典型地物反射波谱测量与特征分析Word版
典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析引言典型地物反射波谱测量与特征分析是遥感领域的重要研究内容之一、通过获取地物的反射光谱特性,可以深入了解地物的组成和性质,从而实现地物分类和变化监测等应用。
本文将介绍地物反射光谱测量的方法以及常见的特征分析方法。
一、地物反射光谱测量方法1.无人机航拍法无人机航拍法是一种比较常用的地物反射光谱测量方法。
通过搭载光谱仪等设备的无人机进行航拍,可以获取高分辨率的光谱数据。
这种方法适用于小范围的地物反射光谱测量,可以获取非常详细的地物光谱信息。
2.便携式光谱仪法便携式光谱仪法是一种简便易行的地物反射光谱测量方法。
通过使用便携式光谱仪,可以在不同地点采集地物的光谱数据。
这种方法适用于快速测量大面积范围的地物光谱信息,常用于农业、植被监测等领域。
3.卫星遥感法卫星遥感法是一种广泛应用于大区域地物光谱测量的方法。
通过卫星传感器获取的遥感数据,可以得到地物的反射光谱特性。
这种方法适用于大范围的地物光谱监测和研究。
二、地物反射光谱特征分析方法1.基于统计学的分析方法基于统计学的分析方法通过对光谱数据进行统计学分析,提取地物的光谱特征。
常见的方法有频率统计和概率分布分析。
这些方法能够揭示地物光谱的整体分布规律,帮助区分不同地物类型。
2.基于特征波长的分析方法基于特征波长的分析方法通过找到光谱数据中特定波长的峰值或谷值,来提取地物的光谱特征。
常见的方法有光谱指数法和比值法。
这些方法能够有效提取地物的光谱特征,突出地物的不同性质。
3.基于光谱反射率的分类方法基于光谱反射率的分类方法通过将地物反射光谱与已知地物光谱进行对比,实现地物的分类。
常见的方法有最大似然分类和支持向量机分类。
这些方法通过对光谱数据进行分析,可以将地物进行有效地分类。
三、应用实例1.植被监测通过地物反射光谱测量和特征分析,可以实现对不同植被的监测。
通过提取植被的光谱特征,可以了解植被的生长状况、叶绿素含量等指标,进而对植被进行分类和变化监测。
典型地物的反射波谱特征

典型地物的反射波谱特征嘿,朋友们!今天咱来聊聊典型地物的反射波谱特征,这可有意思啦!你看啊,这大地就像一个大舞台,各种地物就是舞台上的主角。
比如说那绿油油的草地,就像一个充满活力的小伙子,反射波谱特征那可是很鲜明的哟!它在可见光波段就特别亮眼,反射率相对较高呢,就好像小伙子在舞台上闪闪发光。
再说说那蓝色的湖泊,哎呀呀,就像一位安静的美少女。
它对蓝光的反射特别强,就像美少女穿着漂亮的蓝色裙子在那亭亭玉立。
你能想象到那种感觉吗?还有那黄澄澄的沙漠,简直就是个热情似火的大汉!它在可见光波段的反射率可不低,就如同大汉在阳光下尽情展现自己的力量。
森林呢,则像一个神秘的守护者。
它的反射波谱特征比较复杂,不同的树种还有不一样的表现呢!有的树种在某些波段反射得多一些,有的则少一些,是不是很神奇?咱们的城市呢,就像是一个热闹的大集市。
各种建筑物、道路啊,它们的反射波谱特征也是各有特点。
那些高楼大厦的表面反射和那些小巷子里的可不一样哦,就好像集市里不同的摊位都有自己独特的魅力。
你说这大自然是不是很奇妙?通过研究这些典型地物的反射波谱特征,我们就能更好地了解这个世界啦!我们可以用这些知识来监测环境变化呀,看看草地是不是变少了,湖泊有没有被污染呀。
这就好比我们有了一双神奇的眼睛,可以看到大地的秘密呢!而且啊,这对我们的日常生活也有很大的帮助呢。
比如说在农业上,我们可以根据农作物的反射波谱特征来判断它们的生长状况,是不是缺水啦,有没有生病呀。
这不就像我们能听懂农作物的“语言”一样吗?所以啊,大家可别小看了这典型地物的反射波谱特征。
它就像一把钥匙,能打开我们了解大自然的大门。
让我们一起好好探索这个神奇的世界吧,你准备好了吗?反正我是超级期待的啦!这就是我对典型地物反射波谱特征的看法,有趣又实用,对吧!。
各典型地物的光谱曲线-文档资料

常见地物比较光谱曲线 植被光谱曲线 土壤光谱曲线 水体光谱曲线 岩石光谱曲线
地物波谱特征
在可见光与近红外波段,地表物体自身的辐射几乎等于零。地物
