初二数学三角形专题练习

合集下载

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题(含答案)

八年级上册《数学》三角形专项练习题11.1.1三角形的边一、能力提升1.如图,在图形中,三角形有()A.4个B.5个C.6个D.7个2.已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为()A.2B.3C.5D.133.若一个三角形的两条边长分别为3和8,而第三条边长为奇数,则第三条边长为()A.5或7B.7C.9D.7或94.在△ABC中,若三条边长均为整数,周长为11,且有一条边长为4,则这个三角形最长边可能取值的最大值是()A.7B.6C.5D.45.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC 为公共边的“共边三角形”有对.6.若等腰三角形的腰长为6,则它的底边长a的取值范围是.7.用7根相同的火柴棒首尾顺次连接摆成一个三角形,能摆成的不同的三角形的个数为.8.已知等腰三角形的两边长分别为3cm和7cm,求这个三角形的周长.9.已知等腰三角形的周长是16cm.(1)若其中一边的长为4cm,求另外两边的长;(2)若其中一边的长为6cm,求另外两边的长.10.若a,b,c是△ABC的三边长,请化简|a-b-c|+|b-c-a|+|c-a-b|.11.已知等腰三角形的周长为20cm,设腰长为xcm.(1)用含x的式子表示底边长.(2)腰长x能否为5cm,为什么?(3)求x的取值范围.二、创新应用12.在平面内,分别用3根、5根、6根、…小棒首尾依次相接,能搭成什么形状的三角形?通过尝试,形状如表所示.小棒数目3 5 6 ……示意图……形状等边三角形等腰三角形等边三角形……(1)4根小棒能搭成三角形吗?(2)8根、12根小棒能搭成几种不同形状的三角形?并画出它们的示意图.答案一、能力提升1.B2.B;由题意知2+x>13,且x<13+2,解得11<x<15,因为x为正整数,所以x 可以是12,13,14.故选B.3.D;由题意知第三条边长大于5小于11.因为第三条边长为奇数,所以它的大小为7或9.4.C由题意知三角形的三条边长分别为2,4,5或3,4,4,所以最长边可能取值的最大值为5.5.3;△BDC与△BEC,△BDC与△BAC,△BEC与△BAC,共3对.6.0<a<12.7.2.8.解:若腰长为3cm,则三边长分别为3cm,3cm,7cm,而3+3<7,此时不能构成三角形;若腰长为7cm,则三边长分别为3cm,7cm,7cm.此时能构成三角形,其周长为3+7+7=17(cm).故这个三角形的周长为17cm. 9.解:(1)若腰长为4cm,则底边长为16-4-4=8(cm).三边长分别为4cm,4cm,8cm,不符合三角形的三边关系,所以应该是底边长为4cm.所以腰长为(16-4)÷2=6(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长都为6cm.(2)若腰长为6cm,则底边长为16-6-6=4(cm).三边长分别为4cm,6cm,6cm,符合三角形的三边关系.所以另外两边的长分别为6cm 和4cm.若底边长为6cm,则腰长为(16-6)÷2=5(cm).三边长分别为6cm,5cm,5cm,符合三角形的三边关系.所以另外两边的长都为5cm.10.解:因为a,b,c是△ABC的三边长,所以a<b+c,b<c+a,c<a+b,即a-b-c<0,b-c-a<0,c-a-b<0.所以|a-b-c|+|b-c-a|+|c-a-b|=-(a-b-c)-(b-c-a)-(c-a-b)=a+b+c.11.解:(1)底边长为(20-2x)cm.(2)不能.理由如下:若腰长为5cm,则底边长为20-2×5=10(cm).因为5+5=10,不满足三角形的三边关系.所以腰长不能为5cm.(3)根据题意,得解得0<x<10.由三角形的三边关系,得x+x>20-2x,解得x>5.综上所述,x的取值范围是5<x<10.二、创新应用12.解:(1)4根小棒不能搭成三角形.(2)8根小棒能搭成一种三角形,示意图如图甲;12根小棒能搭成三种不同形状的三角形,示意图如图乙.11.1.2三角形的高、中线与角平分线一、能力提升1.若一个三角形中仅有一条高在三角形的内部,则该三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.直角三角形或钝角三角形2.如图,AE⊥BC于点E,BF⊥AC于点F,CD⊥AB于点D.在△ABC中,边AC上的高是线段()A.AEB.CDC.BFD.AF3.如图,线段AE是△ABC的中线,已知EC=6,DE=2,则线段BD的长为()A.2B.3C.4D.64.如图,在△ABC中,∠C=90°,D,E为AC上的两点,且AE=DE,BD平分∠EBC,则下列说法不正确的是()A.线段BC是△ABE的高B.线段BE是△ABD的中线C.线段BD是△EBC的角平分线D.∠ABE=∠EBD=∠DBC5.如图,在△ABC中,E,F分别是AB,AC的中点,△CEF的面积为2.5,则△ABC的面积为()A.6B.7C.8D.106.如图,BD和CE是△ABC的两条角平分线,且∠DBC=∠ECB=31°,则∠ABC=度,∠ACB=度.7.如图,线段AD,CE分别是△ABC中边BC,AB上的高.若AD=10,CE=9,AB=12,则BC的长是.8.如图,在△ABC中,AB=AC,线段AD是△ABC的中线,△ABC的周长为34cm,△ABD的周长为30cm,求AD的长.9.已知在等腰三角形ABC中,AB=AC,若腰AC上的中线BD将等腰三角形ABC的周长分成15和6两部分,求三角形ABC的腰长及底边长.10.如图,AD是△CAB的角平分线,DE∥AB,DF∥AC,EF交AD于点O.请问:DO是△EDF的角平分线吗?如果是,请给予证明;如果不是,请说明理由.二、创新应用11.有一块三角形优良品种试验基地,如图,由于引进四个优良品种进行对比试验,需将这块土地分成面积相等的四块,请你制定出两种以上的划分方案供选择.(画图即可)答案一、能力提升1.D;直角三角形和钝角三角形都只有一条高在三角形的内部.2.C3.C4.D5.D;∵F为AC的中点,∴线段EF为△AEC的中线,∴S△AEC=2S△CEF=5.∵E为AB的中点,∴线段CE为△ABC的中线,∴S△ABC=2S△AEC=10.6.62;62.7.10.8;S△ABC=BC·AD=AB·CE,则BC===10.8.8.解:∵线段AD是△ABC的中线,∴BC=2BD.∵AB=AC,△ABC的周长为34cm,∴2AB+2BD=34cm,即AB+BD=17cm.又△ABD的周长为30cm,即AB+BD+AD=30cm,∴AD=13cm.9.解:设AB=AC=2x,则AD=CD=x.当AB+AD=15,BC+CD=6时,有2x+x=15,所以x=5,AB=AC=2x=10,BC=6-5=1.当BC+CD=15,AB+AD=6时,有2x+x=6,所以x=2,AB=AC=2x=4,BC=13.因为4+4<13,所以不能组成三角形.故三角形ABC的腰长为10,底边长为1.10.解:DO是△EDF的角平分线.证明如下:∵AD是△CAB的角平分线,∴∠EAD=∠FAD.∵DE∥AB,DF∥AC,∴∠EDA=∠FAD,∠FDA=∠EAD.