数控加工切削参数计算公式
铣刀转速和进给公式
铣刀转速和进给公式铣刀转速和进给是数控铣床加工中的重要参数,对于加工质量和效率起着至关重要的作用。
本文将对铣刀转速和进给进行详细介绍,并给出相应的计算公式。
一、铣刀转速铣刀转速是指铣刀在加工过程中每分钟旋转的圈数,通常用单位时间内的转数来表示,单位为转/分钟(rpm)。
铣刀转速的选择直接影响到加工表面的质量、切削刃的寿命以及加工效率。
铣刀转速的选择应根据材料的硬度、刀具材料和刀具直径来确定。
一般来说,硬度较高的材料需要较低的转速,而硬度较低的材料需要较高的转速。
刀具材料的选择也会影响到转速的确定,不同材料的刀具具有不同的切削性能,因此需要根据刀具材料来选择合适的转速。
此外,刀具直径也会对转速的选择产生影响,直径较大的刀具需要较低的转速,而直径较小的刀具则需要较高的转速。
铣刀转速的计算公式如下:n = (1000 × v) / (π × d)其中,n为转速(转/分钟),v为切削速度(m/min),d为刀具直径(mm)。
二、进给进给是指铣刀在单位时间内移动的距离,通常用毫米/转(mm/rev)来表示。
进给的选择直接影响到加工的精度和效率。
进给的选择应根据材料的硬度、切削性能和加工要求来确定。
一般来说,硬度较高的材料需要较小的进给,而硬度较低的材料则可以选择较大的进给。
切削性能也会对进给的选择产生影响,切削性能好的材料可以选择较大的进给,而切削性能差的材料则需要选择较小的进给。
此外,加工的要求也会对进给的选择产生影响,如果对加工精度要求高,则需要选择较小的进给。
进给的计算公式如下:f = n × z其中,f为进给(mm/rev),n为转速(转/分钟),z为每分钟切削齿数(个/分钟)。
三、铣刀转速和进给的关系铣刀转速和进给是密切相关的,它们之间的关系可以通过切削速度来体现。
切削速度是指切削刀具上每分钟切削齿数所移动的距离,通常用米/分钟(m/min)来表示。
切削速度的计算公式如下:v = π × d × n / 1000其中,v为切削速度(m/min),d为刀具直径(mm),n为转速(转/分钟)。
加工中心切削转速和进给速度计算方法及公式
数控加工中心的切削转速和进给速度:1:主轴转速=1000Vc/πD2:一般刀具的最高切削速度(Vc):高速钢50 m/min;超硬东西150 m/min;涂镀刀具250 m/min;陶瓷·钻石刀具1000 m/min 3加工合金钢布氏硬度=275-325时高速钢刀具Vc=18m/min;硬质合金刀具Vc=70m/min(吃刀量=3mm;进给量f=0.3mm/r)主轴转速有两种核算办法,下面举例说明:①主轴转速:一种是G97 S1000表明一分钟主轴旋转1000圈,也就是通常所说的恒转速。
另一种是G96 S80是恒线速,是由工件外表断定的主轴转速。
进给速度也有两种G94 F100表明一分钟走刀距离为100毫米。
另一种是G95 F0.1表明主轴每转一圈,刀具进给尺度为0.1毫米。
数控加工中刀具挑选与切削量的断定刀具的挑选和切削用量的断定是数控加工工艺中的重要内容,它不仅影响数控机床的加工功率,并且直接影响加工质量。
CAD/CAM技能的发展,使得在数控加工中直接利用CAD的规划数据成为或许,特别是微机与数控机床的联接,使得规划、工艺规划及编程的整个进程全部在核算机上完成,一般不需要输出专门的工艺文件。
现在,许多CAD/CAM软件包都供给主动编程功能,这些软件一般是在编程界面中提示工艺规划的有关问题,比方,刀具挑选、加工路径规划、切削用量设定等,编程人员只需设置了有关的参数,就可以主动生成NC程序并传输至数控机床完成加工。
因而,数控加工中的刀具挑选和切削用量断定是在人机交互状态下完成的,这与一般机床加工构成明显的对比,一起也要求编程人员有必要掌握刀具挑选和切削用量断定的基本准则,在编程时充分考虑数控加工的特色。
本文对数控编程中有必要面临的刀具挑选和切削用量断定问题进行了讨论,给出了若干准则和主张,并对应该注意的问题进行了讨论。
一、数控加工常用刀具的种类及特色数控加工刀具有必要适应数控机床高速、高效和主动化程度高的特色,一般应包含通用刀具、通用衔接刀柄及少量专用刀柄。
数控机床加工的切削用量
单元4数控机床加工的切削用量教学目的1、了解数控机床的运动(主运动、进给运动);2、了解数控机床加工刀具的角度及其作用;3、了解数控机床加工中有关切削层的参数及其作用;4、了解数控机床加工中的切削用量及其选用原则。
5、掌握常用不同材料零件在粗加工、半精加工和精加工时的切削用量选用;教学重点1、数控机床加工刀具的角度及其作用;2、数控加工中粗加工、半精加工和精加工时的切削用量选择;教学难点1、刀具的角度及其作用;2、切削用量选用教学方法讲练结合教学内容一、车削加工与刀具1. 车削加工原理在普通车床和一般数控车床上,可以进行工件的外表面、端面、内表面以及内外螺纹的加工。
