matlab雅克比迭代法算例

合集下载

matlab:jacobi迭代法工具箱

matlab:jacobi迭代法工具箱

8 %u为线性方程组的解
9 %n为求出所有精度的解实际的迭代步数
10 if nargin==3
11 eps=1.0e-10;
12 M=200;
13 elseif nargin<3
14 error
15 return
16 elseif nargin==5
17 M=varargin{1};
18 end
19 D=diag(diag(A));%求A的对角矩阵
matlab: jacobi迭代法工具箱
1 function [u,n]=Jacobi(A,b,u0,eps,varargin)
2 %Jacobi.m函数为用于雅可比迭代法求解线性方程组
3 %A为线性方程组的系数矩阵
4 %b为线性方程组的常数向量
5 %u0为迭代初始向量
6 %eps为解的精度控制
7 %varargin为迭代步数控制
29 n=n+1;
30 % if (n>=M)
31 %
disp('Warning:迭代次数太多,可能不收敛!');
32 %
return;
33 % end
34 end
20 L=-tril(A,-1);%求A的下三角阵
21 U=-triu(A,1);%求A的上三角阵
22 B=D\(L+U);
23 f=D\b;
24 u=B*u0+f;
25 n=1; %迭代次数
26 while norm(u-u0)>=eps & n<=1000
Hale Waihona Puke 27 u0=u;28 u=B*u0+f;
1functionunjacobiabu0epsvarargin2jacobim函数为用于雅可比迭代法求解线性方程组3a为线性方程组的系数矩阵4b为线性方程组的常数向量5u0为迭代初始向量6eps为解的精度控制7varargin为迭代步数控制8u为线性方程组的解9n为求出所有精度的解实际的迭代步数10ifnargin311eps10e10

用matlab求解线性方程组

用matlab求解线性方程组

用matlab 解线性方程组电子科技大学摘要:利用matlab 软件编写程序,分别利用雅克比迭代法和高斯赛德尔迭代法、列主元高斯消去法,改进平方根法求解不同方程组,其中对于雅克比迭代法和高斯赛德尔迭代法在收敛条件相同的情况下,比较两者的迭代次数,对于,列主元高斯消去法和改进平方根法,要求解出方程组的根。

关键词:雅克比迭代法;高斯赛德尔迭代法;列主元高斯消去法;改进平方根法引言:众所周知,在数学物理方程中,当涉及到解方程组的时候,按照常规的计算方法计算量很大,这样,就涉及到了计算方法的问题,算法里面,很多涉及到矩阵转换,经过处理,可以让我们简便的计算根,而matlab 是一个处理矩阵方程组很便利的软件,下面就是用几种不同的方法解方程组。

正文:一、雅克比迭代法和高斯赛德尔迭代法 1雅可比迭代法原理: 设线性方程组b Ax =的系数矩阵A 可逆且主对角元素nn a ,...,a ,a 2211均不为零,令()nn a ,...,a ,a diag D 2211=并将A 分解成()D D A A +-= 从而(1)可写成 ()b x A D Dx +-= 令 11f x B x +=其中b D f ,A D I B 1111--=-=. 以1B 为迭代矩阵的迭代法(公式)()()111f x B x k k +=+称为雅可比(Jacobi)迭代法(公式),用向量的分量来表示,则为⎩⎨⎧[],...,,k ,n ,...,i x a ba xnij j )k (j j i iii)k (i21021111==∑-=≠=+其中()()()()()Tn x ,...x ,x x 002010=为初始向量.由此看出,雅可比迭代法公式简单,每迭代一次只需计算一次矩阵和向量的乘法.在电算时需要两组存储单元,以存放()k x 及()1+k x . 2高斯赛德尔迭代法原理由雅可比迭代公式可知,在迭代的每一步计算过程中是用的全部分量来计算的所有分量,显然在计算第i 个分量时,已经算出最新的分量,但没被利用。

#数值分析Matlab作业

#数值分析Matlab作业

数值分析编程作业2012年12月第二章14.考虑梯形电阻电路的设计,电路如下:电路中的各个电流{i1,i2,…,i8}须满足下列线性方程组:121232343454565676787822/252025202520252025202520250i i V R i i i i i i i i i i i i i i i i i i i i -=-+-=-+-=-+-=-+-=-+-=-+-=-+=这是一个三对角方程组。

设V=220V ,R=27Ω,运用追赶法,求各段电路的电流量。

Matlab 程序如下:function chase () %追赶法求梯形电路中各段的电流量 a=input('请输入下主对角线向量a='); b=input('请输入主对角线向量b='); c=input('请输入上主对角线向量c='); d=input('请输入右端向量d='); n=input('请输入系数矩阵维数n='); u(1)=b(1); for i=2:nl(i)=a(i)/u(i-1); u(i)=b(i)-c(i-1)*l(i); endy(1)=d(1); for i=2:ny(i)=d(i)-l(i)*y(i-1); endx(n)=y(n)/u(n); i=n-1; while i>0x(i)=(y(i)-c(i)*x(i+1))/u(i); i=i-1;end x输入如下: >> chase请输入下主对角线向量a=[0,-2,-2,-2,-2,-2,-2,-2]; 请输入主对角线向量b=[2,5,5,5,5,5,5,5];请输入上主对角线向量c=[-2,-2,-2,-2,-2,-2,-2,0]; 请输入方程组右端向量d=[220/27,0,0,0,0,0,0,0]; 请输入系数矩阵阶数n=8 运行结果如下:x = 8.1478 4.0737 2.0365 1.0175 0.5073 0.2506 0.1194 0.0477第三章14.试分别用(1)Jacobi 迭代法;(2)Gauss-Seidel 迭代法解线性方程组1234510123412191232721735143231211743511512x x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦ 迭代初始向量(0)(0,0,0,0,0)T x =。

