曲线轨距加宽

合集下载

第三章-轨道几何形位

第三章-轨道几何形位

第三章轨道几何形位3.1 概述轨道几何形位是指轨道各部分的几何形状、相对位置和基本尺寸。

3.1.1 轨道几何形位的基本要素轨距:在轨道的直线部分,两股钢轨之间应保持一定的距离水平:两股钢轨的顶面应位于同一水平或保持一定的相对高差方向:轨道中线位置应与它的设计位置一致前后高低:两股钢轨轨顶所在平面(即轨面)在线路纵向应保持平顺轨底坡:为使钢轨顶面与锥形踏面的车轮相配合,两股钢轨均应向内倾斜铺设轨距加宽:在轨道的曲线部分,除应满足上述要求外,还应根据机车车辆顺利通过曲线的要求,将小半径曲线的轨距略以加宽外轨超高:为抵消机车车辆通过曲线时出现的离心力,应使外轨顶面略高于内轨顶面,形成适当的外轨超高缓和曲线:为使机车车辆平稳地自直线进入圆曲线(或由圆曲线进入直线),并为外轨逐渐升高、轨距逐渐加宽创造必要的条件,在直线与圆曲线之间,应设置一条曲率和超高渐变的缓和曲线3.1.2 控制轨道几何形位的重要性3.2 机车车辆走行部分构造简介转向架的主要功能是:将车体荷载均匀分配于轮对,保证机车车辆顺利通过曲线,并降低轮对振动对车体的影响。

3.2.1 转向架的构造和类型重要概念全轴距:同一机车车辆最前位和最后位车轴中心间水平距离固定轴距:同一转向架上始终保持平行的最前位和最后位车轴中心间水平距离车辆定距:车辆前后两转向架上车体支承间的距离3.2.2 轮对对轮对的要求是:应有足够的强度,以保证在容许的最高速度和最大载荷下安全运行;应在强度足够和保证一定使用寿命的前提下,自重最小,并具有一定弹性,以减小轮轨之间的相互作用力;应具备阻力小和耐磨性好的优点,以降低牵引动力损耗并提高使用寿命;应能适应车辆直线运行,同时又能顺利通过曲线,还应具备必要的抵抗脱轨的安全性。

踏面:车轮与钢轨的接触面;轮缘:突出的圆弧部分,是保持车辆沿钢轨运行,防止脱轨的重要部分;车轮内侧面:轮缘内侧面的竖直面;车轮外侧面:与车轮内侧面相对的竖直面;车轮宽度:车轮内外两侧面之间的距离;轮辋:车轮上踏面下最外的一圈;轮毂:轮与轴互相配合的部分;幅板:联接轮辋与轮毂的部分,幅板上有两个圆孔,便于轮对在切削加工时与机床固定并供搬运轮对之用。

铁路轨道考试试题及答案(问答题)

铁路轨道考试试题及答案(问答题)

铁路轨道考试试题及答案〔问答题〕1、轨距、水平、轨底坡的定义是什么?如何测定?轨距为两股钢轨头部内侧与轨道中线相垂直的距离。

轨距用道尺或轨检车进展测量。

水平是指线路左右两股钢轨顶面的相对高差。

水平可用道尺或轨检车进展测量。

轨底坡为钢轨底面对轨枕顶面的倾斜度〔也叫内倾度〕测量轨底坡也可用拉绳法,即从两股钢轨底拉一条细绳,使绳靠贴两根钢轨轨底的最低点,测量不靠绳一边轨底距绳的距离。

2、标准轨距是多少?曲线轨距如何规定?承受 1435mm 轨距,是以固定轴距为 4m 的车辆顺当通过曲线为条件计算出来的,并按各类机车亦能顺当通过为条件加以检算。

3、轨距、水平的允许误差及适用范围是什么?何为三角坑?轨距:容许偏差值为+6 和-2mm 即宽不超过 1441mm 并不小于1433mm,正线道发线不超过2‰站线和专用线不得超出3‰。

水平:正线道发线不得大于4mm,其他站线不得大于5mm。

三角坑:指在一段规定的距离内,先是左股钢轨高于右股,后是右股高于左股,高差值超过容许偏差值,而且两个最大水平误差点之间的距离缺乏 18m。

4、曲线轨距加宽和外轨超高的设置方法是什么?超高值有何规定?将曲线轨道内轨向内侧移动,轨距加宽的递减,应在缓和曲线或直线范围内进展,递减率不大于1‰.曲线外轨的位置则保持与轨道中心半个轨距的距离不变。

外轨超高应在整个缓和曲线内递减顺坡,未设缓和曲线者,则以不大于1‰的递减率在直线段顺接。

双线地段不超过 150mm;单线地段不超过 125mm。

5、钢轨类型如何划分?有哪几种?6、轨道附属设备有哪些?什么叫轨道爬行?信号标志及线路标志的作用及设置位置如何?防爬设备、加强设备、明桥面轨道、平角道口。

当列车运行时,它与钢轨会有一纵向力的作用〔主要是摩擦力〕,这会使钢轨产生纵向移动,有时甚至带动钢轨一起移动,这种现象就叫做轨道爬行。

作用:向行人和线路养护人员显示铁路建筑物设备位置状态。

位置:在线路运行方向左侧。

修规补充规定

修规补充规定

1.对《铁路线路修理规则》第1.0.8条的补充规定1.1 宽轨线路轨距标准轨距是钢轨踏面下16mm范围内两股钢轨工作边之间的最小距离,直线轨距标准为1520mm。

曲线轨距按表1规定标准在里股加宽。

表1注:在半径为350米以下的曲线上,允许比规定的容许误差大出钢轨实际侧磨值,以减少改道次数,延长木枕的使用寿命,以及减少混凝土轨枕扣件和人工的投入,其最大值不得超过1541mm。