∴∠EDA=∠FDA,即DO是△EDF的角平分线.二、创新应用11.解:如图(答案不唯一).11.1.3三角形的稳定性一、能力提升1.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮2.下列不是利用三角形稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短4.王师傅用四根木条钉成一个四边形木架.如图,要使这个木架不变形,他至少还要再钉上()根木条.A.0B.1C.2D.35.如图,要使四边形木条框架ABCD变“活”(具有不稳定性),应将木条拆除.6.伸缩铁门能自由伸缩,主要是应用了四边形的.7.我们所用的课桌和所坐的凳子,时间长了总是摇摇晃晃的,这是什么原因?要使自己用的桌凳不晃动应该怎么办?如图,如果有六边形木框,要使它不变形,应该怎么办?二、创新应用8.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?要使七边形木架不变形,至少要钉几根木条?要使n边形木架不变形,又至少要钉多少根木条呢?答案一、能力提升1.C.2.A.3.A;打开的那一扇窗户下边的一部分OB、窗户框下边的一部分OA 及AB组成一个三角形,根据三角形的稳定性,知可用AB固定窗户.4.B.5.AC.6.不稳定性.7.解:这是因为课桌和凳子的四个侧面都是四边形木架,当交接处松动后就具有不稳定性.解决这类问题的方法是在每个侧面加上一根木条(或木板),使之成为三角形.要使六边形木框不变形,至少应加3根木条使其划分为三角形.二、创新应用8.解:要使五边形木架不变形,至少要钉2根木条;要使七边形木架不变形,至少要钉4根木条;要使n边形木架不变形,至少要钉(n-3)根木条.11.2.1三角形的内角一、能力提升1.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B的度数为()A.50°B.75°C.100°D.125°2.如图,CD∥AB,∠1=120°,∠2=80°,则∠E等于()A.40°B.60°C.80°D.120°3.(2020·辽宁锦州中考)如图,在△ABC中,∠A=30°,∠B=50°,CD平分∠ACB,则∠ADC的度数是()A.80°B.90°C.100°D.110°4.在△ABC中,若∠A=∠B+∠C,则∠A的度数是.5.如图,点B,C,D在同一条直线上,CE∥AB,∠ACB=90°.如果∠ECD=36°,那么∠A的度数是.6.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2的度数是.7.在△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又比另一个角大20°,则△ABC的三个角的度数分别是多少?8.如图,E是△ABC中边AC上的一点,过点E作ED⊥AB,垂足为D.若∠1=∠2,则△ABC是直角三角形吗?为什么?9.如图,在△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于点E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.二、创新应用10.如图,在△ABC中,∠ABC,∠ACB的平分线相交于点D.(1)若∠ABC+∠ACB=110°,则∠BDC=;(2)若∠A=100°,则∠BDC=;(3)若∠A=n°,求∠BDC的度数.答案一、能力提升1.B;设∠C的度数为x°,则∠B的度数为x°+25°,则55°+x°+x°+25°=180°,解得x=50,则∠B=75°.2.A;∵CD∥AB,∠1=120°,∴∠CDB=∠1=120°,∴∠EDC=60°.∵∠2=80°,∴∠E=180°-80°-60°=40°.3.C∵∠A=30°,∠B=50°,∴∠ACB=180°-∠A-∠B=100°.又CD平分∠ACB,∴∠ACD=∠ACB=50°.∴∠ADC=180°-∠A-∠ACD=100°.4.90°.5.54°.6.270°.由三角形三内角之间的关系,得∠3+∠4=90°,所以∠1+∠2=(180°-∠3)+(180°-∠4)=2×180°-(∠3+∠4)=360°-90°=270°.7.解:设∠C=x°,则∠A=2x°,∠B=2x°-20°,根据三角形的内角和定理,有2x+(2x-20)+x=180,解得x=40,即∠C=40°.所以2x=80,∠A=80°,2x-20=60,∠B=60°.故△ABC的三个角的度数分别为∠A=80°,∠B=60°,∠C=40°.8.解:△ABC是直角三角形.理由如下:∵ED⊥AB,∴∠ADE=90°,∴∠1+∠A=90°.又∠1=∠2,∴∠2+∠A=90°.∴△ABC是直角三角形.9.解:在△EDC中,∠EDC=180°-(∠C+∠DEC)=180°-(59°+47°)=74°.∴∠FDB=180°-∠EDC=180°-74°=106°.在△BDF中,∠F=180°-(∠B+∠FDB)=180°-(42°+106°)=32°.二、创新应用10.解:(1)125°.(2)140°.(3)∵∠A=n°,∴∠ABC+∠ACB=180°-n°.∵BD平分∠ABC,CD平分∠ACB,∴∠DBC+∠DCB=∠ABC+∠ACB=(∠ABC+∠ACB)=×(180°-n°)=90°-.∴∠BDC=180°-(∠DBC+∠DCB)=180°-=90°+.11.2.2三角形的外角一、能力提升1.一副三角尺有两个直角三角形,如图叠放在一起,则∠α的度数是()A.165°B.120°C.150°D.135°2.如图,在△ABC中,AD为边BC上的中线,在△ABD中,AE为边BD上的中线,在△ACD中,AF为边DC上的中线,则下列结论错误的是()A.∠1>∠2>∠3>∠CB.BE=ED=DF=FCC.∠1>∠4>∠5>∠CD.∠1=∠3+∠4+∠53.如图,若∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°4.(2020·湖北中考)将一副三角尺按如图摆放,点E在AC上,点D在BC 的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=45°,∠F=60°,则∠CED的度数是()A.15°B.20°C.25°D.30°5.如图,∠ABC的平分线与∠ACD的平分线相交于点P.若∠A=60°,则∠P等于()A.30°B.40°C.50°D.60°6.(2020·湖北黄冈中考)如图,AB∥EF,∠ABC=75°,∠CDF=135°,则∠BCD=.7.如图,已知在△ABC中,D是AB上一点,E是AC上一点,BE与CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BDC=,∠BFC=.8.如图,D,E,F分别是△ABC三边延长线上的点,求∠D+∠E+∠F+∠1+∠2+∠3的度数.9.如图,在△ABC中,E是AC延长线上的一点,D是BC上的一点.求证:(1)∠BDE=∠E+∠A+∠B.(2)∠BDE>∠A.10.如图,在△ABC中,D是边BC上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.二、创新应用11.