求函数自变量的取值范围方法总结
如何确定函数自变量的取值范围
如何确定函数自变量的取值范围确定函数自变量的取值范围历来是中考的热点问题之一,考题中多以填空、选择形式出现,现在将常见的几种类型及解法归纳如下,以供同学们参考。
一、 自变量的取值必须使含有自变量的代数式有意义。
1、函数关系式是一个含有自变量的整式或奇次根式时,自变量的取值范围是全体实数。
例1、函数y=15-x 21的自变量取值范围是 。
解析:由于15-x 21是整式,所以x 的取值范围是全体实数。
2、当函数关系式是分式时,自变量的取值范围是使分母不为零的实数。
例2、(07哈尔滨)函数34x y x -=-的自变量x 的取值范围是 。
解析:43--x x 是分式,由分母x-4≠0得x≠4,所以x 的取值范围是x≠4。
3、当函数关系式是偶次根式时,自变量取值范围是使被开方数为非负数的实数。
例3、(07武汉)在函数1-=x y 中,自变量x 的取值范围是( )A 、x≥-1B 、x≠1C 、x≥1D 、x≤1解析:此函数关系式是二次根式,由被开方数为非负数可知,x-1≥0,所以x≥1。
故选C 。
4、当函数关系式中,自变量同时含在分式、二次根式中时,函数自变量的取值范围是它们的公共解,即建立不等式组,取它们的公共解。
例4、(07芜湖)函数y =中自变量x 的取值范围是( ) A 、 x ≥1- B 、 x ≠3 C 、 x ≥1-且x ≠3 D 、 1x <-解析:自变量x 同时含在分式、二次根式中,所以x 的取值范围是它们的公共解。
列不等式组得⎩⎨⎧≠-≥+0301x x 解得x≥-1且x≠3。
故选C 。
二、 自变量的取值必须使实际问题有意义。
当函数关系式表示实际问题或几何问题时,自变量的取值范围既要使函数表达式有意义,也要同时使实际问题及几何问题有意义。
例5、已知等腰三角形的面积为20cm 2,设它的底边长为x (cm ),则底边上的高y (cm )关于x 的函数关系式为 ,自变量的取值范围是: 。
求函数自变量取值范围的方法
求函数自变量取值范围的方法一、函数自变量取值范围的重要性。
1.1 函数就像一个小机器呀,自变量是我们喂给这个小机器的原料。
自变量取值范围呢,就决定了哪些原料是这个小机器能接受的。
要是给错了原料,这小机器可就没法正常运转啦,就像“巧妇难为无米之炊”一样。
这个取值范围是函数的一个基本属性,它能让我们准确地理解函数的意义和行为。
1.2 比如说在实际生活中,我们要计算一个圆形的面积,函数是面积关于半径的表达式。
那半径这个自变量就不能是负数,因为现实中不存在负的半径呀,这就是自变量取值范围在实际问题中的体现。
如果不考虑取值范围,算出的结果可能就成了无稽之谈。
二、整式函数自变量取值范围。
2.1 对于整式函数,那可就简单得像吃豆腐一样。
整式函数自变量取值范围通常是全体实数。
因为整式在任何实数的代入下都能顺利进行计算,没有什么特殊的限制。
比如说函数y = 3x + 5,x可以取任何实数,就像一个大门敞开着,所有的数都可以进去溜达一圈。
2.2 再比如y = x² 2x + 1,不管x是正数、负数还是零,这个函数都能算出一个对应的y值。
就像一个包容万象的大家庭,什么数来都欢迎。
三、分式函数自变量取值范围。
3.1 分式函数就有点小脾气啦。
分式函数分母不能为零,这是铁的纪律。
因为分母为零的时候,这个分式就没有意义了,就像盖房子没有地基一样。
比如说函数y = 1/(x 2),x就不能等于2。
要是x等于2了,那就像捅了马蜂窝一样,整个式子就乱套了。
3.2 我们得把让分母为零的那些值排除在自变量取值范围之外。
就像筛选珍珠一样,把那些不好的、会让函数出问题的值筛掉,留下的才是自变量合适的取值。
四、根式函数自变量取值范围。
4.1 根式函数呢,这里面有个小门道。
对于二次根式函数,根号下的数得是非负的。
就像我们要保护小树苗一样,根号下的数要是负数,在实数范围内就没有意义啦。
比如说y = √x,x必须大于等于0才行。
要是x是负数,那就像在沙漠里找鱼一样,根本就不存在对应的实数y值。
1变量与函数如何确定自变量的取值范围
如何确定自变量的取值范围学习了函数以后就会经常遇到求自变量的取值范围的问题,那么如何才能正确地确定自变量的取值范围呢?一般可以从以下几个方面去考虑:一、当解析式是整式时,自变量的取值范围是一切实数例1 求下列函数中自变量x 的取值范围:(1)y =2x +3;(2)y =-3x 2+1.分析 由于这两个函数的解析式都是整式型的,所以自变量的取值范围是一切实数. 解(1)自变量x 的取值范围是一切实数;(2)自变量x 的取值范围是一切实数. 说明 求解时首先应判断函数是否属于是整式型的.二、当解析式是分式时,自变量的取值范围是使分母不为零的一切实数例2 求下列函数中自变量x 的取值范围:(1)y =21x +;(2)y =-22x x x --. 分析 这两道题都是属于分式型的,所以分母不等于零即可.解(1)因为x +1≠0,所以x ≠-1.即y =21x +中的自变量x 的取值范围是x ≠-1. (2)因为x 2-x -2≠0,即(x +1)( x -2)≠0,所以x ≠-1且x ≠2.即y =-22x x x --中的自变量x 的取值范围是x ≠-1且x ≠2.说明 这里在处理(2)时应特别注意文字“或”与“且”的使用.三、当解析式是二次根式时,自变量的取值范围是使被开方数不是负数的一切实数例3 求下列函数中自变量x 的取值范围:(1)y (2)y . 分析 这两道题都是属于根式型的,所以只要被开方数不是负数,即是非负数.解(1)因为x +2≥0,即x ≥-2,所以y x 的取值范围是x ≥-2.(2因为2x -3≥0且3-2x ≥0,即x ≥32且x ≤32,所以x =32,所以y +x 的取值范围是x =32. 说明 在求解第(2)小题时,应保证使每一个根式都同时有意义.四、当解析式是由上述几种形式组合而成,应首先求出式子中各部分的取值范围,然后再求出它们的公共部分例4 求下列函数中自变量x 的取值范围:(1)y+x ;(2)y =1x -. 分析 这两道是属于复合型的,要使函数有意义,必须保证每一个式子都有意义. 解(1)因为根式要分母上,所以只要满足3x +5>0,即x >-53,所以y +x 中的自变量x 的取值范围是x >-53.(2)要使函数有意义,必须满足①x +2≥0,②x -1≠0,即x ≥-2且x ≠-1.说明 在处理复合型函数自变量的取值范围时一定要根据题目的结构特征,分清每一部分的意义,只有保证每一部分都有意义了,才能从整体上保证函数有意义.五、当函数涉及到实际问题时,自变量的取值范围必须保证实际问题有意义例5 一次劳动技术课上,老师要求同学们制作一个周长为20cm 的等腰三角形.请你帮助同学们写出底边长y (cm )与一腰长x (cm )的函数关系式,并求出自变量x 的取值范围.