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。

假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。

我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。

为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。

雅可比矩阵是由方程组的偏导数组成的矩阵。

对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。

在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。

以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。

下一步是实现牛顿迭代法。

牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。

在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。

matlab求解二元一次方程组的数值解

matlab求解二元一次方程组的数值解

matlab求解二元一次方程组的数值解摘要:一、引言二、Matlab中求解二元一次方程组的常用方法1.直接法2.迭代法3.数值方法三、数值方法的原理及应用1.雅可比迭代法2.托马斯迭代法3.平方根法四、实例演示1.编写Matlab程序2.输出结果及分析五、结论与展望正文:一、引言二元一次方程组是数学中的一种基本问题,而在工程、科学等领域中也广泛存在。

求解二元一次方程组的数值解是Matlab编程中的常见任务,本文将介绍在Matlab中求解二元一次方程组的常用方法及实例演示。

二、Matlab中求解二元一次方程组的常用方法直接法是通过高斯消元法求解二元一次方程组。

在Matlab中,可以使用`gesdd`函数直接求解。

例如:```matlabA = [1, 2; 3, 4];b = [5; 6];x = gesdd(A, b);```2.迭代法迭代法是通过不断更新变量来求解方程组。

在Matlab中,可以使用`fsolve`函数进行迭代求解。

例如:```matlabA = [1, 1; 1, 1];b = [2; 3];x0 = [1; 1];x = fsolve(@(x) A*x == b, x0);```3.数值方法数值方法包括雅可比迭代法、托马斯迭代法、平方根法等。

在Matlab 中,可以使用`fsolve`函数结合数值方法求解。

例如:```matlabA = [1, 1; 1, 1];x0 = [1; 1];options = optimoptions("fsolve", "Display", "on", "Tolerance", 1e-6);x = fsolve(@(x) A*x == b, x0, options);```三、数值方法的原理及应用1.雅可比迭代法雅可比迭代法是基于雅可比矩阵的迭代公式进行求解。

在Matlab中,可以使用自定义函数实现。

数学实验“线性方程组的j迭代,gs迭代,sor迭代解法”实验报告(内含matlab程序代码)【最新精

数学实验“线性方程组的j迭代,gs迭代,sor迭代解法”实验报告(内含matlab程序代码)【最新精

西京学院数学软件实验任务书实验四实验报告一、实验名称:线性方程组的J-迭代,GS-迭代,SOR-迭代。

二、实验目的:熟悉线性方程组的J-迭代,GS-迭代,SOR-迭代,SSOR-迭代方法,编程实现雅可比方法和高斯-赛德尔方法求解非线性方程组12123123521064182514x x x x x x x x +=⎧⎪++=⎨⎪++=-⎩的根,提高matlab 编程能力。

三、实验要求:已知线性方程矩阵,利用迭代思想编程求解线性方程组的解。

四、实验原理:1、雅可比迭代法(J-迭代法):线性方程组b X A =*,可以转变为:迭代公式(0)(1)()k 0,1,2,....k k J XXB X f +⎧⎪⎨=+=⎪⎩ 其中b M f U L M A M I B J 111),(---=+=-=,称J B 为求解b X A =*的雅可比迭代法的迭代矩阵。

以下给出雅可比迭代的分量计算公式,令),....,()()(2)(1)(k n k k k X X X X =,由雅可比迭代公式有b XU L MXk k ++=+)()1()(,既有i ni j k i iji j k iij k iij b X aXa X a +--=∑∑+=-=+1)(11)()1(,于是,解b X A =*的雅可比迭代法的计算公式为⎪⎩⎪⎨⎧--==∑∑-=+=+)(1),....,(111)()()1()0()0(2)0(1)0(i j n i j k j ij k j ij i ii k iTn X a X a b a X X X X X 2、 高斯-赛德尔迭代法(GS-迭代法):GS-迭代法可以看作是雅可比迭代法的一种改进,给出了迭代公式:⎪⎩⎪⎨⎧--==∑∑-=+=+++)(1),....,(111)1()1()1()0()0(2)0(1)0(i j n i j k j ij k j ij i ii k iTn X a X a b a X X X X X 其余部分与雅克比迭代类似。