如图①,有一个五角形图案ABCDE,你能说明∠A+∠DBE+∠C+∠D+∠E=180°吗?如果点B向下移动到AC上(如图②)或AC的另一侧(如图③),上述结论是否依然成立?请说明理由.答案一、能力提升1.A如图,∵∠2=90°-45°=45°,∴∠1=∠2-30°=15°.∴∠α=180°-∠1=165°.2.C由三角形的一个外角大于与它不相邻的内角,知∠1>∠2>∠3>∠C,故选项A正确;根据三角形中线的定义,知BE=ED=DF=FC,故选项B正确;∠4与∠5的大小不能判定,故选项C错误;根据三角形的一个外角等于与它不相邻两个内角的和,知∠1=∠2+∠4,∠2=∠3+∠5,所以∠1=∠3+∠4+∠5,故选项D正确.3.B4.A5.A利用三角形的外角性质,得∠P=∠PCD-∠PBD=(∠ACD-∠ABC)=∠A=30°.6.30°.7.97°;117°.8.解:∵∠D+∠3=∠CAB,∠E+∠1=∠ABC,∠F+∠2=∠ACB,∴∠D+∠E+∠F+∠1+∠2+∠3=∠CAB+∠ABC+∠ACB=180°.9.证明:(1)∵∠BDE,∠DCE分别是△CDE,△ABC的一个外角,∴∠BDE=∠E+∠DCE,∠DCE=∠A+∠B,∴∠BDE=∠E+∠A+∠B.(2)由(1)得∠BDE=∠E+∠A+∠B,∴∠BDE>∠A.10.解:∵∠3是△ABD的外角,∴∠3=∠1+∠2.∵∠1=∠2,∠3=∠4,∴∠4=2∠2.在△ABC中,∵∠2+∠4=180°-∠BAC=180°-63°=117°,∴∠1=∠2=117°÷(1+2)=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.二、创新应用11.解:在题图①中,∠A+∠C=∠DNM, ①∠DBE+∠E=∠DMN, ②①+②,得∠A+∠DBE+∠C+∠E=∠DNM+∠DMN.∵∠D+∠DNM+∠DMN=180°,∴∠A+∠DBE+∠C+∠D+∠E=180°.在题图②、题图③中,上述结论仍然成立,理由与题图①完全相同.11.3.1多边形一、能力提升1.在下列关于正多边形的特征说法中,错误的是()A.每一条边都相等B.每一个内角都相等C.每一个外角都相等D.所有对角线都相等2.过多边形的一个顶点可以引2017条对角线,则这个多边形的边数是()A.2017B.2018C.2019D.20203.如果过多边形的一个顶点的对角线把多边形分成8个三角形,那么这个多边形的边数为()A.8B.9C.10D.114.将一个四边形截去一个角后,它不可能是()A.三角形B.四边形C.五边形D.六边形5.在n边形的一边上任取一点(不包含顶点)与各顶点相连,可得三角形的个数是()A.nB.n-2C.n-1D.n+16.过m边形的一个顶点有7条对角线,n边形没有对角线,则m n=.7.已知一个多边形的边数恰好是从这个多边形的一个顶点出发所作的对角线的条数的2倍,求此多边形的边数.二、创新应用8.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整.边数 3 4 5 6 7 …n对角线条0 2 5 …数答案一、能力提升1.D2.D3.C4.D一个多边形截去一个角后,可能出现三种情况:少一个角、角的个数不变或多一个角.5.C6.1000;从m边形的一个顶点出发有(m-3)条对角线,由m-3=7,得m=10. n边形没有对角线,所以n=3.所以m n=103=1000.7.解:设这个多边形的边数为n,则从多边形的一个顶点出发所作的对角线的条数为n-3.依题意,得n=2(n-3),解得n=6.二、创新应用8.解:(1)(2)边数 3 4 5 6 7 …n对角线条数0 2 5 9 14 …n(n-3)11.3.2多边形的内角和一、能力提升1.如果一个正多边形的每一个外角都是锐角,那么这个正多边形的边数一定不小于()A.3B.4C.5D.62.(2020·山东济宁中考)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.63.若一个多边形的边数由5增加到11,则内角和增加的度数是()A.1080°B.720°C.540°D.360°4.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.110°B.108°C.105°D.100°5.如果一个多边形的内角和是其外角和的一半,那么这个多边形是()A.六边形B.五边形C.四边形D.三角形6.若凸n边形的内角和为1260°,则从一个顶点出发引的对角线条数是.7.如图,在四边形ABCD中,∠A+∠B=210°,且∠ADC的平分线与∠DCB的平分线相交于点O,则∠COD的度数是.8.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数和内角和.9.如图,求∠A+∠B+∠OCD+∠ODC+∠E+∠F的度数.二、创新应用10.在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.答案一、能力提升1.C每个外角都是锐角,即小于90°,设边数为n,则这些锐角的和一定小于n×90°.而外角和为360°,所以360°<n×90°,n>4,即n不小于5.2.B设这个多边形的边数是n,则(n-2)×180°=1080°,解得n=8.3.A因为每增加一条边,内角和增加180°,所以增加6条边,内角和增加180°×6=1080°.4.D由题意知∠AED的补角为80°,则∠AED=100°.5.D多边形的外角和是360°,内角和等于外角和的一半,则内角和是180°,可知此多边形为三角形.6.6因为凸n边形的内角和为1260°,所以(n-2)×180°=1260°,得n=9.故从一个顶点出发引的对角线的条数为9-3=6.7.105°∵四边形的内角和为360°,∠A+∠B=210°,∴∠ADC+∠BCD=360°-210°=150°.∵DO,CO分别为∠ADC与∠BCD的平分线,∴∠ODC=∠ADC,∠OCD=∠BCD.∴∠ODC+∠OCD=(∠ADC+∠BCD)=×150°=75°.∴∠COD=180°-75°=105°.8.解:由题意知这个多边形的内角和为3×360°-180°=900°.设这个多边形的边数为n,根据题意,得(n-2)×180°=900°,解得n=7.故这个多边形的边数为7.9.解:如图,连接BE,则在△COD与△BOE中,∠ODC+∠OCD+∠COD=180°,∠OBE+∠OEB+∠BOE=180°.∵∠COD与∠BOE是对顶角,∴∠COD=∠BOE.∵∠ODC+∠OCD=180°-∠COD,∠OBE+∠OEB=180°-∠BOE,∴∠ODC+∠OCD=∠OBE+∠OEB.∴题图中的∠A+∠B+∠OCD+∠ODC+∠E+∠F等于上图中的∠A+∠F+∠ABC+∠DEF+∠OBE+∠OEB=∠A+∠F+∠ABE+∠BEF=360°,即所求六个角的和为360°.二、创新应用10.解:(1)设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.(2)存在.设边数为n,这个外角的度数是x°,则(n-2)×180-(180-x)+x=600,整理得x=570-90n.因为0<x<180,即0<570-90n<180,并且n为正整数,所以n=5或n=6.故这个多边形的边数是6,这个外角的度数为30°.。