分析 一个等腰三角形有两条腰,一个底边,腰与底的和等于周长,而腰长,即自变量的取值范围必须受到图形本身的限制,一方面边长应是正值,另一方面应满足三角形的两边之和大于第三边.解 依据题意,得2x +y =20,即底边长y (cm )与一腰长x (cm )的函数关系式为y =20-2x .因为x +x =2x >y ,所以0<y =20-2x <2x ,即5<x <10.所以y =80-2x (5<x <10).说明 在求解本题中自变量x 的取值范围得注意两个问题:一是边长x 应是正值,二是应满足三角形的两边之和大于第三边,缺一不可.下面几道习题选自全国部分省市的中考试卷,供同学们练习.1,(广东省)函数y =11x +中自变量x 的取值范围是 ( ) A A.x ≠-l B.x >-1 C.x =-1 D.x <-12,(潍坊市)函数y =12x -中,自变量x 的取值范围是( )D A.x ≥-2 B . x >2 C.x >-1且x ≠2 D. x ≥-1且x ≠23,(苏州市)下列函数中,自变量x 的取值范围是x >2的函数是( )CA.yB.y =C.yD.y。
自变量的取值范围
如何求函数自变量的取值范围求函数自变量的取值范围是初中数学的重点内容、是历年中考的重要内容。
现将有关求函数自变量的取值范围的几种形式综合如下,供参考。
一、整式、奇次根式形式 其自变量的取值范围是全体实数例1 求下列函数中,自变量 x 的取值范围:(1) y=5x 2-2x+1 (2) y=332-x解:(1)(2)中 x 取任意实数,3x 2-2x+1与312-x 都有意义。
∴(1)(2)中 x 的取值范围为一切实数。
练习:(1) 函数y=3x 3-5x 2-7x-8中,自变量 x 的取值范围是____________。
(2) 函数y= 3723--x x 中,自变量 x 的取值范围是____________二、偶次根式形式 其自变量的取值范围是使被开方式的值为非负例2 若36x -在实数范围内有意义,则x 的取值范围是A .2x -≥B .2x ≠-C .2x ≥D .2x ≠ (2010南通市中考题) 解:由3x-6≥0 ∴x ≥2 故选C练习:(1)函数y=12-x 中,自变量 x 的取值范围是______。
函数y=x -1中,自变量 x 的取值范围是______。
(2)函数y=32+x 中,自变量 x 的取值范围是______。
三、分式形式 其自变量的取值范围是使分母不为零的实数例3函数的自变量x 的取值范围是( )A .x ≠0B .x ≠1C .x ≥1D .x ≤1 (2010苏州市中考题) 解:令x-1≠0 ∴x ≠1 故选B(2) 练习:(1)函数y=11+x 中,自变量 x 的取值范围是______。
四、0指数幂的形式 其自变量的取值范围是底数不等于零的一切实数例4 求使(2x-3)0有意义的x 的范围解:令2x-3≠0 ∴x ≠3/2练习:求使(3x-2)0+2x-1有意义的x 的范围五、综合形式 其自变量的取值范围是使组成这个函数的各个小部分都有意义 例5 函数y=2+x +31-x 中,自变量 x 的取值范围是______。
变量的关系函数自变量的取值范围的确定方法
一、自变量的取值范围的确定方法
①当解析式为整式时,自变量的取值范围是全体实数;
②当解析式是分数的形式时,自变量的取值范围是使分母不为零的所有实数;
③当解析式中含有平方根时,自变量的取值范围是使被开方数不小于零的实数;
④当函数解析式表示实际问题时,自变量的取值必须使实际问题有意义。
二、变量及函数的定义
函数:一般地,在一个变化过程中,如果有两个自变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
变量:
在一个变化过程中,我们称数值发生变化的量为变量。
(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
三、变量的关系:
1.在具体情境中,感受两个变量之间的关系,就是一个变量随着另一个变量的变化情况,例如随着一个变量的变化,有的变量是呈匀速变化的,有的变量是呈不匀速变化的;
2.进而发现实际情景中的变量及其相互关系,并确定其中的自变量和因变量,会用运动变化的基本观点观察事物。
也就是说,在两个有相依关系的变量中,其中一个是自变量,另一个是因变量;
3.自变量和因变量之间的变化关系可以用表格来刻画,也可以用图象来描述,并能对未来的趋势加以预测。
四、函数自变量的取值范围的确定方法:
使函数有意义的自变量的取值的全体,叫做函数自变量的取值范围.。
求函数自变量的取值范围的确定方法
求函数自变量的取值范围的确定方法确定函数自变量的取值范围是数学问题中的一个重要环节,它涉及到函数的定义域、排除可能的异常情况,以及满足问题背景要求的合理取值范围等。
在本文中,我将从多个角度解释如何确定函数自变量的取值范围。
1.首先,根据函数的定义来确定自变量的取值范围。
在确定函数自变量的取值范围之前,我们需要了解函数的定义。
函数可以通过数学表达式、描述或者图像来定义。
对于数学表达式来说,自变量一般不应使函数的分母为零或者函数内存在不合法值(例如负数的平方根)等情况。
对于描述和图像来说,需要根据问题背景对自变量的限制进行理解。
例如,一个描述中可能指定了自变量必须为正整数,或者一个图像中显示了自变量只能在一些特定范围内取值。
2.其次,根据问题的背景确定自变量的取值范围。
问题的背景可能涉及到实际世界的限制条件,例如物理问题中对时间、空间的限制。
在这种情况下,我们需要根据问题的具体要求来确定自变量的取值范围。
例如,如果问题要求求解一个物体在一段时间内的位移,那么时间必须在非负范围内取值。
3.然后,考虑函数所处的数学领域以及函数类型。
不同的数学领域和函数类型对自变量的取值范围有不同的要求。
例如,对于实数域上的函数,自变量的取值范围可以是整个实数集;对于复数域上的函数,自变量的取值范围可以是整个复平面。
此外,特殊类型的函数(例如三角函数、指数函数)也会有特定的自变量取值范围。
在确定函数自变量的取值范围时,需要考虑到这些领域和类型的特殊要求。
4.最后,通过排除可能的异常情况来确定自变量的取值范围。
在解决实际问题时,常常需要考虑一些异常情况,例如除零错误或其他无法计算的情形。
在这些情况下,我们需要通过排除这些异常情况来确定自变量的取值范围。
例如,如果函数在一些自变量值附近没有定义,则需要将这个值排除在自变量的取值范围之外。
总结起来,确定函数自变量的取值范围需要结合函数的定义、问题的背景、数学领域和函数类型以及异常情况等因素综合考虑。
求函数值域 、 周期的方法总结(适合高一)
求函数值域 、 周期的方法总结(适合高一)求值域一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。