matlab求解代数方程组解析

matlab求解代数方程组解析

第三讲 Matlab 求解代数方程组理论介绍:直接法+迭代法,简单介绍相关知识和应用条件及注意事项 软件求解:各种求解程序讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)一、直接法 1.高斯消元法:高斯消元法的基本原理: 在(1)中设110,a ≠将第一行乘以111,k a a -加到第(2,3,,),k k n = 得: (1)(1)(1)(1)11112211(2)(1)(2)22112(2)(2)(2)22n n n n n nn n n a x a x a x b a x a x b a x a x b ⎧+++=⎪++=⎪⎨⎪⎪++=⎩(2)其中(1)(1)1111,.k k aa b b ==再设(2)220,a ≠将(2)式的第二行乘以(2)2(2)22,(3,,)k a k n a -= 加到第k 行,如此进行下去最终得到:(1)(1)(1)(1)11112211(2)(1)(2)22112(1)(1)(1)1,111,1()()n n n n n n n n n n n n n n n n nn n n a x a x a x b a x a x b a x a x b a x b --------⎧+++=⎪++=⎪⎪⎨⎪+=⎪⎪=⎩(3) 从(3)式最后一个方程解出n x ,代入它上面的一个方程解出1n x -,并如此进行下去,即可依次将121,,,,n n x x x x - 全部解出,这样在()0(1,2,,)k kk a k n ≠= 的假设下,由上而下的消元由下而上的回代,构成了方程组的高斯消元法. 高斯消元法的矩阵表示:若记11(),(,,),(,,)T T ij n n n n A a x x x b b b ⨯=== ,则(1)式可表为.Ax b =于是高斯消元法的过程可用矩阵表示为:121121.n n M M M Ax M M M b --=其中:(1)21(1)111(1)1(1)11111n a a M a a ⎛⎫ ⎪ ⎪- ⎪=⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ (2)32(2)222(2)2(2)221111n a a M a a ⎛⎫⎪⎪ ⎪-⎪=⎪ ⎪ ⎪⎪- ⎪⎝⎭高斯消元法的Matlab 程序: %顺序gauss 消去法,gauss 函数 function[A,u]=gauss(a,n) for k=1:n-1%消去过程 for i=k+1:n for j=k+1:n+1%如果a(k,k)=0,则不能削去 if abs(a(k,k))>1e-6 %计算第k 步的增广矩阵 a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j); else%a(k,k)=0,顺序gauss 消去失败 disp (‘顺序gauss 消去失败‘); pause; exit; end end end end%回代过程 x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1 s=0; for j=i+1:n s=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回gauss 消去后的增广矩阵 A=triu(a); %返回方程组的解 u=x ;练习和分析与思考: 用高斯消元法解方程组:12345124512345124512452471523814476192536x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++=⎪⎪++++=⎨⎪+++=⎪+++=⎪⎩2.列主元素消元法在高斯消元法中进行到第k 步时,不论()k ik a 是否为0,都按列选择()||(,,)k ik a i k n = 中最大的一个,称为列主元,将列主元所在行与第k 行交换再按高斯消元法进行下去称为列主元素消元法。

matlab中jacobi迭代法

matlab中jacobi迭代法

一、简介Matlab中jacobi迭代法是一种用于求解线性方程组的迭代方法,适用于系数矩阵为对称、正定矩阵的情况。

该迭代方法通过将系数矩阵分解为对角矩阵、上三角矩阵和下三角矩阵的形式,然后通过迭代计算得到方程组的解。

在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。

二、 jacobi迭代法原理1. 基本思想jacobi迭代法的基本思想是将系数矩阵分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式,即A=D+L+U,其中D为系数矩阵A 的对角线元素组成的对角矩阵,L为系数矩阵A的下三角部分,U为系数矩阵A的上三角部分。

令x为方程组的解向量,b为方程组的右端向量,则方程组可表示为Ax=b。

根据方程组的性质,可将方程组表示为(D+L+U)x=b,然后利用迭代的方式逐步逼近方程组的解。

2. 迭代公式假设迭代到第k次,方程组可表示为(D+L+U)x=b,将其转化为迭代形式x(k+1)=(D+L)^(-1)(b-Ux(k)),利用迭代公式可以逐步计算出方程组的解。

3. 收敛条件对于jacobi迭代法,收敛条件为系数矩阵A为对角占优矩阵或正定矩阵。

如果满足这一条件,迭代计算会逐步收敛于方程组的解。

三、 Matlab中jacobi迭代法实现在Matlab中,可以利用矩阵运算和迭代循环来实现jacobi迭代法。

具体步骤如下:1. 对系数矩阵进行分解将系数矩阵A分解为对角矩阵D、上三角矩阵U和下三角矩阵L的形式。

2. 初始化迭代变量初始化迭代的初始值x0、迭代次数k、逐次逼近解向量x(k+1)。

3. 迭代计算利用迭代公式x(k+1)=(D+L)^(-1)(b-Ux(k))来逐步计算出方程组的解。

4. 判断收敛条件在迭代计算过程中,需要实时判断迭代计算是否满足收敛条件,如果满足则停止迭代计算,得到方程组的解。

四、实例分析假设有如下方程组:2x1 + x2 + 4x3 = 103x1 + 4x2 - x3 = 10x1 + 2x2 + 3x3 = 0可以利用jacobi迭代法来求解该方程组,在Matlab中可以通过编程实现迭代计算过程。

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较

基于Matlab的解线性方程组的几种迭代法的实现及比较线性方程组的解法有很多种,其中一类常用的方法是迭代法。

迭代法根据一个初值逐步逼近方程组的解,在每一次迭代中利用现有的信息产生新的近似值,并不断地修正。

下面介绍基于Matlab的三种迭代法:雅可比迭代法、高斯-赛德尔迭代法和超松弛迭代法,并进行比较。

1. 雅可比迭代法雅可比迭代法是迭代法中最简单的一种方法。

对于线性方程组Ax=b,雅可比迭代法的迭代公式为:x_{i+1}(j)=1/a_{jj}(b_j-\\sum_{k=1,k\eq j}^n a_{jk}x_i(k))其中,i表示迭代次数,j表示未知数的下标,x_i表示第i次迭代的近似解,a_{jk}表示系数矩阵A的第j行第k列元素,b_j 表示方程组的常数项第j项。

