智能空调控制系统设计
智能空调自动控制教学系统设计
[ y rs Itlgn icn io ig atmainss m; s ;ne ain Kewod ] nel e t r o dt nn ; uo t t Dei It t i a- i o ye n g r g o
O 引言
随着 现代 建筑 的高速 发展 , 宇智 能化 控制 系 楼 统 在建筑 中 占据 了重要 的位 置 , 其 中 的暖 通 空调 而
收稿 E期:2 0.81 t 0 60.0
( )监控功能:采用 PD控制原理对空调机 2 I
组 实现变 频器 调节 及启 停控 制 、冷 热 水 阀控 制 、回 风 阀控制 、操 作参 数显 示 、显 示报 警等 监控 内容 。
维普资讯
第 2 卷 第 3期 1 2 0 年 9月 07
制 冷 与 空 调
Rerg r to n r n i o i g fi e a i n a dAi Co d t n n i
Vb . lNo 3 1 . 2
Se 2 p. 007 1 ~ 1 4 . 01 0
d s , f n t n l e u r me t , i t g a i no t e s se , t ec n t ci n o P a t a s e t. o t ec re ai n s e il e ei n g u c i a q i o r e ns n e r t f h y tm o h o sr t f r c il a p c s T o r lt p ca i d u o c h o z ta h n d tan n f a ec n tu to d t ec rea i n d sg e s n e , h ec r i d l i i c c . e c i g a i ig o b s o sr ci n a o lto e i p ro n l n r n h n s h a t e t nmo e g f a e a sn i n
基于机器学习的智能空调控制系统设计
基于机器学习的智能空调控制系统设计随着科技的发展,越来越多的智能家居产品呈现在我们眼前,而智能空调也成为了家庭生活中不可或缺的一部分。
基于机器学习的智能空调控制系统设计,成为了越来越受欢迎的研究方向。
本文将从机器学习、智能空调系统等方面阐述基于机器学习的智能空调控制系统的设计过程及其优势。
一、机器学习机器学习是人工智能领域的一个重要分支,其核心是通过算法学习规律,从而实现对特定任务的自动化处理。
在智能空调控制系统中,机器学习可以通过对用户行为的数据分析,预测用户的需求并自动调节空调参数,提高用户体验。
此外,机器学习还可用于空调故障检测、能耗预测等方面。
二、智能空调系统智能空调系统是一种相对于传统空调而言,更加智能高效的系统。
该系统通过智能化的算法控制机器运行,以便为用户提供最大限度的舒适度同时降低运行成本。
通过大数据算法对室内环境数据进行分析和处理,智能控制空调工作,实现节能降耗、自动调控等功能,增强用户体验。
三、机器学习在智能空调系统中的应用分析对于基于机器学习的智能空调控制系统,我们可以将其分为学习模型和智能算法应用部分。
学习模型通过对大量历史数据的分析,挖掘其中的规律,并根据特定的指标对数据进行分析和处理,提高系统的预测准确性和调控效率。
智能算法应用部分则是通过学习模型,运用预测算法、自适应控制算法等方法,实现空调的自动化调控。
具体而言,机器学习在智能空调系统中的应用包括:1.数据分析:对于室内环境数据,可以通过算法分析,得出室内温度、湿度、二氧化碳等数据,为调控提供数据支持。
2.用户行为分析:通过用户行为数据的分析,可以预测用户的需要,如夜间制冷需求。
3.空调调控:通过大数据分析和自适应控制算法,实现调控功能。
4.空调故障检测:通过监控用户行为和设备状态,实时监测故障状态,提供预警和处理意见。
五、结论基于机器学习的智能空调控制系统具有明显的优势,能够用算法优化控制部分,实现预测、自动化调节,并实现整体的智能化控制,以提高控制精度和用户体验。
暖通空调系统的智慧控制设计方案
暖通空调系统的智慧控制设计方案暖通空调系统的智慧控制设计方案随着物联网技术的不断发展,智能控制系统在各行各业都得到了广泛应用,暖通空调系统作为现代建筑中重要的组成部分,同样可以借助智慧控制技术实现更加智能化和高效化的运行。
下面将介绍一个基于物联网技术的暖通空调系统智慧控制设计方案。
一、传感器网络智慧控制系统的核心是建立一个传感器网络,通过传感器实时监测建筑内外环境的各项参数,包括温度、湿度、CO2浓度、光照强度等。
这些传感器可以分布在各个房间、走廊和室外空间,通过物联网技术连接到智慧控制系统的中枢控制中心。
二、数据采集与分析中枢控制中心负责接收传感器数据,并进行数据采集与分析。
通过对各项参数的收集和分析,系统可以实时了解建筑内外环境的变化情况,以及人员的行为和需求。
例如,如果某个房间的温度过高,系统可以通过降低空调温度或增加通风来调节;如果某个房间的光照过强,系统可以通过智能窗帘等设备进行调节。
此外,系统还可以通过算法预测未来的环境需求,提前进行调整,以实现更加高效的能源利用和舒适度。
三、智能控制设备为了实现智能化控制,需要配备智能控制设备。
这些设备可以根据中枢控制中心的指令进行自动调节,以实现舒适度和能耗的平衡。
例如,智能温度控制器可以根据不同的时间段和人员需求来自动调节温度,从而实现最佳的舒适度和能耗效果。
同时,智能窗帘和智能照明设备也可以根据中枢控制中心的指令进行自动调节,以实现照明和采光的最佳效果。
