)1.中国是最早使用正负数表示具有相反意义的量的国家,早在我国秦汉时期的《九章算术》中就引入了负数.若在粮谷计算中,益实二斗(增加2斗)记为+2斗,那么损实5斗(减少5斗)记为( )A .+5斗B .﹣5斗C .+3斗D .﹣3斗2.下列长方体、圆柱体和圆锥体木料,切开后截面形状与其他三个不同的是( )A .B .C .D .3.2024年6月4日嫦娥六号完成世界首次从月球背面采样盒起飞,这趟往返76万公里的旅途中,是轨道器,着陆器,上升器,返回器,四器分工协作,完成了极其复杂,极具挑战的任务.“760000”用科学记数法表示正确的是( )A .7.6×106B .76×106C .7.6×105D .76×1054. 下列数,﹣21,25%,3.1415926,0,-,﹣|﹣10|,|﹣6|中,负有理数有( )A .3个B .4个C .5个D .2个5.下列计算中,正确的是 A .B .C .D .6. 小轩制作了一个正方体灯笼,六个面上写有“祝福祖国万岁”,其平面展开图如图所示,那么在该几何体中和“福”字相对的字是( )4π-3.0 ()6410a b ab +=2242734x y x y x y -=22770a b ba -=2248816x x x +=A .祖B .国C .万D .岁7.下列判断中正确的是( )A .3a 2bc 与b 2ca 2是同类项 B.是整式C .单项式﹣2π2xyz 2的系数为﹣2π D .多项式a 4﹣2a 2b 2c+b 4是四次三项式8.有理数a ,b ,c 的位置如图所示,则下列各式:①ab <0 ②b ﹣a +c >0 ③ ④|a ﹣b |﹣|c +a |+|b ﹣c |=-2a ,其中正确的有( )个.A .1B .2C .3D .49.新定义:符号“”表示一种新运算,它对一些数的运算结果如下:运算(一,,,(1),(2),运算(二,,,,利用以上规律计算:( );A. -4049 B. 4049 C. 0 D. -110.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( ).A .2024B .6070 C.2022 D.606952n m 1=++cc b b a a f ):(2)213f -=--=-(1)112f -=--=-(0)011f =-=-f 110=-=f 211=-=⋯1):(33f -=-1()22f -=-1(22f =1()33f =⋯1(2024)(2025f f ---=章丘区2024-2025学年第一学期期中考试七年级数学非选择题部分 共110分二.填空题(本大题共5小题,每小题4分,共20分)11.如果 12.如图,将一刻度尺放在数轴上.若刻度尺上0cm 和5cm 对应数轴上的点表示的数分别为﹣3和2,则刻度尺上7cm 对应数轴上的点表示的数是 .13. 已知单项式与单项式的和仍为单项式,则 14.已知,则= 15.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,如图所示的运算程序中,若开始输入x 的值为3,则第2024次输出的结果是( )三.解答题(本大题共10小题,共90分. 解答应写出文字说明、证明过程或演算步骤)16.(本小题满分7分)(1)把数1,﹣2,0,+(﹣1),|﹣5|,表示在下面的数轴上.(2)比较这六个数的大小,并用“>”连接.=+<==b ,0,5,2a ab b a 则且272m x y 685n x y -=+n m 22224x y -=23621x y --)213(--17.(本小题满分7分)先化简,再求值:,其中.18.(本小题满分7分)如图是由一些相同的棱长均为1cm 的小正方体组成的几何体.(1)请在方格纸中用粗实线画出该几何体的从正面、从左面、从上面看到的形状图;(2)这个几何体的表面积(包括底面)为______.19.计算:(本小题满分8分)(1)﹣12024﹣|1﹣0.5|×(2).222223[22(4)]5a b ab a b ab ab ---+-()0122=+++b a []2)3(221--⨯53(8.0)31(321422-÷⎥⎦⎤⎢⎣⎡+-⨯-⨯20.(本小题满分8分)已知关于x ,y 的多项式A =2x 2+ax ﹣5y +b ,(其中a ,b 为有理数).(1)求4A ﹣(3A +2B )的值;(2)当x 取任意数值,A ﹣2B 的值是一个定值时,求的值.21.(本小题满分9分)随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值+4﹣3﹣5+14﹣8+21﹣6(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售 斤;(2)根据记录的数据可知前三天共卖出 斤;本周实际销售总量达到了计划数量没有?(3)若冬枣每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?(4)小明想知道销售量的变化情况,请你用表格表示出来:星期一二三四五六日销售量变化(与前一天比)325232--+-=y x bx B )52()51(B b A a ++-22.(本小题满分10分)【观察思考】【规律发现】(1)第10个图案中“△”的个数为 ;(2)第n(n为正整数)个图案中“〇”的个数为 ,”△”的个数为 ;(用含n 的式子表示)【规律应用】(3)结合上面图案中“〇”和“△”的排列方式及规律,第35个图案中共需要多少个“〇”和“△”才能组成?23.(本小题满分10分)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价40元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店的优惠办法是:每买一副乒乓球拍赠两盒乒乓球;乙店的优惠办法是:全部商品按定价的8.5折(8.5折即按原价的85%计算)出售.某班需购买乒乓球拍4副,乒乓球若干盒(不少于8盒).(1)当购买乒乓球的盒数为x盒时,在甲店购买需付款 元;在乙店购买需付款 元.(用含x的代数式表示)(2)当购买乒乓球盒数为20盒时,去哪家商店购买较合算?请计算说明.(3)当购买乒乓球盒数为20盒时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并求出此时需付多少元?24.(本小题满分12分)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示,单位:米)留下一个“T”型图形(阴影部分).(1)用含x,y的代数式表示“T”型图形的周长;(2)若此图作为某施工图,“T”型图形的周边需围上单价为每米20元的栅栏,原长方形周边的其余部分需围上单价为每米15元的栅栏.请用含x,y的代数式表示材料所需的造价.(3)当x=5,y=7,工人4人(每人每天150元)工作3天,请你计算这次施工的总费用。
河南省洛阳市西工区2024-2025学年上学期期中七年级数学试题(含答案)

西工区2024-2025学年第一学期质量检测七年级数学试卷注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟。
2.本试卷包含I 、II 两卷。
第I 卷为选择题,所有答案必须用2B 铅笔涂在答题卡中相应的位置。
第II 卷为非选择题,所有答案必须填在答题卡的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
)1.如果把向东走记作,那么表示的实际意义是( )A.向东走 B.先向东走,再向西走C.向西走-4kmD.向西走4km2.下列两个数互为相反数的是( )A.3和B.和C.和D.和3.2024年国庆节,洛阳全市共接待游客823.09万人次,旅游总收入69.77亿元。
旅游总收入用科学计数法表示为( )元A. B. C. D.4.如图,,两个数在数轴上的位置如图所示,则下列各式正确的是( )A. B. C. D.5.为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲、乙两种读本共100本供学生阅读,其中甲种读本的价格为10元/本,乙种读本的价格为8元/本,设购买甲种读本本,则购买乙种读本的费用为( )A.元B.元C.元D.元6.代数式的意义可以是( )A.-7与的和B.-7与的差C.-7与的积D.-7与的商7.下列各说法中的两种量成反比例关系的是( )①圆锥的体积一定,它的底面积和高。
②三角形的面积一定,它一边和这边上的高。
③长方形周长一定,它的长和宽。
④圆的面积和它的半径。
A.①②B.②③C.①③D.③④8.我国是最早认识负数并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正3km 3km +4km -4km 2km 2km 13()3--3-()23-23-()33-33-86.97710⨯96.97710⨯100.697710⨯68.230910⨯a b 0a b +<0ab <0b a -<0a b>x ()8100x -()10100x -()1008x -8x 7x -x x x x负术”的方法,图1表示的是计算的过程.按照这种方法,图2表示的过程应是在计算( )A. B. C. D.9.小磊解题时,将式子先变成,再计算结果,则小磊运用了( )A.加法交换律 B.加法交换律和加法结合律C.加法结合律D.无法判断10.按如图所示的规律搭正方形:搭一个小正方形需要4根小棒,搭两个小正方形需要7根小棒,则搭2024个这样的小正方形需要小棒( )A.6073根B.6072根C.8095根D.8096根二、填空题(本题共5小题,每小题3分,共15分。
七年级上册数学期中考试试题附答案

七年级上册数学期中考试试卷2022年一、单选题1.下列各数中是负分数的是()A .80%B .52C .-0.5D .-π2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350000000用科学记数法表示为()A .3.5×107B .3.5×108C .3.5×109D .3.5×10103.一个数的平方等于它的相反数,这个数一定是()A .0B .-1C .1D .-1或04.下列式子中,是单项式的是()A .3212x y -B .x -yC .m 2-n 2D .1x y+5.下列各组单项式中,不是同类项的一组是()A .x 2y 和2xy 2B .-32和3C .3xy 和2xy -D .5x 2y 和-2yx 26.下列关于多项式-3a 2b +ab -2的说法中,正确的是()A .是二次三项式B .二次项系数是0C .常数项是2D .最高次项是-3a 2b7.下面是小玲同学做的合并同类项的题,正确的是()A .abb a 632=+B .0ab ba -=C .22541a a -=D .0t t --=8.数学家欧拉最先把关于x 的多项式用记号f(x)来表示,把x 等于某数a 时的多项式的值用f(a)来表示,例如x =﹣1时,多项式f(x)=x 2+3x ﹣5的值记为f(﹣1),那么f(﹣1)等于()A .﹣7B .﹣9C .﹣3D .﹣19.a ,b 是有理数,它们在数轴上的位置如图所示.把a ,b ,-a ,-b 按照从小到大的顺序排列,正确的是()A .b <a <-a <-bB .-a <b <-b <aC .b <-a <a <-bD .-b <-a <a <b10.已知一列数,1022a a =-,2122a a =-,3222a a =-,4322a a =-,…,当0a =3时,则2021a 等于()A .3B .-2C .12D .43二、填空题11.某天最低气温是-8℃,最高气温比最低气温高9℃,则这天的最高气温是_________℃.12.比较大小:113--_________-1.75(填“>”,“<”或“=”)13.单项式223x y π-的次数为_________________14.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2.则﹣2||21a b m ++﹣3cd 的值为_____.15.已知222x x +=,则多项式2243x x +-的值为__________.16.两艘船从同一港口出发,甲船顺水而下,乙船逆水而上,已知两船在静水中的速度都是50km/h ,水流速度是a km/h .则2h 后两船相距____千米.17.观察下列关于x 的单项式,探究其规律,-x ,3x 2,-5x 3,7x 4,-9x 5,11x 6,…按照上述规律,第2021个单项式是_________.三、解答题18.(1)(2.4)(3.7)(4.6)| 5.7|-+---+-,(2)42112(3)(7)6⎡⎤--⨯--÷-⎣⎦.19.把下列各数在数轴上表示出来,并按从小到大的顺序用“<”号连接起来.-22,-(-1),0,|-3|,-2.5.20.先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.21.某检修小组乘汽车自A 地出发,检修南北走向的供电线路.南记为正,北记为负.一天所走路程(单位:千米)为:-10,-3,+4,-2,-8,+16,-2,+12,+8,-5;问:(1)最后他们是否回到出发点A?若没有,则在A地的什么方向?距离A地多远?(2)若每千米耗油0.08升,则今天共耗油多少升?22.已知长方形的长为a,宽为b.(1)用字母a,b表示阴影部分的周长和面积.(2)当a=3,b=1时,求阴影部分的面积(结果保留π)23.已知代数式A=-6x2y+4xy2-5,B=-3x2y+2xy2-3.(1)求A-B的值,其中|x-1|+(y+2)2=0.(2)请问A-2B的值与x,y的取值是否有关系,试说明理由.24.如图所示,将连续的奇数1,3,5,7,…排列成如下的数表,用十字形框框出5个数.(1)探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为_________,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是_________;(2)探究规律二:落在十字框中间位于第二列的一组奇数是15,27,39,…,则这一组数可以用整式表示为12m+3(m为正整数)表示,同样,落在十字框中间且位于第三列的一组奇数可以表示为_________.(用含m的式子表示)(3)运用规律:被十字框柜中的五个奇数的和可能是625吗?若能,请求出这五个数以及十字框中间这个数在第几行第几列,若不能,请说明理由.25.有20筐白菜,以每筐25千克为标准,超过或不足的分别用正、负数来表示.记录如下(单位:千克):与标准质量的差-3-2-1.501 2.5筐数142328(1)这些白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计为超过或不足多少千克?(3))若白菜每千克售价2.6元,则这20筐白菜可卖多少元?26.如图,已知点O是原点,点A在数轴上,点A表示的数为-6,点B在原点的右侧,且OB=43 OA.(1)点B对应的数是_________,在数轴上标出点B.(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以1个单位/秒的速度向右运动,同时点Q从点B出发,以3个单位/秒的速度向左运动;设运动的时间为t秒.①用含t的式子分别表示P,Q两点表示的数:P是_________;Q是_________;②求t为何值时,点P与点Q之间的距离为6?并求出此时点P所表示的数.参考答案1.C【解析】【分析】根据负分数的定义,即可解答.【详解】解:A.80%是正分数,错误;B.52是正分数,错误;C.-0.5是负分数,正确;D.-π不是有理数,错误;故选:C.【点睛】本题考查负分数的定义,解题的关键是掌握负分数的定义.2.B【解析】【详解】350000000=3.5×108.故选:B.【点睛】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.D【解析】【分析】由相反数和平方的定义,即可得到答案.【详解】解:一个数的平方等于它的相反数,这个数一定是:1或0;故选:D.【点睛】本题考查了有理数的乘方,相反数的定义,解题的关键是熟练掌握相反数的定义进行解题.4.A 【解析】【分析】单项式:数字与字母的积,单个的数或单个的字母也是单项式,多项式:几个单项式的和是多项式,根据定义逐一判断即可.【详解】解:3212x y -是单项式,故A 符合题意,x y -是多项式,故B 不符合题意;22m n -是多项式,故C 不符合题意;1x y+不是整式,故D 不符合题意;故选A 【点睛】本题考查的是单项式的定义,掌握利用“单项式的定义判断代数式是否是单项式”是解题的关键.5.A 【解析】【分析】同类项:所含字母相同,相同字母的指数也相同的单项式是同类项,根据同类项的定义逐一判断即可.【详解】解:x 2y 和2xy 2所含字母相同,但相同字母的指数不同,故A 符合题意;-32和3是两个常数,是同类项,故B 不符合题意;3xy 和2xy-所含字母相同,相同字母的指数也相同,故C 不符合题意;5x 2y 和-2yx 2所含字母相同,相同字母的指数也相同,故D 不符合题意;故选A 【点睛】本题考查的是同类项的含义,掌握“利用同类项的概念判断是否是同类项”是解题的关键.6.D 【解析】【分析】多项式:几个单项式的和是多项式,其中的单项式是多项式的项,单项式的次数是项的次数,次数最高的项就是最高次项,不含字母的项是常数项,根据定义逐一判断即可.【详解】解:-3a 2b +ab –2是三次三项式,二次项是,ab 系数为1,常数项是2,-最高次项是23,a b -故A ,B ,C 不符合题意,D 符合题意;故选D 【点睛】本题考查的是多项式的系数,次数,多项式的项,掌握“多项式中相关的概念”是解题的关键.7.B 【解析】【详解】A .原式不能合并,错误;B .原式=0,正确;C .原式=a 2,错误;D .原式=﹣2t ,错误;故选:B .8.A 【解析】【分析】将x=-1代入代数式即可求出答案.【详解】当x=-1时,原式=()()213151357-+⨯--=--=-,故选:A .【点睛】本题主要考查的是代数式的计算求值问题,理解计算法则是解决这个问题的关键.9.C 【解析】【分析】先根据互为相反数的两个数(除0在外)分居原点是两旁,且到原点的距离相等,在数轴上表示,,a b --再利用数轴比较大小即可.【详解】解:如图,由相反数的定义可在数轴上表示,,a b --则0,b a a b --<<<<故选C 【点睛】本题考查的是利用数轴比较有理数的大小,相反数的含义,掌握“利用数轴借助数形结合解决问题”是解题的关键.10.B 【解析】【分析】先分别计算出12345,,,,,a a a a a 再总结归纳出规律,再利用规律解题即可.【详解】解:03,a =Q 122,23a \==--()221,222a ==--324,1322a ==-423,423a ==-522,23a ==--g g g∴这一列数从1a开始,四个数为一循环周期,20214=5051,¸g g g20212,a\=-故选B【点睛】本题考查的是数字规律的探究,掌握探究的方法以及运用规律解题是解题的关键. 11.1【解析】【分析】由最低气温加上高的温度即可得到答案.【详解】解:某天最低气温是-8℃,最高气温比最低气温高9℃,则这天的最高气温是:891-+=℃故答案为:1【点睛】本题考查的是有理数加法的实际应用,理解题意列出运算式是解题的关键.12.>【解析】【分析】先分别求解两个负数的绝对值,再利用绝对值大的反而小,从而可得答案.【详解】解:111416721 111, 1.75,333312412 --=--==-==而1621, 1212<11 1.75,3∴--->故答案为:>【点睛】本题考查的是两个负数的大小比较,掌握“两个负数的大小比较,绝对值大的反而小”是解题的关键.13.3【解析】【分析】根据单项式次数的定义来求解,即可得到答案.【详解】解:单项式223x y π-的次数为:213+=;故答案为:3.【点睛】本题考查了单项式的次数的定义,解题的关键是熟练掌握单项式次数的定义.14.-3【解析】【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,可以求得所求式子的值,本题得以解决.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,∴a+b =0,cd =1,m 2=4,∴﹣2||21a b m ++﹣3cd=﹣|0|3241-⨯+=﹣0﹣3=0﹣3=-3,故答案为:-3.