甘草酸的纯化工艺研究分析
甘草酸的提取分离及鉴定实验报告
甘草酸的提取分离及鉴定实验报告甘草酸是一种常见的草药成分,具有广泛的药理活性和医疗应用价值。
本实验旨在通过提取和分离的方法获取纯度较高的甘草酸,并通过一系列鉴定实验确定其结构和纯度。
我们采用乙醇作为提取剂,将甘草粉碎成细粉,然后与乙醇进行浸泡提取。
乙醇具有较好的溶剂性能,可以有效提取甘草中的甘草酸成分。
浸泡时间一般为24小时,可在室温下进行。
提取后,将混合溶液过滤,得到乙醇溶液。
接下来,我们使用分离漏斗将乙醇溶液与等体积的正己烷进行液液分离。
甘草酸在正己烷中的溶解度较低,因此可以通过这种分离方法将甘草酸从乙醇溶液中分离出来。
分离后,我们得到了正己烷层和乙醇层。
然后,我们对正己烷层进行蒸馏提纯。
将正己烷层进行蒸馏,得到的蒸馏液中富含甘草酸。
此时,我们可以使用旋转蒸发仪将蒸馏液浓缩,以便于后续的鉴定实验。
蒸发浓缩后,我们得到了甘草酸的样品。
接下来,我们进行甘草酸的鉴定实验。
首先,我们可以通过比色法确定甘草酸的纯度。
将甘草酸溶解于乙醇中,然后使用紫外可见光谱仪测定其吸收峰的强度和波长。
根据甘草酸的吸收特性,可以确定其纯度。
我们还可以使用红外光谱仪对甘草酸进行鉴定。
根据甘草酸的分子结构,预测其可能的红外吸收峰位置,并通过红外光谱仪测定样品的红外吸收谱图,与数据库中的标准谱图进行对比,从而确定甘草酸的结构。
我们可以使用质谱仪对甘草酸进行质谱分析。
将甘草酸样品溶解于适当的溶剂中,然后通过质谱仪进行质谱测定。
根据质谱图谱的分子离子峰和碎裂峰,可以确定甘草酸的分子量和结构。
通过以上一系列的实验步骤,我们成功提取分离并鉴定了甘草酸。
实验结果表明,我们得到的甘草酸样品具有较高的纯度,并且其结构与甘草酸的结构一致。
这为甘草酸的进一步研究和应用提供了基础。
同时,该实验方法也为其他草药成分的提取和分离鉴定提供了参考。
甘草中甘草酸的提取实验报告
甘草中甘草酸的提取实验报告甘草中甘草酸的提取实验报告概述:本实验旨在通过提取甘草中的甘草酸,了解其提取方法和纯化过程,以及甘草酸的性质和应用。
实验采用了溶剂提取法和结晶法,最终成功提取出纯度较高的甘草酸。
实验步骤:1. 材料准备:甘草、无水乙醇、石油醚、醋酸乙酯、无水乙醚、浓盐酸、浓氨水。
2. 提取甘草酸:将甘草研磨成粉末状,加入无水乙醇中,搅拌均匀,静置一段时间,过滤得到甘草提取液。
3. 萃取甘草酸:将甘草提取液与石油醚混合,振荡均匀,分液漏斗分离有机相和水相。
4. 纯化甘草酸:将有机相转移至蒸馏烧瓶中,加入醋酸乙酯,加热回流,蒸发醋酸乙酯,得到甘草酸溶液。
5. 结晶甘草酸:将甘草酸溶液冷却至室温,加入无水乙醚,搅拌均匀,静置结晶,过滤得到甘草酸晶体。
6. 纯化甘草酸晶体:将甘草酸晶体溶解于浓盐酸中,加热搅拌,过滤得到甘草酸纯品。
7. 验证甘草酸:将甘草酸溶解于浓氨水中,观察其颜色变化,测定其溶解度。
结果与讨论:通过以上实验步骤,成功提取出了纯度较高的甘草酸。
在提取过程中,溶剂的选择和比例对提取效果有重要影响。
无水乙醇是较好的提取溶剂,能够将甘草中的甘草酸有效溶解出来。
而石油醚和醋酸乙酯则用于萃取和纯化过程,能够去除杂质,提高甘草酸的纯度。
在结晶过程中,温度和溶剂的选择也是关键。
将甘草酸溶液冷却至室温后,加入无水乙醚,可以通过溶剂效应促进结晶的发生,得到较大且纯度较高的甘草酸晶体。
而浓盐酸则用于纯化甘草酸晶体,通过酸解结晶,去除杂质,得到纯净的甘草酸。
甘草酸具有多种药理活性,广泛应用于中药和食品工业中。
它具有抗炎、抗氧化、抗溃疡、降血压等作用,可用于治疗消化系统疾病、心血管疾病等。
此外,甘草酸还可用于食品添加剂,具有增香、保鲜等功能。
结论:本实验成功提取出了纯度较高的甘草酸,并验证了其性质和应用。
通过溶剂提取法和结晶法,可以有效提取和纯化甘草酸。
甘草酸具有多种药理活性和广泛应用前景,对于中药研究和食品工业具有重要意义。
甘草中甘草酸的提取工艺研究
表 3 L9 ( 34 )正交试验结果
试验
编号
A
B
C
1
1
1
1
2
1
2
2
3
1
3
3
4
2
1
2
5
2
2
3
6
2
3
1
7
3
1
3
8
3
2
1
9
3
3
2
K1
9. 09 10. 45 9. 32
K2
9. 11 9. 37 9. 38
K3
10. 34 8. 72 9. 85
R
1. 25 1. 73 0. 53
甘草酸 甘草酸提 D 得率 / % 取率 / %
表 4 方差分析
方差来源 SS
df
A
9. 919
2
B
12. 429
2
C
1. 921
2
D 误差
4. 030
2
0. 412
18
MS 4. 960 6. 215 0. 960 2. 015 0. 023
F 216. 783 271. 643
41. 980 88. 077
sig 0. 000 0. 000 0. 000 0. 000
甘草酸工业化生产的关键是提取工艺参数的优化 ,提取 工艺参数包括溶剂浓度 、溶剂体积 、提取温度和提取时间等 , 其中 溶 剂 浓 度 对 甘 草 酸 提 取 率 影 响 最 大 [8 ] 。有 研 究 表 明 [10 ] ,用微波萃取时 ,含 0. 5%氨水的 10%乙醇溶液可使甘 草酸提取率达到最高 ,但多数文献报道是以氨水浓度为定
甘草酸的提取、分离和纯化
甘草酸的提取、分离及纯化实验甘草酸的性质及用途甘草为豆科植物的根,主要产于我国内蒙古、山西、甘肃、宁夏、新疆等地。
甘草味甘,故又名甜草、蜜草。
其主要化学成分有四类:三萜类、黄酮类、生物碱类及多糖类。
其中三萜类成分有甘草酸、羟基甘草次酸等。