八年级数学三角形专题训练

八年级数学三角形专题训练

八年级数学三角形专题训练一、三角形的基本概念1. 三角形的定义题目:下列图形中,属于三角形的是()选项:A. 由三条线段首尾顺次相接组成的封闭图形;B. 由三条线段组成的图形;C. 由不在同一直线上的三条直线组成的图形。

解析:三角形的定义是由不在同一条直线上的三条线段首尾顺次相接所组成的封闭图形。

选项B中只说三条线段组成的图形,没有强调首尾顺次相接和封闭,选项C中说三条直线是错误的,所以答案是A。

2. 三角形的分类题目:三角形按角分类可分为()选项:A. 锐角三角形、直角三角形、钝角三角形;B. 等腰三角形、等边三角形、不等边三角形;C. 直角三角形、等腰三角形、锐角三角形。

解析:三角形按角分类分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。

选项B是按边分类,选项C分类混乱,所以答案是A。

二、三角形的三边关系1. 定理内容题目:已知三角形的两边长分别为3和5,则第三边的取值范围是()解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。

设第三边为x,则5 3<x<5+3,即2<x<8。

2. 应用解析:对于①,3+4 = 7<8,不满足两边之和大于第三边,所以不能组成三角形。

对于②,5+6 = 11>10,6 + 10=16>5,5+10 = 15>6,且10 5 = 5<6,10 6=4<5,6 5 = 1<10,满足三边关系,可以组成三角形。

对于③,5+5 = 10<11,不满足两边之和大于第三边,所以不能组成三角形。

三、三角形的内角和定理1. 定理内容题目:三角形的内角和等于()选项:A. 90°;B. 180°;C. 360°。

解析:三角形内角和定理表明三角形的内角和等于180°,所以答案是B。

2. 应用题目:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。

初二下册直角三角形练习题

初二下册直角三角形练习题

初二下册直角三角形练习题
直角三角形是初中数学中重要的内容之一,通过练习直角三角形的
计算题可以巩固对三角函数的理解和运用。

下面将为大家提供一些初
二下册直角三角形练习题,希望能够帮助大家提高解题能力。

题目一:已知一个直角三角形的斜边长为10cm,一个锐角的对边
长为6cm,求这个直角三角形的另一个锐角的对边长和邻边长。

题目二:已知一个直角三角形的一条直角边长为8cm,另一条直角
边长为6cm,求这个直角三角形的斜边长和另一个锐角的对边长。

题目三:已知一个直角三角形的斜边长为15cm,一个锐角的邻边
长为9cm,求这个直角三角形的另一个锐角的邻边长和对边长。

题目四:在一个直角三角形中,一个锐角的对边长是斜边长的一半,求这个直角三角形的两个锐角的弧度。

题目五:已知一个直角三角形的斜边长为12cm,一个锐角的对边
长为4cm,求这个直角三角形的另一个锐角的对边长和邻边长。

题目六:已知一个直角三角形的一条直角边长为7cm,另一条直角
边长为5cm,求这个直角三角形的斜边长和另一个锐角的对边长。

题目七:已知一个直角三角形的斜边长为17cm,一个锐角的邻边
长为8cm,求这个直角三角形的另一个锐角的邻边长和对边长。

以上是一些直角三角形的练习题,希望能够帮助大家提高解题能力。

在解答这些题目时,可以运用三角函数的定义和性质进行求解,例如
正弦定理、余弦定理等。

通过不断的练习和思考,相信大家能够掌握直角三角形的计算方法,提高数学解题能力。

祝愿大家学业进步!。

初二数学三角形专项练习题

初二数学三角形专项练习题

初二数学三角形专项练习题1. 计算下列各三角形的周长:(1)边长分别为4cm、6cm、8cm的三角形;(2)边长分别为12m、15m、18m的三角形;(3)边长分别为7cm、24cm、25cm的三角形。

2. 如果一条边长为10cm的等边三角形周长是30cm,求其边长。

3. 在三角形ABC中,∠B=90°,AB=6cm,BC=8cm,求∠A和∠C的大小。

4. 在等腰三角形ABC中,AB=AC=6cm,BC=8cm,求∠B的大小。

5. 在直角三角形ABC中,∠B=90°,AB=5cm,BC=12cm,求∠A和∠C的大小。

6. 在直角三角形ABC中,∠B=90°,AC=16cm,BC=20cm,求∠A和∠C的大小。

7. 已知三角形ABC中,∠A=90°,AC=12cm,BC=16cm,求∠C的大小。

8. 已知三角形ABC中,∠A=90°,AC=15cm,BC=20cm,求∠C的大小。

9. 在三角形ABC中,∠A=90°,AB=5cm,BC=13cm,求∠B和∠C的大小。

∠C的大小。

11. 在三角形ABC中,AB=7cm,BC=9cm,AC=10cm,判断该三角形是什么类型的三角形,并解释原因。

12. 已知三角形ABC中,AC=7cm,BC=8cm,∠C=120°,判断该三角形是什么类型的三角形,并解释原因。

13. 已知三角形ABC中,AB=5cm,BC=7cm,AC=9cm,判断该三角形是什么类型的三角形,并解释原因。

14. 在平面直角坐标系中,已知三角形ABC的顶点分别为A(2, 3),B(6, 3),C(2, 6),求三角形ABC的周长。

15. 在平面直角坐标系中,已知三角形ABC的顶点分别为A(-2, 4),B(-6, 4),C(-2, 8),求三角形ABC的周长。

16. 在平面直角坐标系中,已知三角形ABC的顶点分别为A(-3, -2),B(4, -2),C(-3, 3),求三角形ABC的周长。

三角形初二试题及答案

三角形初二试题及答案

三角形初二试题及答案一、选择题(每题3分,共30分)1. 在三角形中,如果一个角是直角,那么这个三角形被称为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B2. 三角形的内角和是()A. 180°B. 360°C. 90°D. 120°答案:A3. 如果一个三角形的两边相等,那么这个三角形被称为()A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:B4. 在三角形中,如果有一个角大于90°,那么这个三角形被称为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:C5. 一个三角形的两边之和大于第三边,这个性质被称为()A. 三角不等式B. 勾股定理C. 欧拉公式D. 费马原理答案:A6. 如果一个三角形的三边都相等,那么这个三角形被称为()A. 等边三角形B. 等腰三角形C. 直角三角形D. 钝角三角形答案:A7. 三角形的外角和是()A. 180°B. 360°C. 90°D. 120°答案:B8. 在三角形中,如果一个角是锐角,那么这个三角形被称为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:A9. 如果一个三角形的两边之差小于第三边,这个性质被称为()A. 三角不等式B. 勾股定理C. 欧拉公式D. 费马原理答案:A10. 在三角形中,如果有一个角等于90°,那么这个三角形被称为()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B二、填空题(每题3分,共30分)11. 在三角形中,如果一个角是60°,那么这个三角形可能是等边三角形,也可能是等腰三角形,还可能是______三角形。