对于车削中心,除上述各种加工外,还可进行铳削、钻削等加工。
从上述介绍可以看出:在切削过程中,刀具和工件之间必须具有相对运动,这种相对运动称为切削运动。
根据切削运动在切削过程中的作用不同可以分为主运动、和进给运动。
各种机床的主运动和进给运动参见下表。
主运动是指机床提供的主要运动。
主运动使刀具和工件之间产生相对运动,从而使刀具的前刀面接近工件并对工件进行切削。
在车床上,主运动是机床上主轴的回转运动,即车削加工时工件的旋转运动。
2)进给运动进给运动是指由机床提供的使刀具与工件之间产生的附加相对运动。
进给运动与主运动相配合,可以形成完整的切削加工。
在普通车床上,进给运动是机床刀架(溜板)的直线移动。
它可以是纵向的移动(与机床主轴轴线平行),也可以是横向的移功(与机床主轴轴线垂直),但只能是一亇方向的移动。
在数控车床上,数控车床可以同时实现两亇方向的进给,从而加工出各种具有复杂母线的回转体工件。
在数控车床中,主运动和进给运动是由不同的电机来驱动的,分别称为主轴电机和坐标轴伺服电机。
它们由机床的控制系统进行控制,自动完成切削加工。
2. 切削用量切削用量是指机床在切削加工时的状态参数。
不同类型的机床对切削用量参数的表述也略有不同,但其基本的含义都是一致的,如下图所示。
F进给量
铣削切削参数计算表(附例证)铣削切削参数计算表符号术语单位公式V 切削速度m/minN 主轴转速r/minVf 工作台进给量(进给速度)mm/min Vf=fznznmm/r Vf=fnnfz 每齿进给量mmfn 每转进给量mm/rQ 金属去除率cm3/minDe 有效切削直径mm3.3.1计算切削用量(1)钻Φ23的孔。
①进给量小直径钻头主要受钻头的刚性及强度限制大,在条件允许的情况下,应取较大的进给量,以降低加工成本,提高生产效率。
普通麻花钻削进给量可以按以下经验公式计算:f =(0.01~0.02)d0 (3-1)f—进给量d0??—孔的直径则由(3-1)得:f =(0.01~0.02)×23=0.23~0.46由于零件在加工23mm孔时属于低刚度零件,故进给量应乘系数0.75,则f=(0.23~0.46)×0.75=0.1725~0.3mm/r,查表得出,现取f=0.25mm/r。
此工序采用Φ23的麻花钻。
所以进给量f= 0.25mm/z②钻削速度表3-2普通高速钢钻头钻削速度参考值单位:m/min工件材料低碳钢中、高碳钢合金钢铸铁铝合金钢合金切削速度25-30 20-25 15-20 20-25 40-70 20-40切削速度:根据表3-2可得切削速度V=20m/min。
根据手册可得:nw=300r/min,故切削速度为③切削工时l=23mm,l1=13.2mm.查《工艺手册》可得,切削工时计算公式:(3-2)1—切出量2—切出量—行程量①扩孔的进给量由《切削用量手册》可得得扩孔钻扩Φ24.8的孔时的进给量,并根据机床规格选取F=0.3 mm/z②切削速度扩孔钻扩孔的切削速度,由《工艺手册》可得:V=0.4V 钻(3-3)其中V 钻为用钻头钻同样尺寸的实心孔时的切削速度.故V=0.4×21.67=8.668m/min按机床选取nw =195r/min.③切削工时切削工时时切入1=1.8mm,切出2=1.5mm,根据公式(3-2)得:①粗铰孔时的进给量根据有关资料介绍,铰孔时的进给量和切削速度约为钻孔时的1/2~1/3,故F=1/3f钻=1/3×0.3=0.1mm/r (3-4)所以:V=1/3V钻=1/3×21.67=7.22m/min②切削速度按机床选取nw=195r/min,所以实际切削速度③切削工时切削工时,切入l2=0.14mm,切出l1=1.5mm.,根据公式(3-2)得①精铰孔时的进给量根据有关资料介绍,铰孔时的进给量和切削速度约为钻孔时的1/2~1/3,故根据公式(3-4)可得:V=1/3V钻=1/3×21.67=7.22m/min②切削速度按机床选取nw=195r/min,所以实际切削速度③切削工时切削工时,切入l2=0.06mm,切出l1=0mm,根据公式(3-2)得:(2)铣φ55的叉口的上、下端面。
数控加工的切削用量
数控加工的切削用量2009-6-11 9:42:00 来源:作者:余英良,于辉阅读:1418次我要收藏1 切削用量选择1.1 数控加工花键轴的切削用量为了保证零件的加工精度,零件分为粗车加工和精车加工。
在粗、精车零件装夹方式与刀具选择的基础上,选定零件数控加工的切削参数如下:在数控精车车削加工中,零件轮廓轨迹的加工余量为0.8÷2=0.4 mm。
主轴转速、背吃刀量等的选择参见表1。
表1 数控加工花键轴工序卡及切削用量1.2 数控加工轴承座的切削用量为了保证零件的加工精度,零件分为粗车加工和精车加工。
在粗、精车零件装夹方式与刀具选择的基础上,选定零件数控加工的切削参数如下:在数控精车车削加工中,零件轮廓轨迹的加工余量为0.8÷2=0.4 mm。