此外,系统还可以与智能家居设备进行连接,通过智能手机或语音助手来进行远程操控。
四、能耗监测与管理智慧控制系统还可以对能耗进行实时监测和管理。
通过对各个房间和设备的能耗数据进行采集和分析,可以了解能耗的分布和趋势,并根据需求进行调整。
通过智慧控制系统的集中管理,可以实现能源的最优利用,降低能耗和运营成本。
五、用户互动接口为了方便用户的操作和反馈,智慧控制系统需要提供友好的用户互动接口。
用户可以通过智能手机、平板电脑或PC等终端设备来进行操作,例如调节温度、打开窗帘、调节照明等。
中央空调智能节能控制系统设计与实现
中央空调智能节能控制系统设计与实现摘要:空调能耗正成为广大暖通设计者关注和研究的重要课题,本文分析了影响空调系统能源消耗的关键因素,并从系统的选择、设备的选配及系统的运行管理等方面提出了切实可行的空调节能方案,对空调系统的设计及运行管理中的节能具有一定参考价值。
关键词:中央空调;系统;设计;节能1.中央空调系统的构成1.1冷冻机组这是中央空调的“制冷源”,通往各个房间的循环水由冷冻机组进行“内部热交换”,降温为“冷冻水”。
1.2冷冻水循环系统由冷冻泵及冷冻水管道组成。
从冷冻机组流出的冷冻水由冷冻泵加压送入冷冻水管道,在各房间内进行热交换,带走房间热量,使房间内的温度下降。
从冷冻机组流出、进入房间的冷冻水简称为“出水”,流经所有的房间后回到冷冻机组的冷冻水简称为“回水”。
1.3冷却水循环系统由冷冻泵、冷却水管道及冷却塔组成。
冷冻机组进行热交换,使水温冷却的同时,必将释放大量的热量。
该热量被冷却水吸收,使冷却水温度升高。
冷却泵将升了温的冷却水压人冷却塔,使之在冷却塔与大气进行热交换,然后在将降了温的冷却水,送回到冷却机组。
如此不断循环,带走了冷冻机组释放的热量。
流进冷冻机组的冷却水简称为“进水”,从冷冻机组流回冷却塔的冷却水简称为“回水”。
1.4冷却风机冷却塔风机用于降低冷却塔中的水温,加速将“回水”带回的热量散发到大气中去。
可以看出,中央空调系统是工作过程室一个不断地进行热交换的能量转换过程。
在这里,冷冻水和冷却水循环系统是能量的主要传递者。
冷却水温度过高、过低都会影响冷冻机组使用寿命,因为温度过低影响机组润滑,但温度过高将导致制冷剂高压过高。
因此,对冷却风机的控制便是中央空调控制系统的重要组成部份。
变频控制冷却风机的转速使冷却水出水温度保持在28~30℃之间,既节能又延长冷冻机组使用寿命。
!中央空调系统的组成和控制思想中央空调与家用独立空调的温度传递方式不同:家用独立空调直接吹风到散热器上获得冷风或者热风。
空调自动控制系统软件设计及调试
空调自动控制系统软件设计及调试一、软件设计1.需求分析:首先需要明确用户对空调自动控制的需求,包括温度设定范围、湿度设定范围、日常工作时间等。
根据需求分析确定软件的功能模块。
2.系统架构设计:根据软件功能模块,设计系统的整体架构,包括用户界面模块、数据处理模块、控制策略模块等。
3.用户界面设计:设计用户友好的界面,让用户能够方便地操作和监控空调自动控制系统。
界面应包括温度、湿度显示、温度调节按钮、模式选择按钮等。
4.数据处理设计:根据用户设定的温度和湿度范围,对室内温度和湿度进行实时监测和处理。
如果温度或湿度超出设定范围,则进行相应的控制策略。
5.控制策略设计:设计空调的控制策略,包括温度和湿度的控制算法、设备启动和关闭的逻辑等。
控制策略应根据实际需求进行优化,以提高系统的能效和舒适性。
6.后台管理设计:设计数据库和日志记录功能,对空调自动控制系统的运行数据进行记录和管理,方便系统的运维和故障排查。
二、软件调试1.单元测试:对软件中各个模块进行单元测试,验证其功能的正确性。
可利用模拟数据进行测试,或者连接实际空调设备进行测试。
2.集成测试:将各个模块进行集成测试,验证模块之间的接口和数据传递是否正常。
测试包括正常场景和异常场景的模拟,以确保系统的稳定性和鲁棒性。
3.功能测试:对整个系统进行功能测试,测试用户界面的操作性、数据处理的准确性和控制策略的正常运行。
可通过模拟用户场景实现测试,或者实际将系统投入到使用中进行测试。
4.性能测试:测试系统对大规模数据的处理能力,如同时控制多个空调设备的运行等。
通过监测系统的响应时间和资源占用情况,评估系统的性能是否满足需求。
5.软件优化:根据测试结果,对系统进行优化,包括减少资源占用、提高响应速度等。
优化的目标是提高系统的稳定性和用户体验。
6.用户验收测试:将系统交付给用户进行验收测试,确保系统满足用户需求并符合设计要求。
总结:空调自动控制系统的软件设计和调试是一个复杂的过程,需要对用户需求进行详细分析,设计合理的系统架构,并进行多层次的测试和优化。
空调智能控制系统设计论文
空调智能控制系统设计论文随着社会的进步和人们生活水平的提高,人们越来越关注舒适度问题,空调作为现代化的通风设备,其在人们生活中的重要性也越来越受到广泛关注。
然而,传统的空调使用方式,不能完全满足人们对舒适度和节能方面的需求,而空调智能控制系统应运而生。
本文基于空调智能控制系统的设计,旨在提高空调的舒适度和节能性。
首先,文章阐述空调智能控制系统的概念、特点和意义。
其次,详细介绍空调智能控制系统所包含的模块及其功能。
最后,设计实现一份基于循环神经网络的温度控制算法,并进行实验验证,说明这种算法比传统PID算法更加适用于空调智能控制系统。
空调智能控制系统是指通过先进的技术手段,实现对空调系统的监控、控制和管理的一种综合性系统,它拥有以下几个特点:一是具有自适应性能,在不同的时间和环境下能够实现差异化的运行模式;二是具有智能化能力,在一定程度上完成自我学习和优化;三是具有联网性能,可以实现与其他系统的互联互通,建立用户与系统之间的紧密联系。