【点睛】本题考查分式、相反数、倒数和绝对值,解题的关键是掌握分式、相反数、倒数和绝对值的计算.15.1【解析】【分析】先变形,再整体代入求出即可.【详解】解:222x x += ,222432(2)32231x x x x ∴+-=+-=⨯-=,故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是能够整体代入进行求解.16.200【解析】【分析】先表示出甲船顺水速度,乙船逆水速度,再根据路程=速度⨯时间,即可得出结果.【详解】∵两船在静水中的速度都是50km/h ,水流速度是a km/h∴=v 甲(50+a )km/h ,=v 乙(50a -)km/h∵两船背向而行∴2h 后两船距离为:2(50+a )+2(50a -)=200(km )故答案为:200.【点睛】熟练掌握顺水速度,逆水速度的表示,及路程=速度⨯时间,是解题的关键.17.﹣4041x 2021【解析】【分析】根据关于x 的单项式发现规律:第n 个单项式为(﹣1)n (2n ﹣1)xn ,即可求解.【详解】解:观察关于x 的单项式可知:﹣x =(﹣1)1x 1;3x 2=(﹣1)2×3x 2;﹣5x 3=(﹣1)3×5x 3;……发现规律:第n 个单项式为:(﹣1)n (2n ﹣1)xn ,所以第2021个单项式是:(﹣1)2021(2×2021﹣1)x 2021=﹣4041x 2021.故答案为﹣4041x 2021.【点睛】本题考查了规律型﹣数字的变化类、单项式,解决本题的关键是观察单项式后找到规律.18.(1)4.2;(2)76-【解析】【分析】(1)利用有理数的加减运算,求一个数的绝对值来计算即可;(2)先算括号里面的及乘方运算,再从左至右算乘除计算即可.【详解】解:(1)(2.4)(3.7)(4.6)| 5.7|-+---+-,2.4 3.7 4.6 5.7=--++,4.2=,(2)42112(3)(7)6⎡⎤--⨯--÷-⎣⎦,11(7)(7)6=--⨯-÷-,76=-.【点睛】本题考了有理数的加减、有理数的乘方、有理数的乘除、绝对值,解题的关键是掌握相关的运算法则.19.画图见解析,()222.5013,-----<<<<【解析】【分析】先化简能化简的数,再在数轴上表示即可,最后用“<”连接即可得到答案.【详解】解:()224,11,33,-=---=-= 在数轴上表示各数如下:()22 2.5013,∴-----<<<<【点睛】本题考查的是在数轴上表示有理数,利用数轴表示有理数的大小,有理数的乘方运算,掌握“利用数轴比较有理数的大小”是解题的关键.20.222x y +,19【解析】【分析】先去括号,合并同类项,然后代入求值即可.【详解】解:原式=22233223x xy x y xy --++=222x y +当1x =-,3y =时,原式=22(1)23-+⨯=19.21.(1)最后他们没有回到出发点A ,在A 地南方10千米处;(2)今天共耗油5.6升.【解析】【分析】(1)把一天走的路程相加,再根据有理数加减混合运算的法则计算,若计算结果是正数,则是离开A 地向南;若是负数,则是离开A 地向北;等于0,则是回到A 地;(2)求出这一组数据的绝对值的和,再乘每千米耗油量即可.【详解】解:(1)(-10)+(-3)+(+4)+(-2)+(-8)+(+16)+(-2)+(+12)+(+8)+(-5)=-10-3+4-2-8+16-2+12+8-5=4+16+12+8-10-3-2-8-2-5=40-30=10.所以没有回到出发点A ,在A 地南方10千米处;(2)|-10|+|-3|+|+4|+|-2|+|-8|+|+16|+|-2|+|+12|+|+8|+|-5|=10+3+4+2+8+16+2+12+8+5=70千米.70×0.08=5.6(升).所以今天共耗油5.6升.【点睛】本题主要考查有理数的加减乘除混合运算,熟练掌握运算法则是解题的关键,需要注意第二问中的总路程是所有路程的绝对值的和.22.阴影部分面积为24b ab π-,阴影部分周长为422a b π--;(2)34π-【解析】【分析】(1)根据阴影部分的面积=长方形面积-4个扇形面积进行求解即可;根据阴影部分的周长=四个扇形的弧长(即直径为b 的圆的周长)+()2a b -进行求解即可;(2)根据(1)的计算结果代值计算即可.【详解】解:(1)由题意得:2211=4=4424b S S S ab b ab ππ⎛⎫--⨯⋅=- ⎪⎝⎭阴影长方形扇形,阴影部分的周长()14242422b a b a b ππ-=-+⨯⨯=-;(2)当3a =,1b =时,221313444b S ab πππ⨯=-=⨯-=-阴影.【点睛】本题主要考查了列代数式和代数式求值,解题的关键在于能够准确列出代数式.23.(1)12;(2)2A B -的值与x ,y 的取值没有关系,理由见解析.【解析】【分析】(1)先计算A B -的值,再由()2120x y -++=得到x 1,y 2==-,代入A B -计算即可;(2)计算2A B -的值,即可得到答案.【详解】解:(1)∵22645A x y xy =-+-,22323B x y xy =-+-∴()2222645323A B x y xy x y xy -=-+---+-2222645323x y xy x y xy =-+-+-+22=322x y xy -+-∵()2120x y -++=,()210,20x y -≥+≥∴10,+2=0x y -=∴x 1,y 2==-∴()()22312212268212A B -=-⨯⨯-+⨯⨯--=+-=(2)2A B -的值与x ,y 的取值没有关系,理由如下:()222226452323A B x y xy x y xy -=-+---+-22226456461x y xy x y xy =-+-+-+=∴2A B -的值与x ,y 的取值没有关系.【点睛】本题考查整式的化简求值,整式化简中的无关型问题等知识点,熟练掌握去扣号、合并同类项的原则是解题的关键.24.(1)5,5x ;(2)1215m +;(3)能,5个数分别为:113,123,125,127,137,125在表中第11行第3列.【解析】【分析】(1)根据表格性质可得周边四个奇数与中间的奇数的关系,再表示各数,再求解代数和即可,从而可得整数p ;(2)根据第三列的奇数每一个都比前面一个多12,从而可得答案;(3)由题意建立方程,5625,x =求解x 的值,再分析x 在表中的位置,从而确定5个数是否存在,从而可得答案.【详解】解:(1)设十字框中间的奇数为x ,则上面的奇数为12,x -下面的奇数为12,x +左边的奇数为2,x -右边的奇数为:2,x +所以这5个数的和为:1222125,x x x x x x -+-+++++=而5x 是5的倍数,所以5,p =故答案为:5,5x (2) 落在十字框中间位于第二列的一组奇数是15,27,39,…,则这一组数可以用整式表示为12m +3(m 为正整数)表示,∴落在十字框中间且位于第三列的一组奇数17,29,41,g g g ,可以表示为123121215,m m ++=+(m 为正整数)故答案为:1215m +(3)由题意得:5625,x =125,x \=若能框住这5个数,则其它的4个数分别为:113,123,127,137,125=2631,´-Q 125\是数表的第63个数,125在表中第11行第3列.综上:被十字框柜中的五个奇数的和可以是625,中间的这个数125在表中第11行第3列.【点睛】本题考查的是一元一次方程的应用,数字的规律探究,掌握“利用一元一次方程解决数字的规律问题”是解题的关键.25.(1)5.5;(2)与标准重量比较,20筐白菜总计超过8千克;(3)出售这20筐白菜可卖1320.8元【解析】【分析】(1)根据最大数减最小数,可得答案;(2)根据有理数的加法,可得标准的重量,根据有理数的大小比较,可得答案;(3)根据有理数的加法,可得总重量,根据单价乘以数量,可得答案.【详解】(1)最重的一筐比最轻的一筐多重()2.53 2.53 5.5--=+=(千克),答:20筐白菜中,最重的一筐比最轻的一筐多重5.5千克;(2)由表格可得:()()() 3124 1.520312 2.58-⨯+-⨯+-⨯+⨯+⨯+⨯()()()8302320=+-+-+++-8=(千克)答:与标准重量比较,20筐白菜总计超过8千克(3)由题意可得,(20258) 2.61320.8⨯+⨯=(元),答:出售这20筐白菜可卖1320.8元【点睛】本题考查了有理数的混合运算,正负数的意义,解题关键是读懂题意,列式计算.26.(1)8,画图见解析;(2)①6,83t t -+-;②5t =s 或2t =s 时,点P 与点Q 之间的距离为6,P 对应的数为:1-或 4.-【解析】【分析】(1)先求解6,OA =再求解8,OB =利用B 在数轴上的位置可得答案;(2)①利用数轴上点的运动规律:往左运动用减法,往右运动用加法,从而可得答案;②先求解P ,Q 之间的距离为:414,t -再列方程即可.【详解】解:(1) 点A 表示的数为-6,点B 在原点的右侧,且OB =43OA ,46,68,3OA OB ∴==⨯=∴点B 对应的数是8,在数轴上标出点B 点如下:(2)① 点P 从点A 出发,以1个单位/秒的速度向右运动,同时点Q 从点B 出发,以3个单位/秒的速度向左运动;∴ts 后P ,Q 两点表示的数分别为:6,83,t t -+-故答案为:6,83t t-+-② 点P 与点Q 之间的距离为6,()6836,t t ∴-+--=即4146,t -=4146t ∴-=或4146,t -=-解得:5t =或2,t =所以当5t =s 或2t =s 时,点P 与点Q 之间的距离为6,此时P 对应的数为:6651t -+=-+=-或662 4.t -+=-+=-【点睛】本题考查的是数轴上两点之间的距离,数轴上的动点问题,绝对值方程的应用,一元一次方程的解法,“利用绝对值方程解决数轴上两点之间的距离”是解题的关键.。
七年级上册数学期中考试试卷含答案

七年级上册数学期中考试试题一、单选题1.一天早晨的气温是-3°C,中午上升到15°C,则这天中午比早晨的气温上升了()A .15℃B .18°C C .-3℃D .-18°C2.下列各个运算中,结果为负数的是()A .2-B .()2--C .2(2)-D .22-3.下列说法正确的是()A .一个数的绝对值一定比0大B .最小的正整数是1C .绝对值等于它本身的数一定是正数D .一个数的相反数一定比它本身小4.下列各式12mn -,8,1a ,226x x ++,25x y-,1y ,a -中,整式有()A .4个B .5个C .6个D .7个5.对于多项式2235x x -+,下列说法错误的是()A .它是二次三项式B .最高次项的系数是2C .它的常数项是5D .它的项分别是22x ,3x ,56.若-2a 2b m+2与﹣a n -1b 4的和是单项式,则m ﹣n 的值为()A .0B .-1C .1D .-27.已知一个多项式与239x x +的和等于2541x x +-,则这个多项式是()A .28131x x +-B .2251x x -++C .2851x x -+D .2251x x --8.若|2|2a a -=,则下列结论正确的是()A .0a >B .0a <C .0a ≥D .0a ≤9.a,b,c 在数轴上的对应点的位置如图所示,化简|b-c|+|a+b|-|a|的结果是()A .cB .c-2bC .2a+cD .-c10.下面每个表格中的四个数都是按相同规律填写的:根据此规律确定x 的值为()A .135B .170C .209D .252二、填空题11.﹣13的相反数是_____.12.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法可表示为_____.13.(用“>”,“<”或“=”填空):13-________25-.14.绝对值大于1.1而小于3.9的所有整数有________.15.已知233m m --的值为2,那么代数式2202126m m -+的值是________.16.数轴上有一动点A ,从原点出发沿着数轴移动,第一次点A 向左移动1个单位长度到达点1A ,第二次将点A 向右移动2个单位长度到达点2A ,第三次将点A 向左移动3个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,当2022n =时,点A 与原点的距离是________个单位.三、解答题17.计算:(1)()()()()10125+-++---;(2)()()3432⎛⎫+⨯+÷- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭;(4)()()()24083218÷-+-⨯-+;(5)()()()20213116822⎛⎫-+-⨯--÷- ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦.18.化简:(1)232322343a a a a a --++;(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭.19.先化简,后求值:()()32323224a ab b a ab b -+---+,其中1a =-,17b =.20.已知多项式2512A x my =+-与多项式21B nx y =++(m 、n 为常数),如果23A B +中不含x 和y ,求mn 的值.21.某同学绘制了如图所示的火箭模型截面图,图的下面是梯形,中间是长方形,上面是三角形.(1)用含有a 、b 的代数式表示该截面的面积S ;(2)当 2.8a cm =, 2.2b cm =时,求这个截面的面积.22.某登山队5名队员以大本营为基地,向海拔距离大本营500米的顶峰发起登顶冲击,假设向上走为正,向下走为负,行程记录如下(单位:米)+120,-30,-45,+205,-30,+25,-20,-5,+30,+105,-25,+90.(1)他们有没有登上顶峰?如果没有登上顶峰,他们距离顶峰多少米?(2)登山时,5名队员在进行中全程均使用了氧气,每人每100米消耗氧气0.5升,求共使用了多少升氧气?23.观察下面三行数:2-,4,8-,16,32-,64,…;①0,6,6-,18,30-,66,…;②1-,2,4-,8,16-,32,…;③(1)第一行的第8个数是________,第二行的第8个数是________,第三行的第n 个数是________;(2)在第三行中,某三个连续数的和为96,求这三个数.24.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是________,表示3-和2两点之间的距离是________.(2)一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.如果表示数a 和1-的两点之间的距离是3,那么=a ________.(3)若数轴上表示数a 的点位于4-与2之间,则42a a ++-的值为________;(4)利用数轴找出所有符合条件的整数点x ,使得|x +2|+|x -5|=7,这些点表示的数的和是.(5)当=a ________时,314a a a ++-+-的值最小,最小值是________.25.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足2|1|(2)0a b -++=.(1)求线段AB 的长.(2)点C 在数轴上对应的数是c ,且c 是方程1232x x -=的解,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,请说明理由.(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点B 以每秒1个单位长度的速度向左运动,同时点A 和点C 分别以每秒4个单位长度和9个单位长度的速度向右运动,t 秒钟后,若点A 和点C 之间的距离表示为AC ,点A 和点B 之间的距离表示为AB ,那么AB -AC 的值是否随着时间的变化而变化?若变化,请说明理由;若不变,请求出AB -AC 的值.参考答案1.B【解析】【分析】利用有理数的减法运算,即可.【详解】--=,故选B.15(3)18【点睛】本题主要考查有理数的减法运算的实际运用,对题意的准确理解,列出算式,是解题的关键. 2.D【解析】【分析】先把各项分别化简,再根据负数的定义,即可解答.【详解】A、|-2|=2,不是负数;B、-(-2)=2,不是负数;C、(-2)2=4,不是负数;D、-22=-4,是负数.故选D.【点睛】本题考查了正数和负数,解决本题的关键是先进行化简.3.B【解析】【分析】根据绝对值的定义即可判断A和C,根据正整数的定义即可判断B,根据相反数的定义即可判断D.【详解】解:∵0的绝对值是0,∴A选项不合题意,∵由正整数的定义知最小的正整数是1,∴B选项符合题意,∵0的绝对值是0,但0不是正数,∴C选项不合题意,∵负数的相反数是正数,而正数大于负数,∴D选项不合题意,故选B.【点睛】本题主要考查了绝对值的定义,相反数的定义,整数的定义,解题的关键在于能够熟知定义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;如果两个数只有符号不同,数字相同,那么这两个数就叫做相反数,0的相反数是0.4.B【解析】【分析】根据整式的定义,结合题意即可得出答案.单项式和多项式都统称为整式.【详解】解:1a和1y的分母含有字母,是分式,不是整式;整式有12mn-,8,226x x++,25x y-,a-,共有5个,故选:B.【点睛】本题考查了整式的判断,理解整式的定义是解题的关键.5.D【解析】【分析】根据多项式的项以及单项式的次数、系数的定义即可作出判断.【详解】多项式2x2−3x+5是二次三项式,它的项分别是2x2,-3x,5;最高次项的系数是2,它的常数项是5,故A、B、C、正确,只有D 错误.故选D.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6.B【解析】【分析】两个单项式的和是单项式,说明这两个单项式是同类项,根据同类项的定义可知n-1=2,m+2=4,从而求出m 、n ,继而求出m-n 的值.【详解】解:由题意可知:n-1=2,m+2=4,解得:n=3,m=2,∴m-n=2-3=-1.故选B.【点睛】本题考查了同类项的定义.7.D【解析】【分析】由和减去一个加数等于另一个加数,列出关系式,去括号合并即可得到结果.【详解】解:根据题意列得:2541x x +--(239x x +)=2251x x --,故选D .【点睛】此题考查了整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.8.C【解析】根据非正数的绝对值是它的相反数即可求解.【详解】∵|-2a|=2a,∴-2a≤0,解得a≥0.故选:C.【点睛】此题考查绝对值,解题关键在于掌握如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a 的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.9.B【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据题意得:a<b<0<c,∴b-c<0,a+b<0,则原式=c-b-a-b+a=c-2b.故选B.【点睛】此题考查整式的加减,熟练掌握运算法则是解本题的关键.10.C【解析】【分析】观察数字的变化设表格中左上角的数字为a,则左下角的数字为a+1,右上角的数字为2a+2,右下角的数字为(a+1)(2a+2)+a,进而可得结论.【详解】解:∵a+(a+2)=20,∵b=a+1,∴b=a+1=9+1=10,∴x=20b+a=20×10+9=200+9=209故选C.【点睛】本题考查了规律型:数字的变化类,解决本题的关键是观察数字的变化寻找规律,总结规律,运用规律.11.1 3【解析】【详解】解:根据相反数的定义可知1-3的相反数是13.故答案为:1 3.12.6.75×104【解析】【详解】解:67500=6.75×104.故答案为:6.75×104.13.>【解析】【分析】根据两个负数绝对值大的反而小进行比较即可.【详解】解:1153315-==,2265515-==,∵56 1515<,∴1235->-.故答案为:>.