罗茨风机的变频改造节能技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究罗茨风机的变频改造节能技术摘要:罗茨鼓风机具有使用寿命长、动力平衡性好、气流速度均匀并且机械效率高等诸多优点,广泛应用于冶金、化工、化肥、石化、仪器、建材等行业,深受用户青睐,为国民经济发展和人们生活水平提高带来了巨大的利益,加强罗茨风机的变频改造节能技术的研究是十分必要的。本文作者根据多年来的工作经验,以山东阳谷祥光铜业熔渣炉所用罗茨风机:l94wdq=275m2/min(临沂风机厂)为例,对罗茨风机的变频改造节能技术进行了研究,具有重要的参考意义。
关键词: 罗茨风机; 变频改造; 节能
中图分类号:te08 文献标识码:a 文章编号:
1.引言
风机根据其工作原理,大致可分为离心式风机和容积式风机。离心式风机依靠转子叶片与气流相互作用将机械能转变为气体的压力
和动能,而容积式风机则是依靠转子容积的改变,将原动机的机械能变为气体的压力和动能。容积式风机又分为罗茨风机和叶氏风机。与其它同类风机相比,罗茨鼓风机具有使用寿命长、动力平衡性好、气流速度均匀并且机械效率高等诸多优点,广泛应用于冶金、化工、化肥、石化、仪器、建材等行业,深受用户青睐,为国民经济发展和人们生活水平提高带来了巨大的利益,加强罗茨风机的变频改造节能技术的研究具有重要的意义。
2 罗茨风机的特性
罗茨风机为容积式风机,如图 1 所示,输送的风量与转数成比例,三叶型叶轮每转动一次由 2个叶轮进行 3 次吸、排气,在 2 根平行的轴上设有2 个三叶型叶轮,轮与椭圆形机箱内孔面及各叶轮三者之间始终保持微小的间隙,由于叶轮互为反方向匀速旋转,使箱体和叶轮所包围着的一定量的气体由吸入的一侧输送到排出的一侧。各支叶轮始终由同步齿轮保持正确的相位,不会出现互相碰触现象,因而可以高速化,不需要内部润滑,而且结构简单,运转平稳,振动小,噪声低,性能稳定,适应多种用途,已广泛运用。
罗茨风机运行特性的最大特点是其容积回转特性,可以近似认为风机所能达到的最大压力与转速无关,即不同转速下所能达到的最大压力维持不变,流量与转速成正比。因此,将罗茨风机看成恒转矩负载。
3 罗茨风机变频改造效果分析
由于罗茨风机的恒转矩负载特性,相应的罗茨风机系统属于典型的恒压输出系统,因此恒压控制后系统运行在恒转矩变流量状态。
在采用变频调速,且系统流量需减小时,降低罗茨风机转速,使罗茨风机在规定压力下低流量点运行。罗茨风机的输入功率与流量成近似线性关系,如图 2 所示。因此,罗茨风机进行变频改造后的节能效果主要决定于所运行流量的大小,罗茨风机的耗电量与流量成正比。
对于全速工频运行的系统,通过调节进风阀门开度来调节流量,则进风风阻增加,使输入的风压降低,产生大量的电能浪费;若采用
输出排风方法调节输出流量,排出的风也同样浪费,造成电能的浪费。因此,采用变频恒压控制改造后可降低罗茨风机的运行转速,减少电消耗,实现节能。
系统改造后还可使系统实现软起动、软停止,减少系统起动对电网的冲击,减少系统起动次数,运行平稳;由于罗茨风机运行转速的降低,减少了机械磨耗,延长了电机和罗茨风机的使用寿命。
系统若采用压力闭环控制方案改造,可实现全自动控制,真正实现无人值守。
4 罗茨风机变频改造后节能量计算
目前罗茨风机在应用时,调节方式有两种,一种是罗茨风机的输入口有阀门调节或输入流量受限制造成流量不均衡,另一种是采用输出侧直接放风的方式。在这里对两种方式分别进行变频改造节能效果分析。根据罗茨风机的负载特性,由于罗茨风机效率较高,这里忽略损耗。
4. 1 基本计算公式
式中:pw———风机消耗的电功率;
u———电压;
cos φ———功率因素;
q———流量;
η———风机效率;
i———电流;
p———压力;
k———常数。
4. 2 输入侧调节方式变频改造节能分析计算
对于罗茨风机的应用场合来说,工艺要求压力、流量恒定。由于改造前采用进风口阀门调节,降低了输入的风压,因此罗茨风机的进风和出风的压差保持不变:
采用变频调速后要保证流量不变,但由于罗茨风机的进风压力升高,进风和出风的压差变小,根据式(2)可知,罗茨风机的消耗功率将随压力增加量的降低而降低,因此节电率为
式中:pw节流———节流运行时的电功率;
py节流———节流运行时的压差;
pw变频———变频运行消耗的功率;
py变频———变频运行时的压差。
根据理想状态方程,假定节流不影响输入风的温度,则阀门开放的面积比等于进风压力比,即:
式中:s节流———节流运行时的阀门开放截面积;
s———进风管截面积。
因此,由式(4)、(5)可得:节电率 = 1 - kf
4. 3 输出侧调节方式变频改造节能分析计算
系统在工频下运行,由于改造前采用出口放风阀门来调节,因此可认为罗茨风机电机运行在额定工作状态。采用变频调速后要保证使用流量不变,关闭排风阀门后,罗茨风机的消耗功率与额定流量的比值为
式中:pe———工频运行时的电功率;
p变频———变频运行消耗的功率;
qy———生产线需要的流量;
qe———罗茨风机的额定流量。
因此节电率为
在实际计算时,一般很难得到需要的流量数值,因此通过上述计算方法很难计算出节电率,但很容易得到输送管道的管径、排风管的管径和排放管阀门的开度,因此可得到:
式中:dy———罗茨风机输出管管径;
dp———排风管管径;
kp———排放管阀门开度。
在上述计算中未考虑系统损耗等情况,以上是理论计算值,实际工况比上述计算复杂得多,因此节能率要比计算值低些。
5 冶金行业罗茨风机变频改造实例
阳谷祥光铜业熔渣炉生产线上的罗茨风机是主要的耗能设备,其风量是按工艺要求进行调节的。以前的溶渣炉通过采用调节进风口或放风口挡板开起度的方法来满足工艺要求。由于该方法是以增大风阻或牺牲风机效率来达到要求的,即以增大耗能为代价取消风量的粗调,同时过剩的风量向空中排放,又加重了环境污染,诸多弊端一直困扰着该厂。该厂风机型号:l94wdq=275m2/min参数:
l94wdq=275m3/min,转速580r/min,升压29.4kpa,配用功率185kw。
5. 1 选用变频器时的有关要求