答案:锐角12. 一个三角形的两边之和大于第三边,这个性质被称为三角形的______。

初二三角形全等练习题

初二三角形全等练习题

初二三角形全等练习题一、选择题1. 在三角形ABC中,已知AB=AC,∠BAC=80°,∠B=40°,则∠C的度数是多少?A. 60°B. 40°C. 50°D. 80°2. 三角形ABC中,AB=5,BC=6,AC=7,下列哪个选项是正确的?A. 三角形ABC是等腰三角形B. 三角形ABC是直角三角形C. 三角形ABC是等边三角形D. 三角形ABC不是全等三角形3. 两个三角形全等的条件是:A. 三边对应相等B. 三角对应相等C. 两边及夹角对应相等D. 以上都是二、填空题4. 如果三角形ABC与三角形DEF全等,且∠A=∠D,∠B=∠E,那么∠C等于∠____。

5. 三角形ABC中,AB=5cm,AC=3cm,BC=4cm,根据勾股定理,判断三角形ABC是否为直角三角形。

6. 已知三角形ABC与三角形DEF全等,且AB=DE,AC=DF,∠A=∠D,那么我们可以得出BC=____。

三、判断题7. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。

()8. 三角形的内角和总是等于180°。

()9. 如果两个三角形的两边及夹角对应相等,那么这两个三角形全等。

()四、解答题10. 在三角形ABC中,AB=5cm,AC=3cm,∠A=60°,求∠B的度数。

11. 已知三角形ABC与三角形DEF全等,且AB=DE,AC=DF,∠A=∠D,求证:BC=EF。

12. 根据SAS(边-角-边)全等条件,给出两个三角形的对应边和夹角,证明这两个三角形全等。

五、证明题13. 在三角形ABC中,已知AB=AC,∠BAC=80°,证明三角形ABC是等腰三角形。

14. 已知三角形ABC与三角形DEF相似,且AB/DE=AC/DF,证明三角形ABC与三角形DEF的对应角相等。

15. 如果两个三角形的对应边成比例,且对应角相等,证明这两个三角形相似。

初二数学三角形专项训练试题及解析

初二数学三角形专项训练试题及解析

初二数学三角形专项训练试题及解析一.选择题1. 下列图形中,△ABC的高画法错误的是( )2. 六边形外角和等于( )A. 180°B.360°C. 420°D. 480°3. 若三角形的两边长分别为6.8,则第三边长可以是( )A. 1B. 2C.10D. 154. 如图, AB⊥BD, ∠A=52° , 则∠ACD= ( )A. 128°B. 132°C. 138°D. 142°5. 已知某个正多边形的一个外角为40°,这个正多边形内角和等于( )A. 1080°B. 1260°C. 1440°D. 1620°6.三角形的一个外角是锐角,则此三角形的形状是( )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定7. 如图, 在△ABC中, ∠ACB=80° , 点D在AB上,将△ABC沿CD折叠, 点B落在边AC的点E处. 若∠ ADE=30°,则∠A的度数为( )A. 25°B. 30°C. 35°D. 40°8.等腰三角形的一个内角是100°,它的另外两个角的度数是( )A. 50° 和50°B. 40° 和40°C. 35° 和35°D. 60° 和20°9. 如图, ∠A+∠B+∠C+∠D+∠E+∠F的值是( )A. 360°B. 480°C. 540°D. 720°参考答案一. 选择题1.解:A、图中所画是△ABC的边BC上的高,画法正确,不符合题意:B、图中所画不是△ABC的高,画法错误,符合题意;C、图中所画是△ABC的边AC上的高,画法正确,不符合题意;D、图中所画是△ABC的边AB上的高,画法正确,不符合题意;故选: B.2.解: 六边形外角和等于360°.故选: B.3.解:设第三边的长为x,根据三角形的三边关系,得8-6<x<8+6.即2<x<14.只有10适合。