在Matlab中,可以使用以下代码实现雅可比迭代:function [x,flag]=jacobi(A,b,X0,tol,kmax)n=length(b);x=X0;for k=1:kmaxfor i=1:nx(i)=(b(i)-A(i,:)*x+A(i,i)*x(i))/A(i,i);endif norm(A*x-b)<tolflag=1;returnendendflag=0;return其中,参数A为系数矩阵,b为常数项列向量,X0为初值列向量,tol为迭代误差容许值(默认为1e-6),kmax为最大迭代次数(默认为1000)。

函数返回值x为近似解列向量,flag表示是否满足容许误差要求。

2. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进。

其基本思想是,每次迭代时,利用已经求出的新解中的信息来更新其他未知数的值。

迭代公式为:x_{i+1}(j)=(1/a_{jj})(b_j-\\sum_{k=1}^{j-1}a_{jk}x_{i+1}(k)-\\sum_{k=j+1}^n a_{jk}x_i(k))与雅可比迭代法相比,高斯-赛德尔迭代法的每一次迭代都利用了前面已求得的近似解,因此可以更快地收敛。

matlab循环解方程组

matlab循环解方程组

matlab循环解方程组使用MATLAB循环解方程组在科学研究和工程应用中,我们经常需要解决一组方程,这被称为方程组。

方程组的解决对于理解和预测系统行为至关重要。

MATLAB是一种强大的数值计算软件,可以用于解决各种数学问题,包括方程组求解。

在本文中,我们将介绍如何使用MATLAB的循环来解决方程组。

我们需要了解什么是方程组。

方程组由多个方程组成,每个方程包含多个未知数。

解方程组的目标是找到满足所有方程的未知数的值。

例如,下面是一个简单的方程组:2x + y = 5x - y = 1我们可以使用MATLAB来求解这个方程组。

首先,我们需要将方程组转化为矩阵形式。

在MATLAB中,矩阵可以用于表示方程组。

我们可以使用矩阵乘法和矩阵求逆来解决方程组。

在这个例子中,我们可以将方程组表示为以下形式:A * X = B其中A是一个2x2的矩阵,X是一个包含未知数x和y的列向量,B是一个包含方程组右边常数项的列向量。

接下来,我们可以使用MATLAB的循环结构来求解方程组。

使用循环的好处是可以自动化求解过程,特别是当方程组非常大时。

我们需要定义矩阵A和B。

在MATLAB中,矩阵可以使用方括号表示。

A = [2 1; 1 -1]B = [5; 1]然后,我们可以使用MATLAB的求解器来解方程组。

MATLAB提供了多种求解器,包括高斯消元法和LU分解法。

X = A \ B在MATLAB中,反斜杠符号(\)表示求解方程组。

X是一个包含未知数x和y的列向量,它是方程组的解。

使用循环求解方程组的另一种方法是使用迭代法。

迭代法是一种逐步逼近解的方法,通过多次迭代逐渐接近方程组的解。

MATLAB提供了多种迭代方法,如雅可比迭代和高斯-赛德尔迭代。

下面是使用雅可比迭代法解方程组的示例代码:X = zeros(size(B)); % 初始化解向量maxIter = 100; % 最大迭代次数tol = 1e-6; % 迭代停止条件iter = 0; % 迭代次数while norm(A*X - B) > tol && iter < maxIterfor i = 1:size(A, 1)X(i) = (B(i) - A(i, 1:i-1)*X(1:i-1) - A(i, i+1:end)*X(i+1:end)) / A(i, i);enditer = iter + 1;end在上述代码中,我们首先初始化解向量X为全零向量。

迭代法求解方程matlab

迭代法求解方程matlab

迭代法求解方程的MATLAB实现1.引言迭代法是一种求解方程的常用方法,尤其适用于大规模矩阵和高维问题。

在迭代法中,我们通过不断迭代来逐步逼近方程的解。

本篇文章将介绍如何使用MATLAB实现迭代法求解方程。

2.收敛性判断在使用迭代法求解方程时,我们需要判断迭代是否收敛。

通常,我们使用以下两种方法进行收敛性判断:2.1 判断迭代公式是否收敛对于许多迭代公式,我们可以根据其结构来判断其是否收敛。

例如,Jacobi迭代法和Gauss-Seidel方法通常适用于对角占优的矩阵,而SOR方法适用于对角占优或松弛型的矩阵。

2.2 判断迭代误差是否收敛我们还可以通过判断迭代误差是否收敛来判断迭代是否收敛。

迭代误差通常定义为实际解与迭代解之间的范数。

如果迭代误差逐渐减小并趋于零,则说明迭代收敛。

3.迭代公式下面我们以Jacobi迭代法为例,介绍迭代公式的实现。

Jacobi迭代法的迭代公式如下:x{n+1}=(\frac{1}{a{ii}})(b i-A{ii,1:i-1}x1-A{ii,i+1:n}x_n)其中,A是系数矩阵,b是右侧向量,x是解向量,a_{ii}是矩阵A的主对角线元素。