1.2 宽轨线路轨道几何尺寸容许偏差管理值如表2规定表2和偏差)不得大于1541mm。

(2)三角坑偏差不含曲线超高顺坡造成的扭曲量,检查三角坑时基长为6.25m,但在18m的距离内无超过表列的三角坑值。

(3)轨向偏差(直线)和高低偏差为10米弦测量的最大矢度值。

(4)曲线正矢容许偏差执行《铁路线路修理规则》表3.7.10-2的规定。

(5)专用线按其它站线办理。

1.3 宽轨道岔各部轨距1.3.1尖轨尖端轨距:见表3表31.3.2 尖轨跟端轨距:见表4表41.3.3 导曲线中部轨距按标准图办理,无标准图时按设计图办理。

1.3.4辙叉部分轨距:直、侧向均为1520mm。

另外,对道岔前端与另一道岔后端相连,尖轨尖端轨距递减率如不能按6‰递减时,可加大前面道岔的辙叉轨距为1526mm。

1.3.5尖轨在第一拉杆中心处最小动程:直尖轨为142mm,曲尖轨为152mm。

1.4 宽轨道岔各部分轨距加宽递减执行《铁路线路修理规则》第3.9.2条规定。

1.5 宽轨道岔导曲线支距与超高导曲线支距按标准图或设计图设置,在导曲轨与基本轨两股钢轨作用边之间测量。

导曲线可根据需要设置6mm的超高,并在导曲线范围按不大于2‰顺坡。

1.6 宽轨道岔轮缘槽宽度1.6.1护轨平直部分轮缘槽标准宽度为42mm,如侧向轨距为1526mm,则侧向护轨轮缘槽宽度为48mm,允许误差为+3,-1mm。

1.6.2辙叉心理论尖端至心轨宽50mm处轮缘槽标准宽度为46mm,允许误差为+3,-1mm。

轨道线路维修技术标准

轨道线路维修技术标准

轨道维修技术标准一、轨距1、轨距为两钢轨头部内侧间与轨道中线箱垂直的距离(在钢轨头部内侧顶面下16毫米处测量),线路直线地段的轨距为900毫米,轨距用道尺进行测量,宽不得超过6毫米,窄不得超过2毫米,轨矩的变更必须和缓平顺,每一米距离中不可有2毫米以上的差异。

2、游间为了使轮对沿两钢轨滚动时不致被楔住,在轮缘与钢轨间应有一定空隙称为游小与曲线半径、机车车辆的固定轴距等有关。

曲线加宽是通过把曲线内轨向内移动来实现,外轨位置保持不变。

曲线加宽应在缓和曲线全长范围内递减,没有缓和曲线,应在直线上递减;可太急,在一米距离内不得超过1毫米;三角坑的大小数值18米范围不许超过6毫米;直线方向必须目视平顺,用10米弦量不得超过6毫米。

5、轨底坡:在直线上钢轨不应竖直铺设,而要适当地向内倾斜,这种倾斜度如果光带偏向内侧,说明轨底坡不足;如果偏向外侧则说明轨底坡过大。

轨底坡设置不当将使钢轨头部磨耗不均,腰部弯曲,在轨头与轨腰处发生纵裂,甚至折损。

6、防爬设备:主要安装在制动地段、驼峰线路及主要道岔上。

二、轨枕1、长度:1.6米 2.0米 2.4米 3.0米宽度:19厘米高度:13.5厘米2、木枕:1公里1600根。

捆扎:心材开裂或长度超过300毫米,应在距木枕端100毫米处捆扎,如有出入也不超过±10毫米,铁线与木枕各边棱垂直,偏斜不超过10毫米,铁线捆紧木枕,不得松驰。

8#铁丝捆扎两圈,10#铁丝捆扎三圈。

3、水泥枕:1公里1600~1520根,开裂、碎及时更换。

接头轨枕间距要较中间轨枕的间距略小,陡坡制动地段轨枕间距略小;4、轨枕失效标准和维修要求轨枕在使用中逐渐形成伤损,对其丧失功能程度判定能否继续使用所制订的标准和对其如何使用所提出的维修要求。

5、失效标准木枕(含木岔枕)达到下列条件之一者即为失效:①腐朽失去承压能力,钉孔腐朽无处改孔,不能持钉;②折断或拼接的接合部分离,不能保持轨距;③机械磨损,经削平或除去腐朽木质后,容许速度大于18km/h的线路,其厚度不足140mm,其他线路不足100mm;④劈裂或其他伤损,不能承压、持钉。

轨道交通曲线地段加宽设置及其原因分析

轨道交通曲线地段加宽设置及其原因分析

[1]
工作落实到位,具体如图 1 所示。
[2]
[3]
[4]
[5]
田晓燕 . 城市交通规划设计中立交与周边建筑及环境的关
划设计要求,严格审查建筑设计方案,其次,成立专家评审小组,
住宅设计方面,要进行合理布局,贯彻落实好节能环保原则,生
共同致力于设计方案的具体内容和要求,对设计思想与设计任
态化设置和处理生活排泄物和生活垃圾等,其中,要注重住宅区
务书的要求进行分析。最后,在建筑设计方案最终决策中,要深
公共绿地的设置,将屋顶绿化水平提升上来,给予绿化覆盖率一
引言
当列车在直线上运行时,车体中心线与线路中心线重合,车
现在的城市都在向大型化、国际化发展,这些城市通常是国
体和建筑物之间能够保持必要的安全空间。但是,当列车行驶
家或某一地区的政治中心、金融中心或制造中心,具有城市规模
到曲线地段时,转向架中心点沿线路运行,而车体为刚性结构,
大、人口多的特点。轨道交通由于具有运量大、速度快、准时、安
辆中心线偏移产生的曲线地段限界加宽、因曲线半径较小而设置的曲线地段轨距加宽等 3 种情况。分析成果对正确认识曲
线地段加宽设置的原因和规律,
保证曲线地段线路安全运营具有重要意义。
关键词:轨道交通;
曲线地段;
曲线超高;
曲线加宽
中图分类号:TU522.09
1
文献标识码:A
文章编号:1001-6945(2020)005-0091-02
部向轨道内侧偏移(d 内 1),如图 1(a)所示。
由于曲线外轨超高,车体向曲线内侧倾斜,使车辆限界上的
控制点在水平方向上向内移动了一个距离(d 内 2),
如图 1(b)所示。

曲线轨距加宽

曲线轨距加宽

第四节曲线轨距加宽2010-08-02 14:52:46关键字:曲线轨距加宽五、轨底坡由于车轮踏面与钢轨顶面主要接触部分是1/20的斜坡,为了使钢轨轴心受力,钢轨也应有一个向内的倾斜度,因此轨底与轨道平面之间应形成一个横向坡度,称之为轨底坡。