甘草酸又称甘草皂苷、甘草甜素。
白色结晶,可用冰醋酸结晶,有很强的甜味。
分子式为C42H62O16,分子量为822.90。
纯品为白色、无臭的结晶性粉末,熔点212~217℃,易溶于热水及热的稀乙醇,几乎不溶于无水乙醇或乙醚。
甘草酸在植物中常以钙、钾、铵盐等形式存在。
从甘草根为原料制得的甘草浸膏中提取的铵盐,其甜度为蔗糖的50~100倍,精制甘草酸钠、钾盐的甜度为蔗糖的200~300倍,是一种天然的甜味剂。
甘草素入口后不能立刻感觉到甜味,而是逐渐才有感觉,并且一直延续很长时间还留有余味,因此甘草素与砂糖、葡萄糖等糖类复配,可以得到口感良好的甜味。
因为它是非糖类、高甜度的甜味剂,因此没有褐变、吸湿及发酵等缺点。
甘草素在医药上还可用作消化道溃疡治疗剂、解毒剂、消炎剂以及降血脂、抗动脉粥样硬化、降胆固醇等。
目前,甘草素已广泛用于食品、医药、化妆品、饮料、卷烟等行业。
我国甘草资源丰富,带皮甘草中含甘草酸7%~10%,去皮甘草中约5.5%~9.0%。
甘草经溶剂浸取,可以制得甘草浸膏,再进一步加工可以制得甘草酸。
1 实验目的1.掌握甘草酸的提取原理和方法。
2.掌握甘草酸的分离纯化方法。
2 实验原理甘草酸在原料中以钾盐或钙盐形式存在,其盐易溶于水,因此可用极性溶剂提取。
提取后滤液再加硫酸,因难溶于酸性溶液而析出游离甘草酸。
3实验材料、仪器和试剂实验材料:甘草实验仪器:电子分析天平(精确至0.001g)、移液管、紫外分光光度计、超声波清洗器、抽滤装置、水浴锅、旋转蒸发仪、容量瓶(10mL、25mL、100mL)试剂:70 %的乙醇溶液、蒸馏水、硫酸(3.5mol/L)、浓氨水、25 %氨水、冰醋酸、80%甲醇质量分数为70 %的乙醇溶液(100 mL):用量筒量取75 mL 无水乙醇,25 mL 二次重蒸馏水于烧杯中,混匀;质量分数为10 %的乙醇溶液(100 mL):用量筒量取12.5 mL 无水乙醇,87.5 mL 二次重蒸馏水于烧杯中,混匀;质量分数为0.5 %的氨水溶液(100 mL):用量筒量取2 mL 25 %氨水,98 mL 二次重蒸馏水于烧杯中,混匀;质量分数为0.5 %的氨性醇溶液(100 mL 以无水乙醇为溶剂):用量筒量取98.5 mL 无水乙醇,1.5 mL25 %氨水于烧杯中,混匀。
甘草中甘草酸的提取工艺优化研究
甘草中甘草酸的提取工艺优化研究甘草(GlycyrrhizauralensisFisch)是中草药中重要的一种植物,其中含有大量的甘草酸,这是它的一种特殊的有效成分,具有多种生物活性,而其中的甘草酸也被广泛应用于药物、食品、化妆品等领域。
由于甘草酸的抗氧化、抗炎、抗菌等作用,但其从甘草中提取的高效工艺迄今未见报道。
甘草酸的提取是植物中以连续提取法、提取工艺的优化为主,以及由此引起的生物活性化学研究。
第一步是选择合适的溶剂,一般使用环氧乙烷、丙酮、乙醇等作为溶剂,然后通过溶剂提取法从甘草中提取出甘草酸,利用溶剂蒸发法进行纯化,以提高提取率和产品纯度。
其次,可以通过多种反应条件优化工艺,如溶剂浓度、温度、PH 值、提取时间、提取次数等条件来优化提取工艺,使其提取效率更高,提高成品的质量。
最后,可以利用高效液相色谱(HPLC)技术对提取的甘草酸进行分析测定,以提高分析的准确性和灵敏度。
此外,对提取出的甘草酸进行化学研究也是十分必要的。
首先,可以通过气相色谱法(GC)和核磁共振(NMR)研究甘草酸的结构。
其次,可以通过抗氧化实验、抗炎实验和抗菌实验来研究甘草酸的活性物质,最终确定其具有特异的抗氧化、抗炎和抗菌作用。
最后,可以通过众多研究的结果综合分析,形成一种有效高效的甘草酸提取工艺,探讨甘草酸的生物活性,为临床应用提供更有效的可能。
综上所述,甘草酸是一种重要的活性成分,具有多种生物活性,可以利用提取工艺的优化、多种反应条件优化以及化学研究等方法,从甘草中提取高纯度和高效率的甘草酸,为临床应用提供有效的可能。
另外,在提取过程中需要进行抗氧化、抗炎、抗菌等实验,以确定提取的甘草酸的生物活性。
因此,甘草中甘草酸的提取工艺优化研究具有重要的意义,可以用于临床应用,为植物药物的开发及其他领域的应用提供基础性的研究。
甘草酸的纯化工艺研究
在化妆品领域,甘草酸具有抗氧化、抗炎等作用,可添加到护肤品中,保护皮肤健康。
03
甘程设计
提取
纯化
产品封装
设备
粉碎机、搅拌器、蒸馏装置、过滤器、结晶器等。
试剂
甘草原料、有机溶剂、水、活性炭、硅藻土等。
甘草酸纯化工艺中使用的设备及试剂
原料准备
选取优质甘草,清洗干净,去除杂质,干燥至恒重。将干燥后的甘草粉碎成粉末,过筛备用。
甘草酸是一种天然的植物提取物,具有多种药理作用和生物活性,如抗炎、抗氧化、抗肿瘤等。
VS
本研究旨在探索一种新的甘草酸纯化工艺,提高甘草酸的提取率和纯度,简化工艺流程,降低生产成本,为甘草酸的实际生产提供理论和技术支持。
研究内容
本研究将对甘草酸的提取和纯化工艺进行深入研究,包括提取工艺的优化、吸附剂的选择和优化、洗脱剂的选择和优化、纯化工艺的比较和优化等。
常用的制备方法包括溶剂提取法、柱层析法、沉淀法等。
随着科技的发展,一些新的制备方法如基因工程法、微生物发酵法等也逐渐应用于甘草酸的制备。
甘草酸的应用领域
甘草酸在食品、医药、化妆品等领域得到广泛应用。
在医药领域,甘草酸具有抗炎、抗过敏、抗肿瘤等作用,可用于治疗相关疾病。
在食品工业中,甘草酸可作为甜味剂、防腐剂、调味剂等,用于改善食品的口感和品质。
改进方向
研究成果的不足之处及改进方向
06
参考文献
参考文献1
参考文献
作者:张三,李四,王五
标题:甘草酸提取工艺研究进展
THANK YOU.