主轴转速、背吃刀量等的选择参见表2。
表2 数控加工轴承座工序卡及切削用量2 相关内容概述金属切削加工的目的,就是用各种类型的金属切削刀具把J:件毛坯上的多余部分从毛坯上剥离开来,得到图样所要求的零件形状和尺寸。
图1 车削加工中切削用量nextpage 2.1 切削用量切削用量是指机床在切削加工时的状态参数。
切削用量包括切削速度、进给速度和背吃刀量。
参见图1。
2.1.1 切削速度切削刃上的切削点相对于工件运动的瞬时速度称为切削速度。
切削速度的单位为m/min。
切削速度与机床主轴转速之问进行转换的关系为:(1)2.1.2 进给速度是刀具在单位时间内沿进给方向上相对于工件的位移量,单位为mm/min。
2.1.3 背吃刀量己加工表面和待加工表面之问的垂直距离。
背吃刀量的计算公式为:(2)式(1)、式(2)中n为主轴(工件)转速,d为工件直径,dω、dm见图1。
在切削加工中,切削速度、进给速度和背吃刀量3个参数是相互关联的。
粗加工中,为提高效率,一般采用较大的背吃刀量。
此时切削速度和进给速度相对较小;在半精加工和精加工阶段,一般采用较大的切削速度、较小的进给量和背吃刀量,以获得较好的加工质量。
切削力计算公式【终版】
机床切削速度与切削力对刀具的影响至关重要,切削力过大使刀具崩掉的主要原因。
切削速度与切削力的关系:切削速度越快时进给不变,切削力缓慢减小,同时切削速度越快会使刀具磨损的越快,使切削力越来越大,温度也会越来越高,当切削力和内部应力大到刀片承受不了时,便会崩刀,所以了解切削力的相关计算对于数控加工来说很重要。
通过试验的方法,测出各种影响因素变化时的切削力数据,加以处理得到的反映各因素与切削力关系的表达式,称为切削力计算的经验公式。
在实际中使用切削力的经验公式有两种:一是指数公式,二是单位切削力。
1 .指数公式主切削力(2-4)背向力(2-5)进给力(2-6)式中F c————主切削力(N);F p————背向力(N);F f————进给力(N);C fc、C fp、C ff————系数,可查表2-1;x fc、y fc、n fc、x fp、y fp、n fp、x ff、y ff、n ff ------ 指数,可查表2-1。
K Fc、K Fp、K Ff ---- 修正系数,可查表2-5,表2-6。
2 .单位切削力单位切削力是指单位切削面积上的主切削力,用kc表示,见表2-2。
kc=Fc/A d=Fc/(a p·f)=F c/(b d·h d) (2-7)式中A D -------切削面积(mm 2);a p ------- 背吃刀量(mm);f - ------- 进给量(mm/r);h d -------- 切削厚度(mm );b d -------- 切削宽度(mm)。
已知单位切削力k c ,求主切削力F cF c=k c·a p·f=k c·h d·b d (2-8)式2-8中的k c是指f = 0.3mm/r 时的单位切削力,当实际进给量f大于或小于0.3mm /r时,需乘以修正系数K fkc,见表2-3。
表2-3 进给量?对单位切削力或单位切削功率的修正系数K fkc,K fpsf /(mm/r)0.1 0.15 0.2 0.25 0.3 0.350.40.45 0.5 0.6K fkc,K fps1.18 1.11 1.061.031 0.970.960.94 0.9250.9切削力的来源、切削分力金属切削时,切削层及其加工表面上产生弹性和塑性变形;同时工件与刀具之间的相对运动存在着摩擦力。
数控加工切削参数计算公式
数控加工切削参数计算公式
1.切削速度:切削速度是指工件表面上单位时间内被切削掉的长度。
切削速度的计算公式为:
切削速度(Vc)=π×刀具直径(D)×转速(n)
2.进给速度:进给速度是指切削刀具在单位时间内在工件上的移动距离。
进给速度的计算公式为:
进给速度(Vf)=切削速度(Vc)×进给量(f)
3.主轴转速:主轴转速是指主轴每分钟旋转的圈数,可以通过切削速度和刀具直径来计算,也可以根据机床性能和加工工艺选择合适的主轴转速。
4.加工时间:加工时间是指完成一次切削加工所需的时间,可以通过计算工件长度和进给速度来估算。
加工时间的计算公式为:
加工时间(T)=工件长度(L)/进给速度(Vf)
5.切削力:切削力是切削加工中刀具对工件产生的力,影响机床的刚性和切削质量。
切削力的计算公式包括切削力系数、切削力的方向和切削力的大小。
切削力的计算需要根据刀具的几何形状和材料的性质进行实验或理论推导。
6.切削功率:切削功率是指切削加工中刀具对工件消耗的功率,可以通过切削力和切削速度来计算。
切削功率的计算公式为:
切削功率(Pc)=切削力(Fc)×切削速度(Vc)。
车床工时计算法