发出的波谱主要以反射太阳辐射为主。太阳辐射到达地面之后, 物体除了反射作用外,还有对电磁辐射的吸收作用。电磁辐射未 被吸收和反射的其余部分则是透过的部分,即: 到达地面的太阳辐射能量=反射能量+吸收能量+透射能量 一般而言,绝大多数物体对可见光都不具备透射能力,而有些物 体如水,对一定波长的电磁波透射能力较强,特别是对0. 45 ~ 0. 56μm的蓝绿光波段,一般水体的透射深度可达10~20 m,清澈 水体可达100 m的深度。 对于一般不能透过可见光的地面物体,波长5 cm的电磁波却有透 射能力,如超长波的透射能力就很强,可以透过地面岩石和土壤。
土壤的光谱曲线
自然状态下,土壤表面的 反射率没有明显的峰值和 谷值,一般来说,土质越 细反射率越高。有机质和 含水量越高反射率越低, 土类与肥力也对土壤反射 率有影响。但由于其波谱 曲线较平滑,所以在不同 光谱段的遥感影像上土壤 亮度区别并不明显。
水体的光谱曲线
水体反射率较低,小于 10%,远低于大多数的其 他地物,水体在蓝绿波段 有较强反射,在其他可见 光波段吸收都很强。纯净 水在蓝光波段最高,随波 长增加反射率降低。在近 红外波段反射率为0;含叶 绿素的清水反射率峰值在 绿光段,水中叶绿素越多 则峰值越高。这一特征可 监测和估算水藻浓度。 而浑浊水、泥沙水反射率 高于以上,峰值出现在黄 红区。
岩石的光谱曲线
岩石反射曲线无统一特 征,矿物成分、矿物含 量、风化程度、含水状 况、颗粒大小、表面光 滑度、色泽都有影响。 例如:浅色矿物与暗色 矿物对其影响较大,浅 色矿物反射率高,暗色 矿物反射率低。 自然界岩石多被植、被 土壤覆盖,所以与其覆 盖物也有关
word电磁辐射与地物光谱特征

第二章电磁辐射与地物光谱特征2.1 电磁波与电磁波谱一、电磁波:1 概念:电磁波是交变电场和磁场在空中的转化和传播2 特点:电磁波是横波,传播速度为光速有反射、吸收、透射、散射等。
二、电磁波谱:按电磁波波长的长短(或频率的大小),依次排列制成的图表称电磁波谱三、遥感应用电磁波段O(∩_∩)O紫外线波长范围为0.01-0.4μm。
太阳辐射含有紫外线,通过大气层时,波长短于0.3μm的能量几乎都被吸收,只有0.3- 0.4μm波长到达地面。
主要用于测定碳酸盐岩分布,碳酸盐岩对紫外线的反射比其它类型的岩石要强。
另外,紫外线对水面飘浮的油膜比周围的水面反射强烈,因此可以用于油污染的监测O(∩_∩)O可见光波长范围从0.38-0.76μm。
它由红、橙、黄、绿、青、蓝、紫色光组成。
人眼对可见光有敏锐的感觉,不仅对可见光的全色光,而且对不同波段的单色光,也都具有敏锐的分辨能力,所以可见光是作为鉴别物质特征的主要波段。
在遥感技术中是以光学摄影方式和扫描方式接收和记录地物对可见光的反射特征。
O(∩_∩)O红外线波长范围为0.76—1000μm 。
分为:近红外(0.76-3.0 μm )、中红外(3.0-6.0μm )、远红外(6.0-15.0μm )和超远红外(15 -1000 μm )。
近红外在性质上与可见光相似,所以又称为光红外。
在遥感技术中采用摄影方式和扫描方式,接收和记录地物对太阳辐射的光红外反射。
中红外、远红外和超远红外是产生热感的原因,所以又称为热红外。
O(∩_∩)O微波微波的波长范围1mm-lm。
微波遥感是借助微波散射现象来探测地物的性质。
它的优点主要有:(1 )微波易于聚成较窄的发射波束(2 )微波近似直线传播,不受电离层影响。
(3 )地面目标对微波散射性能好。
(4 )受自然界中的电磁波干扰小。
(5 )具有一定的穿透性2.2 大气层对电磁辐射的影响一、太阳辐射太阳辐射是地球及大气电磁辐射的能源,也是被动式遥感系统中主要的辐射源二、大气层对电磁辐射的影响1 大气层结构在垂直方向上分:对流层平流层电离层大气外层对流层:为大气的底层,顶部平均位于12km 。
地物的反射光谱与地物波谱特性

地物的反射光谱曲线
不同的地物在不 同波段反射率存在差 异。
右图为雪地、小
麦地的光谱曲线。
植物反射波谱特性
由于植物均进行光合 作用,因此各类绿色植物 具有很相似的反射波谱特 性: 在可见光波段 0.55μm(绿光)附近有 反射率为10%-20%的一个 波峰; 在近红外波段0.81.0μm间有一个反射的陡 坡,至1.1μm附近有一个 峰值,形成植被的独有特 征。