4.误差计算为了判断迭代是否收敛,我们需要计算迭代误差。

通常,我们使用实际解与迭代解之间的相对误差或范数误差来衡量误差大小。

例如,相对误差可以按下式计算:||x^-x_n||_2/(||x^||_2)其中,x^*是实际解向量,x_n是第n次迭代的解向量。

5.MATLAB实现下面是一个使用MATLAB实现Jacobi迭代法的示例代码:function x = jacobi(A, b, x0, tol, max_iter)% 输入参数:系数矩阵A、右侧向量b、初始解向量x0、容许误差tol和最大迭代次数max_iter% 输出参数:方程的解向量xn = length(b); % 方程的未知数个数x = zeros(n, 1); % 初始化解向量xx(:) = x0; % 将初始解向量赋值给xerr = tol + 1; % 初始化误差大于容许误差,表示未收敛k = 0; % 初始化迭代次数k=0while err > tol && k < max_iterk = k + 1; % 更新迭代次数k=k+1for i = 1:n % 对每个未知数进行更新x(i) = (b(i) - A(i, 1:i-1)*x(1:i-1) - A(i, i+1:n)*x(i+1:n)) / A(i, i); % 更新解向量x的第i个元素x(i)的公式为x(i)=[b(i)-A(i,1:i-1)*x(1:i-1)-A(i,i+1:n)*x(i+1:n)]/A(i,i)endforendwhileif k < max_itererr = norm(x - x_prev, 'fro') / norm(x_prev, 'fro'); % 计算相对误差endendendfunction```。

数值分析实验-雅可比迭代和高斯塞德尔迭代

数值分析实验-雅可比迭代和高斯塞德尔迭代

1.雅可比迭代源代码A=[6,-2,-1,-1;-2,18,-1,-1;-1,-1,6,-2;-1,-1,-1,12];b=[-16;6;9;43];x0=[0;0;0;0];it_max=500;eps=1e-6;[x,k]=jacobi(A,b,x0,eps,it_max)function [x,n]=jacobi(A,b,x0,eps,it_max)% 求线性方程组的Jacobi迭代法,调用格式为% [x, k] = jacobi(A,b,x0,eps,it_max)% 其中, A 为线性方程组的系数矩阵,b 为常数项,eps 为精度要求,默认为1e-6, % it_max 为最大迭代次数,默认为200% x 为线性方程组的解,k迭代次数if nargin ==3eps = 1.0e-6;M = 200;elseif nargin<3disp('输入参数数目不足3个');returnelseif nargin ==5M = it_max;endD = diag(diag(A));%求A的对角矩阵L = -tril(A,-1);%求A的下三角矩阵U = -triu(A,1);%求A的上三角矩阵B = D\(L+U);f = D\b;x = B*x0+f;n = 1;%迭代次数while norm(x-x0)>=epsx0 = x;x = B*x0+fn = n+1;if(n>=M)disp('Warning:迭代次数太多,可能不收敛!')return;endEnd2.高斯赛德尔迭代源代码A=[6,-2,-1,-1;-2,18,-1,-1;-1,-1,6,-2;-1,-1,-1,12];b=[-16;6;9;43];x0=[0;0;0;0];it_max=500;eps=1e-6;[x,k]=jacobi(A,b,x0,eps,it_max)function [x,n] = guaseidel(A,b,x0,eps,it_max)% 求线性方程组的Gauss-Seidel迭代法,调用格式为% [x, k] = guaseidel(A,b,x0,eps,it_max)% 其中, A 为线性方程组的系数矩阵,b 为常数项,eps 为精度要求,默认为1e-5, % it_max 为最大迭代次数,默认为100% x 为线性方程组的解,k迭代次数if nargin == 3eps = 1.0e-6it_max= 200elseif nargin == 4it_amx = 200elseif nargin <3disp('输入参数个数不足3个');return;endD = diag(diag(A));%求A的对角矩阵L = -tril(A,-1);%求A的下三角矩阵,不带对角线U = -triu(A,1);%求A的上三角矩阵G = (D-L)\U;f = (D-L)\b;x = G*x0+f;n=1; %迭代次数while norm(x-x0)>=epsx0 = x;x = G*x0+f;n = n+1;if(n>=it_max)disp('Warning:迭代次数太多,可能不收敛');return;endEnd3.方程组A=[6,-2,-1,-1;-2,18,-1,-1;-1,-1,6,-2;-1,-1,-1,12]; b=[-16;6;9;43];即4.MATLAB运行结果截图jacobi运行结果guaseidel运行结果jacobi迭代和guaseidel迭代从以上的运行结果比较来看,guaseidel的收敛性和收敛速度更快。

基于matlab的线性方程组迭代法(实验报告)

基于matlab的线性方程组迭代法(实验报告)

基于matlab 的线性方程组迭代法实验题目:实验要求:(1)分别试用 Jacobi 和Gauss-Seidel 迭代法计算,要求达到的精度为:(1)()510k k x x +-∞->(2)观测得到的迭代序列是否收敛?若收敛,记录迭代次数并分析计算结果。

实验流程一、迭代法简介 1、 Jacobi 迭代法对于方程组Ax b =有A 非奇异情况下且0ij a ≠时,A 分裂为A D L U =--,可得到:0x B x f =+,其中1110(),B I D A D L U f D b ---=-=+=,得到雅克比迭代法:(0)(1)()0()k k x xB x f +⎧⎪⎨=+⎪⎩初始向量 2、 Gauss-Seidel 迭代法(0)(1)()()k k x x Gx f +⎧⎪⎨=+⎪⎩初始向量 其中11(),()G D L U f D L b --=-=-。

其迭代法优点为只需一组存储单元。

3、 超松弛迭代法(SOR)Gauss-Seidel 迭代法的一种加速方法,ω松弛因子。

(0)(1)()(1)(1))()(1)k k k k k x x Gx f x x x ωω+++⎧⎪⎪=+⎨⎪=+-⎪⎩(初始向量 其中11(),()G D L U f D L b --=-=-。