钢轨设置轨底坡,可使其轮轨接触集中于轨顶中部,提高钢轨的横向稳定能力,减轻轨头不均匀磨耗。

分析研究指出,轨头中部塑性变形底积累比之两侧较为缓慢,故而设置轨底坡也有利于减小轨头塑性变形,延长使用寿命。

我国铁路在1965年以前,轨底坡设定为1/20。

但在机车车辆的动力作用下,轨道发生弹性挤开,轨枕产生挠曲和弹性压缩,加上垫板与轨枕不密贴,道钉的扣压力不足等原因,实际轨底坡与原设计轨底坡有较大的出入。

另外车轮踏面经过一段时间的磨耗后原来1/20的斜面也接近1/40的坡度。

所以1965年以后,我国铁路的轨底坡统一改为1/40。

曲线地段的外轨设有超高,轨枕处于倾斜状态。

当其倾斜到一定程度时,内轨钢轨中心线将偏离垂直线而外傾,在车轮荷载作用下有可能推翻钢轨。

因此,在曲线地段应视其外轨超高值而加大内轨的轨底坡。

调整的范围见表2-3。

应当说明,以上所述轨底坡的大小是钢轨在不受列车荷载作用情况下的理论值。

在复杂的列车动荷载作用下,轨道各部件将产生不同程度的弹性和塑性变形,静态条件下设置的1/40轨底坡在列车动荷载作用下不一定保持1/40。

轨底坡设置是否正确,可根据钢轨顶面上由车轮碾磨形成的光带位置来看。

如光带偏离轨顶中心向内,说明轨底坡不足;如光带偏离轨顶中心向外,说明轨底坡过大;如光带居中,说明轨底坡合适。

线路养护工作中,可根据光带位置调整轨底坡的大小。

表2-3 内股钢轨轨底楔型或枕木砍削倾斜度外缘超高(mm) 轨枕面最大倾斜铁垫板或承轨槽面倾斜度0 1/20 1/400~75 1:20 1:20 0 1:4080~125 1:12 1:12 1:30 1:17概述机车车辆进入曲线轨道时,仍然存在保持其原有形式方向的惯性,只是受到外轨的引导作用方才沿着曲线轨道行驶。

城市轨道交通 小半径曲线 轨距加宽

城市轨道交通  小半径曲线 轨距加宽
城市轨道交通小半径曲线轨距加宽
一、轨距加宽计算的原理和方法
地铁车辆由直线进入半径较小的曲线时,车辆转向架前轴的外轮缘冲击外轨,迫使转向
架转向,而转向架后轴的内轮又靠向内轨,为使车辆平顺地通过曲线,对于小半径曲线的轨
距要适当加宽。曲线轨距加宽是按车辆在静力自由内接条件所需轨距来进行计算的,其值与
曲绂半径、车辆固定轴距、轮轨间隙、轮缘厚度、轮距等因素有关。
由于车辆由曲线外股钢轨导向,为保持曲线外股钢轨圆顺,故规定曲线轨距加宽值应加
在里股,即将里股钢轨向曲线内侧横移,使其与线路中心线的距离等于 l 435/2 加上轨距加宽
值。
表 1 曲线地段轨距加宽值
曲线半径/m
加宽值/mm
B 型车
A 型车
200≥R>150
5
10
150≥R>100
10
15
注 : A 型 车 固 定 轴 距 2500mm, B 型 车 固 定 轴 距 2 200~2 300mm。
∆ܵ——轨距容许负误差,∆ܵ ൌ 2mm。
由于地下铁道车辆固定轴距尚未统一,因此上述公式对于同一半径的加宽值就有出入,
另外,鉴于国内外对曲线轨距加宽有逐渐减小的趋势,对上述计算的轨距加宽值还要做一些
修正。
二、曲线轨距加宽的标准
《地铁设计规范》规定,半径等于及小于 200 m 曲线地段的轨距应按表 1 进行加宽。
(3) 在困难条件下,曲线轨距加宽,允许按不大于 3‰递减。
YH HZ
(a)Leabharlann S1ZH HY S210m S2
S1
S1= S2
YH HZ
ZH HY
(b)
S2
S1
S1
10m S2

轨道及道岔主要结构图示介绍

轨道及道岔主要结构图示介绍

宽轨枕
道床 一、作用:
1.支承轨枕,把从轨枕上传来的压力均匀地传给路 基;2.固定轨枕的位置,阻止轨枕纵向和横向移动; 3.缓和机车车轮对钢轨的冲击。 二、分类 碎石道床(有渣道床)
碎石、卵石、粗砂等,其中以碎石为最优。 我国铁路一般都采用碎石道床。 整体道床(混泥土道床)
整体道床
(1)由于有害空间的存在,当机车车辆通过辙叉有害空间时, 轮缘有可能走错辙叉槽而引起脱轨; (2)设置护轮轨的运行方向实行强制性的引导。 道岔有害空间是限制列车过岔速度的一个重要因素。 活动心轨道岔:消灭有害空间,适应列车高速运行要求。 (1)活动心轨和心轨是同时被扳动的; (2)当尖轨开通某一方向时,活动心轨的辙叉心轨就与开通 方向一致的翼轨密贴,而与另一翼轨分开,从而消灭了有害空 间, 使列车安全通过道岔。
辙岔与护轨
辙岔与护轨
有害空间
有害空间
常用道岔有关指标。
道岔号 数
(N)
辙叉角 (α)
导曲 半径(m)
道岔全长 (m)
侧向允许通 过速度
(km/h)
9
6°20′25″
180
28.848
30
12 4°45′49″
330
36.815
45
18 3°10′12.5″ 800
54.00
80
二、其他类型道岔与交叉设备
米 轨
一、轨距加宽
由于固定轨距的 影响,在小半径 曲线上轨距应适 当地加宽。
曲线轨距加宽表
曲线半径R (m)
加宽值(mm)
R≥350
0
350>R≥300
5
R<300