地物的反射光谱
物体是反射波谱限于紫外、可见光
和近红外,尤其是后两波段。
物体的反射波谱是特征主要取决于该
物体与入射辐射相互作用的波长选择,即:
对入辐射是反射、吸收和投射的选择性,其 中反射作用是主要的。
地物的反射光谱
地物的反射光谱有如下特征: (1)不同的地物在不同波段反射率存在差异 (如雪地、小麦地的光谱曲线) (2)相同地物光谱曲线有相似性,但是也存在 差异性(如患虫害的小麦与正常小麦的光谱曲线) (3)地物光谱特征具有事件性和空间性(不同 时间与空间光谱特征不同
完善等很多问题仍然缺乏一套系统的、规范的我
国典型地物的波普数据。
国外地物波谱库研究现状
美国NASA于70年代初就初步建立了地
球资源信息系统(ERSIS)。包括植被、土
壤、岩矿和水体等2000余种地物的实验室 反射波谱数据。
地物波谱仪
地物波谱仪
逐渐摆脱“看图识字”的阶段,越来越依赖于地
物波谱特性的研究和发展。
我国地物波谱特性发展现状
地物波谱特性是遥感探测的基础,遥感优
化组合的依据,是定量遥感的技术与应用发展的 先决条件,但我国在地物波谱特性研究中还存在 在很多问题,尽管我国近年引进了一大批代表国 际前沿的地物波谱测试的设备,但其辅助装置不
典型地物反射波谱测量与特征分析

典型地物反射波谱测量与特征分析一、实验目的与要求1.实验意义:(1)对光谱测量仪器的认识: ASD野外光谱分析仪 FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。
FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。
通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。
(2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。
影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。
不同的地理位置,海拔高度不同。
时间、季节的变化。
地物本身差异、土壤含水量、植被病虫害。
2.实验目的:(1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。
(2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。
认识并掌握典型地物反射光谱特征。
二、实验内容与方法1.实验内容(1)典型地物反射波谱测量选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(0.4-2.5微米)的反射光谱曲线。
地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。
(2)地物波谱特征分析a)标准波谱库浏览b)波谱库创建c)高光谱地物识别从标准波谱库选择端元进行地物识别自定义端元进行地物识别2.实验方法(1)ASD光谱仪简介FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。
整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。
2.3 地物波谱特征

2、 影响样本光谱的因素
2、 影响样本光谱的因素 在光谱的采集过程中,对我们所感兴 趣的样本产生影响的因素很多,而且关 系非常复杂。这些因素中,有些是可以 在数据的处理过程中削弱和去除的,而 有些因素产生的影响却是无法估计和处 理的。所以在采集样本光谱时,我们必 须考虑到各种因素,尽量避免一些无法 定量的因素对最终结果产生影响。
地物反射波谱特征
反射率和反射光谱
–物体的反射
物体的反射状况根据其表面状况的不同分为三种:
镜面反射:入射角与反射角相等 漫反射:当入射辐照度I一定时,从任何角度观察
反射面,其反射辐射亮度是一个常数,这种反射 面又叫朗伯面。
实际物体反射:介于镜面和朗伯面(漫反射
面)之间
实际物体反射