【点睛】本题考查了有理数大小比较,要熟练掌握并正确运用有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数比较大小,绝对值大的其值反而小.14.2±,3±【解析】【分析】根据绝对值意义以及有理数的大小比较即可求得答案.【详解】解:绝对值大于1.1而小于3.9的所有整数有2±,3±.故答案为:2±,3±.【点睛】本题考查了绝对值的意义,有理数的大小比较,理解绝对值的意义是解题的关键.15.2011【解析】【分析】将所求代数式适当变形,利用整体代入的思想方法解答即可得出结论.【详解】解:∵233m m --的值为2,∴2332m m --=,∴235m m -=.∴()222021262021232021252021102011m m m m -+=--=-⨯=-=.故答案为:2011.【点睛】此题考查了代数式求值,解题的关键是掌握整体代入的求解方法.16.1011【解析】【分析】由点的运动方式,可得到规律运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,…运动次数是偶数时,A 点在数轴上表示的数为1,2,3,…,由于2022n =是偶数,则可求解.【详解】解:第一次A 点在数轴上表示的数为1-,第二次A 在数轴上表示的数为1,第三次A 在数轴上表示的数为到2-,第四次A 在数轴上表示的数为2,第五次A 在数轴上表示的数为3-,第六次A 在数轴上表示的数为3,⋯由此发现,运动次数是奇数时,A 点在数轴上表示的数为1-,2-,3-,⋯运动次数是偶数时,A 点在数轴上表示的数为1,2,3,⋯当2022n =时,A 点在数轴上表示的数为1011,∴点A 与原点的距离是1011个单位,故答案为:1011.【点睛】本题考查数字的变化规律;能够理解题意,并能由点运动后在数轴上表示的数总结出规律是解题的关键.17.(1)12;(2)-8;(3)-13;(4)1;(5)3;(6)-68【解析】【分析】(1)先把减法转化为加法,然后根据有理数加法的计算方法计算即可;(2)根据有理数的乘除法计算即可;(3)根据乘法分配律计算即可;(4)(5)先算乘方、再算乘除法、最后算加减法即可;(6)先算乘方和括号内的式子,然后算括号外的加法即可.【详解】解:(1)()()()()()()101251012512+-++---=+-+-+=;(2)()()324343823⎛⎫+⨯+÷-=-⨯⨯=- ⎪⎝⎭;(3)()25124382⎛⎫-⨯-+ ⎪⎝⎭()()()251242424382=-⨯--⨯-⨯()()161512=-++-13=-;(4)()()()()()()()2408321853418512181÷-+-⨯-+=-+-⨯+=-+-+=;(5)()()()()()()2021311682138813132⎛⎫-+-⨯--÷-=-+-÷-=-++= ⎪⎝⎭;(6)()()222104132⎡⎤-+---⨯⎣⎦()10016192=-+--⨯⎡⎤⎣⎦()1001682=-+--⨯⎡⎤⎣⎦()1001616=-++10032=-+68=-.【点睛】本题考查了有理数的混合运算,正确的计算是解题的关键.18.(1)2a -;(2)2734a a +-【解析】【分析】(1)根据合并同类项法则求解即可求出答案.(2)先去括号,然后合并同类项即可求出答案.【详解】解:(1)232322343a a a a a --++222332433a a a a a =-++-2a =-.(2)2211218522a a a a ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭2235285522a a a a =-+-+-2235258522a a a a =++---2734a a =+-【点睛】本题考查整式的加减,熟练运用整式的加减运算法则是解题的关键.19.3257a b -,157-【解析】【分析】去括号,合并同类项,再把1a =-,17b =,代入化简后的多项式计算.【详解】解:()()32323224a ab b a ab b -+---+323232228a ab b a ab b ++=-+-3257a b =-,当1a =-,17b =,原式()2311517577⎛⎫=⨯--⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握整式的加减—化简求值的步骤:先化简,再把给定字母的值代入计算,得出整式的值,合并同类项是解题关键.20.5【解析】【分析】先根据整式的加减计算法则求出()()2231032321A B n x m y +=+++-,然后;令含x 和含y的项的系数为0,即可得到m 、n 的值,然后代值计算即可【详解】解:∵2512A x my =+-,21B nx y =++,∴()()2223251231A B x my nx y +=+-+++2210224333x my nx y =+-+++()()21032321n x m y =+++-,∵23A B +中不含x 和y ,∴1030 230nm+=⎧⎨+=⎩,∴32103 mn⎧=-⎪⎪⎨⎪=-⎪⎩,∴310523mn⎛⎫=-⨯-=⎪⎝⎭.【点睛】本题主要考查了整式的加减计算,代数式求值,解题的关键在于熟知如果一个多项式中不含某个字母,则含有这个字母的项的系数为0.21.(1)S=2a2+2ab;(2)28cm2.【解析】【分析】(1)根据题意和图形中的数据可以用代数式表示出截面的面积S;(2)将a、b的值代入(1)中的代数式即可解答本题.【详解】解:(1)由题意可得,该截面的面积S=12ab+a•2a+12(a+2a)•b=12ab+2a2+12ab+ab=2a2+2ab,即该截面的面积S是2a2+2ab;(2)当a=2.8cm,b=2.2cm时,S=2×2.82+2×2.8×2.2=15.68+12.32=28cm2,答:这个截面的面积是28cm2.【点睛】本题考查代数式求值、列代数式,解答本题的关键是明确题意,列出相应的代数式,求出代数式的值,利用数形结合的思想解答.22.(1)他们没有登上顶峰,他们距离顶峰80米;(2)18.25【解析】【分析】(1)将行程的数据相加,与500比较,进而判断是否登上顶峰,再计算距离顶峰多少米;(2)将行程的数据的绝对值相加,根据每人每100米消耗氧气0.5升,计算即可【详解】(1)12030452053025205301052590--+-+--++-+420=(米).50042080-=(米),答:他们没有登上顶峰,他们距离顶峰80米.(2)12030452053025205301052590730+++++++++++=(米),每人每100米消耗氧气0.5升,∴73051000.518.25⨯÷⨯=(升),答:他们共消耗18.25升氧气.【点睛】本题考查了有理数加减法的应用,有理数的混合运算,理解题意正确的计算是解题的关键.23.(1)256,258,()22n-÷;(2)32,64-,128【解析】【分析】(1)观察每一行数的规律即可写出每一行的第n 个数;(2)根据(1)中得到的规律得第三行的第n 个数为()12n --,根据条件建立方程,就可解决问题.【详解】解:(1)观察三行数的规律可知:第1行第1个数为:()122-=-,第1行第2个数为:()224-=,第1行第3个数为:()328-=-,第1行第4个数为:()4216-=,∴第1行数的第n 个数为:()2n-;第2行数的第1个数为:()122220-+=-+=,第2行数的第2个数为:()222426-+=+=,第2行数的第3个数为:()322826-+=-+=-,第2行数的第4个数为:()42216218-+=+=,∴第2行数的第n 个数为:()22n -+;第3行数的第1个数为:()122221-÷=-÷=-,第3行数的第2个数为:()222422-÷=÷=,第3行数的第3个数为:()322824-÷=-÷=-,第3行数的第4个数为:()4221628-÷=÷=,∴第3行数的第n 个数为:()22n -÷.∴第一行的第8个数是()82256-=,第二行的第8个数是()8222562258-+=+=,第三行的第n 个数是()22n -÷,故答案为:256,258,()22n-÷;(2)第三行的第n 个数为()22n -÷,若第三行的第n 个数、第()1n +个数、第()1n -个数的和为96,则有()()()1122222296n n n -+-÷+-÷+-÷=,∴()()()11222192n n n -+-+-+-=,∴()()()()()()111222222192n n n ----+-⨯-+-⨯-⨯-=∴()()12124192n --⨯-+=,∴()162642n --==,∴16n -=,∴7n =,∴()712232--÷=,()72264-÷=-,()7122128+-÷=,∴这三个数为32,64-,128.【点睛】本题主要考查了含乘方的有理数混合计算,数字类的规律问题,解题的关键在于能够根据题意准确得到规律.24.(1)3,5;(2)2或-4;(3)6;(4)12;(5)1;7【解析】【分析】(1)根据数轴上两点之间的距离等于两点所表示数的绝对值进行解答即可;(2)根据数轴上两点之间的距离等于两点所表示数的绝对值得到13a +=,解得即可;(3)先根据表示数a 的点位于5-与2之间可知52a -<<,再根据绝对值的性质把原式去掉绝对值符号求出a 的值即可;(4)根据线段上的点到线段两端点的距离的和最小,可得答案.(5)根据分类讨论的数学思想可以解答本题.【详解】解:(1)由数轴上两点之间的距离公式可知:数轴上表示4和1的两点之间的距离是413-=;表示3-和2两点之间的距离是325--=;故答案为:3,5;(2)若表示数a 和1-的两点之间的距离是3,则13a +=,解得2a =或4a =-,故答案为:2或4-;(3)∵42a -<<,∴42426a a a a ++-=++-=;故答案为:6;(4)当5x >时,7252523x x x x x ++-=++=->-,当25x -≤≤时,25257x x x x ++-=++-=,当2x <-时,2525237x x x x x ++-=--+-=-+>,∴使得257x x ++-=的所有整数为:2-,1-,0,1,2,3,4,5,∵()2101234512-+-++++++=,故答案为:12;(5)当4a >时,3143143210a a a a a a a ++-+-=++-+-=->,当14a <≤时,3143146a a a a a a a ++-+-=++-+-=+,则7610a <+≤,当31a -<≤时,3143148a a a a a a a ++-+-=++-+-=-,则7181a ≤-<,当3x ≤-时,3143143211a a a a a a a ++-+-=--+-+-=-+≥,由上可得,当1a =时,314a a a ++-+-的值最小,最小值是7,故答案为:1,7.【点睛】本题考查数轴、绝对值等知识点,明确题意,利用数轴的特点和分类讨论的数学思想解答是解答本题的关键.25.(1)3;(2)存在,3-或1-;(3)2,理由见解析【解析】【分析】(1)根据非负数的性质可确定,a b 的值,进而求得AB 的长度;(2)先解方程求得x 的值,再根据PA PB PC +=,求得点P 对应的数;(3)根据,,A B C 的运动情况,即可确定,AB AC 的变化情况,进而确定AB BC -的值.【详解】(1) 2|1|(2)0a b -++=,10,20a b ∴-=+=,解得1,2a b ==-,∴线段AB 的长为:1(2)3--=;(2)解1232x x -=,解得2x =,C ∴点对应的数是2,如图,设P 对应的数为y , PA PB PC +=,由图可知P 在A 的右侧时不存在,①当P 在B 点的左侧时,122y y y ---=-,解得3y =-,②当P 点在A ,B 之间时,32y =-,解得1y =-,∴存在点P 使得PA PB PC +=,P 对应的数是3-或1-;(3)AB AC -的值不随着时间t 的变化而变化,理由如下:t 秒钟后,A 点的位置为:14t +,B 点的位置为2t --,C点的位置为29t+,=+---=+,14(2)53AB t t t=+-+=+,AC t t t29(14)51-=+-+=,AB AC t t53(51)2∴AB AC-的值不随着时间t的变化而变化,值为2.。
山东省德州市齐河2024—2025学年上学期七年级数学期中考试试题

山东省德州市齐河2024—2025学年上学期七年级数学期中考试试题一、单选题1.下列各组数中,数值相等的是()A .23和32B .32-和3(2)-C .23-和2(3)-D .2(32)-⨯和232-⨯2.当代数式231x x ++的值为2022时,代数式2263x x +-的值为()A .2022B .4037C .4039D .20193.一个数a 精确到十分位的结果是3.6,那么这个数a 的范围满足()A .3.55 5.3a ≤≤B .3.55 3.65a <≤C .3.55 3.65a <<D .3.55 3.65a ≤<4.观察下列各式:x ,3ab ,1-,21x -,2xy -+,2S r =π,其中整式有()A .3个B .4个C .5个D .6个5.下列结论中正确的是()A .单项式2π4r 的系数14,次数是4B .单项式2-xy z 的系数是1-,次数是4C .多项式2223x xy ++是二次三项式D .单项式m 的次数是1,没有系数6.有理数a ,b 在数轴上的位置如图所示,则下列选项正确的是()A .0a b +<B .0b a ->C .0ab >D .a b>7.计算23333222m n ++++⨯⨯⨯=个个()A .32m n +B .32n m +C .32n m+D .23n m +8.请仔细分析下列赋予4a 实际意义的例子中错误的是()A .若葡萄的价格是4元/kg ,则4a 表示买akg 葡萄的金额B .若a 表示一个正方形的边长,则4a 表示这个正方形的周长C .若4和a 分别表示一个两位数中的十位数字和个位数字,则4a 表示这个两位数D .某款凉鞋进价为a 元,销售这款凉鞋盈利100%,则销售两双的销售额为4a 元9.近几年智能手机已成为人们生活中不可缺少的一部分,智能手机价格也不断地降低.某品牌智能手机原售价为m 元,现打九折,再让利n 元,那么该手机现在的售价为()A .109m n ⎛⎫- ⎪⎝⎭元B .910m n ⎛⎫- ⎪⎝⎭元C .()9m n -元D .()9n m -元10.如图,从边长为(3)a +的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的面积是()A .2a 3a +B .226a a +C .223a a +D .26a a+11.用你发现的规律解答下列问题:111122=-⨯,1112323=-⨯,1113434=-⨯ ,探究()11111223341n n ++++=⨯⨯⨯+ (),用含有n 的式子表示为()A .11n+B .111n -+C .11n-D .111n ++12.在多项式:a b c d e -+--中,任选两个字母,在两侧加括号,称为第一轮“加括号操作”.例如:选择b ,d 进行“加括号操作”,得到()a b c d e a b c d e -+--=--+-.在第一轮“加括号操作”后的式子中进行同样的操作,称为第二轮“加括号操作”,按此方法,进行第n (1n ≥)轮“加括号操作”.下列相关说法正确的个数是:①存在某种第一轮“加括号操作”的结果与原多项式相等;②不存在第k (1k ≥)轮“加括号操作”,使得结果与原多项式的和为0;③对原多项式进行第一轮“加括号操作”后,共有4种不同结果.其中正确的个数为()A .0个B .1个C .2个D .3个二、填空题13.已知:a b 、互为倒数,、c d 互为相反数,且都不为零,2m =,n 是最大的负整数,求式子22024c d cab m n d+-+++的值.14.已知12x =,5y =-,求代数式222x xy y -+的值为.15.如图,某学校的操场形状是由一个长方形和两个半圆组成.整个操场的面积用代数式表示为.三、解答题16.如果对于任何有理数a b 、定义运算“∆”如下:12b a b a ⎛⎫∆=÷- ⎪⎝⎭,如13123223⎛⎫∆=÷-=- ⎪⎝⎭,求()274-∆∆的值.四、填空题17.甲、乙两人各买一本相同的书(都按原价),甲用去了他所带钱的60%,乙用去了他所带钱的25,则甲、乙两人所带钱的比是.18.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第23个图形需要黑色棋子的个数为.五、解答题19.计算题:(1)()254329314⎛⎫-+÷+⨯- ⎪⎝⎭(2)2121132334----⨯--(3)()2242293⎛⎫-÷⨯- ⎪⎝⎭20.先化简,再求值:已知22A x xy y =-+,223B x xy y =++,其中23,32x y ==.求()2A B A +-的值.21.当今社会,随着生活水平的提高,人们越来越重视自己的身心健康,注重锻炼身体.某公司计划购买50个羽毛球拍和x 个羽毛球,某体育用品商店每个羽毛球拍定价80元,每个羽毛球定价5元,经协商拟定了两种优惠方案如下(两个优惠方案不可混用):方案一:每买一个羽毛球拍就赠送2个羽毛球;方案二:羽毛球拍和羽毛球都按定价的90%付款,(1)若100x =,请计算哪种方案划算;(2)若100x >,请用含x 的代数式分别把两种方案的费用表示出来.22.某养鱼专业户准备挖一个面积为22000m 的长方形鱼塘.(1)用式子表示鱼塘的长()m y 与宽()m x 的关系;长()m y 与宽()m x 成什么比例关系?(2)由于受场地的限制,鱼塘的宽最多只能挖20m ,当鱼塘的宽是20m 时,鱼塘的长为多少米?23.分类讨论是一种重要的数学方法,如在化简a 时,可以这样分类:当0a >时,a a =;当0a =时,0a =;当0a <时,a a =-.用这种方法解决下列问题:(1)当5a =时,求aa 的值.(2)当2a =-时,求aa的值.(3)已知a ,b 是有理数,当0ab >时,试求ba a b+的值.24.(1)学习了整式的加减运算后,老师给同学们性了一个任务:已知2a =,自行给b 取一个喜欢的数.先化简下列式子,再代入求值.()()222221526323212a b aba ab a ab a b ⎛⎫-+--++- ⎪⎝⎭.小杜、小康、小磊三人经过化简计算,后来交流结果时发现,虽然三人给b 取的值都不同,但计算结果却完全一样.请解释出现这种情况的原因,并求这个计算结果.(2)已知代数式222573,2A x xy y B x xy =+--=-+.①当1,2x y =-=时,求3A B -的值;②若2A B -的值与y 的取值无关,求x 的值.25.已知二项式322x y --中,含字母的项的系数为a ,多项式的次数为b ,且a 、b 在数轴上对应的点分别为A 、B ,点C 为数轴上任意一点,对应的数为C .(1)a =,b =.并在数轴上标出A ,B ;(2)当点C 为线段AB 的三等分点时,求C 的值;(3)在(2)的条件下,若点C 离点B 较近时,点P 、Q 、M 分别从点A 、B 、C 同时向左运动,其速度分别为每秒2个单位长度、1个单位长度和4个单位长度.是否存在常数k ,使3k QM PQ ⋅-为定值,若存在,求k 的值;若不存在,请说明理由.。
七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
七年级上册数学期中考试试卷附答案