谢谢您的观看
针对实验结果,对甘草酸纯化工艺的原理、影响因素和未来发展方向进行了深入讨论,提出了一些有价值的见解和建议。
总结
甘草酸的纯化工艺研究分析
甘草酸的纯化工艺研究分析甘草酸是一种在中药、食品、化妆品、医学和农业等领域广泛应用的天然产物,具有许多生物学和药理学活性。
它是从甘草根中提取的一种黄色染料,由于它的广泛应用价值,纯化甘草酸的工艺研究显得非常重要。
本文主要探讨甘草酸的纯化工艺研究分析。
1. 甘草酸的来源和结构特征甘草酸分别从甘草根、芦荟和华南食品中提取。
它的化学结构是一种呈淡黄色结晶的环烯酮酸,通式为C30H46O4。
甘草酸是一种多环有机酸,含有一种整体结构相对稳定的二环结构,较长的侧链具有极性,结构中含有苯骨架,对传递主要的生物学活性至关重要。
2. 甘草酸的纯化技术甘草酸的纯化主要包括前处理、萃取、分离和结晶四个部分。
2.1 前处理前处理步骤包括样品制备和样品预处理。
检测前,需要将药材制成适合提取的样品,通常的处理方式是将药材粉末用80目筛过滤并干燥至恒定重。
预处理对于获得准确和可重复的结果非常重要。
2.2 萃取甘草酸的萃取主要有水萃取、醇萃取和有机溶剂萃取。
其中水萃取为常用方法,它可以去除不需要的杂质和有机物,充分发挥甘草酸的萃取率,而且操作简单,易于控制。
2.3 分离萃取后的混合物需要进行分离,以分离甘草酸和其他杂质。
常用的分离技术有重力滤、离心、吸附剂、分子筛等方法,其中离心和重力过滤是最基本的技术。
2.4 结晶纯化的最后一步是甘草酸结晶,通过加入适当的沉淀剂进行结晶,然后通过提取结晶物进行干燥、筛分和质量控制。
结晶是一个极其重要的步骤,它决定了产物的纯度和产量,保证了提取物中细胞色素的活性和稳定性。
3. 纯化甘草酸的影响因素3.1 药材质量甘草酸的来源主要是甘草根,不同产地、不同自治区、不同产季的药材所获得的甘草酸含量会有所不同,这也导致了不同部位中药提取物的质量差异。
3.2 溶剂种类和比例甘草酸的提取和分离主要是依靠特定的溶剂。
溶剂的选择和调配比例对甘草酸的提取效果有着直接的影响。
正确选择合适的溶剂和比例可以提高甘草酸的提取率,保证提取物中甘草酸的纯度和产量。
实验二 甘草酸的纯化
实验二、甘草酸的纯化提取的甘草酸溶液中,还含有大量的蛋白质、果胶、鞣质等物质,在提取过程中,这些杂质也转移到了提取液中。
由于这些物质的大量存在,使得产物的含量降低,试验误差加大,同时甘草酸作为药物和保健品等使用时,杂质还会引起一些副作用,因此必须将这些杂质除去,对甘草酸进行纯化。
一、实验目的掌握甘草酸的分离纯化方法。
二、实验原理提取后滤液再加硫酸,因难溶于酸性溶液而析出游离甘草酸。
三、实验仪器与材料仪器:旋转蒸发仪,离心机,烘箱材料:甘草酸滤液试剂:极性溶剂,硫酸四、实验步骤1. 查阅相关资料,以小组为单位确定具体实验方案,上报老师确定可行性。
2. 甘草酸滤液预处理:甘草酸溶液减压浓缩,滴加3.5mol/L的硫酸至pH2~3,静置使之完全沉淀,离心,沉淀用去离子水洗2~3次,放入真空干燥箱中干燥,得甘草酸粗品。
3.甘草酸粗品进一步纯化:可采用溶剂萃取分离法、重结晶法、大孔吸附树脂柱层析法对甘草酸分离。
五、实验结果纯品中甘草酸的测定:称取一定的纯品,制备一定浓度的样品溶液,精密吸取1.0mL转移到25ml容量瓶中,用70%乙醇定容,静置20min后,于254nm处测定吸光度。
据标准曲线计算提取液中甘草酸的浓度,再计算甘草酸粗品的纯度。
公式如下:A=13.17C—0.017 (参考)式中:A-吸光度;C-浓度,mg/mL甘草酸粗品纯度= nCV/m×100%其中:n-样品液稀释倍数C-测定液中甘草酸的浓度mg/mLV-样品液体积,mLm-甘草酸粗品的质量,mg六、注意事项1.首先熟悉影响提取液中甘草酸的主要杂质,据此查阅资料确定合理的纯化甘草酸的实验方案。
2.浓缩液纯化时应尽可能考虑除去主要杂质并不破坏甘草酸的主要结构。
3.纯化后的甘草酸浓缩液低温烘箱干燥。
七、思考题查阅资料,还有什么方法可使得甘草酸的纯度提高?。
甘草酸的提取分离及鉴定实验反思
甘草酸的提取分离及鉴定实验反思甘草酸是一种重要的药用成分,具有抗炎、抗氧化、抗溃疡等多种药理活性。
因此,对甘草酸的提取分离及鉴定具有重要的研究意义。
本实验旨在探讨甘草酸的提取分离方法,并利用色谱技术对提取物进行定性与定量分析。
首先,我们采用了超声波辅助提取法来提取甘草酸。
该方法具有操作简便、提取效率高的优点。
在实验中,我们选择了甘草根作为原料,将其粉碎并混合乙醇溶剂,然后进行超声波提取。
超声波的作用能够破坏细胞壁,促进甘草酸的释放。
实验结果表明,超声波提取法能够有效地提取甘草酸,并且提取率较高。
接下来,我们进行了甘草酸的分离纯化实验。
由于甘草酸在溶剂中的溶解度较高,在大部分有机溶剂中均可溶解。
因此,我们选择了正己烷和乙醇为溶剂,并采用反应结晶法进行分离纯化。
实验中,我们将提取得到的甘草酸溶液慢慢加入冷却的正己烷中,通过结晶使甘草酸分离出来。
此方法能够有效地去除杂质,并得到较为纯净的甘草酸。
最后,我们利用色谱技术对提取物进行了鉴定。
我们选择了高效液相色谱(HPLC)进行分析。
通过比对标准品和提取物的保留时间及峰面积,我们能够定量分析甘草酸的含量。
实验结果显示,提取物中含有一定量的甘草酸,并且与标准品具有相似的色谱图谱。
整个实验中,我们遇到了一些问题。
首先,提取物中可能存在其他有机酸或杂质,导致甘草酸的纯度不高。
其次,色谱分析过程中,可能存在色谱峰重叠的问题,使得甘草酸的定量分析不够准确。
针对这些问题,我们可以进一步改进提取和分离的方法,以提高甘草酸的纯度和分析的准确性。
总之,通过本次实验,我们成功地提取分离了甘草酸,并利用色谱技术对其进行了鉴定。
通过实验反思,我们认识到了实验过程中存在的问题,并提出了改进的方向。
这些实验结果对于进一步研究甘草酸的药理活性及应用具有重要的指导意义。
甘草酸的纯化工艺研究分析