初二数学练习题三角形

初二数学练习题三角形

初二数学练习题三角形在初二数学中,三角形是一个重要的几何概念。

它是由三条边和三个角组成的多边形。

在本文中,我们将介绍一些初二数学练习题,以帮助您更好地理解和掌握三角形的基本概念和性质。

题目一:已知三角形ABC中,∠A=60°,BC=5,AC=8,求AB的长度。

解答:根据三角形的内角和性质,三角形ABC的三个内角和为180°。

已知∠A=60°,所以∠B+∠C=180°-60°=120°。

又已知BC=5,AC=8,我们可以利用余弦定理解题。

根据余弦定理,我们有cosA=(b²+c²-a²)/2bc,代入已知条件,得到cos60°=(5²+8²-AB²)/(2×5×8)。

化简得到1/2=(89-AB²)/80,解方程得AB=√(89-40)=√49=7。

所以AB的长度为7。

题目二:已知三角形ABC是等腰三角形,AB=AC=6,BC=8,求三角形的面积。

解答:根据等腰三角形的性质,等腰三角形的两个底角相等,即∠B=∠C。

又已知AB=AC=6,BC=8,我们可以利用三角形面积公式解题。

根据三角形面积公式,三角形的面积等于底乘以高除以2。

由于三角形ABC是等腰三角形,所以高线AB是边BC的中线,即高线AB=4。

所以三角形的面积为(8×4)/2=16。

题目三:已知三角形ABC是直角三角形,∠B=90°,AB=3,BC=4,求三角形的面积。

解答:根据直角三角形的性质,直角三角形的两个锐角的和为90°。

已知∠B=90°,所以∠A+∠C=90°。

又已知AB=3,BC=4,在此情况下,我们可以利用三角形面积公式解题。

根据三角形面积公式,三角形的面积等于底乘以高除以2。

由于直角三角形ABC的直角边为AB,所以高线BC=3。

初二数学全等三角形经典题型

初二数学全等三角形经典题型

专题训练:全等三角形专题一全等三角形的性质及应用1.如图,△ABC ≌△EBD ,问∠1与∠2相等吗?若相等请证明,若不相等说出为什么?解析:由三角形全等,得到对应角相等,然后再沟通∠1和∠2之间的关系.2.如图,已知△EAB ≌△DCE ,AB 、EC 分别是两个三角形的最长边,∠A =∠C =35°,∠CDE =100°,∠DEB =10°,求∠AEC 的度数.专题二全等三角形的探究题3.全等三角形又叫合同三角形, 平面内的合同三角形分为真正合同三角形与镜面合同三角形.假设△ABC 和△A 1B 1C 1是全等(合同)三角形,且点A 与A 1对应,点B 与B 1对应,点C 与点C 1对应,当沿周界A →B →C →A 及A 1→B 1→C 1→A 1环绕时,若运动方向相同,则称它们是真正合同三角形,如图1;若运动方向相反,则称它们是镜面合同三角形,如图2.C 1B 1A 1C B AC 1B 1A 1CB A (1)(2)BA E 21FC D O两个真正合同三角形,都可以在平面内通过平移或旋转使它们重合;而两个镜面合同三角形要重合,则必须将其中一个翻折180°,下列各组合同三角形中,是镜面合同三角形的是().DC B A 4.如图所示,A ,D ,E 三点在同一直线上,且△BAD ≌△ACE .(1)试说明BD =DE +CE ;(2)△ABD 满足什么条件时,BD ∥CE ?5.如图所示,△ABC 绕着点B 旋转(顺时针)90°到△DBE ,且∠ABC =90°.(1)△ABC 和△DBE 是否全等?指出对应边和对应角;(2)直线AC 、直线DE 有怎样的位置关系?AB C DE【知识要点】1.能够完全重合的两个图形叫全等形,能够完全重合的两个三角形叫全等三角形.2.全等三角形的对应边相等,对应角相等.【温馨提示】1.利用全等三角形的性质解决问题时,一定要找准对应元素.2.全等三角形的对应边相等、对应角相等、周长相等、面积相等,但周长、面积相等的两个三角形不一定是全等三角形.【方法技巧】1.全等三角形是指能够完全重合的两个三角形,准确的找出两个全等三角形的对应元素是解决全等三角形问题的关键.在表示两个三角形全等时,对应的顶点要写在对应的位置上.2.全等三角形的对应边相等,对应角相等,利用这两个性质可以说明线段或角相等,以及线段的平行或垂直等.3.一个图形经过平移、翻折、旋转后,位置发生了变化,但形状和大小都没有改变,即经过平移、翻折、旋转前后的图形全等.像这样只改变图形的位置而不改变图形的形状和大小的变换叫全等变换,常见的有平移变换,翻折变换,旋转变换.参考答案:1.解:∠1和∠2∵△ABC≌△EBD,∴∠A=∠E(全等三角形对应角相等),又∵∠A+∠AOF+∠1=180°,∠E+∠EOB+∠E=180°(三角形内角和定理),∠AOF=∠BOE(对顶角相等),∴∠1=∠2(等式的性质).2.解:因为AB、EC是对应边,所以∠AEB=∠CDE=100°,又因为∠C=35°,所以∠CED=180°-35°-100°=45°,又因为∠DEB=10°,所以∠BEC=45°-10°=35°,所以∠AEC=∠AEB-∠BEC=100°-35°=65°.3.B提示:A与C中的两个三角形可以通过旋转,使它们重合.D中的两个三角形可以用平移、旋转相结合的方式使之重合.而B中的两个三角形可以用翻折的方法使之重合,故B 中的三角形是镜面合同三角形.4.解:(1)因为△BAD≌△ACE,所以BD=AE,AD=CE,又因为AE=AD+DE=CE+DE,所以BD=DE+CE.(2)∠ADB=90°,因为△BAD≌△ACE,所以∠ADB=∠CEB,若BD ∥CE,则∠CED=∠BDE,所以∠ADB=∠BDE,又因为∠ADB+∠BDE=180°,所以∠ADB=90°.5.解:(1)由题知可得:△ABC≌△DBE,AC和DE,AB和DB,BC和BE是对应边;∠A和∠D,∠ACB和∠DEB,∠ABC和∠DBE是对应角;(2)延长AC交DE于F.∵△ABC≌△DBE∴∠A=∠D,又∵∠ACB=∠DCF(对顶角相等),∠A+∠ACB=90°,∴∠D+∠DCF=90°,即∠AFD =90°.∴AC与DE是垂直的位置关系.。

八年级三角形练习题

八年级三角形练习题

八年级三角形练习题八年级三角形练习题三角形是几何学中的基本概念之一,也是我们在数学学习中经常遇到的题型。

八年级的学生们已经学习了三角形的基本性质和定理,下面我们来练习一些与三角形相关的题目。

题目一:已知三角形ABC中,∠A=60°,AB=3cm,AC=4cm,求BC的长度。

解析:根据余弦定理,可以得到BC的长度。

余弦定理的公式为:c² = a² + b² - 2abcosC。

将已知数据代入公式中,得到BC的长度为:BC² = 3² + 4² - 2×3×4×cos60°= 9 + 16 - 24×0.5= 25 - 12= 13所以,BC的长度为√13 cm。

题目二:在三角形ABC中,∠A=45°,∠B=60°,AB=5cm,求AC和BC的长度。

解析:根据已知角度和边长,我们可以通过正弦定理和余弦定理来求解。

首先,根据正弦定理可以得到:AC/sin60° = 5/sin45°化简得到:AC = 5×sin60°/sin45°然后,根据余弦定理可以得到:BC² = 5² + AC² - 2×5×AC×cos45°将AC的值代入公式中,化简得到:BC² = 5² + (5×sin60°/sin45°)² - 2×5×(5×sin60°/sin45°)×cos45°化简计算后,得到BC的长度为√(75/2) cm,AC的长度为(5√3/2) cm。

题目三:在三角形ABC中,已知∠A=90°,AB=6cm,AC=8cm,求BC的长度。

初二数学全等三角形练习题及答案

初二数学全等三角形练习题及答案

初二数学全等三角形练习题及答案一、选择题1. 已知三角形ABC和三角形DEF的对应边长关系为AB=DE,AC=DF,∠B=∠E,则三角形ABC与三角形DEF的关系是()。