设φ i、θ i分别为入射 方向的方位角和天顶 角,φ r、θ r分别为某 一反射方向的方位角 和天顶角。那么方向 反射因子ρ ’可以表 示为: Lr ( r r ) ' ( i i , r r ) I i ( i i )
1.2 测量仪器的软件介绍
多种参数设置:
Spectra Wiz软件中提供了许多设置参数来控制各种不 同的功能,例如: Detector integration time (TIME)设定光谱仪输 出信号功率; Spectral smoothing controls (SIM)设定光谱曲线平 滑算子; Number of scans to average (AVG)设定光谱平均采 样次数; 合理的设置这些参数,能够起到事半功倍的效果。例 如,选择适当的TIME和AVG参数值,能使仪器在较 短的时间内获得高信噪比的数据,这样便为数据的后 期处理减轻了负担。
或氧化镁制成,在反射天顶角≤45o时,
典型地物波谱特征

典型地物波谱特征1. 植被:植被在可见光波段(400-700nm)有较高的反射率,特别是在绿光波段(500-600nm)具有最高的反射率。
这是由于植物叶片中的叶绿素所致。
而在红外波段(近红外和中红外)植被的反射率较低,由于叶片中的水分和植被构架的散射。
这些反射特征使得植被在光谱上呈现出独特的红光和近红外反射的“红边”特征,可以用来检测植被的类型、生长状况和叶绿素含量。
2.土壤:土壤具有较低的反射率,特别是在可见光波段和红外波段。
土壤的光谱特征主要由其物理和化学特性决定,如含水量、粒度和有机质含量。
不同土壤类型具有不同的光谱特征,可以通过光谱分析来进行区分。
例如,矿物质丰富的土壤在可见光波段和红外波段具有较高的反射率;有机质含量高的土壤在红外波段具有较高的吸收率。
3.水体:水体在可见光波段有较低的反射率,特别是蓝光波段。
这是由于水分子的吸收作用。
在红外波段,水体的吸收率较高,特别是在中红外波段。
这些反射和吸收特征使得水体在光谱上呈现出低反射的“蓝窗口”和高吸收的“红窗口”特征,可以用来进行水体的识别和水质监测。
4.建筑物:建筑物在可见光波段和红外波段具有较高的反射率。
不同类型的建筑物具有不同的光谱特征,可以通过光谱分析进行分类。
例如,玻璃和金属材料具有很高的反射率,并在短波红外波段具有很高的吸收率;混凝土和瓦片具有适中的反射率和较低的吸收率。
5.云和雪:云和雪在可见光波段具有较高的反射率,特别是在蓝光波段。
在红外波段,云和雪的反射率较低,并具有较高的吸收率。
这些反射和吸收特征使得云和雪在光谱上具有明显的特征,可以用来进行云和雪的遥感监测。
以上是一些典型地物的波谱特征的例子,不同地物在不同波段上的反射和吸收特征是由其物理、化学和结构特性所决定的。
通过利用这些特征,可以对地物进行识别和定量化,为环境监测、资源调查和灾害监测等应用提供重要的信息。
植物反射波谱特征

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载植物反射波谱特征地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容健康的绿色植被的光谱反射特征地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。
在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。
健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。
例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。
植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。
除此之外,叶红素和叶黄素在0.45um (蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。
如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。