甘草酸的纯化工艺研究分析-----------------------作者:-----------------------日期:河北工大学毕业论文作者:贾晋阳学号:学院:化工学院系(专业):制药工程题目:甘草酸的纯化工艺研究指导者:(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2012年6月9日目次1 引言 (1)1.1 甘草酸简介 (1)1.2 甘草酸及其生产概述 (2)1.3 大孔树脂分离纯化技术 (3)1.4 本论文研究内容 (4)2 实验原理及材料 (4)2.1 实验原理 (4)2.2 实验试剂和设备 (5)3 甘草酸的纯化研究 (7)3.1 大孔树脂的预处理及再生 (7)3.2 甘草酸检测方法的确定 (8)3.3 树脂种类的选择 (9)3.4 甘草酸的动态吸附 (11)3.5 甘草酸的梯度洗脱 (14)3.6 18β-甘草酸到18α-甘草酸的构型转换 (18)4 实验数据与讨论 (20)4.1 静态实验结果分析 (20)4.2 动态试验结果分析 (21)4.3 构型转换结果分析 (21)结论 (22)参考文献 (23)致谢 (25)附录 (26)1引言甘草酸(GA),是从甘草的根茎中提取出的一种高甜度、低热值的具有天然活性的成分,其在甘草中的存在形式主要为钾盐和钙盐,游离的甘草酸含量并不多。
它的植物来源——甘草也是一种我国的传统中药,具有悠久的使用历史,中医上认为:甘草味甘,是补脾益气,止咳、止痛的良药,并且已被美国FDA收录为安全无毒物质[1]。
科学研究表明,甘草中的主要成分有甘草酸和黄酮类,具有抗炎、镇咳、抗肿瘤、等作用,有较强的人体免疫功能促进作用[2],在医疗领域具有极高应用价值。
因此本文阐述了将大孔树脂用于甘草酸纯化的原理、方法及应用,并在此基础上提出本论文的研究内容。
1.1 甘草酸简介中文名:甘草酸,又称甘草甜素、甘草皂甙CAS:1405-86-3英文名:Glycyrrhizic acid分子式:C42H62O16分子量:822.92化学名:(3β,20β)-20-羧基-11-氧代-30-去甲基-(18α-H)-整齐墩果-12-烯-3β-羟基-2-O-β-D-葡萄吡喃糖醛酸基-α-D-葡萄吡喃糖醛酸[3]结构式为:甘草酸是一种三萜皂苷类天然药物,分解温度220℃,在醋酸中为无色柱状结晶,易溶于热水,可溶于热稀醇,但难溶于无水乙醇或乙醚[4]。
大孔吸附树脂纯化甘草提取物中甘草酸的研究
大孔吸附树脂纯化甘草提取物中甘草酸的研究目的研究光果甘草中甘草酸的最佳大孔树脂纯化工艺。
方法以大孔吸附树脂纯化物中甘草酸的含量为考察指标,从24种大孔吸附树脂中筛选出纯化甘草粗提物中甘草酸的最佳大孔吸附树脂,并确定纯化甘草酸的最佳工艺条件。
结果AB-8大孔吸附树脂纯化甘草酸效果最佳,最佳工艺条件:上柱液浓度为0.11mg/mL,径高比为1:8,上样体积为所用树脂2BV,上样速度与洗脱速度均为2BV/h,用30%、50%的乙醇除杂,用80%乙醇富集甘草酸。
纯化后产品纯度为60.74%,收率为3.29%,转移率为76.33%。
结论采用AB-8大孔吸附树脂可较好地纯化甘草酸。
标签:甘草;甘草酸;AB-8大孔吸附树脂药用甘草为豆科植物甘草(Glycyrrhiza uralensis Fish.),胀果甘草(Glycyrrhiza inflata Batalin)或光果甘草(Glycyrrhiza glabra L.)的干燥根及根茎[1]。
甘草为药食两用植物,甘草酸又称甘草皂苷,是甘草的主要活性成分之一,具有促肾上腺皮质激素作用,能减少尿量及钠排出,增加钾排出,血钠上升,血钙降低。
可用于解毒,抗炎[2],镇咳,抗肿瘤,抗溃疡,抗菌等[3]。
近年来的药理研究发现,甘草酸类药物对防治病毒性肝炎、高血脂症和癌症等疾病有一定的疗效[3-4],对艾滋病毒也有一定的抑制增殖作用[5]。
长期以来,我国是甘草主要出口国,但产品多为原草或浸膏等初加工产品,缺乏深加工。
研究有工业应用价值的甘草酸分离与精制技术具有重要意义。
本实验将考察24种大孔树脂,选择出最优树脂进行甘草酸的纯化实验,并确定纯化的最佳条件。
制定出稳定可靠,成本低廉的纯化工艺,以期对工业化生产有所帮助。
1 材料LC-2010A高效液相色谱仪(日本岛津公司),FA10004N型万分之一分析天平(上海精密科学仪器有限公司),树脂(河北沧州宝恩吸附材料有限公司),甲醇色谱纯(天津市康科德科技有限公司),冰醋酸分析纯(天津市康科德科技有限公司),醋酸铵分析纯(天津市北方天医化学试剂场),光果甘草(购于河北安国药市长安中药材有限公司,经李天翔教授(天津中医药大学)鉴定),剪段约为3cm,砸至酥松,50℃干燥备用。
甘草酸的提取分离及鉴定实验反思
甘草酸的提取分离及鉴定实验反思篇一:甘草酸是一种具有广泛药理活性的天然产物,其具有抗炎、抗氧化、抗肿瘤等多种生物活性。
本实验旨在通过提取和分离的方法获得纯度较高的甘草酸,并进一步进行鉴定和分析。
然而,在实际操作中,我们遇到了一些问题和困难,需要进行反思和改进。
首先,在提取甘草酸的过程中,我们选择了乙醇作为溶剂。
但是,在操作过程中发现,乙醇的溶解能力较弱,难以完全溶解甘草酸,并且容易导致杂质的溶解。
因此,我们需要重新选择溶剂,并根据其溶解能力来优化提取条件,以提高甘草酸的得率和纯度。
其次,在分离过程中,我们采用了柱层析技术。
然而,在操作中发现,柱层析的分离效果不理想,难以得到纯度较高的甘草酸。
可能是由于样品中存在多种成分,导致分离效果受到干扰。
因此,我们需要进一步优化分离的方法,可以考虑采用液液萃取、析出等技术,以提高分离效果。
最后,在鉴定实验中,我们采用了红外光谱分析和质谱分析等技术。
然而,由于甘草酸的结构比较复杂,红外光谱分析的结果并不明确,质谱分析的信号也较为复杂。
因此,我们需要进一步完善鉴定的方法,可以考虑使用核磁共振等高级技术,以提高鉴定的准确性和可靠性。
综上所述,甘草酸的提取、分离和鉴定实验中存在一些问题和不足之处,需要我们进一步改进和完善。
通过选择合适的溶剂、优化分离方法和提高鉴定技术,可以提高实验的成功率和准确度,进一步深入研究甘草酸的药理作用和应用前景。
篇二:甘草酸是一种具有广泛药理活性的天然产物,具有抗炎、抗溃疡、抗氧化等多种作用。
因此,对甘草酸的提取分离及鉴定具有重要意义。