空调智能控制系统的实现有着广泛的应用,它可以在工业、民用、军事等领域发挥作用,特别是在现代住宅布局中,空调智能控制系统具有很大的市场前景。
因此,研究空调智能控制系统对于提高人们生活水平、节能减排、保护环境都有着十分积极的作用。
空调智能控制系统一般包括硬件和软件两个部分。
硬件方面,主要包括传感器、执行器、电路板、网络接口等组成;软件方面,主要包括控制系统、数据库、算法等组成。
其中,算法是空调智能控制系统最为核心的组成部分,直接决定了整个系统的性能。
本文所做出的改进主要是基于循环神经网络(RNN)的温度控制算法。
与传统的PID算法相比,RNN算法的优点在于能够克服传统PID算法对时间序列的固有限制,并且可以自适应地调整模型结构以适应不确定性因素的变化。
为了验证该算法的有效性,本文进行了一系列实验,结果表明循环神经网络算法的温度控制效果要远远高于传统的PID算法,减少空调能耗的效果极为明显。
空调自控系统设计方案(江森自控)
空调自控系统设计方案(江森自控)HVAC暖通空调自控系统技术方案设计书一、总体设计方案重庆博腾精细化工楼宇自控系统项目要求较高的智能化程度。
该项目包含大量的暖通空调机电设备,需要将它们有机地结合起来,实现集中监测和控制,提高设备无故障时间,为投资者带来明显的经济效益。
此外,需要使这些设备经济地运行,既能节能,又能满足工作要求,并在运行中尽快地体现效益。
最重要的是,需要将现代化的计算机技术应用于管理中,提高综合物业管理水平和效率。
该项目的暖通空调楼宇自动化控制系统的监测和控制主要包括冷站系统和空调机组系统。
本设计方案的主体思想是根据招标文件和设计图纸为准。
1.1 冷站系统1)控制设备内容根据项目标书要求,暖通自控系统将会对以下冷站系统设备进行监控:冷却水塔(2台):启停控制、运行状态、故障报警、手/自动状态。
冷却水泵(2台):启停控制、运行状态、故障报警、手/自动状态、水流开关状态。
冷却水供回水管路。
冷水机组(2台):供水温度、回水温度、启停控制、运行状态、故障报警、手/自动状态。
冷冻水泵(2台):启停控制、运行状态、故障报警、手/自动状态、水流开关状态。
冷冻水供回水管路。
分集水器。
膨胀水箱:供水温度、回水温度、回水流量。
分水器压力、集水器压力、压差旁通阀调节。
高、低液位检测。
有关系统的详细点位情况可参照所附的系统监控点表。
2)控制说明本自控系统针对冷站主要监控功能如下:冷负荷需求计算:根据冷冻水供、回水温度和回水流量测量值,自动计算建筑空调实际所需冷负荷量。
机组台数控制:根据建筑所需冷负荷自动调整冷水机组运行台数,达到最佳节能目的。
机组联锁控制:独立空调区域负荷计算根据Q=C*M*(T1-T2),其中T1为分回水管温度,T2为分供水总管温度,M为分回水管回水流量。
当负荷大于一台机组的15%时,第二台机组开始运行。
冷却水温度控制。
水泵保护控制。
机组定时启停控制。
机组运行状态监测。
以上是冷站系统的控制说明。
基于单片机的智能空调温度控制系统的设计
本毕业论文内容不涉及国家机密。
论文题目: 作者单位: 作者签名:
2.1 温度检测部分.......................................................................................................... 2 2.2 红外线检测部分...................................................................................................... 3 2.3 显示部分.................................................................................................................. 3 2.4 按键部分.................................................................................................................. 3
5.系统的调试与仿真....................................................................................... 17 6.总结和展望....................................................................................................20 参考文献...........................................................................................................20 附录................................................................................................................... 21 致谢................................................................................................................... 31