这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。
从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。
在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。
健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。
植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。
在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。
(完整版)遥感实习报告(波谱曲线)

遥感实习报告内容1.分析几种典型地物的波谱曲线特征,依据此特征辨别TM影像样图的通道值,写出其辨别理由;(1)植被的波谱曲线特征:植被的反射波普曲线主要分三段:可见光波段0.4-0.76um 有一个小的反射峰,位置在0.5um绿处两侧蓝和红有两个吸收带,这一特征是由于叶绿素的影响。
叶绿素对蓝光和红光的吸收作用强,对绿光反射作用强。
近红外波段有一反射的陡坡到1.1um附近有一峰值形成植被的独有特征。
这是由于植被叶细胞结构的影响,除了吸收和透射的部分,形成的高反射率。
在中红外波段1.3-2.5 um受到绿色植物含水量的影响,吸收率大增,反射率大大下降,特别以1.45um 1.95 um2.7um为中心是水的吸收带形成低谷。
所以分析:根据植被的反射波谱曲线特征,T2与T3图在长江流域与汉江流域比较下,判断由于T3图两水域颜色区别较大,在植被的中T-3的反射率大于T-2,所以判断T2图可能处于TM1-TM2(0.45-0.60um之间)即蓝绿波段之间。
(2)水体的波普特征:水体的反射主要在蓝绿波段,其他波段吸收都很强。
特别到了近红外波段吸收就更强。
遥感影像上,特别是近红外影像上,水体呈黑色,一般情况下,水中含泥沙时,由于泥沙散射,光波段反射率会增加,峰值出现在黄红区,水中含叶绿素时,近红外波段明显抬升,这些都成为影像分析的重要依据。
分析:根据水体光谱特征,T5图中水体为黑色,T5图的反射率大,判断为红外光,则T5图为TM5中红外波段(1.55-1.75UM)。
进一步根据水体和植物的反射波谱曲线得出T3图为TM3波段(0.62-0.69um)即为红光波段。
(3)土壤的光谱特征:土壤自然状态下反射率没有明显的峰值和谷值,一般来说土质越细反射率越高,有机质含量越高和含水量越高,反射率越低此外土类和肥力也会对反射率产生影响。
由于土壤反射波谱曲线呈比较平滑的特征,所以不同光谱段的遥感影像上土壤的亮度区别不明显。
分析:又因为T4图与T5图比较,图像的江水较T5图来说发白,即江水的反射率应该增高,另外该图的植被比T5图更白,反射率更高,故而应该在植被的反射峰附近所以T4图为0.70—0.90um之间,即为TM4近红外波段。
地物反射波谱特征

6
7
8
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
实际物体的反射,介于镜面反射和漫反射之间。在入射辐照度相同时,反 射辐射亮度的大小既与入射方位角和天顶角有关,也与反射方向的方位角 与天顶角有关。
Lr (r r ) (ii , r r ) I i (i i )
'
入射辐照度Ii由两部分组成,一部分是太阳的直接辐射,其辐照度 大小与太阳天顶角θ i和日地距离D有关;另一部分是太阳辐射经过 大气散射后又漫入射到地面的部分,其辐照度与入射角无关。
Lr (r r ) ' (i i ,r r ) I i ( i , D) " (r r ) I D
植被的光谱曲线: 可分为三段:
0.4-0.76m: 有一个小的反射峰,位于绿色波段(0.55 m ),两边 (蓝、红)为吸收带(凹谷) 0.76-1.3 m: 高反射,在0.7 m处反射率迅速增大,至1.1处有峰值 1.3-2.5 m: 受植物含水量影响,吸收率增加,反射率下降,形成几个 低谷
9
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