在本次实验中,我们采用了常见的溶剂萃取法,即将研磨后的甘草粉加入乙醇溶液中,通过搅拌和过滤等步骤,将甘草酸从甘草中提取出来。
然后,通过浓缩溶液和结晶等方法,对甘草酸进行分离纯化。
最后,通过红外光谱和质谱等技术,对提取得到的纯品进行鉴定。
实验结果显示,我们成功地从甘草中提取出了甘草酸,并通过红外光谱和质谱的分析确定了其结构和纯度。
甘草酸提取纯化工艺研究进展
文献综述
中药多糖的提取方法主要包括溶剂提取法、超声波辅助提取法、酶辅助提取 法等。其中,溶剂提取法是最常用的方法,包括水提、醇提、酸提、碱提等。而 超声波辅助提取法和酶辅助提取法则在特定条件下具有一定的优势。分离纯化工 艺主要包括除杂、沉淀、透析、干燥等步骤。理化性质和生物活性是多糖提取纯 化工艺研究的重要内容,其中包括分子量、单糖组成、硫酸根含量、热稳定性、 抗氧化性、免疫调节性等方面。
研究结果
通过对比不同提取工艺参数,发现超声波辅助提取方法相较于传统方法具有 更高的提取效率。最佳提取工艺参数为:乙醇浓度60%,超声波功率400 W,提取 时间30 min,料液比1:20。在此条件下,甘草黄酮和甘草酸的提取率分别达到 90.2%和87.6%。
产品质量评估方面,通过HPLC分析,结果显示甘草黄酮和甘草酸的产品纯度 分别为95.3%和93.8%,回收率分别为97.1%和96.4%。说明该工艺能够得到高纯 度的甘草黄酮和甘草酸产品。
结论
本次演示对中药多糖提取纯化工艺的研究进行了综述和分析,总结了前人研 究的主要成果和不足之处。在此基础上,本次演示提出了一些新的研究思路和方 法,为中药多糖提取纯化工艺的进一步研究提供了理论基础和实践指导。然而, 中药多糖提取纯化工艺的研究仍存在许多未知领域需要进一步探讨,
结果与讨论
通过实验研究,本次演示得出以下结论:首先,采用溶剂提取法结合超声波 辅助或酶辅助技术可以提高中药多糖的提取效率;其次,分离纯化过程中采用分 级沉淀、透析和干燥等技术可以获得高纯度的多糖;此外,优化后的提取纯化工 艺可以显著提高多糖的收率和纯度,同时保持了多糖的理化性质和生物活性;最 后,实验结果表明,优化后的中药多糖提取纯化工艺具有实际应用价值,可以为 中药多糖的工业化生产提供技术支持。
甘草中甘草酸的提取实验报告
甘草中甘草酸的提取实验报告
实验目的:了解分离纯化技术的应用,掌握无机盐酸法提取甘草酸的方法及操作。
实验原理:甘草又名甘草根,是一种广泛使用的中草药。
其主要成分是甘草酸、甘草素、甘草皂苷等。
甘草酸是甘草的主要有效成分,具有降糖、抗氧化、抗肝损伤等多种药理作用。
该实验是利用无机酸法将甘草酸从甘草中提取出来。
实验步骤:
1.样品制备:取适量甘草,去除杂质后切碎成小片备用。
2.提取:将切碎的甘草用石英研钵研成粉末,加入适量无水乙醇,浸泡6小时后,过滤得到提取液。
3.提取液浓缩:将提取液加热至70℃左右,缓慢加入盐酸,使pH达到1左右,再继续加热浓缩。
4.结晶:将制得的浓缩液室温下静置冷却,过滤得到结晶固体,用少量无水乙醇反复洗涤,干燥后得到纯净的甘草酸。
实验结果:经过提取、浓缩和结晶得到了白色粉末状的甘草酸,对其进行紫外分光光度计检测其吸收峰在235nm处。
经过质谱实验表明,得到的结晶物是纯净的甘草酸。
实验讨论与分析:通过本实验我们可以了解分离纯化技术的应用,掌握无机盐酸法提取甘草酸的方法及操作。
甘草酸是甘草中的主要有效成分,具有重要的药理作用。
本实验采用无机酸法提取甘草酸,操作简单易行,效果良好。
不过,无机酸法提取时要注意浓
度和pH值的控制,以免影响提取效率。
同时,在结晶过程中还需要注意温度和过滤的方式和时间,以得到高纯度的甘草酸。
实验总结:本次实验采用无机酸法提取甘草酸,操作简单易行,效果良好。
通过本次实验,我们了解了分离纯化技术的应用、掌握了无机盐酸法提取甘草酸的方法及操作,同时也体验了一把科学实验并学到了新的实验技能。
甘草酸的提取分离及鉴定实验报告
甘草酸的提取分离及鉴定实验报告甘草酸是一种重要的天然产物,具有多种药理活性,如抗炎、抗氧化、抗病毒等作用。
本实验旨在通过提取和分离的方法,获得纯度较高的甘草酸,并通过鉴定手段确认其结构。
我们选择了甘草的根茎作为提取甘草酸的原料。
将甘草的根茎切碎并研磨成细粉,然后加入适量的乙醇进行浸泡。
浸泡时间为24小时,浸泡温度为室温。
乙醇的选择是因为其对甘草酸具有较好的溶解性。
浸泡结束后,我们将浸泡液进行过滤,将固体部分分离出来。
然后,我们对固体进行洗涤,以去除杂质。
洗涤使用的溶剂是乙醇和水的混合物,比例为1:1。
将洗涤液过滤后,得到洗涤得到的固体部分。
接下来是分离的步骤。
我们使用了液液萃取法,以乙醚作为有机相,以水为无机相。
将浸泡液与乙醚进行充分摇匀后,分为两相。
然后,分别将有机相和无机相取出,进行分离。
此时,有机相中含有甘草酸,但还有一定的杂质存在。
为了去除杂质,我们使用了减压蒸馏法。
将有机相进行蒸馏,使甘草酸和其他挥发性物质蒸馏出来,得到纯度较高的甘草酸。
接下来,我们通过一系列鉴定手段确认了甘草酸的结构。
首先,使用红外光谱法进行了鉴定。
红外光谱图显示了甘草酸特有的吸收峰,如羧基C=O的伸缩振动峰和羟基O-H的伸缩振动峰,从而确保了甘草酸的存在。
然后,我们使用核磁共振波谱(NMR)对甘草酸进行了进一步的鉴定。
NMR谱图显示了甘草酸特有的峰,如羧基的化学位移峰和羟基的化学位移峰,从而确认了甘草酸的结构。
我们使用高效液相色谱法(HPLC)对提取得到的甘草酸样品进行了定性和定量分析。
通过与标准品的比对,确定了甘草酸的含量,并验证了提取方法的有效性。
通过甘草酸的提取、分离和鉴定实验,我们成功地获得了纯度较高的甘草酸,并通过红外光谱、核磁共振波谱和高效液相色谱法等手段确认了其结构。
这为进一步研究甘草酸的药理活性和应用提供了基础。
甘草中甘草酸的提取实验报告
甘草中甘草酸的提取实验报告实验名称:甘草中甘草酸的提取实验报告实验目的:1.了解甘草酸的特性以及其在中药中的应用;2.学习甘草中甘草酸的提取方法;3.掌握色谱层析分离技术。
实验原理:甘草酸是甘草中的主要有效成分,在中药中有着较广泛的应用。
本实验采用二氯甲烷-乙酸乙酯-甲醇(5:4:1)为溶剂体系,采用色谱层析技术将甘草酸从甘草中提取出来。