切削速度(vc) vc=π.Dm.n/1000(m/min)※除以1000将mm换算成m n(min-1):主轴转速Dm(mm):工件材料直径3.14):圆周率vc(m/min):切削速度数控车床编程时,编程人员必须确定每道工序的切削用量。
选择切削用量的时候,一定要充分考虑影响切削的各种因素,正确的选择切削条件,合理地确定切削用量,可有效地提高机械加工质量和产量。
影响切削条件的因素有:机床、工具、刀具及工件的刚性;切削速度、切削深度、切削进给率;工件精度及表面粗糙度;刀具预期寿命及最大生产率;切削液的种类、冷却方式;工件材料的硬度及热处理状况;工件数量;机床的寿命。
上述诸因素中以切削速度、切削深度、切削进给率为主要因素。
切削速度快慢直接影响切削效率。
若切削速度过小,则切削时间会加长,刀具无法发挥其功能;若切削速度太快,虽然可以缩短切削时间,但是刀具容易产生高热,影响刀具的寿命。
决定切削速度的因素很多,概括起来有:(1)冷却液使用。
机床刚性好、精度高可提高切削速度;反之,则需降低切削速度。
上述影响切削速度的诸因素中,刀具材质的影响最为主要。
切削深度主要受机床刚度的制约,在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。
这样可以减少走刀次数。
主轴转速要根据机床和刀具允许的切削速度来确定。
可以用计算法或查表法来选取。
进给量F(MM/R)或进给速度F(MM/MIN)要根据零件的加工精度、表面粗糙度、刀具和工件材料来选。
最大进给速度受机床刚度和进给驱动及数控系统的限制。
编程员在选取切削用量时,一定要根据机床说明书的要求和刀具耐用度,选择适合机床特点及刀具最佳耐用度的切削用量。
当然也可以凭经验,采用类比法去确定切削用量。
不管用什么方法选取切削用量,都要保证刀具的耐用度能完成一个零件的加工,或保证刀具耐用度不低于一个工作班次,最小也不能低于半个班次的时间(2)工件材料。
数控加工中切削用量的合理选择
数控加工中切削用量的合理选择【摘要】文章介绍了切削用量的三要素,并对数控机床加工时切削用量的合理选择进行了详细阐述,为数控机床编程与操作人员提供参考。
关键词】切削用量;加工质量;刀具耐用度;选择原则前言:数控加工中切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。
具体数值应根据机床说明书、切削用量手册,并结合经验而定。
切削用量是表示机床主运动和进给运动大小的重要参数。
切削用量的确定是数控加工工艺中的重要内容,切削用量的大小对加工效率、加工质量、刀具磨损和加工成本均有显著影响一、切削用量的选择原则数控加工中选择切削用量,就是在保证加工质量和刀具耐用度的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高,加工成本最低。
(一)加工质量:加工质量分为加工精度和加工表面质量。
1•加工精度是指零件加工后实际几何参数(尺寸、形状和位置)与理想几何参数相符的程度。
符合程度愈高,加工精度愈高。
实际值与理想值之差称为加工误差,所谓保证加工精度,即指控制加工误差。
⑴尺寸精度:加工表面的实际尺寸与设计尺寸的尺寸误差不超过一定的尺寸公差范围。
在国标中尺寸公差分20级(IT01、ITO、IT1〜IT18 )。
尺寸精度的获得方法:①试切法:试切一一测量一一调整一一再试切。
用于单件小批生产。
②调整法:通过预调好的机床、夹具、刀具、工件,在加工中自行获得尺寸精度。
用于成批大量生产。
③尺寸刀具法:用一定形状和尺寸的刀具加工获得。
生产率高,但刀具制造复杂。
④自动控制法:用一定装置,边加工边自动测量控制加工。
切削测量补偿调整。
⑵几何形状精度:加工表面的实际几何要素对理想几何要素的变动量不超过一定公差范围。
在国标中形状公差有六项:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。
几何形状精度的获得方法:成形运动法①轨迹法:利用刀具与工件间的相对运动轨迹来获得形状。
数控车床常用计算公式
数控车床常用计算公式数控车床是数控系统控制的自动化设备,可以在制造过程中自动完成加工操作。
在数控车床加工中,需要使用一些计算公式来帮助确定加工参数和加工结果。
下面是一些常用的数控车床计算公式。
一、转速和进给速度相关公式:1.主轴转速公式:主轴转速(n)=(切削速度(vc)×1000)÷(π×刀具直径(d))2.进给速度公式:进给速度(f)= 主轴转速(n)× 进给定址(fz)3.进给定址公式:进给定址(fz)=(切削率(s)× 刀具转数(n))÷ 切削深度(h)4.切削速度公式:切削速度(vc)= π×刀具直径(d)×主轴转数(n)÷1000其中,切削率(s)是切削宽度与进给量的比值,切削深度(h)是切削道深度。