智能空调控制系统设计说明
智能空调控制系统设计说明一、引言智能空调控制系统是一种利用现代化技术对空调系统进行自动化控制的系统。
该系统通过搜集、分析和处理来自环境的多种数据,并根据用户需求和环境条件来控制空调设备的运行,以达到提高舒适性和节能的目的。
本文将详细介绍智能空调控制系统的设计。
二、系统设计1.系统架构感知层负责采集环境数据,包括室内温度、湿度、人体活动等;控制层根据数据分析结果进行设备的控制;应用层用于用户与系统的交互;管理层负责对系统进行监管和管理。
2.硬件设备智能空调控制系统的硬件设备包括传感器、执行器和控制器。
传感器负责感知环境数据,可以使用温湿度传感器、红外传感器等。
执行器用于控制空调设备的启停、温度调节等功能。
控制器是系统的核心,负责接收传感器采集的数据,进行数据分析和处理,并发送指令给执行器。
3.软件设计智能空调控制系统的软件设计主要包括数据处理、控制算法和用户界面设计三个方面。
数据处理模块负责接收传感器数据,对数据进行处理和分析,如计算温度差、人体活动检测等。
控制算法模块根据数据分析结果,确定空调设备的启停和温度调节策略。
用户界面设计模块提供用户操作界面,实现用户对系统的监控和控制。
三、系统功能1.温度控制系统根据用户设定的温度要求和环境实际情况,自动调节空调设备的工作模式、风速和温度等参数,实现室温控制。
2.舒适性优化系统可以根据传感器感知到的室内温度、湿度等数据,通过空调设备的调节实现舒适性的优化。
例如,在冬季,如果室内温度过低,系统会自动调高温度,提高室内舒适度。
3.能源管理系统可以通过数据分析,提供能源管理功能。
它可以监测室内外温度差异、节能设备的使用情况等,根据实际情况调整空调设备的工作模式和温度参数,以达到最佳的能源利用效果,降低能源消耗。
四、系统优势1.提高舒适性:系统可根据室内环境的实际情况智能调节空调设备的参数,提高室内舒适度。
2.节能减排:通过数据分析和优化控制算法,系统能够实现能源管理和节能减排,降低能源消耗。
物联网环境中的智能空调管理系统设计
物联网环境中的智能空调管理系统设计随着物联网技术的快速发展和智能家居的普及,智能空调管理系统在日常生活中扮演着越来越重要的角色。
本文将介绍物联网环境中的智能空调管理系统的设计原理、功能特点以及未来的发展趋势。
一、设计原理智能空调管理系统是基于物联网技术的一种智能化、自动化管理系统。
其设计原理主要包括感知采集、数据传输与处理、控制指令执行等三部分。
首先是感知采集部分,通过在空调设备中植入传感器和执行器,实现对环境参数的感知和采集。
这些传感器可以包括温度传感器、湿度传感器、二氧化碳传感器等,用于实时监测环境的温度、湿度和空气质量等参数。
其次是数据传输与处理部分,通过物联网技术将感知采集到的数据传输到云平台或者本地服务器。
数据传输可以采用无线网络,如Wi-Fi、蓝牙、ZigBee等,实现设备间的互联互通。
在云平台或者本地服务器上,对传输的数据进行分析和处理,生成环境数据的历史记录、趋势分析以及异常报警等。
最后是控制指令执行部分,根据环境数据的分析和处理结果,生成相应的控制指令,通过执行器对空调设备进行远程控制。
控制指令可以包括温度设定、风速调节、开关机等操作,实现对空调设备的智能控制。
二、功能特点智能空调管理系统在物联网环境中具备以下功能特点:1. 远程控制:用户可以通过手机应用或者网页等终端设备远程控制空调设备,实现随时随地的智能控制。
2. 自动调节:系统可以根据环境参数的变化和用户的习惯进行自动调节。
比如,在用户离开家时,系统可以自动关闭空调设备,节约能源;当用户即将到达家时,系统可以提前开启空调,提供舒适的环境。
3. 能耗监测:系统可以实时监测空调设备的能耗情况,并提供统计报表和能耗分析,帮助用户合理使用空调,降低能耗。
4. 多设备联动:系统可以将多个空调设备进行联动控制,实现不同房间之间的协同工作,提供更加舒适和节能的环境。
5. 提醒与报警:系统可以通过短信、邮箱等方式提醒用户更换空调滤网,以及进行异常报警,如温度过高、湿度异常等,确保用户能及时了解设备状况。
智能化中央空调节能控制系统设计
智能化中央空调节能控制系统设计摘要:随着经济和社会的发展,中央空调在商业和民用建筑中的应用越来越广泛,中央空调是现代建筑中不可缺少的能耗运行系统。
中央空调系统在给人们提供舒适的生活和工作环境的同时,又消耗掉了大量的能源。
本文作者根据多年工作的经验,针对智能化中央空调控制设计方面做了分析,探讨和总结。
关键词:智能化;中央空调;节能控制;设计一前言随着设备功率和数量的增加,其能耗也不断增大。
据统计,我国建筑物能耗约占能源总消耗量的30%。
在有中央空调的建筑物中,中央空调的能耗约占总能耗的70%,而且呈逐年增长的趋势,因此,研究中央空调系统节能技术意义重大,除了强调使用功能完善外,还应重视节能因素,降低投资、运行费用。
二中央空调节能理论分析中央空调系统有制冷主机、冷却泵、冷冻泵、冷却塔风机、风机盘管等构成。
构成示意图如图1图一其中制冷主机通过压缩机让制冷剂迅速冷冻循环水的温度快速降低(一般经过制冷主机制冷后的水温在7℃左右),是中央空调冷源提供的场所;冷冻水泵负责把冷冻水加压到空调系统末端系统;冷却水通过冷却水泵把制冷主机所产生的热量带走,再经过冷却塔把热量释放到空气中,然后回到冷水机组;冷却风机带动空气加速运动,通过空气带走冷却水的热量的同时加快蒸发,让水温降低。
温度降低后的冷却水再次循环进入制冷主机,带走制冷主机产生的废热,如此循环。