二、外轨超高 机车车辆在
曲线上运行时, 由于离心力的作 用使曲线外轨承 受了较大的压力, 必须将外轨抬高,

煤矿窄轨线路曲线段轨距加宽外轨加高同步递变及曲线加强的探讨

煤矿窄轨线路曲线段轨距加宽外轨加高同步递变及曲线加强的探讨
楔住 内接
( b )
动 力 自由 内接


静 力 自 ( c 由 ) 内 … 接

静 力 擅 ( d 翻 ) 内 接
图 2 机 车( 车辆 ) 车轮 与铁轨 在 曲线 上的 内接 形式 在 曲线 上 为 了能使 矿 车 顺利 地 通 过 , 轨 距 需
式 中
S自 —— 曲线轨距 , m m;
机 车进 入 小 半径 曲线 地 段 ,会 产 生很 大 的 离心 轮 、 轨 间相 互 受 力 变化 很 大 , 同 时加 重 了轨 道 、 矿
力, 轮、 轨 间相 互 受 力 作 用 变化 , 加 重 了对 轨 道 、 车轮 等 的磨 损 和破 坏 , 致使 曲线轨 道 维修 工作 量
轮轮缘 紧靠钢轨 ,而且后 轴与 曲线半径 方向一 甚至有使机 车车辆脱轨与倾复的危险。此外, 离
致, 即静 力 自由 内接 ; ( d ) 是 只有 前 轴 外轮 轮 缘 及 心 力太 大 , 也使 乘 坐人 车的人 员感 觉不适 。 后 轴 的 内轮 轮 缘 紧 靠钢轨 , 但后 轴 的 方 向不 与 曲 为 了平衡 产 生 的 离心 力 , 须把 曲 线 外股 钢轨 超 高) , 使 运行 在 曲线上 的 车体 向里倾 斜 , 用 线半 径相 合 , 即静 力 强制 内接 。根 据 这 几 种 内接 抬 高( 形式, 我们综合考虑 , 要求 曲线轨距能够保证 大 车体 重 力的 向心 力来 平衡 离心 力。 其超 高计算公式为: : 多数 车辆 以 自由 内接 形 式通 过 曲线 ; 机 车 与 固定 轴 距较 长的 车 辆 , 能 以正 常 强制 内接 形 式 通过 曲
与 直 线轨 距 一 样 时 , 车轮 就 不 能顺 利 通 过 曲 线 , ( 车辆)车轮与铁轨在 曲线上的 内接形式来确定

煤矿窄轨曲线轨道加宽和抬高的分析与计算

煤矿窄轨曲线轨道加宽和抬高的分析与计算

煤矿窄轨曲线轨道加宽和抬高的分析与计算摘要:煤矿窄轨铁路运输是矿井辅助运输的主要组成部分,承载矿井生产所需要的材料、设备、矸石以及人员的运输。

随着综采及综掘设备的发展,设备重量的增加,要求煤矿窄轨铁路钢轨上运行的车辆吨位越来越大,钢轨的承载力就自然越来越大,特别是对曲线轨道的铺设提出了更高的要求。

文章通过对曲线轨道运输中带来的一些危害,阐述了曲线轨道铺设的技术要点,给出计算方法。

关键词:曲线轨道;抬高;加宽引言煤矿窄轨铁路运输是矿井辅助运输的主要组成部分,担负着生产所需要的材料、设备、矸石以及人员的运输,由于曲线轨道是轨道线路上的薄弱环节,铺设难度大,技术含量高,要求严格,因此铺设曲线轨道与直线轨道有所不同,铺设的质量直接影响运输生产能力和运输安全。

一、曲线轨道外轨抬高技术1、曲线半径车辆在曲线上运行会产生离心力,增加了运行阻力,严重时会导致翻车事故,因此曲线轨道半径不宜太小,通常要根据通过车辆的运行速度确定。

当车辆运行速度≤1.5m/s时,曲线半径不得小于通过车辆最大固定轴距的7倍;当车辆运行速度1.5m/s~3.5m/s时,曲线半径不得小于通过车辆最大固定轴距的10倍;当车辆运行速度>3.5m/s时,曲线半径不得小于通过车辆最大固定轴距的15倍。

通过现场弯道曲线计算弯道曲线半径的方法,如下:①在弯曲线上任意选取2m长的弦AB,量的弦AB的垂直平分线与所对应弧交点与C点的距离L1。

②利用勾股定理:在直角△BCO中:R2=BC2+OC2=12+(R-L1)2式中:R--弯道半径;BC--弦的一半,1m;L1--实测数据,弦AB的垂直平分线与所对应弧交点与C点的距离。

得出:2、曲线外轨抬高的计算公式当车辆经过弯道时,如果两根轨道仍在一个平面上,由于离心力作用,使车轮轮缘向外轨挤压,既增加了行车阻力,又不断使钢轨与轮缘的磨损加重,严重时可能造成脱轨。

为此,在弯道处要将外轨抬高一个Δh 值,使车辆重力 G=mg 和离心力的合力垂直于外轨抬高后两个轨面的连线的平面,(如图1所示),从而使车辆运行保持平稳。

2.1铁路曲线概述

2.1铁路曲线概述

(4)线路大中修竖曲线设置
◆线路大中修时,允许速度不大于160km/h的线路,采用抛物线型 竖曲线时,若相邻坡段的坡度代数差大于2‰,应设置竖曲线。 20m范围内竖曲线的变坡率,凸形不应大于1‰,凹形不应大于 0.5‰。采用圆曲线型竖曲线时,若相邻坡段的坡度代数差大于3‰, 应设置竖曲线,竖曲线半径不应小于10000m。
◆因为三次抛物线,具有线型简单,长度短而实用,便于 测设和养护维修,所以我国铁路采用超高为直线的顺坡、 平面为三次抛物线的缓和曲线。
(4)圆曲线和夹直线
◆圆曲线和夹直线最小长度应保证车辆通过圆曲线或夹直 线两端缓和曲线时,车辆后轴在缓和曲线终点(指缓圆点 或缓直点)产生的振动,与车辆前轴在另一缓和曲线起点 (指圆缓点或直缓点)产生的振动不叠加,以保证列车运 行的平稳性和旅客舒适度,如表2-5所示。
2.1.2曲线的技术条件
1.平面曲线 1 曲线半径 12000、10000、8000、7000、6000、5000、4500、4000、3500、 3000、2800、2500、2000、1800、1600、1400、1200、1000、800、 700、600、550、500(Ⅲ、Ⅳ级铁路含450、400、350、300) ◆圆曲线的最大半径Rmax:12000 √问题:为会要规定圆曲线的最大半径? ◆圆曲线的最小半径Rmin √问题:影响圆曲线最小半径的主要因素有哪些?
(3)客货共线铁路、重载铁路竖曲线
◆路段设计速度为160 km/h及以上的线路,当相邻坡段的坡度差大 于1‰,路段设计速度为160 km/h以下的线路,当相邻坡段的坡 度差大于3%,采用圆曲线型竖曲线连接,竖曲线半径分别不得小 于15 000m和10 000m。
◆改建既有线时,当既有线是采用抛物线型竖曲线,且折算竖曲线 半径不小于上述规定时,可保留既有线的坡段连接标准。特别困 难条件下,竖曲线的位置可不受缓和曲线位置的限制。