二、加工时间相关公式:1.钻孔时间公式:钻孔时间(T1)=钻孔长度(l)÷进给速度(f)2.镗孔时间公式:镗孔时间(T2)=镗孔长度(l)÷进给速度(f)3.攻丝时间公式:攻丝时间(T3)=攻丝长度(l)÷进给速度(f)4.车削时间公式:车削时间(T4)=加工长度(l)÷进给速度(f)其中,加工长度(l)是指加工的工件长度。
三、进给量和切削深度相关公式:1.切削深度公式:切削深度(h)= 可切削余量(ae)+ 刀具半径(r)2.进给量公式:进给量(f)=切削率(s)×刀具宽度(b)其中,可切削余量(ae)是工件加工前与刀具的间隙,刀具半径(r)是刀具直径的一半。
四、加工精度相关公式:1.长度误差公式:长度误差(ΔL)=加工长度(L)-设计长度(L0)2.直线度误差公式:直线度误差(Δd)= 平均残余简化误差(E)× 每20mm测量长度(L)3.圆度误差公式:圆度误差(Δr)= (最大切削直径(Dmax)- 最小切削直径(Dmin))÷ 2其中,设计长度(L0)是工件在设计中规定的长度,平均残余简化误差(E)是多次加工中各测量长度差的平均值。
nc 常用计算公式
nc 常用计算公式NC常用计算公式。
在数控加工领域,常用的计算公式是非常重要的工具,它们可以帮助工程师和操作人员快速准确地进行计算,从而保证加工的精度和效率。
本文将介绍一些常用的NC计算公式,希望能对大家有所帮助。
1. 切削速度公式。
切削速度是指工件在切削过程中单位时间内被切削下来的长度,通常用m/min来表示。
切削速度公式为:Vc = π×D×n。
其中,Vc为切削速度,D为刀具直径,n为主轴转速。
通过这个公式,我们可以根据刀具直径和主轴转速来计算出切削速度,从而选择合适的切削参数。
2. 进给速度公式。
进给速度是指工件在切削过程中单位时间内沿着切削方向移动的距离,通常用mm/min来表示。
进给速度公式为:F = f×n×z。
其中,F为进给速度,f为每齿进给量,n为主轴转速,z为刀具齿数。
通过这个公式,我们可以根据每齿进给量、主轴转速和刀具齿数来计算出进给速度,从而确定合适的进给参数。
3. 主轴转速公式。
主轴转速是指主轴每分钟旋转的圈数,通常用r/min来表示。
主轴转速公式为:n = 1000×Vc/(π×D)。
其中,n为主轴转速,Vc为切削速度,D为刀具直径。
通过这个公式,我们可以根据切削速度和刀具直径来计算出主轴转速,从而确定合适的主轴转速参数。
4. 加工时间公式。
加工时间是指完成一道工序所需的时间,通常用分钟来表示。
加工时间公式为:T = L/F。
其中,T为加工时间,L为工件长度,F为进给速度。
通过这个公式,我们可以根据工件长度和进给速度来计算出加工时间,从而合理安排生产计划。
5. 切削力公式。
切削力是指刀具在切削过程中对工件所施加的力,通常用N来表示。
切削力公式为:Fc = k×ap×f。
其中,Fc为切削力,k为切削力系数,ap为切削深度,f为进给量。
通过这个公式,我们可以根据切削力系数、切削深度和进给量来计算出切削力,从而选择合适的刀具和加工参数。
切屑力和功率计算
切屑力和功率计算切削力和功率计算是机械加工中的重要内容,它们对于加工过程的稳定性和效率具有重要影响。
本文将从理论和实际应用的角度,分别介绍切削力和功率的计算方法。
一、切削力的计算切削力是指在机械加工过程中切削刀具对工件所产生的力。
切削力的大小与切削刀具的材料、切削速度、进给量、切削深度等因素有关。
常用的切削力计算公式有几种,其中最常见的是切削力公式:F = kc * kc1 * kc2 * kc3 * kc4 * kc5 * kc6 * kc7 * kc8 * kc9 * kc10其中F为切削力,kc为切削力系数。
切削力系数是根据实际加工情况和经验总结得出的,不同的材料和切削条件下,切削力系数的取值也不同。
根据具体情况选择合适的切削力系数,可以得到较为准确的切削力值。
二、功率的计算功率是指在机械加工过程中单位时间内所做的工作量,是衡量加工过程中能量转化效率的重要指标。
功率的计算与切削力有密切关系,一般可以根据切削力和切削速度来计算。
功率的计算公式为:P = F * Vc其中P为功率,F为切削力,Vc为切削速度。
切削速度是指切削刀具上任意切削点的线速度,通常用米/分钟表示。
切削速度的大小与机床主轴转速和刀具直径有关。
根据实际加工情况,选择合适的切削速度和切削力,可以计算出所需的功率值。
三、切削力和功率计算的应用切削力和功率的计算在机械加工中具有重要的应用价值。
通过计算切削力和功率,可以评估加工过程的稳定性和效率,为合理选择切削条件和切削工具提供依据。
同时,在加工过程中,通过实时监测切削力和功率的变化,可以及时发现加工中的问题,保证加工质量和安全。
切削力和功率的计算方法在实际应用中有多种途径。
一方面,可以通过相关的机械加工手册和文献,查找切削力系数和切削力公式,根据实际情况进行计算。