在该系统中制冷主机往往具备自动调节出水温度的自动控制系统,这样只要合理调节冷冻水泵、冷却水泵、冷却塔风机的运行频率、运行台数就可以达到高效节能的目的,其理论分析如下、根据流体力学原理, 在相似工况下运行时的参数存在以下关系:(1)其中: Q1、H1、N1、n1: 分别为转速改变前的流量、扬程、功率、转速;Q2、H2、N2、n2: 分别为转速改变后的流量、扬程、功率、转速。
根据上面公式可以看出,当电机转速下降时,流量按线性关系变化,而电功率按立方关系方式变化,那么根据上面的公式分析,如果我们能根据负载情况实时改变电机的转速即可达到节能的目的。
智能空调控制系统的设计与研究
智能空调控制系统的设计与研究摘要:随着科技的发展和人们对舒适度要求的提高,智能空调控制系统在家庭和工业领域的应用越来越广泛。
本文将详细介绍智能空调控制系统的设计与研究,通过对智能空调控制系统需求的分析,论文设计了硬件设计和软件设计,并应用了智能算法来实现对空调系统的智能化控制。
此外,论文还对系统进行了测试和优化,并评估了其性能。
该智能空调控制系统可以提高能源效率、提高室内舒适度和降低能耗。
关键词:智能空调;控制系;硬件设计;软件设计1 引言随着科技的发展和人们对生活品质要求的提高,智能家居系统的应用越来越广泛。
然而,传统的空调系统存在一些问题,如能源利用率低、噪音大、温度不均匀等。
此外,用户需要手动调节空调运行状态,使用起来不够方便。
因此,研究一种智能化的空调控制系统具有重要意义。
智能空调控制系统是至关重要的一部分。
它可以实现对空调设备的智能化控制,从而提高能源效率、提高室内舒适度和降低能耗。
本文将详细介绍智能空调控制系统的设计与研究,主要包括以下十一个方面。
2 系统概述智能空调控制系统是一种集成了先进传感器技术、自动控制技术、人工智能算法和互联网通信技术的智能化设备。
通过对其工作原理及结构的了解,我们可以更好地理解其与传统空调设备的区别。
首先,智能空调控制系统具有更高的能源效率,它可以根据室内环境自动调节空调设备的工作状态,以保持室内环境的舒适度,同时减少能源的浪费。
其次,智能空调控制系统还具有更高的智能化程度,它可以通过互联网与用户的手机、电脑等设备进行连接,用户可以通过这些设备远程控制家中空调设备的工作状态,从而实现智能化的控制。
3 系统需求分析在智能空调控制系统的设计过程中,首先需要对系统需求进行分析。
这包括明确控制目标,例如温度、湿度、空气质量等,以及被控对象的特性,例如空调设备的性能、室内外环境等。
此外,还需确定系统的输入输出特性,如传感器、执行器等。
4 硬件设计智能空调控制系统的硬件设计主要包括主控芯片的选择、电路设计、传感器选择等部分。
智能空调控制系统的设计与研究
91电子技术Electronic Technology电子技术与软件工程Electronic Technology & Software Engineering近几年,随着生活水平的不断提高,种类繁多的智能家居逐渐进入人们的视野[1-3]。
数据显示,2020年中国家庭智能家居配置率较上年增加15.1%,达到84.2%。
智能家居正成为越来越多家庭的“标配”。
从互联网科技企业小米、华为、苹果到传统家电企业美的、海尔智家甚至房地产企业恒大,智能家居已经成为各家企业的抢占市场份额的必备工具。
海尔推出了“三翼鸟”、华为致力打造“华为全屋智能”,其宗旨都是从生活的方方面面打造智慧家庭生活方式。
智能家居的引入使人们可以通过远程终端对电器进行控制,增加了设备使用的灵活性及方便性。
本文主要探讨智能空调远程控制系统的设计与研究,众所周知,使用遥控器开空调需要在回到家之后,而家中夏天热、冬天冷,造成用户的体验不好。
通过本设计实现使用移动客户端对家用空调的远程控制,使用户在未回家,离家不远的地方提前打开空调,从而创造更好的家居环境。
同时,由于家中遥控器越来越多,难免存在丢失、弄混等现象,而使用移动客户端控制则可以避免这些问题。
1 系统设计方案本系统由ESP8266开发板、温湿度传感器、手机端APP 以及模拟空调工作的继电器组成。
通过温湿度传感器探测外界温湿度,实时显示在手机APP 界面。
使用者可以在手机APP 中设置自已需要的温度,系统根据用户所设温度与实时温度的差值触发空调的升温、降温(用继电器模拟),最终使环境温度达到设定值。
系统整体构架如图1所示。
2 硬件电路设计2.1 ESP8266 Wi-Fi模块ESP8266Wi-Fi 芯片是一款由乐鑫公司生产的面向物联网的高性能、高集成度的Wi-Fi 芯片[4]。
芯片内置超低功耗 Tensilica 32位RISC 处理器,CPU 时钟速度最高可达160MHz ,支持实时操作系统 (RTOS) 和Wi-Fi 协议栈,可将高达80%的处理能力留给应用编程和开发。
基于AT89S52的智能空调控制系统的设计
万方数据
模拟信号转换成8位的数字信号,通过并口传送到单片机系
向阀(控制阀)及毛细管组成。主阀内由滑块、活塞组成活动
统(AT89S52)。单片机系统将接收的数字信号译码处理,通过
阀芯,主阀阀体两端有通孔可使两端的毛细管与阀体内空间
基
LED数码管将温度显示出来。同时单片机系统还将完成键盘
相连通,滑块两端分别固定有活塞,活塞两边的空间可通过
参考文献 【1 J栾广文.OP7×7单电源精密运算放大器[J].内蒙古
煤炭经济,2005,(1):38-41. [2]刘振全.集成温度传感器AD590及其应用[J].传感
器世界,2003,(03):39-41,31. I 3J朱兵,周旭艳,彭宣戈.一种基于单片机的热处理炉
温度控制系统【J].微计算机信息,2007。(29):91"-93.