二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。
三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125x y x -=+的值域。
四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
例4.求函数2y x =五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k xk x y 的值域(k x <<0时为减函数;k x >时为增函数))例5.求函数y x =六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211x y x -=+的值域。
七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。
除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥∆,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。
周期一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立则f (x )叫做周期函数,T 叫做这个函数的一个周期。
二.重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。
初中函数中自变量的取值范围的确定好方法
函数中自变量取值范围的确定一、整式型:取值范围是全体实数。
例1 求函数y=2x-8的自变量的取值范围。
分析:因为不论x取任意实数,2x-8都有意义,所以x的取值范围是全体实数。
例2 在函数y=x2+3x+9中,自变量x的取值范围是( a )。
a.全体实数b.x≤0c.x≠-1d.x≥0二、分式型:取值范围是使分母不为零的实数。
例3 y=;分析:为分式形式:分母2x+1≠0∴x≠-∴x的取值范围为x≠-;三、偶次根式型:取值范围是使被开方式非负的实数。
例5 y=;分析:含算术平方根:被开方数3x-4≥0 ∴x≥∴x的取值范围为x≥;四、函数关系式含0指数和负整指数幂:底数≠0例6 y=(x-3)0分析:含0指数,底数x-3≠0 ∴x≠3,x的取值范围为x≠3.五、以上类的复合型:复合用上面的综合取值范围。
例7 y=分析:既含分母、又含算术平方根,故∴x≥-2且x≠0x的取值范围为:x≥-2且x≠0六、实际问题型在实际问题中确定自变量的取值范围,主要考虑两个因素:⑴自变量自身表示的意义.如时间、用油量等不能为负数.⑵问题中的限制条件.此时多用不等式或不等式组来确定自变量的取值范围.当遇到实际问题或几何问题时,自变量的取值还必须符合实际意义或几何意义。
例6 甲到乙的铁路长为360千米,一列火车以90千米/时的速度从南京开往上海,h小时后火车距甲s千米,用解析式表示s与h之间的函数关系,并求自变量h 的取值范围(不考虑停站时间)。
分析:火车速度为90千米/时,h小时所行的路程为90h千米,于是s=311-90h。
只对函数解析式而言,自变量的取值范围是全体实数。
但h表示火车行使的时间,所以自变量h的取值范围是0≤h≤4。
例7、东风学校在2300元的限额内,租用汽车接送234名学生和6名教师集体外出活动,每量汽车上至少有一名教师.甲、乙两车载客量和租金如下表:设租用甲种车x辆,租车费用为y元,求y与x的函数关系式,并写出自变量x 的取值范围.解析:⑴由题设条件可知共需租车6辆,租用甲种车x辆,则租用乙种车辆(6-x)辆.y=400x+280(6-x)=120x+1680∴y与x的函数关系式为:y=120x+1680⑵自变量x需满足以下两个条件:240名师生有车坐:45x+30(6-x)≥240 ∴x≥4费用不超过2300元:120x+1680≤2300 ∴x≤5∴自变量x的取值范围是:4≤x≤5七、几何图形中函数自变量的取值范围几何问题中的函数关系式,除使函数式有意义外,还需考虑几何图形的构成条件及运动范围.特别要注意的是在三角形中“两边之和大于第三边”.例8.若等腰三角形的周长为20cm,请写出底边长y与腰长x的函数关系式,并求自变量x的取值范围.解析:底边长y与腰长x的函数关系式为:y=20-2x①x表示等腰三角形腰长:x≥0②三角形中“两边之和大于第三边”:2x>y 即2x>20-2x ∴x>5③等腰三角形底边长y>0,20-2x>0,∴x<10∴自变量x的取值范围是:5<x<10总之,确定函数中自变量的取值范围时,首先应找准函数所属的类型,然后根据不同的类型运用相应的方法来加以确定,这样能快速、准确地解决问题,从而收到事半功倍的效果。
函数自变量的取值范围的方法
函数自变量的取值范围的方法
以下是一些常见函数类型及其自变量的取值范围的方法和类型:
1.实数函数:实数函数是指定义在实数集上的函数。
对于实数函数而言,自变量的取值范围通常是整个实数集,即(-∞,+∞)。
2.整数函数:整数函数是指定义在整数集上的函数。
自变量的取值范围为整数集,即{...-3,-2,-1,0,1,2,
3...}。
3.有理数函数:有理数函数是指定义在有理数集上的函数。
有理数函数的自变量的取值范围为有理数集。
4.正数函数:正数函数是指函数的值域为正实数集的函数。
自变量的取值范围是指使函数的值大于零的所有可能值的集合。
可以通过解不等式或条件来获得自变量的取值范围。
5. 二次函数:二次函数是形如 f(x) = ax^2 + bx + c 的函数,其中 a, b, c 是实数且a ≠ 0。
二次函数的自变量的取值范围可以通过求解二次函数对应的二次方程的根来确定。
根的范围可以通过判别式进行判断。
6.三角函数:三角函数包括正弦函数、余弦函数、正切函数等。
由于三角函数的周期性,自变量的取值范围通常是整个实数集。
但在一些特殊情况下,可能存在限制条件,例如正切函数在x=(n+1/2)π(n为整数)时无定义。
除以上常见函数类型外,还有一些其他函数类型也有其特定的自变量取值范围的方法,如指数函数、对数函数、双曲线函数等。
在确定自变量
的取值范围时,我们需要考虑函数的定义域、值域、特殊点、不等式条件等因素,并根据函数的特点进行分析和求解。
求函数自变量的取值范围的确定方法