另一方面,现代数控机床和加工中心通常配备有切削力和功率监测系统,可以实时测量和计算切削力和功率,提供实时的加工参数和反馈信息。
数控铣刀加工参数计算公式
数控铣刀加工参数计算公式
切削速度(线速度):
V=(π*D*N)/1000 公式计算线速度,同时也可以反推计算转速
V:切削速度(m/min)
D:铣刀直径(mm)
N:主轴转速(rpm/min)
进给速度
V=N*F
V:进给速度(mm/min) ;计算加工时间时,用路径距离除以V得出,记得单位不要错;
N:同上
F:进给速度,每转进给量(mm/rpm)
每转进给量
F=Z*f
F:每转进给量(mm/rpm)
Z:齿数,就是参加切削使用的切削刃数量
f:每齿进给量(mm/齿)
所需动力
P=(Ks*Q)/(6120*π)=(Ks*W*F*d)/(6120000*η)=(Ks*W*f*Z*N*d)/(6120000 *η)
P:所需动力(Kw)
W:切削宽度(mm)
F:进给速度(mm/min)
f:每齿进给(mm/齿)
Z:齿数
N:亦同上
d:切深(mm)
Ks:切削阻力值(kgf/mm) 一般我们常用的铸铁:93,高合金钢:245,高碳钢:240;
η:机械效率(0.7~0.8)
切屑排出量
Q=W*F*d/1000=W*f*Z*N*d/1000
Q:切削排出量(cm/min)
W、F、f、Z、N、d:同上
球面端铣刀的切削速度和转速
N=(1000*Va)/(2*π* a*(2R-d)的开根号)
;黑色加粗部分打字打不出,抱歉,是加粗黑体字的开根号,理解万岁... N:主轴转速(同上)
R:刀半径,球部半径(mm)
d:切深(mm),同上
Va:切削速度(m/min)。
数控加工切削参数
数控加工切削参数加工工艺:1、刀具集中分序法。
以应用的刀具进行划分,用他一把刀加工完成所有可以加工的零件部位。
再用第二把刀或第三把刀完成他们其余可以完成的部位。
尽量减少换刀次数,减少定位误差和错误。
2、加工部位分序法。
数控机床加工零件,工序可以比较集中,一次装夹尽可能完成全部工序,对于加工部位很多的零件,可按照其结构特点对加工部分进行划分成为几个部分,如内形、外形、曲面、或平面等。
一般遵从以下原则:□一般先加工平面、定位面、后加工孔;□先加工简单的几何形状,再加工复杂的几何形状。
□先加工精度较低的部位,再加工精度要求高的部位。
3、粗、精加工分序法。
易发生加工变形的零件,由于粗加工后可能发生的变形而需要进行校形,一般来说,凡要进行粗、精加工的都要将工序分开。
4、保证精度的原则。
数控加工要求工序尽可能集中,常常粗、精加工在一次装夹下来完成,为减少热变形和切削力变形对工件的形状,位置精度、尺寸精度和表面精度,应将粗、精加工分开进行。
对加工轴类或盘类零件,将各处先粗加工,留少量余量精加工;对于一些箱体工件,为保证孔的精度,应先加工表面而后加工孔。
设置加工切削参数:合理选择切削用量的原则:(1)、粗加工时,为提高效率,在保证刀具、夹具和机床强度刚性足够的条件下,切削用量的选择顺序是:首先把切削深度选大一些,其次选取较大的的进给量,然后选适当的切削速度。
若加工余量小,切削深度不可能大时,可适当增加进给量。
当铣削材料表面有硬皮层(铸铁)时,一次切削深度应超越硬皮层厚度,使用刀具在首次切削时刀刃不易磨损,避免刀具与材料硬皮层直接接触发生崩刃现象。
铣削有色金属时,材料塑性韧性较好,硬度较低切削用量可适当选大,如主轴转速可选较大值。
但进给速度不可太大,否则紫铜材料易产生粘刀现象。
(2)、精加工时,加工余量小,为了保证工件表面光洁度,尽可能增加切削速度,这时进给量可适当减少。
切削用量可根据加工余量和零件技术要求而来定。
切削三要素计算公式【终于全了】
金属切削技能在机械加工中是一个基本的技能,也是很多机械加工人常常挂在嘴边的一个词,虽然金属切削技能很基本,但是深入了解金属切削后你会发现里面的学问还真的很多,不少数控车床的操作者,对车床的切削原理知道得很少,常常不知道如何正确选择主轴转速S、进刀量F,以及进刀的深度,即切削三要素的计算公式,希望这篇文章能对他们有所帮助。
众说周知,提高加工效率时,提高切削三要素(切削线速度,吃刀深度,进给量)是最简单、最直接的方法。
但刀具切削三要素的提高,一般会受到现有机床设别条件的限制。
在切削三要素的确定法则:依次确定吃刀深度,进给量以及切削线速度。
吃刀深度一般根据加工余量确定,粗加工进给量根据机床功率确定,精加工进给量根据表面粗糙度确定;切削线速度根据刀具材质和机床主轴转速确定。
主轴转速S、进刀量F,进刀的深度,在切削原理课程中称为切削加工三要素,如何正确选择这三个要素是金属切削原理课程的一个主要内容,我这里想尽可能简单地介绍一下选择这三个要素的基本原则:(一) 切削速度(线速度、园周速度)V(米/分)要选择主轴每分钟转数,必须首先知道切削线速度V应该取多少。