小工作 不工作
4结束语 本文设计使用高精度集成温度传感器与单片机控制,对
空调进行智能化设计,满足人们对空调系统的人性化要求, 设计原理简单,实现方便,智能空调可广泛应用于家庭、车 站、办公室等室内场所,将成为人们日常生活中不可缺少的 智能家用电器。由于单片机技术的发展和空调的广泛应用与 普及,其操作简单方便、造价低以及能有效控制空调的工作 状态到高效节能的特点,符合现代节约型经济社会的发展需 求,因此,具有较高的使用价值和市场价值。
2.期刊论文 张国勇.柴洪涛.苗长云 基于Labview的串口多点温度测量系统 -硅谷2010(4)
系统利用DS18B20数字温度传感器和Atmel公司的AT89S52单片机设计成智能温度采集模块,由多个采集模块组成多点温度测量系统采集环境温度,测得 数据经串口传送给计算机.创新之处是采用虚拟仪器技术,利用LabVIEW软件编写相应软件,控制各采集模块进行温度采集,串口的数据传输,然后对数据处 理和显示.
智能空调控制系统设计与优化研究
智能空调控制系统设计与优化研究智能空调控制系统设计与优化研究旨在通过应用先进的技术和方法,提高空调系统的能效和舒适性。
本文将对智能空调控制系统的设计原理、优化方法以及应用前景进行详细探讨。
一、智能空调控制系统设计原理智能空调控制系统设计的核心是通过感知环境的变化和用户需求,并根据预设的算法和模型进行智能化的控制。
主要的设计原理可以分为以下几个方面:1. 传感器技术:智能空调控制系统需要通过传感器获取室内的温度、湿度、二氧化碳浓度等环境参数。
常用的传感器包括温度传感器、湿度传感器和气体传感器等。
2. 数据采集和处理:通过传感器获取的环境参数需要进行采集和处理,将数据转化为计算机可处理的形式。
常用的数据采集和处理方法包括模数转换和滤波等。
3. 模型与算法:智能空调控制系统需要建立合适的数学模型和算法,通过对环境参数和用户需求进行分析和预测,实现自动化的控制。
常用的模型和算法包括PID控制、模糊控制和神经网络控制等。
4. 执行机构:智能空调控制系统需要通过执行机构控制空调的运行状态,包括调节风速、开关机和调节温度等。
常用的执行机构包括风机和阀门等。
二、智能空调控制系统优化方法为了提高智能空调控制系统的能效和舒适性,可以采用以下几种优化方法:1. 能源管理:通过优化空调的能源利用,减少能耗和排放。
可以采用具有变频调速功能的压缩机和风机,根据实际需求调节运行功率和运行时间,以降低能耗。
2. 负荷预测:通过对室内外环境参数和用户需求进行分析和预测,提前调整空调系统的运行状态,以适应变化的负荷需求。
可以采用神经网络和模糊控制等方法进行负荷预测和优化。
3. 舒适性控制:通过对室内风速、温度和湿度等参数的精确控制,提高用户的舒适感。
可以采用模糊控制和神经网络等方法,根据用户的需求和偏好进行智能化的舒适性控制。
4. 联网与远程控制:通过将智能空调控制系统与互联网相连,实现远程控制和监测。
用户可以通过手机APP或者网页等方式,随时随地对空调系统进行控制和调节,提高使用的便捷性和灵活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。
在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,加以完善。
本系统采用单片机STC89C52为中心器件来设计智能空调控制系统,系统实用性强、操作简单、扩展性强。
他能给人们的生产和生活带来方便,可以节约能源,广泛应用于家庭、车站、办公室和其它室内场所。
关键词:STC89C52;数码管;智能空调控制;串口传输目录设计要求: (1)1 方案设计与比较论证 (1)1.1方案一 (1)1.2方案二 (1)1.3方案对比与选择 (2)2 系统硬件电路设计 (2)2.1主控芯片 (3)2.2键盘电路的设计 (5)2.3 显示电路 (6)3 系统程序设计 (6)3.1主程序 (6)3.2键盘扫描子程序 (7)3.3显示子程序 (8)3.4串口中断服务程序 (8)4 调试及性能分析 (9)4.1 硬件调试 (9)4.2 软件调试 (9)5 总结与致谢 (9)6 参考文献 (11)7 附录一系统电路原理图 (12)8 附录二:系统电路PCB图 (13)9 附录四系统程序 (14)设计要求:1、设置自动、制冷、加热和换气四种模式,通过一个模式按键进行模式切换2、设置2个按键,分别用来增加或减少温度值的设置3、能实现温度设定,最高温度限制为30℃,最低温度限制为16℃,温度调整范围为1℃4、可通过电脑进行远程设置(串口实现)1方案设计与比较论证1.1方案一利用89C52的P1,P2两个口的16个引脚实现16个按键的独立式键盘的线路的连接。