求一次函数自变量取值的方法1 函数自变量取值范围的确定在一个变化过程中,如果有两个变量x 与y ,如果对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.在解答与函数有关的问题时,常常要求出函数的自变量x 的取值范围,下面我们来介绍这一类问题的解法.经典例题在函数32--=x x y 中,求自变量x 的取值范围. 解题策略2x -分子中的二次根式被开方数必须为非负数,而且分母不为0.即自变量x 为下面不等式组的解:20,30.x x -≥⎧⎨-≠⎩ 解这个不等式组便可求得自变量x 的取值范围是x ≥2,且x ≠3.画龙点睛求函数自变量的取值范围,要注意以下几点:1. 若函数的解析式是整式,自变量的取值范围是全体实数;2. 若函数的解析式是分式,自变量的取值范围是使分母不等于0的一切实数;3. 若函数的解析式是二次根式,自变量的取值范围是使被开方数不小于0的一切实数;4. 若函数的解析式含有以上几类式子时,则应分别求出各自的取值范围,再求出它们的公共部分.举一反三1.下列函数中,自变量x 的取值范围是x >2的函数是( ).(A )2-=x y(B )12-=x y (C )21-=x y (D )121-=x y2.求函数2||1--=x x y 中自变量x 的取值范围. 3.求函数1||y x =-x 的取值范围. 融会贯通4.若函数25(2)34kx y k x k+=++-自变量x 的取值范围是一切实数,求实数k 的取值范围.参考答案1.C .在四个选择分支A 、B 、C 、D 中,它们的自变量x 的取值范围依次是x ≥2,x ≥12,x >2,x >12.故选C .2.由不等式组10,||20,x x -≥⎧⎨-≠⎩解得x ≤1, 且x ≠-2.3.由不等式1-|x |>0,得|x |<1,于是-1<x <1.4.要使函数自变量x 的取值范围是一切实数,就必须使分母不等于0.(1)当k =0时,分母等于3;(2)当k >0时,k (x +2)2≥0,要使分母不等于0,就应有3-4k >0,k <34,于是有0<k <34;(3)当k <0时,k (x +2)2≤0,要使分母不等于0,就应有3-4k <0,于是有k >34,这与k <0矛盾.综上所述,k 的取值范围是0≤k <34.。
求函数的定义域与值域的常用方法
求函数的定义域与值域的常用方法函数的定义域和值域是数学中的重要概念,它们描述了函数的输入和输出的范围。
在不同的数学领域和实际应用中,求解函数的定义域和值域有不同的方法和技巧。
函数的定义域是指函数中自变量的取值范围。
换句话说,定义域是使函数有意义的输入值的集合。
下面介绍一些常用方法来求解函数的定义域:1.分式函数:分式函数的定义域通常要求分母不等于零,因此我们需要找到分母为零的点,并将其排除。
求解分母为零的方程,得到函数的定义域。
2.平方根函数:平方根函数的定义域要求根号内的值大于等于零。
因此,需要将根号内的表达式>=0,并求解方程,得到函数的定义域。
3.指数函数和对数函数:指数函数的定义域通常为全体实数,而对数函数的定义域要求基数和真数都大于零。
因此,对于指数函数,不存在特定的求解方法;而对于对数函数,需要使基数和真数大于零,并求解相应的方程。
4.复合函数:复合函数的定义域由内层函数和外层函数的定义域共同确定。
首先求解内层函数的定义域,将其结果作为外层函数的自变量的定义域。
注意需要将两个函数的定义域进行交集运算,得到复合函数的定义域。
5.根式函数:根式函数的定义域需要满足根号内的表达式大于等于零。
求解根号内的方程,得到函数的定义域。
函数的值域是函数在定义域内所有可能的输出值的集合。
下面介绍一些常用方法来求解函数的值域:1.分析法:通过分析函数的特点、性质和图像,推断出函数的值域。
例如,通过观察函数的单调性、奇偶性、对称性、极值等特点,可以确定函数的值域的范围。
2.等式法:通过解方程求函数的值域。
将函数的表达式等于一个未知数,解方程得到未知数的取值范围,即为函数的值域。
3.代数运算法:通过对函数进行代数运算,得到函数的值域。
例如,对于一次函数,通过对其进行线性变换和平移,可以推导出函数的值域的范围。
4.图像法:通过绘制函数的图像,观察函数的上下界,以及是否存在水平渐近线和垂直渐近线,可以推断出函数的值域。
函数自变量取值范围的确定方法
函数自变量取值范围的确定方法在数学中,函数是一种映射关系,它将自变量的取值映射到因变量的取值。
确定函数自变量的取值范围是非常重要的,它决定了函数的定义域,也就是函数能够接受的有效输入。
以下是几种确定函数自变量取值范围的方法:1.函数定义式:函数的自变量取值范围可以通过函数的定义式来确定。
例如,对于一个有理函数f(x)=1/(x+1),我们可以通过分析定义式知道x的取值范围不能为-1,因为分母不能为零。
2.分段函数:如果一个函数在不同的自变量范围内有不同的定义式,那么我们需要考虑每个定义式的自变量取值范围。
例如,对于一个分段函数f(x)=,x,我们知道在x<0时,f(x)=-x;在x≥0时,f(x)=x。
因此,对于x<0和x≥0,我们需要考虑两个不同的自变量取值范围。
3.函数图象:函数的图象可以提供有关函数自变量的取值范围的一些线索。
我们可以通过观察函数的图象来确定函数自变量的取值范围。
例如,对于一个简单的二次函数f(x)=x^2,我们可以看到函数图象是一个开口朝上的抛物线,意味着函数自变量的取值范围为实数集。
4.函数的性质和约束:函数的性质和约束也可以提供有关函数自变量取值范围的信息。
例如,对于一个表示物体高度的位置函数f(t),我们知道物体不能以负的高度存在,因此自变量t的取值范围不能小于零。
5.实际问题:当函数被用于解决实际问题时,问题所涉及的条件和限制可以帮助确定函数自变量取值范围。
例如,对于一个描述人的体重变化的函数f(t),我们知道体重不能为负,因此自变量t的取值范围不能小于零。
总之,确定函数自变量取值范围的方法包括分析函数的定义式、分段函数的定义式、观察函数图象、考虑函数的性质和约束以及解决实际问题时考虑问题所涉及的条件和限制等。
通过这些方法,我们可以确定函数自变量的取值范围,从而确保函数的定义域是有效的。
自变量取值范围的求法
自变量取值范围的求法在求函数自变量的取值范围时,最关键的是要分析函数存在的形式。
在初中阶段,函数的存在的形式有三种:整式形式的函数,分式形式的函数,二次根式形式的函数,我们把这三种函数叫做求定义域的基本函数。
求函数自变量的方法,一般是根据函数有意义的条件列出有关不等式再来求值即可。
一·基本函数1.整式函数:由于在整式中的字母不受任何条件的限制,即无论字母取什么值函数都有意义,所以自变量的取值范围为全体实数,但遇到实际问题那么函数自变量的取值范围还必须使实际问题有意义。
例1.求中自变量的取值范围·解: 可以看出,取任何实数时这个式子都有意义,所以的取值范围是全体实数。
例2.一辆汽车的邮箱中现有汽油50L,如果不再加油,那么邮箱中的油量(单位:L)随行驶里程(单位:km)的增加而减少,平均耗油量为0.1L∕km.(1)写出表示与的函数关系的式子(2)指出自变量的取值范围。