反射波谱:研究地物反射率随波长的变化规律 识别地物 地物反射曲线的形态相差很大,表明反射率随波长变化的规律不同 图:植被、水体、干的土壤
10
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
11
2.3 地球的辐射与地物波谱
2.3.3、地物反射波谱特征
2.3 地球的辐射与地物波谱
2.3.1、太阳辐射与地表的相互作用
1
2.3 地球的辐射与地物波谱
2.3.1、太阳辐射与地表的相互作用
地球辐射的分段特性 波段名称 可见光与近红 外 0.3-2.5μm 地表反射太阳 辐射为主 中红外 远红外
遥感地学分析实验——实验一:目标地物反射波谱的测量

实验一:目标地物反射波谱的测量(3学时)
原理与方法
地物光谱反射率野外测定的原理可参看相应教材,这里不再进行赘述。
实习采用垂直测量的方法,计算公式如下:
)()()
()(λρλλλρs V V s ⋅=
(1.1)
式中:)(λρ为被测物体的反射率,)(λρs 为标准板的反射率,)(λV 、)(λs V 分别为测量
物体和标准板的仪器测量值。
实验仪器
1 可见光-近红外光谱辐射计,波长范围0.4~2.5m μ(有0.4~1.1m μ或1.3~2.5m μ两种仪器),以其性能稳定,便于携带,数据的提取比较容易。
表1-1列出了目前常用的光谱仪,仪器的具体使用方法可参见相关的仪器说明书。
2 标准参考板(白板或灰板)。
表1-1 常见的光谱辐射仪
实验目的
1 学习地物光谱的测定方法;
2 认识地物光谱反射率的规律; 3学习绘制地物反射光谱曲线。
实验报告
内容包括:目的、仪器、测量目标基本信息、环境参数表、测试数据表、一组反射率曲线图、误差分析等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型地物反射波谱测量与特征分析一、实验目的与要求1.实验意义:(1)对光谱测量仪器的认识:ASD野外光谱分析仪FieldSpecPro是一种测量可见光到近红外波段地物波谱的有效工具,它能够快速扫描地物,光线探头在毫秒内得到地物的单一光谱。
FieldSpec分光仪主要由附属手提电脑,观测仪器,手枪式把手,光线光学探头以及连接数据线组成。
通过连接电脑,可实时持续显示测量光谱,使得测量者可以即时获取需要的测量数据。
(2)对课堂内容的认识:地物反射光谱是指某种物体的反射率或反射辐射能随波长变化的规律,以波长为横坐标,反射率为纵坐标所得到的曲线即为反射波谱特性曲线。
影响地物波谱变化的因素:太阳位置(太阳高度角和方位角)。
不同的地理位置,海拔高度不同。
时间、季节的变化。
地物本身差异、土壤含水量、植被病虫害。
2.实验目的:(1)地物波谱数据获取需要使用地面光谱仪,通过该实验学会地面光谱仪的原理与使用方法。
(2)通过对地物光谱曲线分析,比较相异与相似地物反射光谱特征。
认识并掌握典型地物反射光谱特征。
二、实验内容与方法1.实验内容(1)典型地物反射波谱测量选择典型地物类型,使用地物光谱仪,开展地物光谱测量,获得典型地物可见光近红外波段(0.4-2.5微米)的反射光谱曲线。
地物类型:植被(草地、灌丛),水体(不同水深,有无植被),土壤(裸土、有少量植被覆盖土壤),不透水地面(水泥地面、沥青路面、大理石地面)。
(2)地物波谱特征分析a)标准波谱库浏览b)波谱库创建c)高光谱地物识别●从标准波谱库选择端元进行地物识别●自定义端元进行地物识别2.实验方法(1)ASD光谱仪简介FieldSpec Pro型光谱仪是美国分析光谱设备(ASD)公司主要的野外用高光谱测量设备。
整台仪器重量7.2公斤,可以获取350~2500nm 波长范围内地物的光谱曲线,探测器包括一个用于350-1000nm的512像元NMOS硅光电二极管阵列, 以及两个用于1000-2500nm的单独的热电制冷的铟-镓-砷光电探测器。
便携式光谱仪是“我国典型地物标准波谱数据库”获取光谱数据的主要设备。