曲线超过、缩短轨计算

曲线超过、缩短轨计算

R 2V 8.11第一节 曲线超高的计算一、曲线超高的确定线路曲线地段,因列车沿曲线运行而产生离心力,车体被向外推甩,外股钢轨承受较大压力,旅客感觉不舒适,离心力过大能影响行车安全 。

为抵消离心力作用,需要将外股钢轨抬高,即设置超高 。

设置超高的基本要求:保证两钢轨受力比较均匀;保证旅客有一定的舒适度, 保证行车平稳和安全 。

在满足前两项要求的前提下,实现第三项要求是没有问题的 。

1.保证两股钢轨均匀受力条件的超高计算(1)超高的理论计算为了平衡离心力而设置超高,使离心力与车辆重量的合力为作用于轨道中心点,从而使两股钢轨所受压力相等 。

如下图所示 ,J 与 G 的合力作用于 O 点时,则相应的超高为H ,将 g=9.8m/s 2 两股钢轨中心距离 1500 mm 代入离心力计算式,则计算超高的理论公式为:H=(2)平均速度的计算通过一个曲线的列车种类 、列数 、重量和速度各不相同,为了合理地设置超高,在实际计算时,必须综合各种因素,采用平均速度 。

在一般条件下,客车速度较高,列车质(重)量较小;货车速度较低,列车质(重)量较大 。

考虑列车质(重)量计算出的超高,往往比不考虑列车质 (重)量计算出的超高要小,能使两股钢轨的垂直磨耗比较均匀 。

为此采用列车速度平方及列车质(重)量加权平均方法计算平均速度,依此计算设置超高。

V J =∑∑NiQiNiQiV i 2H =R2 JV8.11实测各类列车速度,宜在列车按运行图比较正常运行的条件下进行。

为使测得的列车速度具有普遍性,如一昼夜的车次很少,可实测几个昼夜的车速。

每类列车质(重)量为牵引质 (重)量加上机车质(重)量,可由各区段的统计资料中查得,或按列车运行图牵引质(重)量及机车质(重)量计算确定。

在城市地铁里是以每公里通过列数计算的,如“列•公里/公里”来计算通过量的。

可从客运部门查来一个阶段如一个月的通过量,也按这种列车速度平方及列车质(重)量加权平均方法计算出平均速度,并以此设置超高,能使乘客乘坐舒适又安全。

铁路曲线轨距加宽

铁路曲线轨距加宽

铁路曲线轨距加宽----------------------- Page 1-----------------------铁路曲线轨距加宽铁路曲线轨距加宽铁路铁路曲线轨距加宽曲线轨距加宽机车车辆进入曲线轨道时,仍然存在保持其原有行驶方向的惯性,只是受到外轨钢轨的引导作用方才沿着曲线轨道行驶。

在小半径曲线,为使机车车辆顺利通过曲线而不致被楔住或挤开轨道,减小轮轨间的横向作用力,以减少轮轨磨耗,轨距要适当加宽。

加宽轨距,系将曲线轨道内轨向曲线中心方向移动,曲线外轨的位置则保持与轨道中心半个轨距的距离不变。

曲线轨道的加宽值与机车车辆转向架在曲线上的几何位置有关。

一一、、转向架的内接形式转向架的内接形式一一、、转向架的内接形式转向架的内接形式由于轮轨游间的存在,机车车辆的转向架与曲线轨道在平面上保持一定的位置和角度。

随着轨距大小的不同,机车车辆转向架在曲线上可以出现四种不同情况:1. 斜接。

机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触,内侧最后位车轮轮缘与内轨作用边接触,如图 1 (a )所示。

2. 自由内接。

机车车辆转向架的前轴外轮的轮缘与外轨作用边接触,其它车轮轮缘与钢轨无接触,且转向架后轴位于曲线半径方向,如图 1 (b )所示。

3. 楔形内接。

机车车辆转向架的前轴和后轴的外侧车轮轮缘同时与外轨作用边接触,内侧中间车轮的轮缘与内轨作用边接触,车轮被楔住在两轨之间,不仅行车阻力大,甚至可能把轨道挤开,如图 1 (c )所示。

a bc图图1 机车通过曲线的内接形式机车通过曲线的内接形式图图机车通过曲线的内接形式机车通过曲线的内接形式4. 正常强制内接。

为了避免机车车辆以楔形内接形式通过曲线,对楔形内接所需轨距增加δ⁄2,此时转向架在曲线上所处位置成为正常强制内接。

二、二、曲线轨距加宽的确定原则曲线轨距加宽的确定原则二二、、曲线轨距加宽的确定原则曲线轨距加宽的确定原则如上所述,机车车辆通过曲线的内接形式,随着轮轨游间大小而定。