16个按键经上拉电阻拉高后,分别接到单片机的P1口和P2口的8条I/O 线上。
在无键按下情况下,这16各引脚线上输入均为高电平,当有键按下时,与被按键相连的I/O线将得到低电平输入,其他位按键的输入线上仍维持高电平输入。
16个控制16种不同的声音。
这种方案简单易控制,但缺点是占用太多的I/O 口。
1.2方案二利用可编程并行口8255芯片的PC口的8个引脚,即低4位作为回送线,高4位作为扫描线,来实现4*4矩阵式键盘的线路的连接,并且可以通过三极管来驱动数码管显示键码值,同时89C52可以控制发光二极管的控制。
这种键盘适合采用动态扫描的方式进行识别,即如果采用低电平扫描,回送线必须被上拉为高电平;如果采用高电平扫描,则回送线需被下拉为低电平。
这样使用一个8位I/O口(行、列各用4位)即可完成控制。
这种方案优点是使用较少的I/O口线可以实现对较多的键的控制。
1.3方案对比与选择经过对比分析,便于更多的扩展空间,需要更多闲置的I/O口,所以我们选择了方案2,以更少的I/O口实现更多键盘控制。
下图为硬件系统整体设计框图:图1 硬件系统总体设计框图2系统硬件电路设计该电路采用AT89C52单片机最小化应用设计,采用共阳7段LED数码管显示,8255芯片扩展I/O口,6个数码管位选端连接8255的PA口,段码输入端并联接入PB口;4*4矩阵键盘8根线接PC口:行线接PC.0~PC.3,列线(扫描线)接入PC.4~PC.7。
在4*4矩阵键盘设计中,8255PA口输出数码管显示位选,PB口输入显示段码数据;显示部分中,PC高四位作扫描线,低四位作回送线。
为提供共阳LED数码管列扫描驱动电压,用三极管9012作电源驱动输出。
2.1主控芯片AT89C52是美国Atmel公司生产的低电压、高性能CMOS 8位单片机,片内含8KB的可反复檫写的程序存储器和12B的随机存取数据存储器(RAM),器件采用Atmel公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内配置通用8位中央处理器(CPU)和Flash存储单元,功能强大的AT89C52单片机可灵活应用于各种控制领域。
其主要工作特性是:片内程序存储器内含8KB的Flash程序存储器,可擦写寿命为1000次;片内数据存储器内含256字节的RAM;具有32根可编程I/O口线;具有3个可编程定时器;中断系统是具有8个中断源、6个中断矢量、2个级优先权的中断结构;串行口是具有一个全双工的可编程串行通信,来构成单片机的最小电路。
AT89S52是一种低功耗、高性能CMOS8位微控制器,具有8K 在系统可编程Flash 存储器。
使用Atmel 公司高密度非易失性存储器技术制造,与工业80C51 产品指令和引脚完全兼容。
片上Flash允许程序存储器在系统可编程,亦适于常规编程器。
8255A芯片(1)与CPU的接口电路与CPU的接口电路由数据总线缓冲器和读/写控制逻辑组成。
数据总线缓冲器是一个三态、双向、8位寄存器,8条数据线D7~D0与系统数据总线连接,构成CPU与8255A之间信息传送的通道,CPU通过执行输出指令向8255A 写入控制命令或往外设传送数据,通过执行输入指令读取外设输入的数据。
读/写控制逻辑电路用来接收CPU系统总线的读信号RD,写信号WR,片选择信号CS,端口选择信号A1,A0和复位信号RESET,用于控制8255A内部寄存器的读/写操作和复位操作。
(2)内部控制逻辑电路内部控制逻辑包括A组控制与B组控制两部分。
A组控制寄存器用来控制A口PA7~PA0和C口的高4位PC7~PC4;B组控制寄存器用来控制B口PB7~PB0和C口的低4位PC3~PC0。
它们接收CPU发送来的控制命令,对A, B, C 3个端口的输入/输出方式进行控制。
(3)输入/输出接口电路8255A片内有A, B, C 3个8位并行端口,A口和B口分别有1个8位的数据输出锁存/缓冲器和1个8位数据输入锁存器,C口有1个8位数据输出锁存/缓冲器和1个8位数据输入缓冲器,用于存放CPU与外部设备交换的数据。
对于8255A的3个数据端口和1个控制端口,数据端口既可以写入数据又可以读出数据,控制端口只能写入命令而不能读出,读/写控制信号(RD,WR)和端口选择信号(CS, A1和A0)的状态组合可以实现A, B, C 3个端口和控制端口的读/写操作。