V的选择:取决于刀具材料、工件材料、加工条件等。
刀具材料:硬质合金,V可以取得较高,一般可取100米/分以上,一般购置刀片时都提供了技术参数:加工什么材料时可选择多少大的线速度。
高速钢:V只能取得较低,一般不超过70米/分,多数情况下取20~30米/分以下。
工件材料:硬度高,V取低;铸铁,V取低,刀具材料为硬质合金时可取70~80米/分;低碳钢,V可取100米/分以上,有色金属,V可取更高些(100~200米/分).淬火钢、不锈钢,V 应取低一些。
加工条件:粗加工,V取低一些;精加工,V取高些。
机床、工件、刀具的刚性系统差,V取低。
如果数控程序使用的S是每分钟主轴转数,那么应根据工件直径,及切削线速度V计算出S:S(主轴每分钟转数)=V(切削线速度)*1000/(3.1416*工件直径)如果数控程序使用了恒线速,那么S可直接使用切削线速度V(米/分)(二)进刀量(走刀量)F主要取决于工件加工表面粗糙度要求。
车床工时计算法
切削速度(vc) vc=π.D1000(m/min)※除以1000将mm换算成m n(min-1):主轴转速Dm(mm):工件材料直径:圆周率vc(m/min):切削速度数控车床编程时,编程人员必须确定每道工序的切削用量。
选择切削用量的时候,一定要充分考虑影响切削的各种因素,正确的选择切削条件,合理地确定切削用量,可有效地提高机械加工质量和产量。
影响切削条件的因素有:机床、工具、刀具及工件的刚性;切削速度、切削深度、切削进给率;工件精度及表面粗糙度;刀具预期寿命及最大生产率;切削液的种类、冷却方式;工件材料的硬度及热处理状况;工件数量;机床的寿命。
上述诸因素中以切削速度、切削深度、切削进给率为主要因素。
切削速度快慢直接影响切削效率。
若切削速度过小,则切削时间会加长,刀具无法发挥其功能;若切削速度太快,虽然可以缩短切削时间,但是刀具容易产生高热,影响刀具的寿命。
决定切削速度的因素很多,概括起来有:(1)冷却液使用。
机床刚性好、精度高可提高切削速度;反之,则需降低切削速度。
上述影响切削速度的诸因素中,刀具材质的影响最为主要。
切削深度主要受机床刚度的制约,在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。
这样可以减少走刀次数。
主轴转速要根据机床和刀具允许的切削速度来确定。
可以用计算法或查表法来选取。
进给量F(MM/R)或进给速度F(MM/MIN)要根据零件的加工精度、表面粗糙度、刀具和工件材料来选。
最大进给速度受机床刚度和进给驱动及数控系统的限制。
编程员在选取切削用量时,一定要根据机床说明书的要求和刀具耐用度,选择适合机床特点及刀具最佳耐用度的切削用量。
当然也可以凭经验,采用类比法去确定切削用量。
不管用什么方法选取切削用量,都要保证刀具的耐用度能完成一个零件的加工,或保证刀具耐用度不低于一个工作班次,最小也不能低于半个班次的时间(2)工件材料。
工件材料硬度高低会影响刀具切削速度,同一刀具加工硬材料时切削速度应降低,而加工较软材料时,切削速度可以提高。
CNC常用计算公式
CNC常用计算公式CNC(数控机床)常用计算公式是指在CNC加工过程中,用于计算切削速度、进给速度、主轴转速、转换换算等相关参数的公式。
这些公式对于操作员来说非常重要,可以帮助他们正确地设置CNC机床的参数,确保加工过程的准确性和效率。
下面是一些常用的CNC计算公式:1.切削速度(VC)的计算公式:VC=π×D×N其中,VC表示切削速度,D表示刀具直径,N表示主轴转速。
切削速度是指刀具在加工过程中移动的线速度,通常以米/分钟或英尺/分钟表示。
2.进给速度(Vf)的计算公式:Vf = N×r×fn其中,Vf表示进给速度,N表示主轴转速,r表示进给倍率,fn表示进给量。
进给速度是指工件在加工中相对于刀具移动的线速度,通常以毫米/分钟或英尺/分钟表示。
3.主轴转速(N)的计算公式:N=1000×VC/(π×D)其中,N表示主轴转速,VC表示切削速度,D表示刀具直径。
主轴转速是根据切削速度和刀具直径来计算的,通常以转/分钟表示。
4.铣削进给(Fz)的计算公式:Fz=N×z×z1其中,Fz表示铣削进给,N表示主轴转速,z表示每齿切槽数,z1表示每齿进给量。
铣削进给是指在铣削加工中,刀具在单位时间内切削的材料体积,通常以毫米/转或英尺/转表示。
5.转速换算公式:N2=N1×(D1/D2)^n其中,N1和N2表示两个不同直径的主轴转速,D1和D2表示两个不同直径的刀具直径,n表示常数。
转速换算公式可以帮助操作员确定在更换不同直径的刀具时需要调整的主轴转速。
以上是常用的CNC计算公式,这些公式可以应用于不同的CNC加工过程,如车削、铣削、钻孔等。
通过正确运用这些公式,操作员可以根据加工需求和材料特点,合理地设置CNC机床的参数,提高加工效率和精度。