基本技术参数:线性度:+/-1%波长精度:+/- 1nm@700nm波长重复性:在校准温度的+/- 10°C范围内优于+/- 0.3nm.光谱分辨率: 3nm @700nm, 10nm @ 1400nm and 2100nm.采样间隔: 在350-1000nm范围内为1.4nm,在1000-2500nm范围内为2nm扫描时间:固定的扫描时间为0.1秒, 光谱平均最多可达31,800次等效辐射噪声): UV/VNIR(紫外到近红外) 1.4 x 10-9 W/cm2/nm/sr@700nmNIR(近红外) 2.4 x 10-9 W/cm2/nm/sr@1400nmNIR (近红外) 8.8 x 10-9 W/cm2/nm/sr@2100nm图1 FieldSpec Pro型光谱仪(2)光谱分析方法分波段分析典型地物光谱差异。
描述在可见光波段、近红外波段的各种地物波普特征。
三、实验设备与材料1.实验设备(1)硬件:ASD光谱仪;手提电脑;白板;GPS;数码相机。
(2)软件:ENVI Classic,ASD光谱仪配套软件(RS3和 View SpecPro Graph)2.实验材料(1)在学校校园内选择各种典型地物类型进行测量即可。
(2)实验前已测量好的各类数据(在野外实验无法安排时,可以直接给学生提供提前测量好的各类地物光谱数据,用于地物光谱特征分析。
)3.工作要求(1)天气情况:地面能见度:晴朗,地面能见度不小于 10km,云量要求:太阳周围 90°立体角范围内淡积云量小于 2%,无卷云或浓积云等,风力要求:无风或微风(测量时间风力小于 4级,对植物测量时风力最好小于 3级)测量时间:为保持太阳高度角大于 45度,且由于北京地区处于中纬度地区,所以测量时间应在北京时间 10:00~14:00之间,冬季对于测量时间应该更加严格一些。
另外,测量速度应该满足<=1min/组。
(2)测量情况:为减少反射光对观测目标的影响,观测人员应着深色服装,观测时面对太阳站立与目标区后方,观测时保持探头垂直向下,使得机载成像光谱仪观测方向保持一致,注意观测目标的二项反射影响。
记录人员应站在观测人员身后,并避免在目标区周围走动。
对于记录人员,在输出光谱数据设置项中,每条光谱的平均采样次数应不少于 10,测定暗电流的平均采样次数不少于 20次。
每隔 20分钟要重新对标准白板进行测量校正,以持测量数据的准确性。
此次实验能够测得波谱范围为:350~1050nm之间(可见光和近红外波段)四、实验步骤1.地物波谱测定1)光谱仪、计算机充电:光谱仪电量不足时红灯闪亮,表现为和计算机的测量软件链接中断,但不会立马断电;充满电后绿灯闪亮;如果黄灯闪亮则说明过热,测量中若起初曲线噪声小,使用段时间后近红外波段波动很大,若测量环境未有大的变化,可以关掉软件,休息片刻再测。
2)安装好适当的镜头(视场角有25°裸光纤,10°和25°)或其他附件(如GPS、余弦接收器等),准备好白板(Baco3白板25*25cm)。
两盏卤素灯位于探头两侧,且与探头在一条直线上,关灯,保证聚焦状态光斑在探头下。
白板若不干净,则影响定标,用蒸馏水泡,600*600及其以上的砂纸擦洗阴干;使用高密度反射探头时注意不要让尖锐物体表面划伤,磕破镜面;打开光谱仪电源,预热。
反射率采集预热10分钟足够。
3)再打开计算机,并启动RS3软件(室外采光条件好用黑白的,室内用彩色的)。
开始自动链接,连接好了会显示connected.4)在软件上选择相应的视场角角度,并调整光谱平均,暗电流平均和白板采集平均次数。
Control/ adjust configuration5)在软件中选择需要储存数据的路径、名称、起始条数、采集条数和采样时间间隔。
Control/spectrum save6)反射率测量:探头对准白板,点击Opt优化(白板必须充满探头视场。
每隔10-15分钟重新优化一次对于照明条件的改变造成的干扰是有好处的,机器启动初期,并且每隔3-5分钟采集一次暗电流);镜头对准白板,点击WR采集参比光谱。
此时,软件自动进入反射率测量状态;撤走白板,保证整个视场范围在样品中,按空格键采集目标反射光谱;测量过程中出现饱和状况需要重新优化。
7)测量时间:若采集的光谱要用于高光谱图像的数据定标或解译,则使用时要与得到遥感影像的照明条件相似,建议在卫星过境或者机载传感器采集数据同时测定高光谱。
8)测量完成后先关闭计算机,再关闭光谱仪。