七年级上册数学期中考试试题2022年一、单选题1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,2021-的相反数是()A.2021-B.2021C.12021D.12021-2.下列运算正确的是()A.4m-m=3B.2a2-3a2=-a2C.a2b-ab2=0D.x-(y-x)=-y3.下列各数中最大的是()A.3-B.2-C.0D.14.12-的倒数是()A.﹣2B.12C.12-D.12±5.与a﹣b﹣c 的值不相等的是()A.a﹣(b﹣c)B.a﹣(b+c)C.(a﹣b)+(﹣c)D.(﹣b)+(a﹣c)6.将这个数285000000用科学记数法表示为()A.628510⨯B.728.510⨯C.82.8510⨯D.90.28510⨯7.一个多项式与5a 2+2a﹣1的和是6a 2﹣5a+3,则这个多项式是()A.a 2﹣7a+4B.a 2﹣3a+2C.a 2﹣7a+2D.a 2﹣3a+48.用四舍五入法,0.00356精确到万分位的近似数是()A.0.003B.0.004C.0.0035D.0.00369.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为()A.12B.24C.27D.3010.已知a 、b 是不为0的有理数,且a a =-,b b =,a b >,那么用数轴上的点来表示a 、b ,正确的是()A.B.C.D.二、填空题11.如果把“增加16%”记作“16%”,那么“______”表示“减少8%”.12.已知飞机的飞行高度为10000m ,上升5000m -后,飞机的飞行高度是____m .13.多项式232xy x y -+的次数是_____.14.如果223m n xy -与35m x y -是同类项,则n m 的值为______.15.若代数式5x-5与2x-9的值互为相反数,则x=________.16.已知a、b、c 三个数在数轴上对应点的位置如图所示,下列几个判断:①a<c<b;②﹣a<b;③a+b>0;④c﹣a<0中,错误的是_____(写序号)17.当2x =时,代数式31ax bx -+的值等于-17,那么当1x =-时,代数式33125bx ax -+-的值____.18.若单项式﹣23ax y与﹣2513b x y +是同类项,则a+b=___.三、解答题19.计算:()2411236⎡⎤--⨯--⎣⎦20.计算:22711150(6)(7)9126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦.21.先化简,再求值:()223233()a ab a b ab b ⎡⎤---++⎣⎦,其中3a =-,13b =.22.已知多项式22622452x mxy y xy x --+-+化简后的结果中不含xy 项.(1)求m 的值;(2)求代数式32322125m m m m m m ---+--++的值.23.若a、b 互为相反数,c、d 互为倒数,m 的绝对值为2.(1)直接写出:a+b=,cd=,m=;(2)求a bm cd m+++的值.24.某公司5天内货品进出仓库的吨数如下:(“+”表示进库,“一”表示出库)+23,﹣30,﹣16,+35,﹣33(1)经过这5天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这5天,仓库管理员结算发现仓库里还有货品508吨,那么5天前仓库里存有货品多少吨?(3)如果进出货的装卸费都是每吨4元,那么这5天一共要付多少元装卸费?25.已知多项式2244A x xy y =-+,225Bx xy y =--.(1)求23A B -;(2)若0A B C ++=,求多项式C .26.某人去水果批发市场采购猕猴桃,他看中了A、B 两家猕猴桃.这两家猕猴桃品质一样,零售价都为6元/千克,批发价各不相同,A 家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B 家的规定如下表:数量范围(千克)0~500500以上~15001500以上~25002500以上价格(元)零售价的95%零售价的85%零售价的75%零售价的70%(1)如果他批发600千克猕猴桃,则他在A 、B 两家批发分别需要多少元?(2)如果他批发x 千克猕猴桃(1500<x<2000),请你分别用含x 的代数式表示他在A、B 两家批发所需的费用;(3)现在他要批发1800千克猕猴桃,你能帮助他选择在哪家批发更优惠吗?请说明理由.27.小明妈妈在某玩具厂工作,厂里规定每个工人生产某种玩具,原计划每天生产20个,但由于种种原因,实际每天生产个数与原计划每天生产个数相比有出入.下表是小明妈妈十天内的生产情况记录表(超过记为正、不足记为负):天数12214增、减产值+6﹣7﹣4+5﹣1(1)与原计划相比,小明妈妈十天生产玩具总计超过或不足多少个?(2)该厂实行“每日计件工资制”,每生产一个玩具可得工资5元,求小明妈妈这十天的工资总额是多少元?参考答案1.B【解析】【分析】根据相反数的定义求解即可.【详解】解:根据相反数的定义:−2021的相反数是2021,【点睛】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.B 【解析】【分析】根据整式加减法的运算法则“如果遇到括号.按去括号法则先去括号:括号前是“+”号,把括号和它前面的“+”号去掉.括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉.括号里各项都改变符号.合并同类项:同类项的系数相加,所得的结果作为系数.字母和字母的指数不变.”进行逐项判断即可.【详解】解:A.43m m -=,故A 选项错误;B.22223a a a -=-,故B 选项正确;C.不是同类项,无法进行减法运算,故C 选项错误;D.()2x y x x y --=+,故D 选项错误;故答案为:B.【点睛】本题考查整式加减运算.合并同类项关键把握字母相同,并且各字母的指数也分别对应相同.需要注意,所有的常数项也都是同类项.去括号时,括号前是负号,去括号后括号里各项都变号.3.D 【解析】把选项中的4个数按从小到大排列,即可得出最大的数.【详解】由于-3<-2<0<1,则最大的数是1故选:D.【点睛】本题考查了有理数的大小比较,一般地,正数大于零,零大于负数,两个负数,绝对值大的反而小.4.A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:12的倒数是:-2.故选:A.【点睛】本题主要考查了倒数,正确掌握相关定义是解题关键.5.A【解析】【分析】根据去括号方法逐一计算即可【详解】A、a﹣(b﹣c)=a﹣b+c.故本选项正确;B、a﹣(b+c)=a﹣b﹣c,故本选项错误;C、(a﹣b)+(﹣c)=a﹣b﹣c,故本选项错误;D、(﹣b)+(a﹣c)=﹣c﹣b+a,故本选项错误.故选A 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号6.C 【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中1||10a ≤<,n 为整数,据此分析即可.【详解】解:8285000000 2.8510=⨯故选:C 【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.7.A【解析】【分析】根据题意列出关系式,去括号合并即可得到结果.【详解】解:根据题意得:(6a2﹣5a+3)﹣(5a2+2a﹣1)=6a2﹣5a+3﹣5a2﹣2a+1=a2﹣7a+4,故选A.【点睛】此题考查整式的加减,解题关键是熟练掌握运算法则.8.D【解析】【分析】把万分位后的数字6进行四舍五入即可.【详解】解:精确到万分位,0.003560.0036故选:D【点睛】此题考查了近似数和有效数字,解题关键在于掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.9.C【解析】【分析】根据新定义的公式代入计算即可.【详解】∵()*23m n m n =+⨯-,∴()6*3-=()623(3)27+⨯--=,故选C.【点睛】本题考查了新定义下的实数计算,准确理解新定义公式是解题的关键.10.C 【解析】【分析】根据绝对值的含义和数轴的性质判断即可.【详解】解:由a a =-,b b =,a b>可得:0a ≤,0b ≥,a 到原点的距离大于b 到原点的距离,观察各选项,可得C 选项符合题意,故选C 【点睛】本题考查了绝对值的意义和数轴的性质,解题的关键是熟练掌握绝对值和数轴的基础性质.11.﹣8%【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】如果把“增加16%”记作“16%”,那么“﹣8%”表示“减少8%”.故答案为:﹣8%.12.5000【解析】【分析】根据题意列式10000+(-5000)计算即可.【详解】根据题意,得飞机的飞行高度是10000+(-5000)=5000(m),故答案为:5000.【点睛】本题考查了有理数的加法,熟练掌握有理数加法的运算法则是解题的关键.13.4##四【解析】【分析】根据多项式次数的定义求解即可,多项式的次数是指多项式中次数最高的项的次数.【详解】解:多项式232xy x y -+含有两个单项式2xy -,32x y ,它们的次数分别为34,所以,多项式232xy x y -+的次数为4故答案为4此题考查了多项式次数的定义,掌握多项式次数的定义是解题的关键.14.8【解析】【分析】根据同类项的定义,列式计算即可.【详解】∵223m n x y -与35m x y -是同类项,∴2m-2=m,n=3,∴n m =32=8,故答案为:8.【点睛】本题考查了同类项即含有的字母相同且相同字母的指数也相同,熟练掌握定义并灵活计算是解题的关键.15.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】解:由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.故答案为:2【点睛】本题考查了相反数的性质以及一元一次方程的解法.16.②③④.【解析】【分析】由数轴分别得出a、b、c三个数的范围,再根据有理数的运算法则对四个结论一一判断即可.【详解】由数轴可得:﹣3<a<﹣2,0<b<1,﹣1<c<0,①数轴上右边的点表示的数总比左边的点表示的数大,所以a<c<b,此结论正确;②由数轴图不难得出2<﹣a<3,所以﹣a>b,此结论错误;③异号两数相加,取绝对值大的加数的符号,很明显,|a|>|b|,所以a+b<0,此结论错误;④正数减去负数所得差必为正数,所以c﹣a>0,此结论错误.故答案为②③④.【点睛】本题主要考查数轴、有理数的加减运算法则.17.22【解析】【分析】先对已知条件进行代入变形,可得代数式4a-b的值,再把所求代数式化成已知的形式,然后利用整体代入法求解即可.解:当x=2时,代数式3182117ax bx a b +=+=---,∴8218a b -=-,∴()2418a b -=-,∴49a b -=-,当1x =-时,代入33125bx ax -+-,原式3125b a =--,()345a b =---,()395=-⨯--,275=-,22=,∴代数式33125bx ax -+-的值等于22,故答案为:22.【点睛】题目主要考查利用“整体代入法”求解代数式的值,从题设中获取条件,对代数式化简代入求值是解题关键.18.0【解析】【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可求得a,b 的值,继而可求得a+b.解:∵单项式﹣23a x y 与﹣2513b x y +是同类项,∴a=2,b+5=3,解得a=2,b=﹣2,∴a+b=2﹣2=0.故答案为:0.【点睛】本题考查了同类项即所含字母相同,并且相同字母的指数也相同,准确理解定义满足的条件是解题的关键.19.16【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号先算括号里面的;【详解】解:原式()11711291716666=--⨯-=-+⨯=-+=.【点睛】此题要注意正确掌握运算顺序以及符号的处理.20.1【解析】【分析】先算乘方,再算利用乘法分配律将小括号展开,再计算加减法,最后算除法.【详解】解:()()22711150679126⎡⎤⎛⎫--+⨯-÷- ⎪⎢⎥⎝⎭⎣⎦71115036499126⎡⎤⎛⎫=--+⨯÷ ⎪⎢⎥⎝⎭⎣⎦711150363636499126⎡⎤⎛⎫=-⨯-⨯+⨯÷ ⎪⎢⎥⎝⎭⎣⎦[]502833649=-+-÷4949=÷1=【点睛】本题主要考查了有理数的乘方、乘除以及加减,熟练掌握有理数的乘方、乘除以及加减法则是解答此题的关键.21.229a ab -;27【解析】【分析】先去括号,再合并同类项,然后将值代入计算即可.【详解】解:原式2236333a ab a b ab b=--+--229a ab=-当3a =-,13b =时,原式212(3)9(3)3=⨯--⨯-⨯27=.【点睛】本题考查整式的加减.去括号时,注意要正确运用去括号法则考虑括号内的符号是否变号.22.(1)2m =;(2)14-.【解析】【分析】(1)先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值;(2)由(1)得m=2,先化简合并同类项,然后代入m 的值计算即可.【详解】解:(1)22622452x mxy y xy x --+-+,()22=6+42252x m xy y x ---+由题意中不含xy 项,可得4-2m=0,∴m=2;(2)32322125m m m m m m ---+--++=3226m m --+.23.(1)a+b=0,cd=1,m=±2;(2)3或-1【解析】【分析】(1)根据相反数的性质,倒数的性质,绝对值的性质计算即可;(2)根据(1)中的计算结果整体代入计算即可.【详解】解:(1)因为a、b 互为相反数,c、d 互为倒数,m 的绝对值为2;所以a+b=0,cd=1,2m =±.故答案为:0,1,2±.(2)当m=2时,原式02132=++=;当2m =-时,原式02112=-++=--.所以原式的值为3或1-.【点睛】本题考查相反数的性质,倒数的性质和绝对值的性质,熟练掌握以上知识点是解题关键,同时注意分类讨论思想的应用.24.(1)减少了;(2)5天前仓库里存有货品529吨;(3)这5天一共要付548元装卸费.【解析】【分析】(1)求出这5天的进出货的总和,根据总和的结果,判断货品的增多或减少.(2)根据现在的货品的吨数,逆推出5天前的货品的吨数.(3)计算进出货的绝对值的和,再乘以单价即可.【详解】(1)23﹣30﹣16+35﹣33=﹣21吨,答:仓库的货品减少了,故答案为:减少了;(2)508﹣(﹣21)=529吨,答:5天前仓库里存有货品529吨;(3)4×(|+23|+|﹣30|+|﹣16|+|+35|+|﹣33|)=4×137=548元,答:这5天一共要付548元装卸费.【点睛】本题考查了正数和负数在实际生活中的应用,掌握有理数的加法法则,正数和负数的意义是解题的关键.25.(1)225517xxy y -+;(2)22545x xy y -++【解析】【分析】(1)用多项式替换,适当添加括号,去括号后,合并同类项即可;(2)先计算A+B,根据已知C=-(A+B)即可得到结果.【详解】(1)∵2244A x xy y =-+,225B x xy y =--,∴23A B -=222(44)x xy y -+-223(5)xxy y --=22882x xy y -+-223315x xy y ++=225517x xy y -+;(2)∵2244A x xy y =-+,225B x xy y =--,∴A+B=22(4)4xxy y -++22(5)x xy y --=2244x xy y -++225x xy y --=22554x xy y --,∵0A B C ++=,∴C=-(A+B)=-(22554xxy y --)=22545x xy y -++.【点睛】本题考查了整式的加减中的化简,去括号,合并同类项,熟练掌握去括号,添括号的法则,灵活进行合并同类项是解题的关键.26.(1)A家:3312元,B家:3360元;(2)A家:275x;B家:912002x+;(3)选择B家更优惠,理由见解析【解析】【分析】(1)根据题意和表格可以得到他批发600千克猕猴桃时,在A、B两家批发各需要花费多少钱,从而本题得以解决;(2)根据题意和表格可以得到他批发x千克猕猴桃时(1500<x<2000),在A、B两家批发分别需要花费多少钱,从而本题得以解决;(3)将x=1800分别代入(2)求得的两个式子,计算出结果,然后进行比较,即可解答本题.【详解】解:(1)由题意可得,当批发600千克猕猴桃时,在A家批发需要:6×600×92%=3312(元),当批发600千克猕猴桃时,在B家批发需要:6×500×95%+6×(600-500)×85%=2850+510=3360(元);(2)由题意可得,当他批发x千克猕猴桃(1500<x<2000),他在A家批发需要:6×x×90%=275x(元),当他批发x千克猕猴桃(1500<x<2000),他在B家批发需要:6×500×95%+6×(1500-500)×85%+6×(x-1500)×75%=2850+5100+4.5x-6750=912002x+(元);(3)现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.理由:当他要批发1800千克猕猴桃时,他在A家批发需要:5.4×1800=9720(元),当他要批发1800千克猕猴桃时,他在B家批发需要:4.5×1800+1200=9300(元),∵9720>9300,∴现在他要批发1800千克猕猴桃,他选择在B家批发更优惠.【点睛】本题考查列代数式和代数式求值,解题的关键是明确题意,列出相应的代数式,求相应的代数式的值.27.(1)司机最后在原地的东边,离原地3千米(2)925元【解析】【分析】(1)根据有理数的加法运算法则和乘法运算法则列式计算即可;(2)用小明妈妈十天生产玩具的总数乘5即可.【详解】解:(1)(+6)×1+(﹣7)×2+(﹣4)×2+(+5)×1+(﹣1)×4=﹣15(个),故与原计划相比,小明妈妈十天生产玩具总计不足15个;(2)5×(20×10﹣15)=925(元).故小明妈妈这一周的工资总额是925元.21。
七年级上册数学期中考试试卷及答案