解:(1)行驶里程是自变量,油箱中的油量是的函数,它们的关系为(2)仅从式子看,可以取任意实数,但是考虑到代表的实际意义为行驶路程,所以不能取负数,并且行驶中的耗油量为0.1,它不能超过油箱中现有汽油量的值50,即因此,自变量的取值范围是2·分式函数:根据分时有意义的条件是坟墓不为零,建立不等式求出解集,即为函数自变量的取值范围例3. 求中自变量的取值范围。
解:要使函数有意义,必须有即的取值范围是1.二次根式函数:根据二次根式有意义的条件是被开方数为非负数,建立不等式求出解集,即为该函数自变量的取值范围。
例4.中自变量的取值范围。
解:要使函数有意义,必须有,即的取值范围是但函数往往不是以某种单一的基本函数形式出现的,而是由两种或两种以上基本函数的形式同时出现在一个函数里面,这样的我们认为复合函数,求复合函数中自变量的取值范围,仍然以基本函数的求法基础。
二·复合二次函数1.两个两个以上的分式函数组成的函数,只要分解出各个不同的分式部分,分别确定其有意义的条件,组成不等式组,求出其解集,即为自变量的取值范围。
函数中自变量的取值范围的确定
[]2012.843提问是在数学课堂教学中引导学生学习思考的重要手段之一,教学的成功与否,学生所获的丰欠与否,都与教师在教学过程中提问的质量有直接的关系。
优秀教师的教学不只在于会讲,还在于有效提问。
一、在初步时探问教师给学生讲授新课和学习新概念时,应当把教学速度适当放慢,所提的问题既要针对学生的年龄特征、知识水平和学习能力,又要针对教材的重点和难点。
在难点处,教师可运用试探提问方式来吸引学生。
如学习用画图的方法来帮助解题的一道例题:中山小学有一花坛,长8米,扩建校园时,把花坛的长增加了3米,结果花坛的面积增大了18平方米,扩建校园前花坛的面积是多少?这道例题是学生第一次用画图方法解应用题,因此,作图时要按照题目中相关数据来标定所画线段的长度,这是学生画图的重点。
怎样使学生重视这个问题呢?教师在引导画图时,应当把教学速度放慢一些,不妨试探地提问:“长增加了3米,应该画多长呢?”然后引导学生经过观察和对比,得出结论:8米的一半是4米,那么就再短一点。
如此可以培养学生先想后做、善于动脑的良好习惯。
二、在关键处提问小学数学教科书中经常会遇到一些抽象的概念,由于学生缺乏生活体验,往往不能理解这些抽象的概念。
教师要善于在这些地方进行提问,把关键问题突出出来。
例如教学“数对”这一概念时,当学生第一次学会用数对来表达点的位置以后,可以对照坐标图进行提问:“数对(4,5)和(5,4),意义一样吗?”或者引导学生观察表达同一列或同一行的几个点的位置的数对,然后提问学生从中发现的问题,从而增强其对数对概念的领会。
三、在阻塞处引问当学生的思维钻进牛角尖,思维阻塞而不能自拔时,此时教师的一句引问往往会把学生从死胡同里解救出来。
例如教学《送教下乡》一课时,教师给出两个数据:180本书,五(1)班和五(2)班的人数比是3∶2,要求学生根据这两个数据编写一道按比例分配的应用题。
结果学生们虽然编出了不少道题,但是都把180本书当做总量来编写。
求函数自变量的取值范围方法总结
求函数自变量的取值范围方法总结函数自变量的取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围.求自变量的取值范围一般从两个方面考虑:(1)使函数关系式有意义;(2)符合客观实际.确定自变量的取值范围的方法:(1)如果函数关系式的右边是关于自变量的整式,则自变量的取值范围是全体实数.例如函数1-=x y ,自变量x 的取值范围是全体实数.(2)如果函数关系式的右边是分式,则自变量的取值范围是使分母不等于零的所有实数.例如函数12-=x y ,自变量x 的取值范围是1≠x . (3)如果函数关系式的右边包含二次根号,则自变量的取值范围是使被开方数为非负数.例如函数2-=x y ,自变量x 的取值范围是x ≥2.(4)如果函数关系式是有具体问题建立的,则自变量的取值范围不但要使函数关系式有意义,还要符合实际意义.例如函数2x y =,自变量x 的取值范围是全体实数,如果x 表示正方形的边长,y 表示正方形的面积,则自变量x 的取值范围就变成了0>x (边长不能为负数).(5)有些函数自变量的取值范围是以上情况的综合,需进行多方面的考虑. 例如函数21-=x y ,自变量x 应满足两个条件:一是满足分母不等于零,二是保证被开方数为非负数,所以得到关于自变量的不等式组⎩⎨⎧≥-≠-0202x x ,求得自变量x 的取值范围是2>x .例1. 求函数131-+-=x x y 中的自变量x 的取值范围.分析:本题中,自变量x 的取值范围应同时满足分母()3-x 不等于零和被开方数()1-x 为非负数.解:⎩⎨⎧≥-≠-0103x x 解这个不等式组得:x ≥1且3≠x .∴自变量x 的取值范围是x ≥1且3≠x .习题1. 函数xx y 2+=的自变量x 的取值范围是__________. 习题2. 函数413-+-=x x y 中自变量x 的取值范围是__________. 习题3. 在函数x xy -=1中, 自变量x 的取值范围是__________.习题4. 下列函数中,自变量的取值范围是2>x 的是 【 】(A )2-=x y (B )21-=x y (C )12-=x y (D )121-=x y习题5. 函数21--=x x y 中,自变量x 的取值范围是__________. 习题6. 下列函数中,自变量的取值范围错误的是 【 】(A )2-=x y (x ≥2) (B )11+=x y (1-≠x ) (C )22x y =(x 取全体实数) (D )31+=x y (x ≥3-) 习题7. 在函数24-++=x x y 中,自变量x 的取值范围是__________.例 2. 已知等腰三角形的周长为20,求底边长y 与腰长x 的函数关系式及自变量的取值范围.分析:本题为易错题,考虑问题不全面导致自变量的取值范围不完整.解决本题要注意两个问题:(1) 边长不能为负数;(2)三角形三边之间的关系.解:由题意得:202=+y x∴y 与x 之间的函数关系式为x y 220-=∵⎪⎩⎪⎨⎧->+>->x x x x x 22002200∴自变量x 的取值范围是105<<x .习题8. 已知等腰三角形的周长为12 cm,底边长y (cm )是腰长x (cm )的函数.(1)写出这个函数关系式;(2)求自变量x 的取值范围.专题 自变量的取值范围受哪些因素的影响求函数自变量的取值范围是学习数学的难点,也是历年来中考的热点,那么,如何确定自变量的取值范围呢?一般情况下,可以遵循以下原则:如果函数解析式是整式,则自变量的取值范围是全体实数(整式型)习题9. 函数12+=x y 中,自变量x 的取值范围是__________.分析:因为函数解析式的右边12+x 是整式,所以自变量x 的取值范围是全体实数.习题10. 