色谱柱为硅胶柱,进行激光检测,检测波长为254nm。
实验步骤:1.将50g甘草粉末加入400mL甲醇中,搅拌2小时,过滤,取得提取液;2.将提取液浓缩至200mL后,加入等量的水,再用2mol/L的醋酸调节pH至4.0;3.将上述液体用二氯甲烷-乙酸乙酯-甲醇(5:4:1)混合物合并,混合均匀后放置15分钟,将有机相分离;4.收集有机相,过滤后浓缩至20mL;5.将浓缩后的样品以60mL/h的流速通过硅胶柱(20cm×2.6cm),梯度洗脱,洗脱液分别为乙酸乙酯-丙酮(2:3),乙酸乙酯-丙酮(1:1),乙酸乙酯-丙酮(3:2),乙酸乙酯-丙酮(4:1),每次洗脱液用量为50mL;6.取得提纯后的甘草酸,测定其产率。
实验结果与分析:经过色谱层析分离,可以得到100mg左右纯度高达95%的甘草酸。
同时,通过计算得到甘草中甘草酸的提取产率约为1.9%。
结论:本实验成功地从甘草中提取出了甘草酸,得到了较高的提取产率和纯度。
实验结果具有一定的参考价值和应用价值。
实验中存在的问题与不足:虽然本实验得到了较高的提取产率和较高的纯度,但是在实验过程中还是存在着一些问题和不足之处。
1.通过计算得到的提取产率较低,不同操作条件下产率有很大的偏差;2.采用硅胶柱进行分离时,洗脱液的选择和流速等条件对产率有很大的影响,需要更进一步的研究和优化;3.还需要对甘草中其它成分的提取方法进行研究,提高提取效率和纯度。
甘草酸的纯化工艺研究
甘草酸的纯化工艺研究甘草酸是一种天然的化合物,被广泛应用于医药、化妆品等领域。
然而,由于其天然来源不够稳定、含杂质量较高,导致甘草酸的纯化工艺一直是研究的重点。
本文将介绍甘草酸的纯化过程及相关技术,以期提高甘草酸的质量和产量。
一、甘草酸的提取和分离甘草酸是从甘草(Glycyrrhiza uralensis Fisch)根里提取得到的,通常采用水提法、浓缩法和分离纯化法等技术。
其中,水提法是最常用的方法,其基本操作如下:将干燥的甘草根粉末放入提取器中,加入适量纯水,常温下静置10小时,再用煮沸水回流提取7小时,接着用过滤器过滤、蒸发浓缩、醋酸经酸化后冷沉淀的方法分离纯化,最终得到甘草酸产品。
二、甘草酸的纯化工艺虽然采用水提法可得到甘草酸,但其纯度仅有70%左右,而且会存在红褐色和黄色杂质。
因此,为了提高甘草酸的纯度,通常需要进行以下步骤的纯化工艺。
1.甘草酸的结晶纯化甘草酸和甘草酸二钾盐都可以通过结晶纯化的方式提高其纯度。
其基本过程是:将甘草酸或甘草酸二钾盐溶解在水中,然后缓慢冷却结晶,此时甘草酸会比甘草酸二钾盐结晶净化得更好,最终通过过滤、干燥等步骤得到高纯度的甘草酸。
2.甘草酸的柱层析纯化柱层析方法是分离纯化天然产物和化学品的常用方法,同样也适用于甘草酸的纯化。
在柱层析前,需要将甘草酸加入到合适的溶剂中,并根据其物理化学性质选择合适的固相材料进行操作。
通过调节溶剂和流动相的比例,可以使不同组分被分离纯化。
柱层析法可以获得更高的纯度和产量,也更简单、安全和节省时间。
3.甘草酸的超声波萃取纯化超声波萃取技术是利用超声波的热力、机械和化学效应,在水溶液中加速物质扩散,使其分散均匀,从而实现高效的萃取过程。
以甘草酸的纯化为例,超声波萃取技术可大大提高其纯度、提高产率及减轻环保压力。
具体实现方法如下:将甘草酸粉末加入水中,再利用超声波设备,对样品进行10~20分钟的超声波加热和震荡,然后用静置沉淀的方法得到纯化甘草酸。
溶剂萃取耦合大孔吸附树脂纯化甘草酸
溶剂萃取耦合大孔吸附树脂纯化甘草酸摘要:本研究旨在通过溶剂萃取和大孔吸附树脂的耦合应用,实现对甘草酸的高效纯化。
首先,我们利用无水乙醇将甘草酸从甘草中提取出来,并通过蒸馏脱除溶剂。
然后,我们采用活性炭作为吸附树脂,通过静态吸附实验确定了最佳的吸附条件。
最后,我们通过溶剂萃取从吸附树脂中将甘草酸洗脱出来,并对纯化后的甘草酸进行了质量分析。
1. 引言甘草酸是一种重要的天然产物,具有广泛的药理活性。
然而,在甘草中其他成分的干扰下,甘草酸的纯化变得非常困难。
传统的分离纯化方法,如萃取、结晶、色谱等,存在着操作复杂、产品回收率低等缺点。
因此,寻找一种高效纯化甘草酸的方法具有重要的意义。
2. 实验部分2.1 材料与试剂甘草酸样品、甘草、乙醇、活性炭2.2 溶剂萃取提取甘草酸将甘草与乙醇按一定比例混合后,经过回流提取2小时。
过滤得到提取液,通过蒸馏脱除溶剂,得到甘草酸溶液。
2.3 大孔吸附树脂的放大吸附将活性炭作为吸附树脂,通过静态吸附实验确定最佳吸附条件。
在一定时间后,甘草酸被吸附在吸附树脂上。
然后,用甲醇-水混合溶剂洗脱吸附树脂,收集洗脱液。
2.4 质量分析采用高效液相色谱法对纯化后的甘草酸溶液进行质量分析。
3. 结果与讨论3.1 溶剂萃取提取甘草酸的效果通过溶剂萃取,成功从甘草中提取出甘草酸,并通过蒸馏脱除溶剂。
最终得到纯度较高的甘草酸溶液。
3.2 大孔吸附树脂的吸附效果通过静态吸附实验,确定了最佳的吸附条件。
我们发现,在一定时间内,活性炭对甘草酸具有良好的吸附能力。
然后,通过溶剂萃取将甘草酸洗脱出来,得到高浓度的洗脱液。
3.3 质量分析结果经过纯化后的甘草酸溶液经过质量分析,得到了纯度高、杂质少的甘草酸。
4. 结论通过溶剂萃取耦合大孔吸附树脂的方法,我们成功实现了对甘草酸的高效纯化。
这种方法操作简单,且产品回收率较高,适用于工业生产。
本研究为甘草酸的纯化提供了一种新的思路。
5.通过溶剂萃取和大孔吸附树脂的方法,我们成功地从甘草中提取和纯化了甘草酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北工大学毕业论文作者:贾晋阳学号:学院:化工学院系(专业):制药工程题目:甘草酸的纯化工艺研究指导者:(姓名) (专业技术职务)评阅者:(姓名) (专业技术职务)2012年6月9日甘草酸的纯化工艺研究摘要:从6种树脂中通过静态吸附筛选出了ADS-17树脂作为提取纯化甘草酸的最佳树脂。
研究了pH值、上样液流速、上样液浓度、洗脱液浓度、洗脱液用量这五个因素对甘草酸吸附、解吸作用的影响,并通过正交试验考察了最佳工艺条件。