二、迭代法的matlab 程序1、 Jacobi 迭代法Jacobi.mfunction [y,n]= Jacobi( A,b,x0,e )%JACOBI ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));B=I-D\A;f=D\b;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=B*y+f;n=n+1;endnend2、Gauss-Seidel迭代法GaussSeidel.mfunction [y,n]= GaussSeidel( A,b,x0,e ) %GS ÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<4)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ey=x0;x0=G*y+f;n=n+1;endnend3、超松弛迭代法(SOR) SOR.mfunction [y,n]= SOR( A,b,w,x0,e )%SORÇëÔÚ´Ë´¦ÊäÈ뺯Êý¸ÅÒªif(nargin<5)e=1e-5;endD=diag(diag(A));I=eye(size(A));L=D-tril(A);U=D-triu(A);f=(D-L)\b;G=(D-L)\U;y=x0+2*e;n=0;while norm(y-x0,inf)>ex0=y;x1=G*x0+f;y=(1-w)*x0+w*x1;n=n+1;endnend4、变量初始化creatMatrix.mclear;clc;a=diag(3*ones(1,20));b=diag(-0.5*ones(1,19),1);c=diag(-0.25*ones(1,18),2);A=a+b+b'+c+c';%ϵÊý¾ØÕób=ones(20,1)*7/4;b(1)=9/4;b(20)=9/4;x0=zeros(20,1);A,b,x0,w=1.5建立A数组以及初始化b,松弛因子w,迭代初值x05、程序运行和结果记录solve.mclc;tic,s1=Jacobi(A,b,x0),toctic,s2=GaussSeidel(A,b,x0),toctic,s3=SOR(A,b,w,x0),toc三、计算结果运行程序得到几种方法的计算结果。

matlab迭代计算方程组

matlab迭代计算方程组

matlab迭代计算方程组
在MATLAB中,迭代计算方程组通常涉及使用循环结构来逐步逼近方程组的解。

这种方法通常用于无法直接求解的复杂方程组或者大规模方程组的情况。

下面我将从几个方面介绍在MATLAB中进行迭代计算方程组的方法。

首先,最常见的迭代方法之一是雅可比迭代法。

在MATLAB中,可以通过编写一个循环来实现雅可比迭代。

具体步骤包括初始化一个解向量、编写迭代循环以更新解向量,并设置一个收敛准则来判断迭代是否结束。

其次,另一个常用的迭代方法是高斯-赛德尔迭代法。

这种方法在雅可比迭代的基础上进行了改进,每次更新解向量时都使用最新的已知解。

在MATLAB中,可以使用类似的循环结构来实现高斯-赛德尔迭代。

此外,MATLAB还提供了一些内置函数来进行迭代计算方程组,比如`fsolve`函数可以用于求解非线性方程组,`linsolve`函数可以用于求解线性方程组。

这些函数通常会在迭代过程中自动选择合适的算法,并提供了一些参数用于控制迭代的精度和收敛性。

总的来说,在MATLAB中进行迭代计算方程组可以通过编写循环结构来逐步逼近解,也可以利用内置函数来简化计算过程。

需要根据具体的方程组和求解精度来选择合适的方法,并注意迭代过程中的收敛性和稳定性。

希望这些信息能够帮助你更好地理解在MATLAB 中进行迭代计算方程组的方法。

(完整word版)matlab数值分析例题

(完整word版)matlab数值分析例题

1、 在MATLAB 中用Jacobi 迭代法讨论线性方程组,1231231234748212515x x x x x x x x x -+=⎧⎪-+=-⎨⎪-++=⎩(1)给出Jacobi 迭代法的迭代方程,并判定Jacobi 迭代法求解此方程组是否收敛。

(2)若收敛,编程求解该线性方程组.解(1):A=[4 -1 1;4 —8 1;-2 1 5] %线性方程组系数矩阵A =4 -1 1 4 -8 1 —2 1 5>> D=diag(diag(A))D =4 0 0 0 —8 0 0 0 5〉〉 L=—tril (A,-1) % A 的下三角矩阵L =0 0 0 —4 0 0 2 —1 0〉〉U=-triu(A,1)% A的上三角矩阵U =0 1 —10 0 —10 0 0B=inv(D)*(L+U)% B为雅可比迭代矩阵B =0 0.2500 —0。

25000.5000 0 0.12500。

4000 —0.2000 0〉〉r=eigs(B,1)%B的谱半径r =0。

3347 〈1Jacobi迭代法收敛。

(2)在matlab上编写程序如下:A=[4 —1 1;4 -8 1;—2 1 5];〉〉b=[7 —21 15]';>〉x0=[0 0 0]’;〉〉[x,k]=jacobi(A,b,x0,1e—7)x =2。

00004.00003。

0000k =17附jacobi迭代法的matlab程序如下:function [x,k]=jacobi(A,b,x0,eps)% 采用Jacobi迭代法求Ax=b的解%A为系数矩阵%b为常数向量%x0为迭代初始向量%eps为解的精度控制max1= 300; %默认最多迭代300,超过300次给出警告D=diag(diag(A));%求A的对角矩阵L=-tril(A,—1); %求A的下三角阵U=—triu(A,1); %求A的上三角阵B=D\(L+U);f=D\b;x=B*x0+f;k=1;%迭代次数while norm(x-x0)>=epsx0=x;x=B*x0+f;k=k+1;if(k〉=max1)disp(’迭代超过300次,方程组可能不收敛’);return;endend2、设有某实验数据如下:(1)在MATLAB中作图观察离散点的结构,用多项式拟合的方法拟合一个合适的多项式函数;(2)在MATLAB中作出离散点和拟合曲线图。

jacobi迭代法matlab编程例题

jacobi迭代法matlab编程例题

jacobi迭代法matlab编程例题Jacobi迭代法是一种常用的数值方法,用于求解线性方程组。

它的基本思想是通过迭代逐步逼近方程组的解。

在使用Jacobi迭代法解决线性方程组时,首先需要将方程组的系数矩阵A进行分解,即将A分解为D、L和U三个矩阵的和,其中D是A的对角线矩阵,L是A的下三角矩阵,U是A的上三角矩阵。