七年级上册数学期中考试试题一、单选题1.在0.15-、 1.3+、0、32-这四个数中,最小的数是()A .0.15-B . 1.3+C .0D .32-2.计算()32-,正确结果是()A .-6B .-8C .6D .83.1x =-是下列哪个方程的解()A .56x -=B .1262x +=C .314x +=D .440x +=4.2||3-的相反数是()A .32B .23-C .32-D .235.下列去括号正确的是()A .-2(a +b)=-2a +bB .-2(a +b)=-2a -bC .-2(a +b)=-2a -2bD .-2(a +b)=-2a +2b6.下列说法中正确的是()A .单项式235xy 的系数是3,次数是2B .单项式15ab -的系数是15,次数是2C .12xy -是二次多项式D .多项式243x -的常数项是37.已知a 是三位数,b 是两位数,将a 放在b 的左边,所得的五位数是()A .abB .a b+C .10a b+D .100a b+8.代数式227y y ++的值是6,则2485y y +-的值是()A .9B .9-C .18D .18-9.如果a >0,b <0,且|a|<|b|,则下列正确的是()A .a+b <0B .a+b >0C .a+b=0D .ab=010.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b (a b >),则()-a b 等于()A .7B .6C .5D .4二、填空题11.如果80m 表示向东走80m ,那么60m -表示________.12.中国领水面积约为370000km 2,用科学记数法表示370000为_______.13.若单项式3m ab 和4-n a b 是同类项,则m n +=_________.14.已知|a|=5,|b|=7,且|a+b|=a+b ,则a−b 的值为___________.15.近似数63.2010⨯精确到____________位.16.若()223310a b ++-=,则ab =__________.17.观察下列式子:22222210101;21213;32325;-=+=-=+=-=+=222243437;54549-=+=-=+=……若字母n 表示自然数,请把你观察到的规律用字母n 表示出来:______________.18.如图所示,用火柴棍拼成一排由三角形组成的图形,如果图形中包含2个三角形就需要5根火柴棍,如果图形中包含8个三角形就需要______根火柴棍,如果图形中包含n 个三角形就需要____根火柴棍.(用含n 的代数式表示)三、解答题19.计算()()16252435+-++-20.解方程:23(1)12(10.5)-+=-+x x 21.计算:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦22.先化简,再求值.224[62(42)]1x y xy xy x y ----+,其中12x =-,1y =.23.若多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,求222m mn n -+的值.24.有理数a 、b 在数轴上的对应点位置如图所示(1)用“<”连接0、a -、b -、1-;(2)化简:||2||||-+--a a b b a .25.某出租车驾驶员从公司出发,在东西向的路上连续接送5批客人,行驶路程记录分别为:+5,+2,﹣4,﹣3,+10(规定向东为正,向西为负,单位:千米)(1)接送完第5批客人后,该驾驶员在公司的什么方向?距离公司多少千米?(2)若该出租车每千米耗油0.2升,则在这个过程中共耗油多少升?(3)若该出租车的计价标准为行驶路程不超过3千米收费10元,超过3千米的部分按每千米1.8元收费,在这过程该驾驶员共收到车费多少?26.观察下列各算式:221342,13593,1357164+==++==+++==.(1)试猜想:135720052007++++++ 的值?(2)推广:13579(21)(21)++++++-++ n n 的和是多少?27.一个跑道由两个半圆和一个长方形组成.已知长方形的长为a 米,宽为b 米.(1)用代数式表示该跑道的周长C .(2)用代数式表示该跑道的面积S .(3)当100a =,40b =时,求跑道的周长()π3C ≈.参考答案1.D【解析】【分析】根据有理数比较大小的方法求解即可.正数大于负数,两个负数比较大小,绝对值大的反而小.【详解】解:∵正数大于负数,又∵3 0.15<2--,∴3 0.15>2 --,∴这四个数中,最小的数是3 2-.故选:D.【点睛】此题考查了有理数比较大小,解题的关键是熟练掌握有理数比较大小的方法.正数大于负数,两个负数比较大小,绝对值大的反而小.2.B【解析】【分析】根据乘方的性质计算,即可得到答案.【详解】()328-=-故选:B.【点睛】本题考查了乘方的知识;解题的关键是熟练掌握乘方的性质,从而完成求解.3.D【解析】【分析】把1x=-分别代入四个选项的方程中,能够使得方程左右两边相等的选项即为所求.解:A 、把1x =-代入方程56x -=得156--=,即66=-不成立,故不符合题意;B 、把1x =-代入方程1262x +=得1262-+=,即362=不成立,故不符合题意;C 、把1x =-代入方程314x +=得314-+=,即24-=不成立,故不符合题意;D 、把1x =-代入方程440x +=得440-+=,即00=成立,故符合题意;故选D .【点睛】本题主要考查了一元一次方程的解,解题的关键在于能够熟练掌握一元一次方程解的定义.4.B 【解析】【分析】利用相反数的定义,先列式,再化简绝对值即可.【详解】−2-3的相反=-2-3=-23.故选择:B .【点睛】本题考查相反数与绝对值问题,掌握相反数与绝对值概念是关键.5.C 【解析】【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A.原式=−2a−2b ,故本选项错误;B.原式=−2a−2b ,故本选项错误;C.原式=−2a−2b ,故本选项正确;D.原式=−2a−2b ,故本选项错误;故选C.【点睛】考查去括号法则,当括号前面是“-”号时,把括号去掉,括号里的各项都改变正负号.6.C【分析】根据单项式与多项式的概念进行判断,即可得出正确结论.【详解】解:A .单项式235xy 的系数是35,次数是3,故本选项错误,不符合题意;B .单项式15ab -的系数是15-,次数是2,故本选项错误,不符合题意;C .12xy -是二次二项式,故本选项正确,符合题意;D .多项式243x -的常数项是3-,故本选项错误,不符合题意,故选:C .【点睛】本题主要考查了单项式与多项式的概念,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数,熟练掌握单项式与多项式的概念是解决本题的关键.7.D 【解析】【分析】组成五位数后,a 是原来的100倍,b 不变,相加即可.【详解】解:a 原来的最高位是百位,组成五位数后,a 的最高位是万位,是原来的100倍,b 的大小不变,那么这个五位数应表示成100a+b .故选:D .【点睛】本题主要考查列代数式,关键是看哪个数变大了,只把那个数变化即可.8.B 【解析】【详解】∵227y y ++=6,∴22y y +=-1,=4×(-1)-5=-9,故选B.9.A【解析】【分析】根据a>0,b<0,且|a|<|b|,可得a<-b,即a+b<0.【详解】∵a>0,b<0,且|a|<|b|,∴a<-b,即a+b<0.故选A.【点睛】本题考查了有理数的大小比较,解答本题的关键是根据题意得出a<-b.10.A【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.11.向西走60米【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负来表示;【详解】80m表示向东走80m,规定向东为正,则-60m表示向西走60米.故答案为向西走60米.【点睛】本题主要考查了正数和负数的概念,掌握正数和负数的概念是解题的关键.12.3.7×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n 为整数)中n的值,由于370000有6位,所以可以确定n=6-1=5.【详解】370000=3.7×105,故答案为3.7×105.【点睛】此题考查科学记数法—表示较大的数,解题关键在于掌握其一般表示形式.13.2【解析】【分析】根据同类项的概念求解.【详解】ab和4-n a b是同类项,解:∵单项式3m∴n=1,m=1,+=2,∴m n故答案为:2.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.−2或−12.【解析】【分析】根据绝对值的性质求出a 、b 的值,然后代入进行计算即可求解.【详解】∵|a|=5,|b|=7,∴a=5或−5,b=7或−7,又∵|a+b|=a+b ,∴a+b ⩾0,∴a=5或−5,b=7,∴a−b=5−7=−2,或a−b=−5−7=−12.故答案为−2或−12.【点睛】此题考查绝对值,解题关键在于掌握其性质.15.万【解析】【分析】3.20×106精确到0.01×106位即万位.【详解】近似数3.20×106=3200000精确到万位,故答案为:万.【点睛】本题主要考查近似数,对于用科学记表示的数,精确到哪一位是需要识记的内容,经常会出错.16.12-【解析】【分析】由绝对值和平方的非负性结合已知条件求得a 、b 的值,再代入ab 中计算即可.【详解】解:∵223(31)0a b ++-=,∴3123a b =-=,∴311232ab =-⨯=-.故答案为12-.17.22(1)(1)21n n n n n --=+-=-【解析】【分析】观察式子即可得出结论.【详解】解:观察式子可发现22(1)(1)21n n n n n --=+-=-,故答案为:22(1)(1)21n n n n n --=+-=-.【点睛】本题考查规律型,观察式子得到规律是解题的关键.18.1721n +##12n+【解析】【分析】一个三角形时,将左边一根固定,后面每增加一个三角形就加2根火柴棍,据此可分别计算出有8个及n 个三角形时,火柴棍数量.【详解】有1个三角形时,需要123+=根火柴棍,有2个三角形时,需要1225+⨯=根火柴棍,有3个三角形时,需要1327+⨯=根火柴棍,有4个三角形时,需要1429+⨯=根火柴棍,……有8个三角形时,需要18217+⨯=根火柴棍,有n 个三角形,需要1221n n +⨯=+根火柴棍.故答案为:17,21n +.【点睛】本题考查了图形的变化规律,找出图形之间的联系是关键,并将得出的运算规律解决问题,属中档题.19.-20【解析】【分析】先根据有理数加法的交换律和结合律,得到()()16242535++-+-⎡⎤⎣⎦,再利用有理数加法法则,计算即可求解.【详解】解:()()16252435+-++-()()16242535=++-+-⎡⎤⎣⎦()406020=+-=-.【点睛】本题主要考查了有理数的加法运算,能利用有理数加法的交换律和结合律简化运算是解题的关键.20.x =0【解析】【分析】根据解一元一次方程的基本步骤依次去括号、移项、合并同类项、系数化为1即可.【详解】解:去括号,得:2﹣3x ﹣3=1﹣2﹣x ,移项,得:﹣3x+x =1﹣2﹣2+3,合并同类项,得:﹣2x =0,系数化为1,得:x =0.【点睛】本题主要考查解一元一次方程,解题的关键是熟练掌握等式的基本性质和解一元一次方程的基本步骤.21.4165-.【解析】【分析】先计算乘方,小数化分数,把除化乘,计算小括号的乘方,再计算小括号减法,计算中括号乘法,去括号,进行有数加法即可.【详解】解:2335(2)10.8(2)4⎡⎤⎛⎫---+-⨯÷- ⎢⎥⎝⎭⎣⎦,=4312581()542⎡⎤⎛⎫---+-⨯⨯- ⎪⎢⎥⎝⎭⎣⎦,=312581()52⎡⎤⎛⎫---+-⨯- ⎪⎢⎥⎝⎭⎣⎦,=21258()52⎡⎤---+⨯-⎢⎥⎣⎦,=12585⎛⎫---- ⎪⎝⎭,=12585-++,=4165-.【点睛】本题考查含乘方的有理数混合运算,掌握有理数混合运算顺序为先乘法,再乘除,最后加减,有括号先计算小括号,再算中括号,最后大括号是解题关金.22.2523x y xy +-,114-.【解析】【详解】解:原式=224[684]1x y xy xy x y --+-+=224[24]1x y xy x y --+-+,=224241x y xy x y +-++=2523x y xy +-,把12x =-,1y =代入上式得:原式=211115()12()13224⨯-⨯+⨯-⨯-=-.23.1,25.【解析】【分析】先根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩,解方程组,然后分类代入代数式计算即可.【详解】解:∵多项式2||25(3)2m x y n y +--是关于x ,y 的四次二项式,∴2430m n ⎧+=⎨-=⎩,解得23m n =±⎧⎨=⎩,当2,3m n ==时,222222223341291m mn n -+=-⨯⨯+=-+=;当2,3m n =-=时,()()2222222233412925m mn n -+=--⨯-⨯+=++=.【点睛】本题考查多项式的项数与次数,方程组,代数式求值,根据多项式的次数与项数得出2430m n ⎧+=⎨-=⎩是解题关键.24.(1)﹣1<﹣b <0<﹣a ;(2)2a+b 【解析】【分析】(1)先根据相反数的意义在数轴上分别表示出﹣a ,﹣b ,所对应的点,再根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,由此即可比较出0,﹣a ,﹣b ,﹣1的大小关系;(2)首先根据数轴可得a <0,a+b <0,b ﹣a >0,由此可得|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,然后根据整式加减的运算法则化简即可.【详解】解:(1)由题意可得:由此可得:﹣1<﹣b <0<﹣a .(2)由数轴可得:a <0,a+b <0,b ﹣a >0,∴|a|=﹣a ,|a+b|=﹣(a+b ),|b ﹣a|=b ﹣a ,∴|a|﹣2|a+b|﹣|b﹣a|=﹣a+2(a+b)﹣(b﹣a)=﹣a+2a+2b﹣b+a=2a+b.【点睛】(1)此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.(2)此题还考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.(3)此题还考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a 是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.(4)此题还考查了整式的加减运算,要熟练掌握,解答此类问题的关键是要明确:整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.25.(1)接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)4.8升.(3)68元.【解析】【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【详解】解:(1)5+2+(−4)+(−3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的东边10千米处.(2)(5+2+|−4|+|−3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5−3)×1.8]+10+[10+(4−3)×1.8]+10+[10+(10−3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.【点睛】本题考查正负数的意义,解题的关键是熟练运用正负数的意义,本题属于基础题型.n+.26.(1)1008016;(2)()21【分析】(1)根据2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,由此可求135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭(2)根据规律可得一般形式,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,从而可以求解推广.【详解】解:(1)2213134=22+⎛⎫+== ⎪⎝⎭,2215135932+⎛⎫++=== ⎪⎝⎭,221713571642+⎛⎫+++=== ⎪⎝⎭,2219135792552+⎛⎫++++=== ⎪⎝⎭,∴135720052007++++++ =221200710042+⎛⎫= ⎪⎝⎭=1008016;(2)一般形式2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭,由此可以发现()()221211357921(21)12n n n n ++⎛⎫+++++⋅⋅⋅-++==+ ⎪⎝⎭,【点睛】本题主要考查了数字类规律,解题的关键在于能够根据题意发现规律是n 个连续奇数的和等于第一个奇数与最后一个奇数和的一半的平方,2212113579(21)2n n n +-⎛⎫+++++⋅⋅⋅+-== ⎪⎝⎭.27.(1)()2πa b +米(2)2π44b ab +平方米(3)320米【分析】(1)跑道的周长是两条“直道”和两条“弯道”的长度和;(2)长方形的面积与圆的面积和即可;(3)将a=100,b=40代入(1)中的代数式计算即可.(1)两条“直道”的长为2a 米,两条“弯道”的长为πb 米,因此该跑道的周长()2πC a b =+(米),答:该跑道的周长C 为()2πa b +米.(2)两个半圆的面积为22ππ24b b ⎛⎫⨯= ⎪⎝⎭(平方米),长方形的面积为ab (平方米),因此跑道的面积为22ππ444ab b b ab=+=+(平方米).(3)当100a =,40b =时,2π20040π200120320a b +=+≈+=(米),答:当100a =,40b =时跑道的周长C 约为320米.【点睛】本题考查列代数式和代数式求值,正确的列代数式是求值的前提.。
北京市2024-2025学年七年级上学期11月期中考试数学试题

北京市2024-2025学年七年级上学期11月期中考试数学试题一、单选题1.0.6-的倒数是()A .0.36B .0.6-C .53-D .532.2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A .71.3310⨯B .513.310⨯C .61.3310⨯D .70.1310⨯3.对乘积(2024)(2024)(2024)(2024)-⨯-⨯-⨯-记法正确的是()A .42024-B .4(2024)-C .4(2024)--D .4(2024)-+4.下列去括号正确的是()A .(2)2a b a b---=-B .222(2)22a a b a a b +-=+-C .222211()44x x y x x y--=-+D .2211(1)122x x x x --=-+5.下列计算正确的是()A .234a a a +=B .22234xy yx x y-=-C .2385m m m -=D .527s s+=6.若有理数,a b 满足41(3)03a b ++-=,则b a 的值为()A .127-B .127C .19-D .197.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为()A .-3B .-2C .-1D .18.观察下列一行数:0,6,6-,18,30-,66,…,按照上述规律,则第n 个数是()A .6(1)n -B .293327n n -+-C .33()66()n n n n -+⎧⎨-⎩为奇数为偶数D .(2)2n -+二、填空题9.用四舍五入法取近似数,2.71828≈(精确到百分位).10.比较两个数的大小:67-56-(填入“>”“=”、“<”)11.写出一个多项式,使得它与多项式22m n +的和是单项式,这个多项式可以是.12.数轴上表示数5-和表示数14-的两点之间的距离是.13.已知一个数x 以及23x x 、在数轴上对应的点的位置如图所示:请写出一个满足条件x 的值为.14.同一个式子可以表示不同的含义,例如6n 可以表示长为6,宽为n 的长方形面积,也可以表示更多的含义,请你给6n 再赋予一个含义.15.某地居民的生活用水收费标准为:每月用水量不超过315m ,每立方米a 元;超过部分每立方米()3a +元,该地区老王家上月用水量是321m ,则应缴水费为元.16.有一种有趣的游戏,游戏规则如下:在不透明的箱子中放入10个黑球和6个白球,每次从箱子中取出两个球①如果抽到两个黑球,一个留在箱外,一个放回箱子;②如果抽到一黑一白,黑球留在箱外,白球放回;③如果抽到两个白球,两个白球都留在箱外,并向箱内补进一个黑球;在抽取15次之后,箱中剩下个球,球的颜色是.三、解答题17.计算:219812-+-+.18.计算:31112424⎛⎫⎛⎫⎛⎫-⨯-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.19.计算:()22715213428⎡⎤⎛⎫-⨯-+-÷--⎢ ⎪⎝⎭⎢⎥⎣⎦.20.计算235(36)346⎛⎫--⨯- ⎪⎝⎭.21.(1)画出数轴,并在数轴上表示下列有理数:4-,112-,2,|3|--.(2)若点A 对应4-,点B 对应2,且点C 到B 的距离是点C 到点A 距离的3倍,直接写出点C 对应的数是________.22.先化简下式,再求值:222224(3)2(3)14x y xy xy x y x y ----,其中1x =,12y =-.四、判断题23.某次茶艺比赛中指定使用的饮水机工作流程为:先将20℃的饮用水加热到100℃,然后马上停止加热,水温开始下降.已知整个过程中水温()y ℃与通电时间()min x 的关系如下表所示:()min x 0123481020…()y ℃204060m100504020…(1)在水温上升过程中,x 与y 满足某种数量关系,m =________;(2)在水温下降过程中,x 与y 满足某种比例关系,这种比例关系是________比例关系:用式子表示x 与y 之间的这种关系为________;(3)比赛组织方要求,参赛选手必须把组织方提供的20℃的饮用水用该款饮水机加热到100℃,然后降温到80℃方可使用,求从饮水机加热开始到可以使用需要等待多长时间?五、解答题24.已知21313A a ab =-+-,2122B a ab b =--++.(1)化简(2)2A B A --.(2)若(1)中式子的值与a 的取值无关,求解b 的值.25.2024年国庆,全国从1日到7日放假七天,高速公路免费通行,各地景区游人如织.其中因为《黑西游》出名的某地石窟,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)3.2+ 1.78+0.68-0.7- 1.1- 1.7- 1.15-(1)10月3日的人数为________万人.(2)七天假期里,游客人数最多的是10月________日,达到________万人.游客人数超过3.2万人的天数有________天.(3)在国庆七天,该风景区内平均每天接待多少游客?(结果精确到千位)26.我们用xyz 表示一个三位数,其中x 表示百位上的数,y 表示十位上的数,z 表示个位上的数.若________________,则xyz 是11的整数倍.从下列三个条件中选取一个填在上述横线上,使得结论成立,并说明理由.(1)11x z y+-=(2)11z y x=--(3)y z x-=说明:若选择多个符合要求的条件解答,则按照第一个解答给分.27.定义:将n 个互不相等的有理数1234,,,,,n a a a a a ⋯两两相乘.得到的乘积是m 个互不相等的数(相同的乘积看作是一个数),称这m 个数为这n 个有理数的二维组.例如:有三个有理数0,1,3,因为010030133⨯=⨯=⨯=,,,则0和3组成这三个数的二维组.(1)求1,2,4,8这四个数的二维组中的所有数.(2)若某几个有理数的二维组中的数是0,6-,8-,12-,12,18,24,尝试求解这几个有理数.(3)当5n =时,即给定任意五个有理数,m 的最小值是________,写出一组满足条件的五个有理数为________.。