曲线轨距加宽标准

曲线轨距加宽标准

曲线轨距加宽标准曲线轨距加宽是铁路线路建设中的一个重要标准,其目的是为了保证列车在曲线轨道上的安全和平稳运行。

曲线轨距加宽的标准是根据铁路线路的等级、列车速度、曲线半径、轨道结构等因素来确定。

一、曲线轨距加宽的原因列车在曲线轨道上运行时,由于向内的向心力,会使列车向曲线内侧倾斜。

这种倾斜会导致轮对向外侧挤压轨道,从而使轨道向外侧变形。

因此,为了使列车能够安全平稳地运行,需要将曲线轨道的轨距适当加宽。

曲线轨距加宽还可以增加轮轨间的接触面积,降低轮轨间的接触应力,减少轮轨磨耗,提高轨道的平稳度和运行品质。

二、曲线轨距加宽的标准根据铁路等级,曲线轨距加宽标准分为快车轨距加宽和特快车轨距加宽两种。

快车轨距加宽一般为60毫米,特快车轨距加宽一般为120毫米。

根据列车速度,曲线轨距加宽标准分为高速列车轨距加宽和普速列车轨距加宽两种。

高速列车的轨距加宽一般为16毫米,普速列车的轨距加宽一般为30毫米。

根据曲线半径,曲线轨距加宽标准分为小半径曲线轨距加宽和大半径曲线轨距加宽两种。

小半径曲线的轨距加宽一般为30毫米,大半径曲线的轨距加宽一般为60毫米。

根据轨道结构,曲线轨距加宽标准分为有砟轨道和无砟轨道两种。

有砟轨道的轨距加宽一般为60毫米,无砟轨道的轨距加宽一般为120毫米。

三、曲线轨距加宽的方法调整轨道垫片:在曲线轨道下方垫入特制的轨道垫片,通过调整垫片的位置和数量来达到曲线轨距加宽的效果。

调整轨道扣件:采用可调式轨道扣件,通过调整扣件的距离来调整轨距。

更换轨道部件:对于一些需要大幅度调整轨距的情况,可能需要更换整个轨道部件。

四、曲线轨距加宽的检测和维护定期检测:定期对曲线轨道进行检测,确保轨距符合标准。

定期维护:定期对曲线轨道进行维护,包括清理杂物、紧固螺栓、更换磨损件等。

实时监测:采用先进的监测设备,对曲线轨道进行实时监测,及时发现和处理问题。

曲线轨距加宽是铁路建设中必不可少的一项工作,其标准是根据多个因素来确定。

铁路曲线轨距加宽

铁路曲线轨距加宽

我国绝大部分的车辆转向架是两轴转向架。当两轴转向架以自由内接形式通
过曲线时,前轴外轮轮缘与外轨的作
用边接触,后轴占据曲线垂直半径的
L
位置,如图 2 所示。则自由内接形式 0
四、四、根据机车条件检算轨距加宽根据机车条件检算轨距加宽
四四、、根据机车条件检算轨距加宽根据机车条件检算轨距加宽
----------------------- Page 3-----------------------
在行驶的列车中,机车数量比车辆少得多,应次允许机车按较自由内接所需
L12 L11
L02 L01
图图3 曲线轨距加宽示意图曲线轨距加宽示意图
2R
其中,L——转向架固定轴距, 图图2 转向架自由内接转向架自由内接
图图 转向架自由内接转向架自由内接
式中,q——最大轮对宽度;
f ——前后两端车轴的外轮在外轨处所形成的矢距,其值为:
L 2
机车车辆进入曲线轨道时,仍然存在保持其原有行驶方向的惯性,只是受到
外轨钢轨的引导作用方才沿着曲线轨道行驶。在小半径曲线,为使机车车辆顺利
通过曲线而不致被楔住或挤开轨道,减小轮轨间的横向作用力,以减少轮轨磨耗,
轨距要适当加宽。加宽轨距,系将曲线轨道内轨向曲线中心方向移动,曲线外轨
(3)
1
a b c
图图 1 机车通过曲线的内接形式 机车通过曲线的内接形式
图图 机车通过曲线的内接形式机车通过曲线的内接形式
——第一轴至第二轴距离,
——第二轴至第三轴距离,
——第三轴至第四轴距离;
——中间两个车轴的内轮在内轨处形成的矢距,其值为:
L 2

窄轨铁道技师论文范文

窄轨铁道技师论文范文

窄轨铁道技师论文范文浅谈窄轨铁道曲线段质量曲线段是铁道的薄弱环节之一,要使机车顺利快速安全通过,曲线段轨道必须加宽轨距、外轨超高设置合理。

1 加宽曲线段轨距(1)加宽轨距虽能改善列车运行条件,但车轮踏面减少,增加脱机的危险,车辆运行摇晃,增加钢轨与车轮之间的磨耗。

所以,轨距的加宽值必须适中。

(2)煤矿窄轨铁道根据使用机车和矿车轴距加宽轨距,见于表1。

应保证多数机车在曲线段呈自由内接,少数轴距较大的机车呈静力内接形式,可以顺利通过。

(3)加宽曲线段轨距,是把内轨向内侧移动。

轨距的递增递减应平缓,使车轮作用在轨道上的横向水平力不突然发生或消失,避免列车振动。

曲线加宽的递减应在曲线头尾以外的直线范围内进行。

可按递减率不大于千分之一进行递减。

困难情况下递减率不应大于千分之三,特别困难时不大于千分之六。

2 曲线段外轨超高(1)为了平衡列车在曲线上运行时,产生的离心力,消除或减轻离心力产生的各种不利因素,保证行车安全,外轨比内轨垫高的量称为超高值:H=100SV2/R式中:H—超高值,mm;S—轨距,m;V—行车速度,m /s;R—曲线半径,m。

外轨超高尾数以5mm进位,进位后不足10mm者可以不设超高。

(2)曲线超高设置的是否合适,对于减少曲线钢轨的磨耗和压溃,延长钢轨使用寿命,有直接关系。

根据实际情况,若内轨磨耗和压溃并有切压轨道现象,说明超高过大。

若轨距扩大,外轨垂直磨耗严重并压溃,外轨侧面磨耗说明超高太小。

如果发现超高设置不当,必须进行调整。

外轨超高的顺坡应在曲线两端的直线段进行。

为了保证行车平稳,其顺坡率不应大于千分之一,困难情况不大于千分之三。

(3)应根据不同情况,垫高外轨1)单曲线的外轨,自圆曲线的始终点按规定的超高加高,然后再向直线顺坡;2)复曲线的两曲线,由于曲线半径不同,两曲线超高不等时,从连接点起将两曲线的超高向超高均匀顺坡;3)两同向曲线超高顺坡终点向直线段长度应不短于5m。

直线段长度不足时,如两曲线超高顺坡剩余量相等,则直线部分可以保留这一剩余量的超高;如果不等,则直线部分从较大超高向较小超高均匀顺坡;4)两反向曲线超高顺坡终点间直线段长度≥5m,人推矿车≥3m。