函数122-+=x x y 中,自变量x 的取值范围是__________.如果函数解析式含有分式,则自变量的取值范围是使分母不等于零的实数(分式型)习题11. 在函数11-=x y 中,自变量x 的取值范围是__________. 分析:因为11-x 是分式,所以要求分母不等于零,即01≠-x . 习题12. 函数52-=x x y 中,自变量x 的取值范围是__________. 如果函数解析式中含有二次根式,则自变量的取值范围是使被开方数为非负数的实数 习题13. 函数3-=x y 中自变量x 的取值范围是__________.分析:因为3-x 为被开方式,要求被开方式为非负数,所以3-x ≥0,解得x ≥3. 习题14. 函数1+-=x y 中,自变量x 的取值范围是__________.如果函数解析式中含有零指数幂或负整指数幂,则自变量的取值范围是使底数不等于零的实数(指数型)习题15. 函数()221+-=-x y 中,自变量x 的取值范围是__________. 分析:因为函数解析式中含有负整指数幂,所以要求底数02≠-x ,即2≠x . 实际上,()221+-=-x y ,即221+-=x y . 习题16. 函数()202-++=x x y 中,自变量x 的取值范围是__________. 如果函数解析式兼有上述两种或两种以上的结构特点,则先按上述方法分别求出它们的取值范围,再求它们的公共部分(综合型)习题17. 函数()023---=x x x y 中,自变量x 的取值范围是__________. 习题18. 函数31--=x x y 中,自变量x 的取值范围是__________. 习题19. 函数24-++=x x y 中,自变量x 的取值范围是__________. 自变量的取值范围必须符合客观实际,必须使实际问题有意义(如边长不能为负、人数不能为小数等)例3. 某小汽车的油箱可装汽油30升,原装有油10升,现加x 升汽油,如果油价为5元/升,求油箱内汽油的总价y (元)与x (升)之间的函数关系式,并求出自变量x 的取值范围.分析:本题先求出函数关系式,再由关系式和实际意义确定自变量的取值范围.解:由题意得:()y=x5+10∴50=xy5+∵油箱原有油10升,油箱容量为30升∴自变量x的取值范围是0≤x≤20.(也可以是x0≤20)<习题20. 某台拖拉机油箱中有油60升,工作时每小时耗油6升.(1)求出拖拉机油箱中的剩余油量Q(升)与工作时间t(小时)之间的函数关系式;(2)求出自变量t的取值范围;(3)当拖拉机工作3小时后,油箱中还剩多少升油?。
求下列函数自变量的取值范围
1 0 2 x 0 解得 2.5 < x < 5 2 x1 0 2 x
(3)当AB=3时,即x=3时,y=10-2× 3=4. 所以当腰AB=3时,底边BC长为4. 当x=6时,y=10-2x的值是多少? 对本例有意义吗?当x=2呢?
例1、等腰三角形ABC的周长为10,底边BC长 为y,腰AB长为x,求:
当x=6时,y=10-2x的值是多少? 对本例有意义吗?当x=2呢?
解:当x=6时,y=10-2x=10-2 × 6=-2. 不符合实际意义,即无意义. 当x=2,y=10-2x=10-2 × 2=6,即2x < y. 不符合‘三角形的两边之和大于第三边’所以无意 义.
练一练、 用总长为 60cm 的铁丝围成长方形,如果长方形 的一边长为 a(cm),面积为 S (cm2)。 (1)写出 S关于a 的函数关系式。及自变量a的取 值范围。 (2)利用所写的关系式计算当 a=12时,S的值是 解:(1) S= a(30-a) (0<a<30) 多少? a (2)当a=12时,S=12(30-12) =12×18 =216 cm2
(30-a)
游泳池应定期换水. 某 游泳池在一次换水前存水936 立方米,换水时打开排水孔, 以
每时312立方米的速度将水放
出.设放水时间为 t 时,游泳池
内的存水量为Q立方米.
(1)求Q关于 t 的函数解析式和自变量 t 的取值范围; (2)放水 2 时20分后,游泳池内还剩水多少立方米? (3)放完游泳池内全部水需要多少时间?
1 (1) y x 1
有分母,分母不能为零
(2) y x1≠0
∴x≠1 (3) y=
2x 4
☆求自变量的 取值范围时, 要注意什么?
1函数定义域值域求法总结
1函数定义域值域求法总结函数的定义域和值域是数学中常用的概念,在解析函数的性质和特点时非常重要。
下面将总结函数定义域和值域的求法。
首先,我们来看函数的定义域。
定义域是函数中自变量的取值范围,即能使函数有意义的输入值的集合。
对于不同类型的函数,求解定义域的方法也有所不同。
1.有理函数的定义域:有理函数是指多项式函数与多项式函数的商,即f(x)=p(x)/q(x),其中p(x)和q(x)是多项式函数。
求有理函数的定义域,需要考虑到分母q(x)不能为0,因此需要排除使得q(x)=0的x值。
将q(x)=0的方程求解,即可得到定义域。
2.根式函数的定义域:根式函数包括平方根函数、立方根函数等。
根式函数的定义域需要满足根式内部的表达式有意义,即根式内部不能为负数或使得分母等于0。
因此,将根式内部的表达式求解,使其不小于0,并且将整个根式函数形式中分母为0的情况排除,即可得到定义域。
3.指数函数和对数函数的定义域:指数函数的定义域为实数集,即所有实数都可以作为指数函数的输入。
对数函数的定义域需要满足对数底数大于0且不等于1,因此需要排除底数小于等于0或等于1的情况。
4.三角函数和反三角函数的定义域:三角函数的定义域为实数集,即所有实数都可以作为三角函数的输入。
反三角函数的定义域需要使得其在该区间内有定义,即反三角函数的取值范围在[-1,1]之间。
接下来,我们来看函数的值域。
值域是函数的输出值的范围,即函数在定义域内的取值集合。
求函数的值域有不同的方法。
1.分析法:通过对函数的性质进行分析,可以大致确定函数的值域。
例如,对于多项式函数,根据函数的最高次项的系数和项数的奇偶性,可以确定其值域的范围。
2.增减法:通过求解函数的导数,找出函数的极值点和增减区间,可以确定函数的值域的范围。
函数在增减区间内递增或递减,可以推断函数的值域的变化。
3.图像法:通过绘制函数的图像,观察函数在定义域内的变化情况,可以确定函数的值域的范围。
(完整word版)函数定义域、值域求法总结,推荐文档
函数定义域、值域求法总结一、定义域是函数 yf x 中的自变量 x 的范围。
求函数的定义域需要从这几个方面下手: (1)分母不为零 (2)偶次根式的被开方数非负。
(3)对数中的真数部分大于 0。
(4)指数、对数的底数大于 0,且不等于 1(5)y=tanx 中 x ≠k π+π/2; y=cotx 中 x ≠k π等等。
( 6 ) x 0 中 x 0二、值域是函数 yf x 中 y 的取值范围。