A. 全等B. 相似C. 不全等也不相似D. 不确定2. 在△ABC中,∠A=∠C,AB=BC,则∠B的度数为()。

A. 60°B. 90°C. 120°D. 不确定3. 已知三角形ABC和三角形CDE的对应边长关系为AB=CD,AC=CE,BC=DE,则三角形ABC与三角形CDE的关系是()。

A. 全等B. 相似C. 不全等也不相似D. 不确定4. 若两个三角形的对应角相等,且其中一个三角形的一条边与另一个三角形的一条边相等,则这两个三角形一定是()。

A. 全等B. 相似C. 不全等也不相似D. 不确定5. 在△ABC中,∠B=∠C,AC=BC,则这个三角形是()。

A. 等腰三角形B. 直角三角形C. 锐角三角形D. 不确定二、填空题1. 若全等三角形ABC和DEF中∠B=∠E=90°,则∠A=______,∠C=______。

2. 在△ABC中,∠A=∠B=60°,则∠C=______。

3. 已知△ABC≌△DEF,若AC=DF=12cm,AC∥DF,BC=9cm,则DE=______。

4. 若三角形ABC与三角形DEF全等,则∠ABC=______°,∠BAC=______°。

5. 在△ABC≌△XYZ中,∠B=47°,∠X=26°,∠Y=______°。

三、解答题1. 已知△ABC≌△DEF,AB=5cm,AC=8cm,BC=7cm,求DE的长度。

解:由全等三角形的定义可知,当两个三角形全等时,它们的对应边长相等。

因此,DE的长度也为7cm。

2. 由题可得,四边形ABCD中,AB=BC=CD,AD⊥BC,∠C=90°。

八年级数学专项训练

八年级数学专项训练

八年级数学专项训练一、三角形。

1. 三角形的性质。

- 三角形内角和为180°。

例如,在△ABC中,∠A + ∠B+∠C = 180°。

- 三角形的三边关系:两边之和大于第三边,两边之差小于第三边。

如,若三角形三边为a、b、c(a>b>c),则a - b < c < a + b。

2. 等腰三角形。

- 性质:等腰三角形两腰相等,两底角相等(等边对等角)。

若AB = AC,则∠B=∠C。

- 判定:有两边相等的三角形是等腰三角形;有两角相等的三角形是等腰三角形(等角对等边)。

3. 等边三角形。

- 性质:三边相等,三个内角都等于60°。

- 判定:三边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。

二、全等三角形。

1. 全等三角形的性质。

- 全等三角形的对应边相等,对应角相等。

若△ABC≌△DEF,则AB = DE,∠A=∠D等。

2. 全等三角形的判定。

- SSS(边边边):三边对应相等的两个三角形全等。

- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

- HL(直角、斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

三、轴对称。

1. 轴对称图形。

- 定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

例如,等腰三角形是轴对称图形,它的对称轴是底边上的高(或顶角平分线或底边的中线)所在的直线。

2. 线段的垂直平分线。

- 性质:线段垂直平分线上的点到线段两端的距离相等。

- 判定:到线段两端距离相等的点在线段的垂直平分线上。

四、整式的乘法与因式分解。

1. 整式的乘法。

- 同底数幂的乘法:a^m· a^n=a^m + n(m、n为正整数)。

初二数学三角形专项练习题

初二数学三角形专项练习题

初二数学三角形专项练习题一、简答题1. 请简要描述什么是等腰三角形。

2. 请简要描述什么是直角三角形。

3. 请简要描述什么是等边三角形。

4. 请简要描述什么是锐角三角形。

二、选择题1. 在一个直角三角形ABC中,AB=3cm,BC=4cm,则AC的长度为:a) 2cmb) 3cmc) 5cmd) 7cm2. 在一个等腰三角形DEF中,DE=DF=6cm,角E的度数为60°,则三角形DEF的周长为:a) 12cmb) 18cmc) 24cm3. 在一个等边三角形GHI中,GH=8cm,则角G的度数为:a) 30°b) 45°c) 60°d) 90°4. 在一个锐角三角形JKL中,JK=8cm,KL=10cm,角JLK的度数为60°,则角JKL的度数为:a) 30°b) 45°c) 60°d) 90°三、计算题1. 已知在一个锐角三角形MNO中,MN=5cm,NO=7cm,角N的度数为30°,求三角形MNO的面积。

2. 在一个等腰三角形PQR中,PQ=5cm,PR=6cm,求三角形PQR 的周长。

3. 在一个直角三角形STU中,ST=3cm,TU=4cm,求三角形STU 斜边的长度。

1. 一根长度为10cm的木棍,经过削减后成为一个等腰三角形的底边,若两腰的长度之差为2cm,求这个等腰三角形的面积。

2. 在一个直角三角形XYZ中,角Y的度数为30°,边XY的长度为6cm,求边YZ和边XZ的长度。

3. 在一个锐角三角形ABC中,AC=8cm,BC=6cm,角C的度数为60°。

现在在边AC和BC上分别截取一段,使得截取的线段等长。

求这段线段的长度。

总结:本文涵盖了初二数学中关于三角形的专项练习题,包括简答题、选择题、计算题和应用题。

通过解答这些题目,读者可以加深对等腰三角形、直角三角形、等边三角形和锐角三角形等概念的理解,并进行相应的计算和应用实践。

初二数学 直角三角形练习题

初二数学 直角三角形练习题

初二数学直角三角形练习题一.选择题1.答案:D.2.答案:B.3.答案:A.4.答案:C.5.答案:C.二.填空题6.答案:9.7.答案:3.8.答案:①和③.9.答案:$3\sqrt{3}$.一.选择题1.正确语句的个数是()A.0.B.1.C.2.D.32.能断定两直角三角形全等的条件有()A.1个。

B.2个。

C.3个。

D.4个3.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8.B.5.C.3.D.24.如图,△ABC中,AB=AC=10,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则DE的长为()A.10.B.6.C.8.D.55.如图,在△ABC中,CD⊥XXX于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是()A.21.B.18.C.13.D.15二.填空题6.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4.直线l上有一点C在点P右侧,PC=4cm,过点C作射线CD⊥l,点F为射线CD上的一个动点,连结AF.当△AFC与△ABQ全等时,AQ=9cm.7.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,垂足为点B,一动点E从A点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动3秒时,△DEB与△BCA全等.8.如图,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,下面四个结论:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.正确的是(将你认为正确的答案序号都写上):①和③.9.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为$3\sqrt{3}$.10.在三角形ABC中,角ACB为直角,角B为30度,BC=6,CD为AB边上的高,点P为射线CD上的一个动点。

八年级三角形练习题及答案

八年级三角形练习题及答案

一、单选题1、在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A. 等边三角形B. 锐角三角形C. 直角三角形D. 钝角三角形参考答案: D【思路分析】根据三角形的内角和定理求出∠C,即可判定△ABC的形状。

【解题过程】解:因为∠A=20°,∠B=60°,所以∠C=180°-∠A-∠B=180°-20°-60°=100°,所以△ABC是钝角三角形。

故选D。

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -2、一把直尺和一块三角板ABC(其中∠B=30∘,∠C=90∘)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D,点E,另一边与三角板的两直角边分别交于点F,点A,且∠CDE=50∘,那么∠BAF的大小为()A. 20∘B. 40∘C. 45∘D. 50∘参考答案: A【思路分析】本题考查同位角、内错角、同旁内角及判定,仔细读题,获取题中已知条件,结合同位角、内错角、同旁内角及判定的相关知识,即可解答此题【解题过程】解:由图可得,∠CDE=50∘,∠C=90∘,∴∠CED=40∘,又,∴∠CAF=40∘,∵∠BAC=6 0∘,∴∠BAF=60∘−40∘=20∘.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H
P
G F
E
D C B
A 三角形、
★★★主要知识点:
1.三角形的分类
三角形按边分类可分为_______和______(等边三角形是等腰三角形的特殊情况);按角分类可分为______、_______和_______, 2.一般三角形的性质
(1)角与角的关系:三个内角的和等于___°;三个外角的和等于___;一个外角等于和它不相邻的两个内角之和,并且大于任何—个和它不相邻的内角,____________。