(完整版)曲线正矢、付矢、超高、加宽(中分法)计算表

(完整版)曲线正矢、付矢、超高、加宽(中分法)计算表

26 YH点 50 YH点 0
0
0
0
0
18
37
46
0
5
0
23
42
0
1
5
9
0
19
29
37
0
5
14
0
17
33
0
2
13
19
0
20
21
28
0
11
23
0
11
23
0
3
21
28
0
21
13
19
0
17
33
0
888
14
0
4
29
37
0
888Βιβλιοθήκη 888888888
23
42
0
888
888
888
888
888
888
888
888
888

3.787
中分法
ZH(HY)
中分外伸 中分内距 距(m) (m)
3.787
6.213
(YH)HZ
中分内距 中分外伸距
(m)
(m)
6.213
3.787
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
888
5
888
888
888
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节曲线轨距加宽关键字:曲线轨距加宽五、轨底坡1/20的斜坡,为了使钢轨轴心受力,钢轨也应有一个向内的倾斜度,因此轨底与轨道平面之间应形成一个横向坡度,称之为轨底坡。

头不均匀磨耗。

分析研究指出,轨头中部塑性变形底积累比之两侧较为缓慢,故而设置轨底坡也有利于减小轨头塑性变形,延长使用寿命。

1965年以前,轨底坡设定为1/20。

但在机车车辆的动力作用下,轨道发生弹性挤开,轨枕产生挠曲和弹性压缩,加上垫板与轨枕不密贴,道钉的扣压力不足等原因,实际轨底坡与原设计轨底坡有较大的出入。

另外车轮踏面经过一段时间的磨耗后原来1/20的斜面也接近1/40的坡度。

所以1965年以后,我国铁路的轨底坡统一改为1/40。

轨钢轨中心线将偏离垂直线而外傾,在车轮荷载作用下有可能推翻钢轨。

因此,在曲线地段应视其外轨超高值而加大内轨的轨底坡。

调整的范围见表2-3。

作用情况下的理论值。

在复杂的列车动荷载作用下,轨道各部件将产生不同程度的弹性和塑性变形,静态条件下设置的1/40轨底坡在列车动荷载作用下不一定保持1/40。

轨底坡设置是否正确,可根据钢轨顶面上由车轮碾磨形成的光带位置来看。

如光带偏离轨顶中心向内,说明轨底坡不足;如光带偏离轨顶中心向外,说明轨底坡过大;如光带居中,说明轨底坡合适。

线路养护工作中,可根据光带位置调整轨底坡的大小。

表2-3 内股钢轨轨底楔型或枕木砍削倾斜度外缘超高(mm) 轨枕面最大倾斜铁垫板或承轨槽面倾斜度0 1/20 1/400~75 1:20 1:20 0 1:4080~125 1:12 1:12 1:30 1:17概述作用方才沿着曲线轨道行驶。

在小半径曲线,为使机车车辆顺利通过曲线而不致被楔住或挤开轨道,减小轮轨间的横向作用力,以减少轮轨磨耗,轨距要适当加宽。

加宽轨距,系将曲线轨道内轨向曲线中心方向移动,曲线外轨的位置则保持与轨道中心半个桂剧的距离不变。

曲线轨道的加宽值与机车车辆转向架在曲线上的几何位置有关。

一、转向架的内接形式位置,即可以有不同的内接形式。

随着轨距大小的不同,机车车辆在曲线上可呈现以下四种内接形式:1. 斜接。

机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触,内侧最后位车轮轮缘与内轨作用边接触,如图2-7(a)所示。

2. 自由内接。

机车车辆车架或转向架的外侧最前位车轮轮缘与外轨作用边接触其它各轮轮缘无接触地在轨道上自由行驶,如图2-7(b)所示。

3. 楔形内接。

机车车辆车架或转向架的最前位和最后位外侧车轮轮缘同时与外轨作用边接触,内侧中间车轮的轮缘与内轨作用边接触,如图2-7(c)所示。

2-7 机车通过曲线的内接形式4. 正常强制内接。

为避免机车车辆以楔形内接形式通过曲线,对楔形内接所需轨距增加,此时转向架在曲线上所处的位置称为正常强制内接。

二、曲线轨距加宽的确定原则由内接最为有利,但机车车辆的固定轴距长短不一,不能全部满足自由内接通过。

为此,确定轨距加宽必须满足如下原则:1. 保证占列车大多数的车辆能以自由内接形式通过曲线;2. 保证固定轴距较长的机车通过曲线时,不出现楔形内接,但允许以正常强制内接形式通过;3. 保证车轮不掉道,即最大轨距不超过容许限度。

三、根据车辆条件确定轨距加宽前轴外轮轮缘与外轨的作用边接触,后轴占据曲线垂直半径的位置。

则自由内接形式所需最小轨距为:2-2)Sf--自由内接所需轨距;qmax--最大轮对宽;f0--外矢距,其值为L--转向架固定轴距,R--曲线半径。

S0表示直线轨距,则曲线轨距加宽值e应为:"202"型转向架为例计算如下:R=350m,L=2.4m,qmax=1424mmm350m及以上的曲线,轨距不需加宽。

四、根据机车条件检算轨距加宽轨距为小的"正常强制内接"通过曲线。

(2-3)式中qmax--最大轮对宽度;f0--前后两端车轴的外轮在外轨处所形成的矢距,其值为:其中L1--第一轴至第二轴距离,L2--第二轴至第三轴距离,L3--第三轴至第四轴距离;fi--中间两个车轴的内轮在内轨处形成的矢距,其值为:Li1--第二轴至与车架纵轴垂直的曲线半径之间的距离,可由下式计算:S'w等于(2-4)式中δmin --直线轨道的最小游间。

五、曲线轨道的最大允许轨距一个车轮轮缘紧贴一股钢轨时,另一个撤论踏面与钢轨的接触点即为车轮踏面的变坡点。

(2-5)式中dmin--车辆车轮最小轮缘厚度,其值为22mm;Tmin--车轮最小轮背内侧距离;r--车辆车轴弯曲时轮背内侧距离缩小量,用2mm;a --轮背至轮踏面斜度为1:20与1:10变坡点的距离,用100mm;r --钢轨顶面圆角宽度,用12mm;s--钢轨弹性挤开量,用2mm。