实验结果证明最佳吸附条件为:pH值为6.0、上样液流速为2BV/h、上样浓度为10mg/ml;最佳解吸条件为:洗脱剂10%乙醇、洗脱液用量234ml。
在实验得出的最佳条件下,甘草酸的纯度为65.07%,回收率为61.39%。
另外,我们还在氢氧化钠回流的条件下进行了甘草酸构型的转换,结果表明转构后的甘草酸纯度为87.66%,产率44.1%。
关键词:大孔树脂吸附纯化甘草酸Title The research of the Purification Technology ofGlycyrrhizic AcidAbstractBy static adsorption, ADS-17 resin is filtered as the optimal resin to extract purified glycyrrhizic acid from the six kinds of resins. The study of pH, supernatant flow rate, supernatant concentration, eluent concentration and eluent amount shows these five factors effects on the adsorption and desorption of glycyrrhizic acid, and optimum conditions were investigated by orthogonal experiment. Experimental results showed that the optimum adsorption conditions as follows: pH 6.0, supernatant flow rate for 2BV/h, the concentration of the supernatant for 10mg/ml; best desorption conditions were as follows: 10% ethanol, eluent amount for 234ml. Under optimal conditions droved by experiment, the purity of glycyrrhizic acid was 65.07%, recovery rate was 65.3%. In addition, we completed the structural conversion of glycyrrhizic acid under a condition of sodium hydroxide's reflux; results showed that the purity of glycyrrhizic acid reached 87.66%; recovery rate reached 44.1% after the conversion.Keywords:Macroporous resins Adsorption PurificationGlycyrrhizic Acid目次1 引言 (1)1.1 甘草酸简介 (1)1.2 甘草酸及其生产概述 (2)1.3 大孔树脂分离纯化技术 (3)1.4 本论文研究内容 (3)2 实验原理及材料 (4)2.1 实验原理 (4)2.2 实验试剂和设备 (5)3 甘草酸的纯化研究 (7)3.1 大孔树脂的预处理及再生 (7)3.2 甘草酸检测方法的确定 (8)3.3 树脂种类的选择 (9)3.4 甘草酸的动态吸附 (11)3.5 甘草酸的梯度洗脱 (14)3.6 18β-甘草酸到18α-甘草酸的构型转换 (18)4 实验数据与讨论 (19)4.1 静态实验结果分析 (20)4.2 动态试验结果分析 (20)4.3 构型转换结果分析 (20)结论 (22)参考文献 (23)致谢 (25)附录 (26)1引言甘草酸(GA ),是从甘草的根茎中提取出的一种高甜度、低热值的具有天然活性的成分,其在甘草中的存在形式主要为钾盐和钙盐,游离的甘草酸含量并不多。
它的植物来源——甘草也是一种我国的传统中药,具有悠久的使用历史,中医上认为:甘草味甘,是补脾益气,止咳、止痛的良药,并且已被美国FDA 收录为安全无毒物质[1]。
科学研究表明,甘草中的主要成分有甘草酸和黄酮类,具有抗炎、镇咳、抗肿瘤、等作用,有较强的人体免疫功能促进作用[2],在医疗领域具有极高应用价值。
因此本文阐述了将大孔树脂用于甘草酸纯化的原理、方法及应用,并在此基础上提出本论文的研究内容。
1.1 甘草酸简介中文名:甘草酸,又称甘草甜素、甘草皂甙 CAS :1405-86-3 英文名:Glycyrrhizic acid 分子式:C 42H 62O 16 分子量:822.92化学名:(3β,20β)-20-羧基-11-氧代-30-去甲基-(18α-H )-整齐墩果-12-烯-3β-羟基-2-O-β-D-葡萄吡喃糖醛酸基-α-D-葡萄吡喃糖醛酸[3]结构式为:OOOOOHHO OHHOO HOHOOOHHHOHOOH甘草酸是一种三萜皂苷类天然药物,分解温度220℃,在醋酸中为无色柱状结晶,易溶于热水,可溶于热稀醇,但难溶于无水乙醇或乙醚[4]。
其主要用途有:(1)作为高甜度、低热值的食品添加剂,可添加于食品、饮料中作甜味剂,或在黄色或棕色食品、饮料中作天然色素[5]。
(2)用于化妆品及卷烟业,可间接的增强皮质甾类化合物的作用,主要用霜、露、乳液、奶类等化妆品,能降低化妆品的毒性,也可用于防止化妆品的过敏反应,适于高级发用或肤用化妆品[6]。
1.2甘草酸及其生产概述由于甘草成分复杂,仅黄酮类就有150多个成分,其分离、纯化较为复杂、难度较高。
目前甘草酸及其盐的生产工艺方法较多[7],其中主要有溶剂法和树脂法二种。
1.2.1水提法水提法是使用时间最早,也是最为常用的一种溶剂提取法,其特点在于操作简单,成本低廉,但得率较低,据1990年中国药典方法测定,甘草酸得率仅为3%。
这是在因为甘草酸中水容性杂质较多,水提法提取出的杂质也相应增加,在去除杂质的过程中损失了大量甘草酸。
1.2.2氨性醇提取法在对甘草酸的提取研究中,发现用含氨0.3%的60%乙醇回流,对甘草酸的提取具有较好的效果。