然后可以得到迭代公式:X(k+1) = D^(-1) * (B - (L+U) * X(k))其中,X(k)表示第k次迭代的解向量,X(k+1)表示第k+1次迭代的解向量,B是方程组的常数项向量。

下面我们通过一个具体的例子来展示如何使用Matlab编程实现Jacobi迭代法。

假设有如下线性方程组:2x + y + z = 9x + 3y - z = 43x - y + 2z = 8首先,我们可以将这个方程组转换为矩阵形式:Ax = B其中,A = [2 1 1;1 3 -1;3 -1 2]B = [9; 4; 8]然后,我们需要将矩阵A进行分解:D = diag(diag(A)) = [2 0 0;0 3 0;0 0 2]L = -tril(A) + D = [0 0 0;-1 0 0;-3 1 0]U = -triu(A) + D = [0 -1 -1;0 0 1;0 0 0]接下来,我们需要设置迭代的初始解向量X(0),这里可以选择一个任意的初始值。

假设我们选择X(0) = [0; 0; 0]。

然后,我们可以通过迭代公式来逐步逼近方程组的解。

根据公式,我们可以得到如下的迭代过程:X(1) = D^(-1) * (B - (L+U) * X(0))X(2) = D^(-1) * (B - (L+U) * X(1))X(3) = D^(-1) * (B - (L+U) * X(2))...直到满足停止条件,通常可以选择迭代次数或解的相对误差作为停止条件。

在Matlab中,我们可以使用for循环来实现迭代过程,具体代码如下:A = [2 1 1; 1 3 -1; 3 -1 2];B = [9; 4; 8];X = [0; 0; 0]; % 初始解向量D = diag(diag(A));L = -tril(A) + D;U = -triu(A) + D;for k = 1:100 % 设置最大迭代次数为100X = inv(D) * (B - (L+U) * X);% 判断停止条件% 可以根据需要设置不同的停止条件,比如迭代次数或解的相对误差if norm(A*X - B) < 1e-6break;endenddisp('解向量:');disp(X);在上述代码中,我们设置了最大迭代次数为100,并使用了解的相对误差作为停止条件。

雅可比迭代实验报告

雅可比迭代实验报告

雅可比迭代实验报告一、实验目的通过实验掌握雅可比迭代方法的基本原理及步骤,能够在Matlab软件平台上编写该迭代方法,进一步加深对线性方程组迭代算法的认识。

二、实验原理雅可比迭代法是一种求解线性方程组解的迭代算法,它是最古老的、最基本的迭代算法之一,常用于解决一些线性方程组的求解问题。

假设一个线性方程组为Ax=b,其中A为一个系数矩阵,b为一个已知项向量,x为一个未知向量,且A是对称正定矩阵。

由于方程组的解是未知的,我们先取一个近似的解向量,用它替换掉上式中的x,得到:Ax(1)=b 或 Ax1=b将式子改写为:其中D是A的对角线构成的对角矩阵。

那么,我们就可以进行一次迭代,将上一步求得的解向量代入到式中,继续进行计算,如此类推。

直到误差满足一定的条件时,则结束迭代。

三、实验步骤本次实验的具体步骤如下:1、输入待求解的线性方程组,其中系数矩阵A需是对称正定矩阵。

2、根据所求的系数矩阵A,求解对角矩阵D,以及矩阵A-D的逆矩阵。

3、根据输入的误差限和最大迭代次数,设定初始的近似解向量x0,并计算误差。

4、进行迭代,重复进行以下操作:(1)代入上一步求得的解向量,计算新的解向量。

(3)如果误差小于所设定的误差限或者迭代次数已经达到了设定的最大迭代次数,则结束迭代。

5、输出求解结果及迭代次数。

四、实验结果通过设计实验,我们在Matlab软件平台上实现了雅可比迭代的算法。

在进行MATLAB编程时,我们遵循上述步骤,利用所编写的Matlab程序求解了如下线性方程组:1 1 1 x1 52 3 5 x2 63 6 9 x3 9并且设定误差限为10^-5和最大迭代次数为100,并取初始迭代向量为[0 0 0]。

运行该程序后,得到的计算结果为:迭代次数:39解向量:[5 0.999 1]五、实验分析通过对Matlab代码的编写及运行,我们了解了雅可比迭代算法的具体实现过程,以及在实际应用中它具有的一些优点和不足。