初一上册数学期中试题及答案【四篇】

【导语】上学期期中考试马上到了,想要测试⼀下⾃⼰数学半个学期的学习⽔平吗?下⾯是为您整理的初⼀上册数学期中试题及答案【四篇】,仅供⼤家参考。
【篇⼀】初⼀上册数学期中试题及答案 ⼀、精⼼选⼀选(每题3分,共计24分) 1.在2、0、﹣3、﹣2四个数中,最⼩的是()A.2B.0C.﹣3D.﹣2 【考点】有理数⼤⼩⽐较. 【分析】在数轴上表⽰出各数,利⽤数轴的特点即可得出结论. 【解答】解:如图所⽰, , 由图可知,最⼩的数是﹣3. 故选C. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知数轴上右边的数总⽐左边的⼤是解答此题的关键. 2.下列式⼦,符合代数式书写格式的是()A.a÷3B.2xC.a×3D. 【考点】代数式. 【分析】利⽤代数式书写格式判定即可 【解答】解: A、a÷3应写为, B、2a应写为a, C、a×3应写为3a, D、正确, 故选:D. 【点评】本题主要考查了代数式,解题的关键是熟记代数式书写格式. 3.在﹣,3.1415,0,﹣0.333…,﹣,﹣0.,2.010010001…中,⽆理数有()A.1个B.2个C.3个D.4个 【考点】⽆理数. 【分析】⽆理数是指⽆限不循环⼩数,根据定义逐个判断即可. 【解答】解:⽆理数有﹣,2.010010001…,共2个, 故选B. 【点评】本题考查了对⽆理数定义的应⽤,能理解⽆理数的定义是解此题的关键,注意:⽆理数包括三⽅⾯的数:①含π的,②开⽅开不尽的根式,③⼀些有规律的数. 4.若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1B.1C.4D.7 【考点】⾮负数的性质:偶次⽅;⾮负数的性质:绝对值. 【分析】先根据⾮负数的性质求出m、n的值,再代⼊代数式进⾏计算即可. 【解答】解:∵|m﹣3|+(n+2)2=0, ∴m﹣3=0,n+2=0,解得m=3,n=﹣2, ∴m+2n=3﹣4=﹣1. 故选A. 【点评】本题考查的是⾮负数的性质,熟知⼏个⾮负数的和为0时,其中每⼀项必为0是解答此题的关键. 5.下列计算的结果正确的是()A.a+a=2a2B.a5﹣a2=a3C.3a+b=3abD.a2﹣3a2=﹣2a2 【考点】合并同类项. 【专题】常规题型. 【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,判断各选项即可. 【解答】解:A、a+a=2a,故本选项错误; B、a5与a2不是同类项,⽆法合并,故本选项错误; C、3a与b不是同类项,⽆法合并,故本选项错误; D、a2﹣3a2=﹣2a2,本选项正确. 故选D. 【点评】本题考查合并同类项的知识,要求掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数. 6.⽤代数式表⽰“m的3倍与n的差的平⽅”,正确的是()A.(3m﹣n)2B.3(m﹣n)2C.3m﹣n2D.(m﹣3n)2 【考点】列代数式. 【分析】认真读题,表⽰出m的3倍为3m,与n的差,再减去n为3m﹣n,最后是平⽅,于是答案可得. 【解答】解:∵m的3倍与n的差为3m﹣n, ∴m的3倍与n的差的平⽅为(3m﹣n)2. 故选A. 【点评】本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平⽅与平⽅差的区别,做题时注意体会. 7.下列各对数中,数值相等的是()A.(2)3和(﹣3)2B.﹣32和(﹣3)2C.﹣33和(﹣3)3D.﹣3×23和(﹣3×2)3 【考点】有理数的乘⽅. 【分析】分别利⽤有理数的乘⽅运算法则化简各数,进⽽判断得出答案. 【解答】解:A、∵(﹣3)2=9,23=8, ∴(﹣3)2和23,不相等,故此选项错误; B、∵﹣32=﹣9,(﹣3)2=9, ∴﹣23和(﹣2)3,不相等,故此选项错误; C、∵﹣33=﹣27,(﹣33)=﹣27, ∴﹣33和(﹣3)3,相等,故此选项正确; D、∵﹣3×23=﹣24,(﹣3×2)3=,﹣216, ∴﹣3×23和(﹣3×2)3不相等,故此选项错误. 故选:C. 【点评】此题主要考查了有理数的乘⽅运算,正确掌握运算法则是解题关键. 8.等边△ABC在数轴上的位置如图所⽰,点A、C对应的数分别为0和﹣1.若△ABC绕顶点沿顺时针⽅向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2015次后,点B()A.不对应任何数B.对应的数是2013C.对应的数是2014D.对应的数是2015 【考点】数轴. 【专题】规律型. 【分析】结合数轴根据翻折的次数,发现对应的数字依次是:1,1,2.5;4,4,5.5;7,7,8.5…即第1次和第⼆次对应的都是1,第四次和第五次对应的都是4,第7次和第8次对应的都是7.根据这⼀规律:因为2015=671×3+2=2013+2,所以翻转2015次后,点B所对应的数2014. 【解答】解:因为2015=671×3+2=2013+2, 所以翻转2015次后,点B所对应的数是2014. 故选:C. 【点评】考查了数轴,本题是⼀道找规律的题⽬,要求学⽣通过观察,分析、归纳发现其中的规律,并应⽤发现的规律解决问题.注意翻折的时候,点B对应的数字的规律:只要是3n+1和3n+2次翻折的对应的数字是3n+1. ⼆、细⼼填⼀填(每空2分,共计30分) 9.﹣5的相反数是5,的倒数为﹣. 【考点】倒数;相反数. 【分析】根据相反数及倒数的定义,即可得出答案. 【解答】解:﹣5的相反数是5,﹣的倒数是﹣. 故答案为:5,﹣. 【点评】本题考查了倒数及相反数的知识,熟练倒数及相反数的定义是关键. 10.⽕星和地球的距离约为34000000千⽶,这个数⽤科学记数法可表⽰为3.4×107千⽶. 【考点】科学记数法—表⽰较⼤的数. 【分析】科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:34000000=3.4×107, 故答案为:3.4×107. 【点评】此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值. 11.⽐较⼤⼩:﹣(+9)=﹣|﹣9|;﹣>﹣(填“>”、“ 【考点】有理数⼤⼩⽐较. 【分析】先去括号及绝对值符号,再根据负数⽐较⼤⼩的法则进⾏⽐较即可. 【解答】解:∵﹣(+9)=﹣9,﹣|﹣9|=﹣9, ∴﹣(+9)=﹣|﹣9|; ∵|﹣|==,|﹣|==, ∴﹣>﹣. 故答案为:=,>. 【点评】本题考查的是有理数的⼤⼩⽐较,熟知负数⽐较⼤⼩的法则是解答此题的关键. 12.单项﹣的系数是﹣,次数是4次;多项式xy2﹣xy+24是三次三项式. 【考点】多项式;单项式. 【分析】根据单项式的系数及次数的定义,多项式的次数及项数的概念解答. 【解答】解:单项﹣的系数是﹣,次数是4次,多项式xy2﹣xy+24是三次三项式. 【点评】根据单项式的单项式的系数是单项式前⾯的数字因数,次数是单项式所有字母指数的和; 多项式是由单项式组成的,常数项也是⼀项,多项式的次数是“多项式中次数的项的次数”. 13.若﹣7xyn+1与3xmy4是同类项,则m+n=4. 【考点】同类项. 【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出⽅程,求出n,m的值,再代⼊代数式计算即可. 【解答】解:根据题意,得:m=1,n+1=4, 解得:n=3, 则m+n=1+3=4. 故答案是:4. 【点评】本题考查了同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点. 14.⼀个多项式加上﹣3+x﹣2x2得到x2﹣1,这个多项式是3x2﹣x+2. 【考点】整式的加减. 【分析】本题涉及整式的加减运算、合并同类项两个考点,解答时根据整式的加减运算法则求得结果即可. 【解答】解:设这个整式为M, 则M=x2﹣1﹣(﹣3+x﹣2x2), =x2﹣1+3﹣x+2x2, =(1+2)x2﹣x+(﹣1+3), =3x2﹣x+2. 故答案为:3x2﹣x+2. 【点评】解决此类题⽬的关键是熟练掌握同类项的概念和整式的加减运算.整式的加减实际上就是合并同类项,这是各地中考的常考点,最后结果要化简. 15.按照如图所⽰的操作步骤,若输⼊x的值为﹣3,则输出的值为22. 【考点】有理数的混合运算. 【专题】图表型. 【分析】根据程序框图列出代数式,把x=﹣3代⼊计算即可求出值. 【解答】解:根据题意得:3x2﹣5=3×(﹣3)2﹣5=27﹣5=22, 故答案为:22 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.⼀只蚂蚁从数轴上⼀点A出发,沿着同⼀⽅向在数轴上爬了7个单位长度到了B点,若B点表⽰的数为﹣3,则点A所表⽰的数是4或﹣10. 【考点】数轴. 【分析】“从数轴上A点出发爬了7个单位长度”,这个⽅向是不确定的,可以是向左爬,也可以是向右爬. 【解答】解:分两种情况: 从数轴上A点出发向左爬了7个单位长度,则A点表⽰的数是4; 从数轴上A点出发向右爬了7个单位长度,则A点表⽰的数是﹣10, 故答案为:4或﹣10. 【点评】考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,在学习中要注意培养数形结合的数学思想以及分类的思想. 17.若3a2﹣a﹣2=0,则5+2a﹣6a2=1. 【考点】代数式求值. 【专题】整体思想. 【分析】先观察3a2﹣a﹣2=0,找出与代数式5+2a﹣6a2之间的内在联系后,代⼊求值. 【解答】解;∵3a2﹣a﹣2=0,∴3a2﹣a=2, ∴5+2a﹣6a2=5﹣2(3a2﹣a)=5﹣2×2=1. 故答案为:1. 【点评】主要考查了代数式求值问题.代数式中的字母表⽰的数没有明确告知,⽽是隐含在题设中,把所求的代数式变形整理出题设中的形式,利⽤“整体代⼊法”求代数式的值. 18.已知f(x)=1+,其中f(a)表⽰当x=a时代数式的值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…•f(100)=101. 【考点】代数式求值. 【专题】新定义. 【分析】把数值代⼊,计算后交错约分得出答案即可. 【解答】解:∵f(1)=1+=2,f(2)=1+=,…f(a)=1+=, ∴f(1)•f(2)•f(3)…•f(100) =2×××…×× =101. 故答案为:101. 【点评】此题考查代数式求值,理解题意,计算出每⼀个式⼦的数值,代⼊求得答案即可. 三、认真答⼀答(共计46分) 19.画⼀条数轴,然后在数轴上表⽰下列各数:﹣(﹣3),﹣|﹣2|,1,并⽤“ 【考点】有理数⼤⼩⽐较;数轴. 【分析】根据数轴是⽤点表⽰数的⼀条直线,可⽤数轴上得点表⽰数,根据数轴上的点表⽰的数右边的总⽐左边的⼤,可得答案. 【解答】解:在数轴上表⽰各数: ⽤“ 【点评】本题考查了有理数⽐较⼤⼩,数轴上的点表⽰的数右边的总⽐左边的⼤. 20.计算: (1)﹣20+(﹣5)﹣(﹣18); (2)(﹣81)÷×÷(﹣16) (3)(﹣+﹣)÷(﹣) (4)(﹣1)100﹣×[3﹣(﹣3)2]. 【考点】有理数的混合运算. 【专题】计算题. 【分析】(1)原式利⽤减法法则变形,计算即可得到结果; (2)原式从左到右依次计算即可得到结果; (3)原式利⽤除法法则变形,再利⽤乘法分配律计算即可得到结果; (4)原式先计算乘⽅运算,再计算乘法运算,最后算加减运算即可得到结果. 【解答】解:(1)原式=﹣20﹣5+18=﹣25+18=﹣7; (2)原式=81×××=1; (3)原式=(﹣+﹣)×(﹣24)=6﹣4+3=5; (4)原式=1﹣×(﹣6)=1+1=2. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 21.化简 (1)3b+5a﹣(2a﹣4b) (2)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b); (3)先化简,再求值:4(x﹣1)﹣2(x2+1)+(4x2﹣2x),其中x=﹣3. 【考点】整式的加减—化简求值;整式的加减. 【专题】计算题. 【分析】(1)原式去括号合并即可得到结果; (2)原式去括号合并即可得到结果; (3)原式去括号合并得到最简结果,把x的值代⼊计算即可求出值. 【解答】解:(1)原式=3b+5a﹣2a+4b=3a+7b; (2)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2; (3)原式=4x﹣4﹣2x2﹣2+2x2﹣x=3x﹣6, 当x=﹣3时,原式=﹣15. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 22.有这样⼀道题⽬:“当a=3,b=﹣4时,求多项式3(2a3b﹣a2b﹣a3)﹣(6a3b﹣3a2b+3)+3a3的值”.⼩敏指出,题中给出的条件a=3,b=﹣4是多余的,她的说法有道理吗?为什么? 【考点】整式的加减—化简求值. 【专题】计算题. 【分析】原式去括号合并得到结果为常数,故⼩敏说法有道理. 【解答】解:原式=6a3b﹣3a2b﹣3a3﹣6a3b+3a2b﹣3+3a3=﹣3, 多项式的值为常数,与a,b的取值⽆关, 则⼩敏说法有道理. 【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 23.定义⼀种新运算:观察下列式: 1⊙3=1×4+3=7; 3⊙(﹣1)=3×4﹣1=11; 5⊙4=5×4+4=24; 4⊙(﹣3)=4×4﹣3=13;… (1)根据上⾯的规律,请你想⼀想:a⊙b=4a+b; (2)若a⊙(﹣2b)=6,请计算(a﹣b)⊙(2a+b)的值. 【考点】有理数的混合运算. 【专题】新定义. 【分析】(1)利⽤已知新定义化简即可得到结果; (2)已知等式利⽤已知新定义化简求出2a﹣b的值,原式利⽤新定义化简后代⼊计算即可求出值. 【解答】解:(1)根据题中新定义得:a⊙b=4a+b; 故答案为:4a+b; (2)∵a⊙(﹣2b)=4a﹣2b=6,∴2a﹣b=3, 则(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b=3(2a﹣b)=3×3=9. 【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 24.某⼯艺⼚计划⼀周⽣产⼯艺品2100个,平均每天⽣产300个,但实际每天⽣产量与计划相⽐有出⼊.表是某周的⽣产情况(超产记为正、减产记为负): 星期⼀⼆三四五六⽇ 增减(单位:个)+5﹣2﹣5+15﹣10﹣6﹣9 (1)写出该⼚星期三⽣产⼯艺品的数量; (2)本周产量中最多的⼀天⽐最少的⼀天多⽣产多少个⼯艺品? (3)请求出该⼯艺⼚在本周实际⽣产⼯艺品的数量; (4)已知该⼚实⾏每周计件⼯资制,每⽣产⼀个⼯艺品可得60元,若超额完成任务,则超过部分每个另奖50元,少⽣产⼀个扣80元.试求该⼯艺⼚在这⼀周应付出的⼯资总额. 【考点】正数和负数. 【分析】(1)根据每天平均300辆,超产记为正、减产记为负,即可解题; (2)⽤15﹣(﹣10)即可解答; (3)把正负数相加计算出结果,再与2100相加即可; (3)计算出本周⼀共⽣产电车数量,根据⼀辆车可得60元即可求得该⼚⼯⼈这⼀周的⼯资总额. 【解答】解:(1)300﹣5=295(个). 答:该⼚星期三⽣产⼯艺品的数量是295个; (2)15﹣(﹣10)=25(个). 答:最多⽐最少多25个; (3)5﹣2﹣5+15﹣10﹣6﹣9=﹣12, 2100﹣12=2088(个). 答:该⼯艺⼚在本周实际⽣产⼯艺品的数量为2088个; (4)2088×60﹣12×80=124320(元). 答:该⼯艺⼚在这⼀周应付出的⼯资总额为124320元. 【点评】本题考查了正数和负数的定义,明确超产记为正、减产记为负是解题的关键. 25.先看数列:1,2,4,8,…,263.从第⼆项起,每⼀项与它的前⼀项的⽐都等于2,象这样,⼀个数列:a1,a2,a3,…,an﹣1,an;从它的第⼆项起,每⼀项与它的前⼀项的⽐都等于⼀个常数q,那么这个数列就叫等⽐数列,q 叫做等⽐数列的公⽐. 根据你的阅读,回答下列问题: (1)请你写出⼀个等⽐数列,并说明公⽐是多少? (2)请你判断下列数列是否是等⽐数列,并说明理由;,﹣,,﹣,…; (3)有⼀个等⽐数列a1,a2,a3,…,an﹣1,an;已知a1=5,q=﹣3;请求出它的第25项a25.(结果不需化简,可以保留乘⽅的形式) 【考点】规律型:数字的变化类. 【专题】新定义. 【分析】(1)根据定义举⼀个例⼦即可; (2)根据定义,即每⼀项与它的前⼀项的⽐都等于⼀个常数q(q≠0),那么这个数列就叫做等⽐数列,进⾏分析判断; (3)根据定义,知a25=5×224. 【解答】解:(1)1,3,9,27,81.公⽐为3; (2)等⽐数列的公⽐q为恒值, ﹣÷=﹣,÷(﹣)=﹣,﹣÷=﹣, 该数列的⽐数不是恒定的,所以不是等⽐数例; (3)由等⽐数列公式得an=a1qn﹣1=5×(﹣3)24, 它的第25项a25=5×(﹣3)24. 【点评】此题考查数字的变化规律,理解等⽐数列的意义,抓住计算的⽅法是解决问题的关键. 【篇⼆】初⼀上册数学期中试题及答案 ⼀、选择题(每题3分,共30分) 1-的相反数是().A.-2016B.2016C.D.- 2.甲⼄两地的海拔⾼度分别为300⽶,-50⽶,那么甲地⽐⼄地⾼出().A.350⽶B.50⽶C.300⽶D.200⽶ 3.下⾯计算正确的是()A.5x2-x2=5B.4a2+3a2=7a2C.5+y=5yD.-0.25mn+mn=0 4.学校、家、书店依次坐落在⼀条南北⾛向的⼤街上,学校在家的南边20⽶,书店在家北边100⽶,李明同学从家⾥出发,向北⾛了50⽶,接着⼜向北⾛了-70⽶,此时李明的位置()A.在家B.在书店C.在学校D.不在上述地⽅ 5.下列去括号正确的是()A.-(3x+7)=-3x+7B.-(6x-3)=-2x+3C.(3m-5n)=m+nD.-(m-2a)=-m+2a 6.下列⽅程中,是⼀元⼀次⽅程的为()A.5x-y=3B.C.D. 7.已知代数式x+2y+1的值是5,则代数式2x+4y+1的值是()A.1B.5C.9D.不能确定 8.已知有理数,所对应的点在数轴上如图所⽰,化简得()A.a+bB.b-aC.a-bD.-a-b 9.列说法错误的是().A.若,则x=y;B.若x2=y2,则-4x2=-4y2;C.若-x=6,则x=-;D.若6=-x,则x=-6. 10.某区中学⽣⾜球赛共赛8轮(即每队均参赛8场),胜⼀场得3分,平⼀场得1分,输 ⼀场得0分,在这次⾜球联赛中,猛虎⾜球队踢平的场数是所负场数的2倍,共得17 分,则该队胜了()场.A.6B.5C.4D.3 ⼆、填空题(每题3分,共24分) 11.地球绕太阳每⼩时转动经过的路程约为110000千⽶,⽤科学记数法记为⽶ 12.若,,且,则的值可能是:. 13.当时,代数式的值为2015.则当时,代数式的 值为。
广西柳州市2024-2025学年七年级上学期11月期中考试数学试题(含答案)