2.地物波谱特征分析2.1 标准波谱库浏览ENVI自带多种标准波谱库,包括建立在JPL波谱库基础上的,从0.4~2.5μm三种不同粒径160种"纯"矿物的波谱。
美国USGS从0.4~2.5μm包括近500种典型的矿物和一些植被波谱。
来自Johns Hopkins University(JHU)的波谱包含0.4~14μm。
IGCP246波谱库有5部分组成,通过对26个优质样品用5个不同的波谱仪测量获得。
植被波谱库由Chris Elvidge 提供,范围是0.4~2.5μm。
ENVI 5.1波谱库中新增了2443种Aster的波谱文件,同时对应的波谱工具也有了很大的该进,用户可直观地看到每一种波谱库中的文件个数,以及更为方便的查看每一种波谱文件的波谱曲线。
ENVI的波谱库文件存放在HOME\ ProgramFiles\Exelis\ENVI51\classic\spec_lib。
启动ENVI 5.1,主菜单 > Display > Spectral Library View,在对话框中显示的就是ENVI自带的波谱库文件;图:ENVI自带波谱库文件(1)选择打开Veg_lib(99)中的几个植被波谱文件;在vegetation波谱库中选择6种不同植被的波谱曲线,在下图可以看到起对应的波谱曲线,以及波谱文件的属性信息,包括常规信息和曲线信息。
图:不同植被波谱曲线(2)波谱曲线显示窗口中的功能;在波谱曲线窗口中可以看到4个部分的内容:•导入文件(Import)图:导入数据方式此功能可以导入两种格式的文件,包括ASCII及波谱库形式存在的文件。
•导出文件(Export)图:导出数据方式导出波谱文件的格式可以分类4大类:•常见数据格式——ASCII与波谱库文件;•Image、PDF及Postscript输出格式;•复制波谱曲线;•直接打印曲线或在PowerPoint中展示;•选项工具(Options)图:选项功能选项工具中有三个功能:•打开新的Plot窗口——自由拖拽收集的地物波谱;•波谱曲线上显示十字丝——一直保持十字丝可见,显示波谱显现十字丝节点含义;•添加波谱图例——不同颜色的波谱曲线代表什么样的地物,更直观方便;•波谱曲线X、Y轴代表含义X轴代表:•Wavelength:(默认显示)影像波长;•Index:波段i,i代表影像具有i个波段;•Wavenumber: 波数,即1/wavelength ,波数与波长成反比关系,波长越小,波数就越大。
Y轴代表:•Data Value:(默认显示)影像原始值;•包络线去除Continuum Removed:绘制数据与连续删除。
连续的是,套在光谱的顶部的凸包。
它分为原始数据值,以产生连续取出的值。
在连续使用中的绘制曲线中所显示的第一和最后一个数据点计算的,所以只对已缩放的图形,在连续的基础上所显示的数据来计算范围。
•Binary Encoding:二进制编码,重新生成0与1的波频曲线。
图:导出PNG格式的波谱曲线(3)波谱曲线属性显示窗口•:同一窗口中显示多个地类的波谱曲线不予重叠显示;•:恢复原始数值范围曲线显示;•:点击此功能显示或者隐藏Plot Key与曲线属性;•:移除选中的一个曲线数据;•:移除全部的曲线数据;•:如果曲线节点有异常可以通过此工具进行编辑修订;2.2 波谱库创建ENVI可以从波谱源中构建波谱库,波谱来源包括:ASCII文件,由ASD波谱仪获取的波谱文件,标准波谱库,感兴趣区/矢量区域平均波谱曲线,波谱剖面和曲线等。
下面介绍波谱库建立的操作步骤:第一步:输入波长范围(1)在ENVI中,选择Toolbox/Spectral/Spectral Libraries/Spectral Library Builder。
打开Spectral Library Builder对话框。
(2)为波谱库选择波长范围和FWHM值,有三个选项:•"Data File" (ENVI图像文件) :波长和FWHM值(若存在)从选择文件的头文件中读取•"ASCII File":波长值与FWHM值的列的文本文件•"First Input Spectrum":以第一次输入波谱曲线的波长信息为准选择"First Input Spectrum",单击ok,打开Spectral Library Builder面板。