值得注意的是,由于不同机床、刀具和材料之间存在差异,操作员在使用这些计算公式时应结合实际情况灵活调整和应用。
数控加工切削参数计算公式
注:在红色字体位置处,输入你们刀具或工件的实际直径,以及刀具齿数,即可自动计算出相关主轴转速和进给速度。
1.切削速度=3.14*直径*转速/1000;
2.每转进给量=每齿进给量*刀具齿数;
3.每分钏进给量=主轴转速*每转进给量
1000
Dn
V c π=
f
Z f *=
切削速度背吃刀量
每转进
给量
主轴转速
((((
))))
外圆
粗加
工
4010.240318.4713376外圆
精加
工
200.150.0841155.351872切槽
加工
200.0830212.3142251外圆
粗加
工
100 1.50.235909.9181074外圆
精加
工
1300.40.0550828.0254777切槽
加工
1000.0845707.7140835
外圆
粗加
工
150 1.50.2351364.877161外圆
精加
工
1500.40.05401194.267516
切槽加工1000.0845707.7140835
2.每转进给量=每齿进给量*刀具齿数;
3.每分钏进给量=主轴转速*每转进给量
车床切削参数计算参考
刀具材料高速钢
硬质合金钢加工
类型
工件直径
z
f
Z
n
nf
F*
*
=
=
z
f
Z
f*
=
;量
;量。
数控加工参数表
数控加工参数表 The manuscript was revised on the evening of 2021一、主轴转速n(r/min)主轴转速一般根据切削速度V来选定,计算公式为:n=1000V/(π×d)式中,d为刀具直径(mm),V为刀具切削速度(m/min)。
对于球头铣刀,工作直径要小于刀具直径,故其实际转速应大于计算转速n。
表1铣刀的切削速度V(单位:m/min)二、进给速度V f (mm/min)Vf = fz×z×n式中n为主轴转速,z为铣刀齿数,f z为每齿进给量(mm/齿).每齿进给量fz的选取主要取决于工件材料的力学性能、刀具材料、工件表面粗糙度等因素。
工件材料的强度和硬度越高,f z越小;反之则越大。
硬质合金铣刀的每齿进给量高于同类高速钢铣刀。
工件表面粗糙度要求越高,f z就越小。
1.铣削加工表2 铣刀每齿进给量f z (单位:mm/齿)2.镗削加工表3 镗孔切削用量3、攻螺纹攻螺纹前底孔直径的确定:攻米制螺纹螺距P<1mm:d0=d-PP>1mm:d0=d-(~)P式中P —螺距(mm)d0 —钻头直径(mm)d—螺纹公称直径(mm)攻不通孔螺纹钻孔深度=所需螺孔深度- d表4 攻普通螺纹前的底孔直径表5 攻英制螺纹前的底孔直径表6 攻螺纹切削速度(单位:m/min)4、钻孔加工表7 用高速钢钻头钻孔切削用量(f单位:mm/r)5、铰孔加工铰孔属于精加工工序,加工过程中应合理选择铰刀的类型及材质,高速钢铰刀属于通用铰刀,硬质合金铰刀一般用于加工钢、铸钢、灰铸铁和冷硬铸铁。
为了达到较高的孔径精度和表面质量,应采用较低的切削速度和进给量并合理选择切削液。
铰孔前应留有铰削余量,一般为~底孔直径=铰刀直径-(~)mm铰削加工时切削速度V取3~15m/min进给量f取~r注意:在正式加工之前应试铰,并检验孔径及粗糙度是否符合要求。
三、切削液的选择注:以上各表是加工中心和数控铣床常用的加工参数,供参考。
数控切削速度计算公式
数控切削速度计算公式
当切削材料是钢时,切削速度可以通过以下公式计算:
v=π*d*n
其中,v表示切削速度,d表示刀具直径,n表示切削转速。
当切削材料是铝合金时,切削速度可以通过以下公式计算:
v=K*d*n
其中,v表示切削速度,d表示刀具直径,n表示切削转速,K是铝合金切削速度系数,其数值一般为0.8-1.2
当切削材料是不锈钢时,切削速度可以通过以下公式计算:
v=P/(π*d*f)
其中,v表示切削速度,d表示刀具直径,P表示主轴功率,f表示进给率。
在实际计算中,需要事先确定不锈钢的切削系数。
当切削材料是铸铁时,切削速度可以通过以下公式计算:
v=K*d*n
其中,v表示切削速度,d表示刀具直径,n表示切削转速,K是铸铁切削速度系数,其数值一般为0.8-1.2
需要注意的是,不同的刀具材料、切削条件和工件材料等因素会影响切削速度的计算结果。
在实际应用中,可以通过试验和经验总结,结合切削力、切削效果和加工精度等要求,选择合适的切削速度。
同时,还需注意机床的最大切削转速和工件的材料性质等限制因素。
总结起来,数控切削速度计算公式是根据刀具材料、切割条件和工件材料等因素所确定的。
通过切削力、刀具直径和切削转速等参数,可以计算得到切削速度。
但是需要根据实际情况选择合适的切削速度,并考虑机床和工件的限制因素,以获得满足加工要求的切削效果。