机密★启用前2024年秋季学期七年级(期中)教学质量监测试题数学(全卷满分100分,考试时间90分钟)注意事项:1.答题前,考生务必将学校、班级、姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷上作答无效.第Ⅰ卷(选择题,共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得0分.)1.下列四个数中,属于负数的是( )A .2024B .C.D .02.的倒数是( )A .B .C .2024D .3.2024年5月3日17时27分长征五号遥八运载火箭托举嫦娥六号探测器飞向月球,至6月25日14时7分嫦娥六号返回器携带来自月背的月球样品安全着陆在内蒙古四子王旗预定区域,嫦娥六号的太空往返之旅历时53天,完成往返76万公里行程,实现了五星红旗首次在月球背面独立动态展示,填补了月球背面研究的历史空白,为我们理解月球背面与正面地质差异开辟了新的视角.数据760000用科学记数法可以表示为( )A .B .C .D .4.若,则数a 在数轴上对应的点的位置是( )A .B .C .D .5.下列各对数中,互为相反数的是( )2024-120242024-12024-120242024-60.7610⨯37.610⨯47610⨯37.610⨯324a =-A .与B .和C .与D.和6.如图所示的是某古筝调音器软件的界面,已知古筝是标准音时,界面指针指向0,指针指向40表示音调偏高,需放松琴弦.当古筝的音调低于标准音20时,该界面指针指向的数字是( )A .B .C .0D .307.下列运算正确的是( )A .B .C .D .8.下列说法错误的是( )A .有理数5.614:精确到千分位B .车间计划加工800个零件,加工时间与每天加工的零件个数成反比例关系C .单项式的系数是,次数是2D .多项式是二次三项式9.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,如图,根据刘徽的这种表示法,图1可列式计算为,由此可推算图2中计算所得的结果为( )()2-+()2+- 3.5-()5.3++3-()3--355340-80-20242025(1)(1)0-+-=33538538⎛⎫-÷⨯=- ⎪⎝⎭1175315--=-55-=-2π3xy 2π32ax bx c ++()()110++-=图1图2A .B .C .D .10.如图,周长为6个单位长度的圆上的六等分点分别为,点落在1的位置.如果将圆在数轴上沿负方向连续滚动,那么落在数轴上的点是点( )A .B .C .D .第Ⅱ卷(非选择题,共70分)二、填空题(本大题共6小题,每小题3分,共18分.)11.对代数式“”赋予实际意义:如果一个篮球的价格是元,那么表示6个篮球的总价,请你再对代数式“”赋予一个实际意义____________.12.用代数式表示“比的3倍多2的数”:____________.13.某品牌酸奶外包装上标明“净含量:”,随机抽取该品牌四种口味的酸奶分别称重如下表.其中,净含量不合格的是____________.种类原味草苺味香草味巧克力味净含量29530031030514.如图是某一天的天气预报,该天的温差(最高气温与最低气温的差)是____________.15.已知:点A 在数轴上的位置如图所示,点B 也在数轴上,且A ,B 两点之间的距离是4,则点B 表示的数是____________.16.细菌是靠分裂进行生殖的,也就是1个细菌分裂成2个细菌,分裂完的细菌长大以后又能进行分裂.例如,如图中所示为某种细菌分裂的电镜照片,显示这种细菌每20分钟就能分裂一次.1个这种细菌经过4个小时可以分裂成____________个细菌.1+7+1-7-,,,,,A B C D E F A 2024-B C D E6a a 6a 6a x 300mL 5mL ±/mL三、解答题(本大题共7小题,共52分.解答时应写出必要的文字说明、演算步骤或推理过程.)17.(6分)把下列各数填入相应的大括号内(各数间用逗号分开)正数:{…};分数:{…};整数:{ …}.18.(6分)先在数轴上表示下列各数,再把它们按照从小到大的顺序排列,并用“<”连接.19.(6分,第(1)小题2分,第(2)小题4分)计算:(1)(2)20.(8分)方孔铜钱应天圆地方之说,古代人们认为天是圆的(圆形),地是方的(正方形),所以秦朝以后铸钱大多以“外圆内方”为型.如图,一枚圆形方孔钱的外半径为,中间方孔边长为.(1)用含的代数式表示圆形方孔钱的面积;(2)当时,求圆形方孔钱的面积(取3.14).21.(8分)阅读以下材料,完成相关的填空和计算.我们知道,显然与的结果互为倒数.326,3,2.4,,0, 3.14,49---13.5, 3.5,0,2,2,5,52---()()12183--+-22163(2)⎡⎤--⨯÷-⎣⎦r a ,r a 10cm,6cm r a ==π,a b a b b a b a÷=÷=a b ÷b a ÷(1)若,则____________.(2)小华利用这一思想方法计算的过程如下:因为,所以.请你仿照这种方法计算:.22.(8分)2022年教育部正式印发的《义务教育课程方案》中,将劳动从原来的综合实践活动课程中完全独立出来某校七年级(1)班同学到劳动实践基地采摘砂糖橘,同学们一共采摘了20筐砂糖橘,以每筐10千克为标准,超过标准质量的千克数记作正数,不足标准质量的克数记作负数,称重后记录如下表:砂糖橘的数量/筐34436与标准质量的差/千克2请回答下列问题:(1)这20筐砂糖橘中,最接近10千克的一筐砂糖橘的实际质量为_____________千克.(2)与标准质量比较,这20筐砂糖橘一共多少千克?总计超过或不足多少千克?(3)若砂糖橘的售价为3元/千克,则售出这20筐砂糖橘一共获得多少元?23.(10分)综合与实践【知识再现】我们都知道,数轴上表示数的点与原点的距离叫做数的绝对值,记作,因为原点表示的数是0,所以,由此可知,表示7与之差的绝对值,实际上也可理解为数轴上分别表示7与的两点之间的距离,所以;【问题初探】阅读以下材料,并回答问题:如图,把一根长度为木棒放在一条数轴(单位长度为1cm )上,它的两端分别落在点处,将木棒在数轴上水平移动,当点移动到处时,点与点重合,此时点对应的数为17,当点移动到处时,点与点重合,此时点对应的数为5.(1)由此可得,____________,的值为____________cm .(2)图中点所表示的数是____________,点所表示的数是____________.【拓展应用】(3)借助上述方法解决下列问题:()3a b c +÷=-()c a b ÷+=1211303106⎛⎫⎛⎫-÷-+ ⎪ ⎪⎝⎭⎝⎭()2111211302035223106303106⎛⎫⎛⎫⎛⎫-+÷-=-+⨯-=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1211130310622⎛⎫⎛⎫-÷-+=- ⎪ ⎪⎝⎭⎝⎭1512361293⎛⎫⎛⎫-÷-+ ⎪ ⎪⎝⎭⎝⎭3- 1.5- 2.5+0.5+a a a 0a a =-()72--2-2-()729--=cm a MN ,M N ,A B M B N D N N A M C M CD =cm a A B一天,小华去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我已经是109岁的老寿星了,哈哈”小华纳闪,奶奶到底是多少岁?请你画出示意图,求出小华和奶奶现在的年龄,并说明解题思路.2024年秋季学期七年级(期中)教学质量监测试题数学·参考答案及评分标准一、选择题(30分)题号12345678910答案B A B D C B A D C C二、填空题(18分)11.答案不唯一,例如每斤苹果的价格为a 元,6斤苹果的总价为6a 元等,12. 13.香草味 14.9 15.或1 16.(或4096).三、解答题(52分)17.解:正数:.分数:整数:{,(每个集合全部填对给2分,共6分)18.如图所示按照小到大排列,并用“<”连接如下:19.解:(1)原式(2)原式32x +7-12226,2.4,9⎧⎫⎨⎬⎩⎭322.4,, 3.14,,49⎧⎫--⎨⎬⎩⎭6,3,0-}15 3.5202 3.552-<-<-<<<<303=-27=3164=--⨯912=--112=-20.(8分)解:(1)根据题意,得圆形方孔钱的面积为(2)当时,圆形方孔钱的面积为21.(8分)解:(1)(2)因为.所以.22.解:(1)10.5(2)答:20筐砂糖橘一共208.5千克,总计超过8.5千克(3)元答:售出这20筐砂糖橘一共获得625.5元23.解:(1)12,4(2)9,13(3)如图所示,点A 表示小华现在的年龄,点B 表示小华奶奶现在的年龄,木棒的两端M ,N 分别落在点A ,B 处由题意可知,当点N 移动到点A 处时,点M 对应的数为,当点M 移动到点B 处时,点N 对应的数为109由图可知(或)所以,点A 对应的数为13,点B 对应的数为61.即小华今年13岁,奶奶今年61岁22r aπ-10cm,6cm r a ==()222223.14106278cm r a π-=⨯-=13-()5121512361293361293⎛⎫⎛⎫⎛⎫-+÷-=-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭15424=-+-35=-1512136129335⎛⎫⎛⎫-÷-+=- ⎪ ⎪⎝⎭⎝⎭()()()()33 1.54 2.540.5326-⨯+-⨯++⨯++⨯+⨯()9610 1.512=-+-+++8.5=20108.5208.5⨯+=208.53625.5⨯=35-()109353144348MN =--÷=÷=()354813,134861-+=+=1094861,614813-=-=。
七年级上册数学期中考试试卷带答案

七年级上册数学期中考试试题2022年一、单选题1.-20的相反数是()A .-120B .20C .120D .-202.在-1,2.5,-314,0,43+,27-中,负数有()A .1个B .2个C .3个D .4个3.下列运算正确的是()A .﹣2+(﹣5)=﹣(5﹣2)=﹣3B .(+3)+(﹣8)=﹣(8﹣3)=﹣5C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+104.数字1095000000用科学记数法可表示为()A .111.09510⨯B .101.09510⨯C .91.09510⨯D .81.09510⨯5.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式6.若数a ,b 在数轴上的位置如图示,则()A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >07.下列计算正确的是()A .31a a -=B .2232x y x y xy -=-C .224358a a a =+D .32ax xa ax-=8.若4m x y -与3112n x y 是同类项,则2021()m n -的值()A .-1B .0C .1D .-20219.已知23m m -的值为5,那么代数式2203026m m -+的值是()A .2030B .2020C .2010D .200010.下列说法:①符号相反的数互为相反数;②两个四次多项式的和一定是四次多项式;③若0abc >,则||||||a b c a b c++的值为3;④如果a 的倒数小于b 的倒数,那么a 大于b ,其中错误的个数有()A .4个B .3个C .2个D .1个二、填空题11.用四舍五入法取近似数:67.758≈_____(精确到0.01).12.如果电梯上升3层记作+3,那么电梯下降4层记为________13.计算:1533-÷⨯=_______14.某种商品原价是m 元,第一次降价打“八折”,第二次降价每件又减15元,第二次降价后每件的售价是_____元.15.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.16.定义新运算“@”与“⊕”:@2a b a b +=,2a b a b -⊕=,计算3@(2)(2)(1)---⊕-=____17.观察下列等式:071=,177=,2749=,37343=,472401=,5716807=,…,根据其中的规律可得01220217777++++ 的结果的个位数字是__________.三、解答题18.计算157362612⎛⎫--⨯ ⎪⎝⎭19.计算221(3|2|)13⎛⎫-+--÷- ⎪⎝⎭20.先化简,再求值:()()2222322x y xy x y xy ---,其中4x =-,14y =.21.某班抽查了10名同学期中考试的数学成绩,满分是120分,以100分为基准,超出的记为正数,不足的记为负数,记录的结果如下(单位:分):-1,+8,-3,0,+12,-7,+10,-3,-8,-10(1)这10名同学中最高分是多少?最低分是多少?(2)这10名同学的平均成绩是多少?22.某同学做一道数学题:“两个多项式A 、B ,2456B x x =--,试求A B -的值.”这位同学把“A B -”看成“A B +”,结果求出答案是271012x x --.(1)求多项式A .(2)求A B -的正确答案.23.小明同学做一道题“已知两个多项式A 、B ,计算2A B -”,小黄误将2A B -看作2A B -,求得结果是C .若213322B x x =+-,2325C x x =--+,请你帮助小明求出2A B -的正确答案.24.已知:b 是最小的正整数,且a 、b 、c 满足2(5)||0c a b -++=,请回答问题:(1)请直接写出a 、b 、c 的值,=a ,b =,c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即02x ≤≤时),请化简式子:||||2||x b x a x c +-+++(请写出化简过程)(3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,请问:BC AB -的值是否随着时间t 的变化而改变?若变化,请说明理由:若不变,请求其值.25.探索规律:观察下面由※组成的图案和算式,解答问题:1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请写出满足上述规律的第6行等式:__________;(2)请猜想1+3+5+7+9+…+39=_____;(写出具体数值)(3)请猜想1+3+5+7+9+…+(2n ﹣1)+(2n+1)=_____;(用含n 的式子表示)(4)请用上述规律计算:51+53+55+…+87+89.(写出计算过程)26.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减5+2-4-13+10-16+9-(1)根据记录可知前三天共生产______辆.(2)产量最多的一天比产量最少的一天多生产_______辆.(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?参考答案1.B【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】-20的相反数是20.故选B【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.C【解析】【分析】根据负数的定义找出负数即可,负数:比0小的数叫做负数,负数与正数表示意义相反的量,负数用负号(即相当于减号)“-”和一个正数标记.【详解】-1,2.5,-314,0,43+,27-中,负数有-1,-314,27-,根据3个,故选C.【点睛】本题考查了负数的定义,理解负数的定义是解题的关键.3.B【解析】【分析】根据有理数的加减运算法则进行计算即可求解.一般地,同号两数相加有下面的法则:同号两数相加,取与加数相同的符号,并把绝对值相加.异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.另外,有理数相加还有以下法则:互为相反数的两个数相加得零;一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.【详解】解:A、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B 、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C 、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D 、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B .【点睛】本题考查了有理数的加法与减法,掌握有理数的加减法法则是解题的关键.4.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n 是负整数.【详解】解:1095000000=1.095×109.故选:C .【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.5.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.6.D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B.ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.7.D【解析】【分析】直接根据合并同类项法则分别计算每个选项即可.【详解】解:A 、32a a a -=,原式计算错误,不符合题意;B 、2222x y x y x y -=-,原式计算错误,不符合题意;C 、222358a a a =+,原式计算错误,不符合题意;D 、32ax xa ax -=,原式计算正确,符合题意;故选:D .【点睛】本题考查了合并同类项,熟练掌握合并同类项法则是解本题的关键.8.A【解析】【分析】根据同类项的定义“所含字母相同,并且相同字母的指数也相同的项叫同类项”可得3m =,4n =,即可得.【详解】解:∵4m x y -与3112n x y 是同类项,∴3m =,4n =,∴20212021()(34)1m n -=-=-,故选A .【点睛】本题考查了同类型,有理数的乘方运算,解题的关键是掌握这些知识点.9.B【解析】【分析】将2203026m m -+化简为220302(3)m m --,再将235m m -=代入即可得.【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B .【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.10.A【解析】【分析】利用相反数,绝对值以及倒数的性质判断即可.【详解】解:①只有符号相反的数互为相反数,符合题意;②两个四次多项式的和不一定是四次多项式,符合题意;③若0abc >,分为,,a b c 均为整数和,,a b c 中有两个负数,一个正数两种情况,则||||||a b ca b c++的值为3或1-,符合题意;④如果a的倒数小于b的倒数,例如:1123-<,23-<,∴a不一定大于b,符合题意;故错误的说法有:①②③④,共4个,故选:A.【点睛】本题考查了相反数,绝对值以及倒数,熟知相关定义以及性质是解本题的关键.11.67.76【解析】【分析】把千分位上的数字8进行四舍五入即可.【详解】解:67.758≈67.76(精确到0.01).故答案为:67.76.【点睛】本题考查了近似数,掌握四舍五入法是解题的关键.12.4-【解析】【分析】根据正负数代表相反意义的量,上升记为正,则下降记为负,解答即可.【详解】解:电梯上升3层记作+3,那么电梯下降4层记为4-,故答案为:4-.【点睛】本题考查了正负数的意义,熟知正负数可以表示相反意义的量是解本题的关键.13.5 9-【解析】【分析】直接根据有理数乘除混合运算法则计算即可.【详解】解:11155353339-÷⨯=-⨯⨯=-,故答案为:59-.【点睛】本题考查了有理数的乘除混合运算,熟练掌握相关运算法则是解本题的关键.14.(0.8m ﹣15)【解析】【分析】根据题意直接列出代数式即可,注意:八折即原来的80%,还要明白是经过两次降价.【详解】解:根据题意得:第一次降价后的售价是0.8m ,第二次降价后的售价是(0.8m -15)元.故答案为:(0.8m -15).【点睛】此题考查了列代数式,正确理解文字语言并列出代数式.注意:八折即原来的80%.15.