图2 AT89C52芯片引脚图图 3 8255A芯片引脚图2.2键盘电路的设计整个系统按键包括加减温度键(+、-)、电源开关以及模式切换键(model),共4个键。
为了节约微处理器的I/O接口资源,把键排列成矩阵形式,这样可以更合理地利用硬件资源。
键盘只简单地提供按键开关的行列矩阵。
有关按键的识别、键码的确定与输入、去抖动等功能均由软件完成。
识别键盘上哪个键被压下的过程的扫描步骤:(1).检测是否所有键都都松开了,若没有则反复检测。
(2).但所有键都松开了,再检测是否有键压下,若无键一下则反复检测。
(3).如有键压下,要消除键抖动,确认有键压下。
(4).对压下的键进行编码,将该键的行列信号转换成16 进制码,由此确定哪个键被压下了。
如出现多键重按的情况,只有在其它键均释放后,仅剩一个键闭合时,才把此键当作本次压下的键。
(5).该键释放后,再回到2。
图4 键盘电路2.3显示电路动态显示中,任意时刻虽只有一位显示器被点亮,但当一个循环周期小于人的视觉暂留时间时,看上去与全部显示器持续点亮的效果相同。
从而提高数码管的利用效率,所以采用LED动态显示接口技术。
设计要求显示空调工作模式(英文)和温度(16~30),所以需6个LED数码管。
图5 显示电路3系统程序设计3.1主程序主程序包括初始化部分和循环部分,循环调用显示子程序、扫键子程序、及控制键判断模块,且有串口中断时响应串口中断服务程序。
当有控制键按下或发生串口中断时,根据键值或传送值转入相应控制功能子程序,主程序执行流程图如图:图6 主程序流程图3.2键盘扫描子程序在硬件基础上,采用扫描法来确定键值。
将PC口高四位(扫描线)依次置高,分别读低四位(回送线),然后与键码数组keytab[ ]中的值比较,以此确定按键的值。
键值作为函数返回值返回。
在本系统设计里,我们只需4个按键,故键盘扫描比较简单,只需扫描列线中的一列就可以判断按键值。
功能键包括加减温度键(+、-)、电源开关以及模式切换键(model),共4个键。
加减温度键对应键值分别为0/4,电源开关键/工作模式键键值分别为12/8。
键盘扫描子程序流程图如图7.图7键盘扫描子程序流程图图8显示子程序流程图3.3 显示子程序采用动态扫描法显示。
在初始化模块中定义一个显示缓冲区(6个字节),存放要显示的数字或字符,创建一个数据表,存放相关数字和字符的显示段码。
显示时,先取显示缓冲区中的数字,在段码查询表中查得对应的显示段码从依次PB 口输出,而PA 依次对相应数码管选中供电,不断循环,只要1S 内每个数码管能被点亮50次以上,就能稳定显示数组a[]中所有数据。
显示程序流本系统设计中要显示的内容为:模式+温度。
模式包括自动、制冷、加热、换气四种,分别用英文单词简写AU (auto )、 CO (cool )、HO (hot )、CH (change )表示。
温度范围为16~30.3.4 串口中断服务程序串口中断程序负责接收控制端PC 的控制信号,类似遥控器控制,不过条件限制,这里采用USB 线传输控制信号。
具体控制信号为加/减键,对应信号值为1/2, 模式1、模式2、模式3、模式4的控制信号值分别为3、4、5、6.当一个控制信号(16进制1~6控制端发送完毕,产生接收中断,接收标志RI置1,转入串口中断服务程序:先利用堆栈保护现场,然后从接收缓冲寄存器SBUF读取控制信号,接下来再恢复现场,返回。
4调试及性能分析4.1硬件调试硬件调试时可先检查印制板及焊接的质量情况,在检查无误后可通电检查LED 显示的点亮状况。
若亮度不理想,可以调节P0的电阻大小,一般情况下取下200欧电阻即可获得满意的效果。
实验室制作时,可结合示波器测试晶振P0,P2端口的波形情况进行综合硬件测试分析。
4.2软件调试软件调试在keil c51编译器下进行,源程序编译及仿真调试以子程序为单位逐个进行。
调试点主要为键盘去抖时间,去抖时间太长,会导致按键丢失,太短又会造成多次读键。
经过调试,我们的键盘去抖时间定为200ms。
5总结与致谢在这次智能空调控制系统设计的过程中,我学到了很多东西,特别是手能力,这是我们以前没有的锻炼机会。
我们将以前学过的知识总结在一起,经过我们长时间的设计及调试,本系统基本能实现自动、制冷、加热和换气四种模式,通过一个模式按键进行模式切换我的综合设计主要涉及硬件和软件两方面的内容,通过这些我的硬件和软件开发能力都获得了提高。
首先硬件方面,基本了解了电子产品的开发流程和所要做的工作。
基本掌握了Protel99SE原理图的方法,并设计了一个单片机最小系统。