(2)边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。

(3)边与角的大小对应关系:在一个三角形中,__边对等角;等角对等____。

(4)三角形的主要线段的性质(见下表):
3. 几种特殊三角形的特殊性质
(1)等腰三角形的特殊性质:①等腰三角形的两个_____角相等;②等腰三角形_______、_____中线和______是同一条线段,三线合一;这条线段所在的直线是等腰三角形的对称轴。

(2)等边三角形的特殊性质:①等边三角形每个内角都等于___°。

②三线合一
(3)直角三角形的特殊性质:①直角三角形的两个锐角互为___角; ②直角三角形斜边上的中线等
于斜边的一半。

③s=21ab(a 、b 分别为两直角边)或S △ = 2
1
a h ( h 是a 边上的高 )
4. 三角形的面积一般三角形:S △ = 21
a h ( h 是a 边上的高 )
A
C
B 第 8 题
D
C
D B
A
第 14 题
例1: (基础题) 如图, AC //DF , GH 是截线. ∠CBF =40°, ∠BHF =80°. 求∠HBF , ∠BFP , ∠BED .∠BEF 的度数
例2: (基础题)
①在△ABC 中,已知∠B = 40°,∠C = 80°,则∠A = (度) ②如图,△ABC 中,∠A = 60°,∠C = 50°,则外角∠CBD = 。

③已知,在△ABC 中, ∠A + ∠B = ∠C ,那么△ABC 的形状为( )
A 、直角三角形
B 、钝角三角形
C 、锐角三角形
D 、以上都不对 ④下列长度的三条线段能组成三角形的是( )
A.3cm ,4cm ,8cm
B.5cm ,6cm ,11cm
C.5cm ,6cm ,10cm
D.3cm ,8cm ,12cm ⑤如果一个三角形的三边长分别为x ,2,3,那么x 的取值范围是 。

⑥小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三根摆成一个三角形,那么他选的三根木棒的长度分别是_ .______.
⑦已知等腰三角形的一边长为6,另一边长为10,则它的周长为
⑧在△ABC 中,AB = AC ,BC=10cm,∠A = 80°,则∠B = , ∠C = 。

BD=______,CD=________
⑨如图(第14题),AB = AC ,BC ⊥ AD ,若BC = 6,则BD = 。

⑩画一画 如图,在△ABC 中: (1).画出∠C 的平分线CD (2).画出BC 边上的中线AE (3).画出△ABC 的边AC 上的高BF 例3: (提高)
①△ABC 中,∠C=90°,∠B-2∠A=30°,则∠A= ,∠B=
B
A

③在等腰三角形中,一个角是另一个角的2倍,求三个角?_______________________
④:在等腰三角形中,,周长为40cm,一个边另一个边2倍,求三个边?_________________ 例4 如图,D是△ABC的∠C的外角平分线与BA
的延长线的交点,求证:∠BAC>∠B
例5.ABC为等边三角形,D是AC中点,E是BC延长线上一点,且CE =
2
1BC 求证:BD = DE
一、选择题:
1.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()
A.150°
B.80°
C.50°或80°
D.70°
2.在△ABC中,∠A=50°,∠B,∠C的角平分线相交于点O,则∠BOC的度数是( ) A.65°B.115°C.130°D.100°
3.如图,如果∠1=∠2=∠3,则AM为△的角平分线,AN为△的角平分线。

二、填空题:
1、正二十边形的每个内角都等于。

2、一个多边形的内角和为1800°,则它的边数为。

2
C
3
N
M
B
1
A
E
D
C
A
3、n 多边形的每一个外角是36°,则n 是 。

4、多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有 条。

5、如果把一个多边形截去一个三角形,剩下的多边形的内角和是2160°,那么原来的多边形的边数
是 。

6、一多边形除一内角外,其余各内角之和为2570°,则这个内角等于 。

7、已知△ABC 中,则∠A + ∠B + ∠C = (度) 8、若AD 是△ABC 的高,则∠ADB = (度)。

9、若AE 是△ABC 的中线,BC = 4,则BE = =
10、若AF 是△ABC 中∠A 的平分线,∠A = 70°,则∠CAF = ∠ = (度)。

11、△ABC 中,BC = 12cm ,BC 边上的高AD = 6cm ,则△ABC 的面积为 。

12、直角三角形的一锐角为60°,则另一锐角为 。

13、等腰三角形的一个角为45°,则顶角为 。

14、在△ABC 中,∠A :∠B :∠C = 1:2:3,∠C = 。

15、如图,∠BAC=90°,AD ⊥BC ,则图中共有 个直角三角形;
16、△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB 若∠A=70°,则∠BOC= ;若∠BOC=120°,∠A= 。

三、解答题:
17、如图4,∠1+∠2+∠3+∠4= 度;
18、如图;ABCD 是一个四边形木框,为了使它保持稳定的形状,需在AC 或BD 上钉上一根木条,现量得AB=80㎝,BC=60㎝,CD=40㎝,AD=50㎝,试问所需的木条长
度至少要多长?
19.一天小明对同学说:“我的步子大,一步能走三米(即两脚着地时的间距有三米”。

有的同学将信将疑,而小颖说:“小明,你在吹牛”。

你觉得小颖的话有道理吗?
图4
A
B
C
D
A
B C
D E
20.图1-4-27,已知在△ABC 中,AB=AC ,∠A=40°,∠ABC 的平分线BD 交AC 于 D.
求:∠ADB 和∠CDB 的度数.
21.已知等腰三角形的周长是25,一腰上的中线把三角形分成两个,两个三角形的周长的差是4。

求等腰三角形各边的长。

22.已知:如图,点D 、E 在△ABC 的边BC 上,AD =AE ,BD =EC ,
求证:AB =AC
23.如图,已知在△ABC 中,AB=AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 与CE 相交于M
点。

求证:BM=CM 。

21. P 、Q 是△ABC 边上的两点,且BP=PQ=QC=AP=AQ ,求∠BAC 的度数。

.22。

如图,在△ABC 中,AB=AC ,点D 、E 分别在AC 、AB 上,且BC=BD=DE=EA ,求
A B C
D
E x
y
z
x y z A E
D C
B
∠A的度数。

23.、如图,BE、CD相交于点A,CF为∠BCD的平分线,EF为∠BED的平分线。

试探求∠F与∠B、∠D之间的关系,并说明理由。

E
D
A
F
C
B。

相关文档
最新文档