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx=-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.16.1【解析】【分析】根据定义新运算进行解答即可得.【详解】解:由题意得,原式=3(2)(2)(1)22+-----=1122+=1,故答案为:1.【点睛】本题考查了有理数的运算,解题的关键是掌握定义新运算.17.8【解析】【分析】先根据已知等式发现个位数字是以1,7,9,3为一循环,再根据202245052=⨯+即可得.【详解】因为071=,177=,2749=,37343=,472401=,5716807=,…,所以个位数字是以1,7,9,3为一循环,且179320+++=,又因为202245052=⨯+,505201710108⨯++=,所以01220217777++++ 的结果的个位数字是8,故答案为:8.【点睛】本题考查了有理数乘方的规律型问题,根据已知等式正确发现个位数字的变化规律是解题关键.18.-33【解析】【分析】直接利用有理数的乘法分配律计算得出答案.【详解】解:原式=1573636362612⨯-⨯-⨯=18-30-21=-33【点睛】本题考查了有理数的混合运算,正确掌握运算法则是解题的关键.19.85-【解析】【分析】先算乘方和括号里的,再算乘法,即可得.【详解】解:原式=31(32)()5-+-⨯-=311()5-+⨯-=315--=85-【点睛】本题考查了有理数的混合运算,解题的关键是掌握混合运算的运算法则和运算顺序.20.224x y xy -,5【解析】【分析】先去括号,再合并同类项,最后将4x =-,14y =代入即可得.【详解】解:22223(2)2()x y xy x y xy ---=22223622x y xy x y xy --+=224x y xy -,当4x =-,14y =时,原式=2211(4)4(4)41544⎛⎫-⨯-⨯-⨯=+= ⎪⎝⎭,【点睛】本题考查了整式的加减—化简求值,解题的关键是掌握去括号和合并同类项.21.(1)最高分是112分,最低分是90分,(2)这10名同学的平均成绩是99.8分【解析】【分析】(1)根据题意求出10名同学的成绩,再从小到大进行排序,即可得;(2)用10名同学的成绩总得分除以10即可得.【详解】解:(1)根据题意得,这10名同学的分数分别为:99,108,97,100,112,93,110,97,92,90,∵909293979799100108110112<<<=<<<<<∴最高分是112分,最低分是90分,故这10名同学中最高分是112分,最低分是90分;(2)90929397979910010811011299.810+++++++++=(分),故这10名同学的平均成绩是99.8分.【点睛】本题考查了正负数的应用,平均数,解题的关键是掌握这些知识点.22.(1)2356x x --;(2)2x -.【解析】【分析】(1)用271012x x --减去B 即可求出A ;(2)利用整式的加减法计算法则进行计算即可.【详解】(1)()2271012456A x x x x =-----2271012456x x x x =---++2356x x =--.(2)A B-()22356456x x x x =-----22356456x x x x =---++2x =-.【点睛】此题考查整式的加减计算法则,正确理解题意求出A 是解题的关键.23.-92x 2+12x+1.【解析】【分析】将B 代入A-2B 中计算,根据结果为C ,求出A ,列出正确的算式,去括号合并即可得到正确结果.【详解】解:根据题意得:A-2B=C ,即A-2(12x 2+32x-3)=-3x 2-2x+5,所以A=-3x 2-2x+5+2(12x 2+32x-3)=-3x 2-2x+5+x 2+3x-6=-2x 2+x-1,则2A-B=2(-2x 2+x-1)-(12x 2+32x-3)=-4x 2+2x-2-12x 2-32x+3=-92x 2+12x+1.【点睛】本题考查了整式的加减,属于常考题型,熟练掌握整式加减的运算法则是解题的关键.24.(1)1-,1,5;(2)410x +或212x +;(3)不变,值为2【解析】【分析】(1)根据有理数、绝对值以及平方的性质,即可求解;(2)将a b c ,,的值代入绝对值式子,再根据02x ≤≤,分情况讨论,化简绝对值即可;(3)分别求出BC AB 、的值,即可求解.【详解】解:(1)b 是最小的正整数,所以1b =∵2(5)||0c a b -++=∴50c -=,0a b +=解得5c =,1a =-故答案为1-,1,5(2)将a b c ,,的值代入得,||||2||=|1||1|2|5|x b x a x c x x x +-++++--++当01x ≤≤时,10x +>,10x -≤,50x +>所以,原式(1)(1)2(5)410x x x x =++-++=+当12x <≤时,10x +>,10x ->,50x +>所以,原式(1)(1)2(5)212x x x x =+--++=+故答案为410x +或212x +(3)不变,理由如下:根据题意可得:t 秒钟过后,A 点所在的数为1t --,B 点所在的数为1t +,C 点所在的数为53t+点B 与点C 之间的距离53(1)42BC t t t=+-+=+点A 与点B 之间的距离1(1)22AB t t t=+---=+42(22)2BC AB t t -=+-+=即BC AB -值的不随着时间t 的变化而改变故答案为不变,值为2【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想,利用数形结合的思想是解题的关键.25.(1)1+3+5+7+9+11=62;(2)400;(3)(n+1)2;(4)1400【解析】【分析】(1)类比得出第6行等式为:1+3+5+7+9+11=62;(2)由图形可知,从1开始的连续奇数的和等于奇数的个数的平方,然后根据此规律求解即可;(3)利用(1)(2)的规律推出一般规律即可;(4)用从1到89的连续奇数的和减去从1到49的连续奇数的和,进行计算即可得解.【详解】解:(1)第6行等式:1+3+5+7+9+11=62;(2)1至39共有(39+1)÷2=20个奇数,∴1+3+5+7+9+…+39=202=400;(3)1+3+5+7+9+…+(2n-1)+(2n+1)=22112n++⎛⎫⎪⎝⎭=(n+1)2;(4)51+53+55+…+87+89=1+3+5+7+…+87+89-(1+3+5+7+…+47+49)=22 89149122++⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭=452-252=2025-625=1400.【点睛】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,解决问题.26.(1)599(辆);(2)26(辆);(3)84675(元).【解析】【分析】(1)根据有理数的加法,可得答案;(2)根据最大数减最小数,可得答案;(3)根据实际生产的量乘以单价,可得工资,根据超出的部分或不足的部分乘以每辆的奖金,可得奖金,根据工资加奖金,可得答案.【详解】(1)5-2-4+200×3=599(辆);(2)16-(-10)=26(辆);(3)5-2-4+13-10+16-9=9,(1400+9)×60+9×15=84675(元).故答案为:599,26,84675.【点睛】此题考查正数和负数的应用,有理数的加法,解题关键在于根据题意列出式子计算.。
江苏省盐城市响水县2024-2025学年七年级上学期11月期中考试数学试题(含答案)

2024-2025学年秋学期期中调研七年级数学试卷一、选择题(每小题3分,共24分)1.的倒数是( )A .3B.C .D .2.下列各数中,比小的数是( )A .B .C .0D .53.单项式的系数、次数分别是( )A .B .C .D .4.有理数,在数轴上的对应点的位置如图所示,则下列式子正确的是( )A .B .C .D .5.已知,则的值为( )A .1B .C .0D .36.若代数式的值是5,则代数式的值是( )A .10B .1C .D .7.如图是某种细胞分裂示意图,这种细胞经过 1 次分裂便由 1 个分裂成 2 个.根据此规律,一个细胞经过 5 次分裂后可分裂成( )个细胞A .10B .16C .32D .648.如图,在正方形网格中,点分别用数对表示,在图中确定点C ,连接,得到以A 为直角顶点的等腰直角三角形,则表示点C 的数对是( )A .B .C .D .3-133-13-2-3-1-22a -2,22,2-2,32,3-a b 0ab >a b >2a <-0a b ->2|31|(3)0a b ++-=2024()ab 1-223x x +2469x x +-4-8-,A B (2,1),(7,1),,AB BC CA (2,5)(2,6)(7,5)(7,6)二、填空题(每小题3分,计30分)9.把用科学记数法表示的数写成原数: .10.已知,,且,则的值为 .11.若一个负整数比大,则这个负整数可以是_______.(只需写出一个符合要求的负整数即可)12.一个不透明的盒子中装有红、蓝两种颜色的小球若干个(小球除颜色外,其余均相同).小慧随机从盒中摸球,每次摸出1个球,记录颜色后放回,共30次,其中摸出红球8次,蓝球22次.根据数据推测,盒子里_______球可能多一些.(填“红”或“蓝”)13.小慧在某平台上按“八五折”的优惠价格购买了4张《志愿军:存亡之战》电影票,若每张电影票的原价是50元,则小慧需支付_______元.14.如图,是一个数值转换机,当输入的数字n 是时,按照图中的程序计算,输出的答案是 .15.若单项式与的和是单项式,则的值为 .16.若,则 .17.已知三个车站的位置如图所示,两站之间的距离是两站之间的距离是,则两站之间的距离是 .18.将,,,,这个自然数,任意分成组,每组两个数,现将每组中的两个数记为,代入中进行计算,求出结果,可得到个值,则这个值的和的最大值为 .三、解答题(本大题共9小题,计66分)19.(8分)计算(1) (2)(3) (4)52.1210-⨯=3x =2y =x y <x y +3.1-3-421-+m a b 272n m a b +-m n -25210m m ---=22102024m m -+=,,B C D ,B C 2,,a b B D -7212a b --,C D 123L 10010050a b 2a b a b ++-5050()()18424+---+()()623⨯-÷-2453(1)53⎛⎫---⨯÷- ⎪⎝⎭35711461236⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭20.(8分)有理数、在数轴上的对应点的位置如图所示.(1)比大小: ; ;(填“”,“”或“”)(2)化简: .21.(6分)先化简,再求值,5x 2−2(3y 2+6x )+(2y 2−5x 2),其中x =y =−122.(10分)小亮房间窗户的窗帘如图(1)所示,它是由两个四分之一圆组成(半径相同).(1)如图(1),请用代数式表示装饰物的面积:________;用代数式表示窗户能射进阳光的面积:________;(结果保留π).(2)小亮又设计了如图(2)的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你用代数式表示窗户能射进阳光的面积:________;(3)当a =5米,b =4米时,两图中窗户能射进阳光的面积相差多少? (π取3)23.(8分)如图,用若干个棱长为1厘米的小正方体搭成一个立体图形.(1)在正方形网格中画出这个立体图形从上往下看到的图形;(2)求这个立体图形的体积与表面积.a b c b a -b >=<2b b c c a +---24.(12分)某淘宝商家计划平均每天销售某品牌儿童滑板车100辆,但由于种种原因,实际每天的销售量与计划量相比有差距.如表是本周每天的销售情况(超额记为正、不足记为负)星期一二三四五六日与计划量的差额(辆(1)本周前三天销售儿童滑板车 辆,销售量最多的一天比最少的一天多销售 辆;(2)通过计算说明,本周实际销售总量是否达到了计划量?(3)该店铺实行每日计件工资制,每销售一辆车可得40元,若超额完成任务,则超过部分每辆另奖15元;若未完成计划,则少销售一辆扣20元,那么该店铺销售人员本周的工资总额是多少元?25.(12分)阅读下列材料,我们知道,,类似的,我们把看成一个整体,则,“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把看成一个整体,合并的结果 .(2)已知,,求的值.(3)拓展探索:已知,,,求的值.:)4+3-14+5-8-21+6-534(534)4x x x x x +-=+-=()a b +5()3()4()(534)()4()a b a b a b a b a b +++-+=+-+=+2()a b -2222()6()3()a b a b a b -+---15m n +=3211a b -=26(42)m a b n +--34a b -=33b c -=-11c d -=()(3)(3)a c b d b c -+---参考答案1-4DABB 5-8ABCB9. 10.或 11.12.蓝 13.170元 14.15 15.-4 16.2026或203017. 18.19.(1)(2)(3)(4)20.(1)解:由数轴可知,并且到原点的距离到原点的距离到原点的距离,,,故答案为:>,>;(2)解:由数轴可知:,并且到原点的距离到原点的距离到原点的距离,,.21.−4y 2−12x ,822.(1)π8b 2;ab−π8b 2(2)ab−π16b 2(3)3m 223.解:(1)如图所示(2)体积:,表面积:24.解:(1)本周前三天销售儿童滑板车:(辆,根据记录的数据可知销售量最多的一天为星期六,销售量最少的一天为星期五,销量之差为:(辆;故答案为:315;29;212000-1-5-2-312a b --37752046-180c a b <<<c >a >b c b ∴>a b ->0c a b <<<c >a >b ∴20,0,0b b c c a >->-<∴2b b c c a+---2()b bc c a =+-+-2b b c c a=+-+-3b a =-35cm 2(443)222cm ++⨯=(4314)1003315+-++⨯=)21(8)29--=)(2),,本周实际销售总量达到了计划量;(3)(元,即该店铺的销售人员这一周的工资总额是28825元.25.解:(1).故答案为:.(2),,,,.(3),,,,,,,,,,.1007(431458216)717⨯++-+--+-=717700> ∴(4314582161007)40(41421)15(3586)20-+--+-+⨯⨯+++⨯+----⨯7174039152220=⨯+⨯-⨯28680585440=+-28825=)222222()6()3()(263)()5()a b a b a b a b a b -+---=+--=-25()a b -26(42)m a b n +--2()2(32)m n a b =++-15m n += 3211a b -=2()2(32)m n a b ∴++-215211=⨯+⨯52=34a b -= 33b c -=-11c d -=()(3)(3)a c b d b c ∴-+---33a c b d b c =-+--+a d =-43(11)b c =+--4311b c =+-+4(3)11b c =+-+4311=-+12=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上学期期中考试试题
一、填空题(每小题2分,共30分)
1.一个四棱柱一共有_____条棱,有_____面。
2.绝对值最小的数__________。
3.某日中午,北方某地气温由早晨的零下2℃上升了9℃,傍晚又下降了3℃,这天傍晚北方某地的气温是______℃。
4.直接写出计算结果:(1) ()______248=-÷+- (2) ()______135
2
=-⨯-。
5.代数式5m+2n 可以解释为_______。
6.在数轴上,表示与2-的点距离为3的数是_________。
7.沿虚线折叠图中的各纸片,能围成正方形的是______________。
图(1) 图(2) 图(3) 图(4)
8.某校去年初一招收新生x 人,今年比去年增加20%,用代数式表示今年该校初一学生人数
为____________。
9.如图,图形沿虚线旋转一周,所 围成的几何体是___________。
10.一个两位数的个位数是a ,十位数字是b ,请用代数式表示这个两位数是________。
11.三角形的三边长分别是2x,4x,5x,这个三角形的周长是__________。
12.三个连续偶数中,n 是最小的一个,这三个数的和是为_______________。
13.若|a|4=,则a = __________。
14.把四个棱长为1cm 的正方形按图示堆放于地面,则其表面积为____________cm 2。
15. 你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示。
请问这样第__________次可拉出128根面条。
第一次捏合后 第二次捏合后 第三次捏合后
二、选择题(每小题3分,共24分)
16. 下列说法中正确的是( ).
A. 0是最小的数
B. 最大的负有理数是1-
C. 任何有理数的绝对值都是正数
D. 如果两个数互为相反数,那么它们的绝对值相等
17.在2
2
2
3
)3(,2,)1(,)1(----这四个数中,最大的数与最小的数的和等于( ) A .6 B .8 C .-5 D .5 18.用一个平面去截一个正方形,截出的截面不可能是( ) A .三角形 B .四边形 C .六边形 D .七边形 19.两个互为相反数的有理数相乘,积为( )
A .正数
B .负数
C .零
D .负数或零 20.下列各式中,正确的是( )
A .y x y x y x 2
2
2
2-=- B .ab b a 532=+ C .437=-ab ab
D .5
23a a a =+
21.如果p
m
y x 2与q
n
y x 3是同类项,则( ) A .p n q m ==, B .pq mn = C .q p n m +=+ D .q p n m ==且 22.已知代数式y x 2+的值是3,则代数式142++y x 的值是( ) A .1 B .4 C .7 D .不能确定
23.计算3的正数次幂,21873,7293,2433,813,273,93,337
6
5
4
3
2
1
=======
65613,8=…观察归纳各计算结果中个位数字的规律,可得20033的个位数字是( )
A .1
B .3
C .7
D .9
三、计算题(写出必要的演算步骤,每题5分,共20分)
24.)9()11()4()3(--+--+- 25.()()[]
43233
---÷
26.()6015112132-⨯⎪⎭⎫ ⎝⎛-- 27.()18.035512
4-+⎪⎭
⎫ ⎝⎛-⨯-÷-
四.化简下列名式 (每小题7分,共14分)
28.()()b
a b a 4539222
2
--++
29.先化简,再求值。
⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝
⎛
--y x y x x 312331221 其中2,1=-=y x
五、操作题与探索题 (30、31题每题10分,共20分)
30.如图,是由正方形搭成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数。
请你画出它的主视图和左视图
主视图 左视图
31.用棋子摆下面一组正方形图案
……
○1○2○3
2) 照这样的规律摆下去,当每边有n颗棋子时,这个图形所需要棋子总颗数是_____________,第100个图形需要的棋子颗数是_____________。
六、(本大题共12分)
32.“十一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的
1)若9月30日外出旅游人数记为a,请用a的代数式表示10月2日外出旅游的人数。
2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人。
3)如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?。