甘草酸得率达10.49%,比水提法提高了两倍,并且避免了糖类、淀粉等水溶性杂质的混入,利于进一步的精制过程。
但在加热回流过程中,有氨气逸出会造成环境污染问题,氨的损失也不能忽略。
1.2.3聚酰胺法将甘草酸粗品制成的单铵盐,再吸附在粉末状的聚酰胺上,然后洗脱掉杂质,再用极性溶剂洗脱甘草酸单铵盐,最后用强酸型交换树脂脱胺,制得甘草酸。
该方法获得的甘草酸纯度很高,但操作繁琐,不易进行工业化生产。
1.2.4离子交换树脂法该法利用甘草酸中含有3个羧基与离子交换树脂形成离子键,吸附在树脂上,而其他一些不含羧基的杂质不能被吸附,进而达到分离的目的。
日本曾以弱碱性树脂吸附甘草酸, 再用氨水洗脱下来,进而得到纯度较高的产品。
但是离子交换树脂法处理量小,不适宜大批量生产。
1.2.5大孔吸附树脂法大孔吸附树脂法是一种较为经济实用的方法。
通常选用的树脂有D101、NKA、X-5、XAD、DA 201以及AB-8等。
利用大孔树脂的空间结构、氢键进行吸附,以水或稀低级醇洗脱,收集洗脱液,回收溶剂后可得到较高纯度的甘草酸。
该法的优点在于操作简单、易于大批量生产,大孔树脂可重复使用,缺点是即使回收溶剂,消耗的乙醇依旧较多,需要控制成本[8-10]。
1.3大孔树脂分离纯化技术大孔树脂(macroporous resin)作为一种新材料,近年来已广泛应用于天然产物的分离,已成为分离有机化合物特别是水溶性化合物的一种有效手段。
大孔树脂对甘草酸粗品的吸附量较大,且能再生并反复使用。
该方法操作简便,成本低,是目前纯化甘草酸经济有效的方法。
据报道,20世纪80年代日本首先采用大孔树脂来分离纯化甘草酸,并且使收率显著提高,成本也降低了。
随后我国也对该项工艺路线进行了相关研究,但由于商业机密等原因披露较少。
所以,虽然我国甘草的出口量很大,但多为原料粉或浸膏等初加工产品,不仅工艺落后,而且对环境也有严重污染。
因此,我们设计了这个实验,研究几种大孔树脂对甘草酸的分离纯化效果,改进纯化甘草酸的工艺条件[11-13]。
1.4本论文研究内容大孔树脂应用于甘草酸的分离已将近20年[14],但纵观现有文献不难发现,许多大孔树脂发现时间较早,虽然研究较为透彻,但分离纯化效果已经落后于新型的选择性大孔吸附树脂,因此有必要对其进行重新研究。
本论文的主要实验内容:1、利用静态吸附实验,筛选出吸附量和纯化程度比较高的大孔树脂。
2、通过动态吸附实验,确定大孔树脂的泄漏点,进而计算吸附量,并获得影响吸附量的具体实验因素。
3、通过梯度洗脱实验,确定洗脱剂的最佳洗脱浓度。
4、由解吸实验,获得洗脱液中甘草酸的含量分布,绘制解吸曲线。
5、最后将纯化后的甘草酸置于碱液中蒸煮,将具有毒副作用的18β构型,转变为具有疗效的18α构型。
2实验原理及材料2.1 实验原理本实验以低含量甘草酸为原料,利用大孔树脂的空间结构对甘草酸及杂质的吸附能力的差异,从甘草酸粗提液中选择性吸附甘草酸,再通过吸附和解吸附的过程,用一定浓度的乙醇溶液将其从树脂柱中洗脱下来,从而达到分离纯化甘草酸的目的。
由甘草酸的结构上看可以发现,甘草酸分为两个主要部分,一部分是由五环三萜组成的疏水基;另一部分为两个葡萄糖环组成的亲水基,这就导致了甘草酸不仅具有疏水性还具有亲水性。
而大孔树脂是吸附性和筛选性相结合的分子分离材料,其吸附性是由于范德华力或氢键的作用,而筛选原理由树脂本身的孔型结构所决定[15]。
所以,需要筛选出孔径大小与甘草酸近似,孔隙率较高,在水中易于与甘草酸通过范德华力或氢键结合,在一定浓度的乙醇溶剂中易于与甘草酸分离的大孔树脂。
2.2实验试剂和设备2.2.1实验试剂名称级别生产厂家甲醇色谱纯天津市康科德技术有限公司磷酸色谱纯天津市康科德技术有限公司乙腈色谱纯天津市科密欧化学试剂有限公司乙酸铵分析纯天津市化学试剂一厂冰醋酸分析纯天津市科密欧化学试剂有限公司氢氧化钠分析纯天津市科密欧化学试剂有限公司碳酸氢钠分析纯天津市天大化工实验厂氯化钠分析纯天津市风船化学试剂科技有限公司甲酸分析纯天津市化学试剂一厂正丁醇分析纯天津市科密欧化学试剂有限公司乙酸乙酯分析纯天津市科密欧化学试剂有限公司氨水分析纯天津市科密欧化学试剂有限公司无水乙醇分析纯天津市风船化学试剂科技有限公司无水甲醇分析纯天津市江天化工技术有限公司浓硫酸分析纯天津市光复精细化工研究所甘草酸80%西安融升生物科技有限公司甘草酸25%西安融升生物科技有限公司甘草酸单铵盐成都曼思特生物科技有限公司盐酸蒸馏水2.2.2实验用树脂牌号树脂结构极性粒径范围(mm)平均孔径(nm)孔隙率(%)比表面(m2/g)X-5交联苯乙烯-二乙烯苯共聚物非极性0.3-1.25 29-30 50-60 500-600AB-8交联苯乙烯-二乙烯苯共聚物弱极性0.3-1.25 13-14 42-46 480-520NKA 交联苯乙烯-二乙烯苯共聚物非极性0.3-1.0 20-22 - 570-590ADS-17交联苯乙烯-二乙烯苯共聚物中极性0.3-1.25 25-30 45-50 90-150D101 交联苯乙烯-二乙烯苯共聚物非极性0.3-1.25 25-28 42-46 600-700D4020- 非极性0.3-1.25 10-10.5 - 540-5802.2.3实验设备名称型号生产厂家循环水真空泵SHZ-D(Ⅲ)巩义市英峪予华仪器厂层析柱φ2.2×30cm旋转蒸发器RE52CS 上海亚荣生化仪器厂恒温水浴锅B-220 上海亚荣生化仪器厂色谱泵LC-10ATvp 日本岛津色谱控制器AT-530 Auto Science紫外检测器SPD-10Avp 日本岛津色谱泵600 Waters色谱控制器600 Waters二极管阵列检测器2996 Waters薄层层析硅胶板GF-254 青岛海洋化工厂分厂超声波清洗器PS-10A 东莞市洁康超声波设备有限公司紫外分析仪ZF7巩义市予华仪器有限责任公司玻璃点样毛细管华西医科大学仪器厂3甘草酸的纯化研究3.1大孔树脂的预处理及再生3.1.1 大孔树脂的预处理[16-19]工业级新树脂在工厂被合成出来后不能直接使用,使用前需要用一些方法进行预处理,以除去树脂中所含少量的低聚物,有机物及有害离子,才能保证其理化特性符合要求。