常用的求值域的方法: ( 1)直接法 (2)图象法(数形联合) (3)函数单一性法( 4)配方法 (5)换元法 (包含三角换元) (6)反函数法(逆求法)( 7)分别常数法 (8)鉴别式法 (9)复合函数法( 10)不等式法 (11)平方法等等这些解题思想与方法贯串了高中数学的一直。
三、典例分析1、定义域问题例 1 求以下函数的定义域:① f ( x)1f ( x) 3x 2 ;③ f ( x)x 11;②2 xx 21解:①∵ x-2=0 ,即 x=2 时,分式无心义,1 x 2而 x 2 时,分式存心义,∴这个函数的定义域是x | x2 .2x②∵ 3x+2<0 ,即 x<-2时,根式3x 2 无心义,3而 3x 20 ,即 x2 2 才存心义,时,根式 3x32 ∴这个函数的定义域是{ x | x}.31③∵当 x1 0且2 x 0 ,即 x1 且 x2 时,根式 x1 和分式同时存心义,{ x | x 1 且 x 2 }2x∴这个函数的定义域是另解:要使函数存心义,一定:x 1 0 x 12 xx 2例 2 求以下函数的定义域:① f ( x)4 x 21② f (x)x 2 3x 4x 1 2③ f ( x)1 1111x⑤ yx2313x 73解:①要使函数存心义,一定:( x1) 0④ f ( x)x x4 x 2 1即:3x 3∴函数 f (x)4 x 21 的定义域为: [3, 3 ]②要使函数存心义,一定: x 23x 4 0x 4或 x 1x 1 2x3且 x 1x3或 3 x1或 x 4∴定义域为: { x| x3或 3 x1或 x 4}x1x③要使函数存心义,一定:1 0 x 1xx111 0211x1}∴函数的定义域为:{ x | x R 且 x 0, 1,2④要使函数存心义,一定:x 1 0x 1xxx 0∴定义域为:x | x1或 1xx 2 3 0x R⑤要使函数存心义,一定:x73x737 或x>7 ∴定义域为: { x | x 7}即 x<333例 3若函数 yax 2ax 1 的定义域是 R ,务实数 a 的取值范围a解:∵定义域是R,∴ ax 2ax1 0恒建立,a∴ 等价于a 010 a2a 24aa例 4 若函数 yf (x) 的定义域为 [ 1, 1],求函数 yf (x1) f ( x 1 ) 的定义域44解:要使函数存心义,一定:1 x15 314x33441 3 5 x41 x41 4x44∴函数 y f (x1) f ( x1) 的定义域为:x | 3x 3444 4例 5 已知 f(x) 的定义域为 [-1,1],求 f(2x -1)的定义域。
求函数的取值范围方法
求函数的取值范围方法一、前言在数学学习中,求函数的取值范围是一项重要的内容。
它可以帮助我们更好地理解函数的性质和特点,从而更好地解决实际问题。
本文将介绍求函数取值范围的方法,希望对大家有所帮助。
二、基本概念在讨论求函数取值范围之前,我们先来回顾一下相关的基础概念。
1. 函数函数是一种特殊的关系,它将一个自变量映射到一个因变量上。
通常用$f(x)$表示函数,其中$x$为自变量,$f(x)$为因变量。
2. 定义域和值域对于一个函数$f(x)$而言,定义域是指所有可能输入$x$的集合;而值域则是指所有可能输出$f(x)$的集合。
3. 解不等式解不等式是指找出使得某个不等式成立的所有实数$x$的集合。
例如:$x^2-4<0$,其解为$x\in(-2,2)$。
三、求解方法接下来我们将介绍几种常见的求解函数取值范围的方法。
1. 图像法图像法是通过画出函数图像来确定其取值范围。
具体步骤如下:(1)首先确定函数的定义域。
(2)根据函数图像的特点,确定函数的值域。
例如,对于函数$f(x)=x^2$,其定义域为$(-\infty,+\infty)$,而其图像为开口向上的抛物线。
因此,其值域为$[0,+\infty)$。
2. 分段讨论法分段讨论法是指将函数分成几个部分来讨论其取值范围。
具体步骤如下:(1)先确定函数的定义域。
(2)将函数分成若干段,并分别讨论每一段的取值范围。
例如,对于函数$f(x)=\begin{cases}x+1,&x<0\\x^2,&x\geq0\end{cases}$,其定义域为$(-\infty,+\infty)$。
当$x<0$时,$f(x)=x+1$,其取值范围为$(1,+\infty)$;当$x\geq0$时,$f(x)=x^2$,其取值范围为$[0,+\infty)$。
因此,整个函数的取值范围为$(1,+\infty)$并上$[0,+\infty)$即可得到$f(x)\in[0,+\infty)$。
求函数自变量的取值范围的方法总结
求函数自变量的取值范围的方法总结函数自变量的取值范围是指函数中自变量可以取的所有实数值的集合。
确定函数自变量的取值范围有多种方法,以下总结了几种常见的方法:1.根据函数的定义域确定自变量的取值范围:-如果函数的定义域是实数集(即没有限制),则自变量的取值范围也是实数集。
-如果函数的定义域有限制,需要根据这个限制来确定自变量的取值范围。
例如,如果一个函数的定义域是正实数集(即大于零的实数),则自变量的取值范围也是正实数集。
2.根据函数的图像确定自变量的取值范围:-观察函数的图像,确定自变量在图像上的取值范围。
例如,如果一个函数的图像是一个上升的直线,那么自变量的取值范围是整个实数集。
-需要注意的是,函数图像的性质可能会给出一些限制,例如函数图像是一个分段函数,那么需要根据每个分段函数的定义域确定自变量的取值范围。
3.使用代数方法确定自变量的取值范围:-对于一些特殊的函数,可以使用代数方法来确定自变量的取值范围。
例如,对于有分母的函数,需要考虑分母不能等于零的条件。
这样就可以通过求解不等式来确定自变量的取值范围。
-另一个例子是要求函数的值在一定范围内,可以通过解方程或者不等式来确定自变量的取值范围。
例如,对于一个二次函数,如果要求函数的值在大于等于0的范围内,可以通过求解不等式来确定自变量的取值范围。
4.使用函数性质确定自变量的取值范围:-函数的一些性质可以给出自变量取值范围的一些限制。
例如,对于奇函数来说,只有在定义域的一些小范围内,自变量的正负不同,才能保证函数是奇函数。
在具体问题中,需要根据函数性质来确定自变量的取值范围。
总结起来,确定函数自变量的取值范围需要根据函数的定义域、图像、代数方法和函数性质等多方面的因素综合考虑。
根据具体的问题,选择合适的方法来确定自变量的取值范围,可以帮助我们更好地理解函数的特性和解决相关的数学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求函数自变量的取值范围方法总结
函数自变量的取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围.