雅可比迭代

雅可比迭代

综合实验报告一、实验名称雅可比迭代法二、 实验目的(1) 掌握解线性方程组的雅可比迭代和高斯-塞德尔迭代算法;培养编程与上机调试能力;(2) 熟悉Matlab 软件环境.三、 实验要求(1) 用雅可比迭代法解方程组;(2) 建议利用C++语言设计算法或利用Matlab 或Maple 或Mathematica 软件作为辅助工具来实现该实验.四、 实验原理雅可比(Jacobi )迭代法解方程组设方程组Ax b = 的系数矩阵对角线元素0(1,2,...,)ii a i n ≠=,M 为最大迭代次数,ε为容许误差. 雅可比(Jacobi )迭代法解方程组算法步骤如下:① 取初始向量(0)(0)(0)12(,,...,)T n x x x x =,令0k =. ② 对1,2,...,i n =,计算(1)()11()n k k i i ij j j ii j ix b a x a +=≠=-∑ . ③ 如果(1)()1n k k i i i x x ε+=-<∑,则输出(1)k x + ,结束;否则执行④④ 如果k M ≥,则不收敛,终止程序;否则1k k ←+,转②高斯-塞德尔(Gauss-Seidel)迭代法在雅可比(Jacobi )迭代法中,如果当新的分量求出后,马上用它来代替旧的分量,则可能会更快地接近方程组的准确解.基于这种设想构造的迭代公式称为高斯-塞德尔(Gauss-Seidel)迭代法. 算法可相应地从雅可比(Jacobi )迭代法改造得到.五、 实验题目求解初值问题 2'(01)(0)1x y y x y y ⎧=-<<⎪⎨⎪=⎩ (1)六、 实验步骤设方程组Ax b = 的系数矩阵对角线元素0(1,2,...,)ii a i n ≠=,M 为最大迭代次数,ε为容许误差. 雅可比(Jacobi )迭代法解方程组算法步骤如下:① 取初始向量(0)(0)(0)12(,,...,)T n x x x x =,令0k =. ② 对1,2,...,i n =,计算(1)()11()n k k i i ij j j ii j ix b a x a +=≠=-∑ . ③ 如果(1)()1n k k i i i x x ε+=-<∑,则输出(1)k x + ,结束;否则执行④④ 如果k M ≥,则不收敛,终止程序;否则1k k ←+,转②七、 实验整体流程图八、程序及其运行结果要求:写出关键程序部分即可,程序中至少1/3行有注释.Gauss-Serdel迭代法的MA TLAB函数文件gauseidel.m如下:Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下:function [y,n]=gauseidel(A,b,x0,eps)if nargin==3eps=1.0e-6;elseif nargin<3errorreturnendD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1; %迭代次数while norm(y-x0)>=epsx0=y;y=G*x0+f;n=n+1;endJacobi迭代法的MATLAB函数文件Jacobi.m如下:function varargout=ykb(varargin)A=input('输入方程系数矩阵A,用逗号和分毫隔开。

雅可比迭代法与高斯-塞德尔迭代法

雅可比迭代法与高斯-塞德尔迭代法

线性方程组的迭代法一、实验目的及要求掌握解线性方程组的雅可比迭代法,培养编程与上机调试能力。

二、相关理论知识1、雅可比迭代计算b Ax =,将系数矩阵分解U L D A --=,雅可比迭代格式为f Jx x k k +=+)()1(其中)(1U L D J +=-,b D f 1-=。

Matlab 相关函数:D=diag (diag (A ))n=norm(a,inf) 表示求向量a 的无穷范数。

2、高斯-塞德尔迭代法计算b Ax =,将系数矩阵分解U L D A --=,雅可比迭代格式为f Gx x k k +=+)()1(其中U L D G 1)(--=,b L D f 1)(--=。

Matlab 相关函数:tril (A ,-1) 表示输出矩阵为矩阵A 的下三角,主对角线元素为0.triu (A ,1) 表示输出矩阵为矩阵A 的上三角,主对角线元素为0.三、研究、解答以下问题问题 1、用雅可比迭代法解线性方程组⎪⎩⎪⎨⎧=++=++=++2010311102143210321321321x x x x x x x x x , (1)取初始值)0,0,0(',分别保证当3)()1(10-∞+<-k k x x 和6)()1(10-∞+<-k k x x 时,迭代终止,要求输出对应的近似解。

(2)输出对应的迭代的次数。

(3)输出一个矩阵,每行表示每次迭代的向量。

1.程序:function [x,i,G]=kb(A,b,max,eps)A=[10 2 3;2 10 1;3 1 10];b=[14 11 20]';max=100;eps=1e-006D=diag(diag(A));ID=inv(D);J=ID*(-A+D);f=ID*b;x0=zeros(rank(A),1);x=x0;G(1,:)=x0';for i=1:maxk=x;x=J*x+f;G(i+1,:)=x';n=norm((x-k),inf);if n<=epsbreak ;endendGi结果:(1)eps = 1.0000e-003G =0 0 01.4000 1.10002.00000.5800 0.6200 1.47000.8350 0.8370 1.76400.7034 0.7566 1.66580.7489 0.7927 1.71330.7275 0.7789 1.69600.7354 0.7849 1.70390.7319 0.7825 1.70090.7332 0.7835 1.70220.7326 0.7831 1.7017i =10ans =0.73260.78311.7017(2)eps =1.0000e-006G =0 0 01.4000 1.10002.0000 0.5800 0.6200 1.4700 0.8350 0.8370 1.7640 0.7034 0.7566 1.6658 0.7489 0.7927 1.7133 0.7275 0.7789 1.6960 0.7354 0.7849 1.7039 0.7319 0.7825 1.7009 0.7332 0.7835 1.7022 0.7326 0.7831 1.7017 0.7329 0.7833 1.7019 0.7328 0.7832 1.7018 0.7328 0.7833 1.7018 0.7328 0.7833 1.7018 0.7328 0.7833 1.7018 0.7328 0.7833 1.70180.7328 0.7833 1.70180.7328 0.7833 1.7018i =18ans =0.73280.78331.70182、用高斯-塞德尔迭代法计算第1题中的线性方程组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档