将上述采用的数值代入得:mm6mm,所以曲线轨道最大容许轨距应为1450mm,即最大允许加宽15mm。

2-4规定的标准进行曲线轨距加宽。

未按该标准调整前的线路可维持原标准。

曲线轨距加宽递减率一般不得大于1‰,特殊条件下,不得大于2‰。

表2-4 曲线轨距加宽曲线半径(m) 加宽值(mm) 轨距(mm)R≥350 0 1435350>R≥300 5 1440R<300 15 1450一、外轨超高的作用及其设置方法股钢轨的压力,使旅客产生不适,货物位移等。

因此需要把曲线外轨适当抬高,使机车车辆的自身重力产生一个向心的水平分力,以抵消惯性离心力,达到内外两股钢轨受力均匀和垂直磨耗均等,满足旅客舒适感,提高线路的稳定性和安全性。

水平高度之差。

在设置外轨超高时,主要有外轨提高法和线路中心高度不变法两种方法。

外轨提高法是保持内轨标高不变而只抬高外轨的方法。

线路中心高度不变法是内外轨分别降低和抬高超高值一半而保证线路中心标高不变的方法。

前者使用较普遍,后者仅在建筑限界受到限制时才采用。

二、外轨超高的计算2-8所示。

为简便计算,将车体视为一个平面。

P--车体的重力;Q--轨道反力;图2-8 曲线外轨超高计算图Fn--向心力;S1--两轨头中心线距离;h--所需的外轨超高度。

由于超高很小,从工程实用的角度出发,可取CB≈AB=S1(2-6)2-7)式中g--重力加速度;v--行车速度;单位取为m/s时用v,取为km/h时用V;R--曲线半径。

2-6)、(2-7)得2-8)S1=1500mm,g=9.8m/s2,代入上式并变换量纲单位得:2-9)(2-9)中的列车速度V应当采用各次列车的平均速度Vp ,即(2-10)V选用是否恰当。

平均速度Vp 的计算有如下两种方法。

1. 全面考虑每一次列车的速度和重力来计算Vp2-9)可见,对任一确定的曲线,其外轨超高和两股头中心线距离是确定不变的。

但通过的每一次列车的重量和速度是不同的。

因而列车作曲线运动产生的离心力及向心力也是不同的。

为了反映不同行驶速度和不同牵引重量的列车对于外轨超高值的不同要求,均衡内外轨的垂直磨耗,平均速度Vp 应取每昼夜通过该曲线列车牵引重量的加权平均速度。

2-11)式中N--每昼夜通过的相同速度和牵引重量的列车次数;Gz--列车总重。

2-11)中列车重量Gz 对Vp 影响较大,由此计算所得的平均速度适用于客货混运线路,因此我国《铁路线路维修规则》规定,在确定曲线外轨超高时,平均速度按式(2-11)计算。

高公式(2-10)是将车辆视为一个平面而导出的,与实际列车受力状况存在差异。

在现场使用时,按计算值设置超高以后,还应视轨道稳定以及钢轨磨耗等状况适当调整。

2.在新线路设计与施工时,采用的平均速度Vp 由下式确定2-12) 代入式(2-10)中,得(2-13)式中Vmax --预计该地段最大行车速度,以km/h计。

三、外轨未被平衡的超高,离心力J为(2-14)当v=vp 时,这时J刚好与设置超高h后所提供的向心力Fn 相等。

此时两股钢轨承受相同荷载,旅客也没有不舒适感觉。

v<vp 时,离心力J大于设置超高后所提供的向心力Fn ,说明超高不足(此差值称为欠超高)。

从而导致外轨承受偏载,同时也因离心力未被平衡而使旅客感觉不舒适。

v>vp 时,离心力J小于设置超高后的所提供的向心力Fn ,说明超高过大(此差值称为过超高)。

从而导致内轨承受偏载和旅客不适。

衡的超高。

未被平衡的超高使内外轨产生偏载,引起内外轨不均匀磨耗,并影响旅客的舒适度。

此外,过大的未被平衡超高度还可能导致列车倾覆,因此必须对未被平衡的超高加以限制。

,超高h是定值。

当列车以vmax(或vmin)通过时,将产生最大的欠超高hQmax(或hGmax )为2-15) 式中,右边的符号表示欠超高。

同理可得最大的过超高。

(2-16)式中hQmax(hGmax )--最大欠(过)超高;amax--最大离心加速度;amin--最小离心加速度;ap--以平均速度通过曲线时的平均离心加速度;amax(amax)、△a'max(a'max)-- 最大未被平衡的离心加速度和相信加速度。

a]为0.4~0.5,困难情况下为0.6 。

我国《铁路线路维修规则》规定:未被平衡欠超高,一般应不大于75mm,困难情况下应不大于90mm;未被平衡过超高不得大于50mm。

四、外轨最大超高的允许值限制外轨超高的最大值。

以下叙述该值的确定方法。

hmax ,与之相适应的行车速度为v,产生的惯性离心力为J,车辆的重力为G,J与G 的合力为R,它通过轨道中心点O。

当某一车辆以v1<v的速度通过该曲线时,相应的离心力为J1,J1与G 的合力为R1 ,其与轨面连线的交点为O1,偏离轨道中心距离为e,随着e值的增大,车辆在曲线运行的稳定性降低,其稳定程度可采用稳定系数n来表示。

(2-17)当n =1,即e=0.5S1 时,指向内轨断面中心线,属于临界状态;当n <1,即e>0.5S1 时,车辆丧失稳定而倾覆。

当n >1 时,车辆处于稳定状态。

n值愈大,稳定型愈好。

e值与未被平衡超高△h存在一定的关系,可得过超高三角形△BAA' 与另一三角形△COO1 有以下近似关系:H,则上式可变换为(2-18)式中e--合力偏心距;H--车体重心至轨顶面高,货车为2220mm,客车为2057.5mm;h--未被平衡超高度;S1--两轨头中心线距离。

2-17)式,得(2-19)n值不应小于3。

最大外轨超高度应达到这一指标的要求。

我国铁路设计规范规定,最大超高度为150mm,若以最不理情况(曲线上停车,即速度v =0)来教核其稳定系数n,并考虑4mm的水平误差在内,即过超高△h =154mm,可计算得到将使低速列车对内轨产生很大的偏压并降低稳定系数。

从工程经验出发,规定其最大超高度为125mm。

五、曲线轨道上的超高限速曲线轨道,均按一定的平均速度设置超高。

相关文档
最新文档