求自变量的取值范围一般从两个方面考虑:
(1)使函数关系式有意义;
(2)符合客观实际.
确定自变量的取值范围的方法:
(1)如果函数关系式的右边是关于自变量的整式,则自变量的取值范围是全体实数.
例如函数1-=x y ,自变量x 的取值范围是全体实数.
(2)如果函数关系式的右边是分式,则自变量的取值范围是使分母不等于零的所有实数.
例如函数1
2-=x y ,自变量x 的取值范围是1≠x . (3)如果函数关系式的右边包含二次根号,则自变量的取值范围是使被开方数为非负数.
例如函数2-=x y ,自变量x 的取值范围是x ≥2.
(4)如果函数关系式是有具体问题建立的,则自变量的取值范围不但要使函数关系式有意义,还要符合实际意义.
例如函数2x y =,自变量x 的取值范围是全体实数,如果x 表示正方形的边长,y 表示正方形的面积,则自变量x 的取值范围就变成了0>x (边长不能为负数).
(5)有些函数自变量的取值范围是以上情况的综合,需进行多方面的考虑. 例如函数21
-=x y ,自变量x 应满足两个条件:一是满足分母不等于零,二是
保证被开方数为非负数,所以得到关于自变量的不等式组⎩
⎨⎧≥-≠-0202x x ,求得自变量x 的取值范围是2>x .
例1. 求函数13
1-+-=x x y 中的自变量x 的取值范围. 分析:本题中,自变量x 的取值范围应同时满足分母()3-x 不等于零和被开方数()1-x 为非负数.
解:⎩
⎨⎧≥-≠-0103x x 解这个不等式组得:x ≥1且3≠x .
∴自变量x 的取值范围是x ≥1且3≠x .
习题1. 函数x
x y 2+=的自变量x 的取值范围是__________. 习题2. 函数413-+
-=x x y 中自变量x 的取值范围是__________. 习题3. 在函数x x
y -=1中, 自变量x 的取值范围是__________.
习题4. 下列函数中,自变量的取值范围是2>x 的是 【 】
(A )2-=x y (B )2
1
-=x y (C )12-=x y (D )121
-=x y
习题5. 函数2
1--=x x y 中,自变量x 的取值范围是__________. 习题6. 下列函数中,自变量的取值范围错误的是 【 】
(A )2-=x y (x ≥2) (B )11+=
x y (1-≠x ) (C )22x y =(x 取全体实数) (D )31
+=x y (x ≥3-)
习题7. 在函数24-++=x x y 中,自变量x 的取值范围是__________.
例2. 已知等腰三角形的周长为20,求底边长y 与腰长x 的函数关系式及自变量的取值范围.
分析:本题为易错题,考虑问题不全面导致自变量的取值范围不完整.
解决本题要注意两个问题:
(1) 边长不能为负数;(2)三角形三边之间的关系.
解:由题意得:
202=+y x
∴y 与x 之间的函数关系式为x y 220-=
∵⎪⎩
⎪⎨⎧->+>->x x x x x 22002200
∴自变量x 的取值范围是105<<x .
习题8. 已知等腰三角形的周长为12 cm,底边长y (cm )是腰长x (cm )的函数.
(1)写出这个函数关系式;
(2)求自变量x 的取值范围.
专题 自变量的取值范围受哪些因素的影响
求函数自变量的取值范围是学习数学的难点,也是历年来中考的热点,那么,如何确定自变量的取值范围呢?一般情况下,可以遵循以下原则:
如果函数解析式是整式,则自变量的取值范围是全体实数(整式型)
习题9. 函数12+=x y 中,自变量x 的取值范围是__________.
分析:因为函数解析式的右边12+x 是整式,所以自变量x 的取值范围是全体实数.
习题10. 函数122-+=x x y 中,自变量x 的取值范围是__________.
如果函数解析式含有分式,则自变量的取值范围是使分母不等于零的实数(分式型) 习题11. 在函数11-=
x y 中,自变量x 的取值范围是__________. 分析:因为1
1-x 是分式,所以要求分母不等于零,即01≠-x . 习题12. 函数5
2-=x x y 中,自变量x 的取值范围是__________. 如果函数解析式中含有二次根式,则自变量的取值范围是使被开方数为非负数的实数 习题13. 函数3-=x y 中自变量x 的取值范围是__________.
分析:因为3-x 为被开方式,要求被开方式为非负数,所以3-x ≥0,解得x ≥3. 习题14. 函数1+-=x y 中,自变量x 的取值范围是__________.
如果函数解析式中含有零指数幂或负整指数幂,则自变量的取值范围是使底数不等于零的实数(指数型)
习题15. 函数()221
+-=-x y 中,自变量x 的取值范围是__________. 分析:因为函数解析式中含有负整指数幂,所以要求底数02≠-x ,即2≠x . 实际上,()221
+-=-x y ,即221+-=x y . 习题16. 函数()202-++=x x y 中,自变量x 的取值范围是__________.
如果函数解析式兼有上述两种或两种以上的结构特点,则先按上述方法分别求出它们的取值范围,再求它们的公共部分(综合型)
习题17. 函数()023
---=x x x y 中,自变量x 的取值范围是__________. 习题18. 函数31--=
x x y 中,自变量x 的取值范围是__________. 习题19. 函数24-++=x x y 中,自变量x 的取值范围是__________.
自变量的取值范围必须符合客观实际,必须使实际问题有意义(如边长不能为负、人数不能为小数等)
例3. 某小汽车的油箱可装汽油30升,原装有油10升,现加x 升汽油,如果油价为5元/升,求油箱内汽油的总价y (元)与x (升)之间的函数关系式,并求出自变量x 的取值范围.
分析:本题先求出函数关系式,再由关系式和实际意义确定自变量的取值范围. 解:由题意得:
()
=x
y
5+
10
∴50
y
=x
5+
∵油箱原有油10升,油箱容量为30升
∴自变量x的取值范围是0≤x≤20.(也可以是x
0≤20)
<
习题20. 某台拖拉机油箱中有油60升,工作时每小时耗油6升.
(1)求出拖拉机油箱中的剩余油量Q(升)与工作时间t(小时)之间的函数关系式;
(2)求出自变量t的取值范围;
(3)当拖拉机工作3小时后,油箱中还剩多少升油?。