高一必修一集合教案(精心整理)

合集下载

高一数学第一章《集合》教案

高一数学第一章《集合》教案

高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。

那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。

高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。

(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

高中集合的教案(6篇)

高中集合的教案(6篇)

高中的教案高中集合的教案(6篇)高中集合的教案1【教学目的】(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义【重点难点】教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪【内容分析】1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明【教学过程】一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|, 所组成的集合,最多含( A )(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:(1) 当x∈N时, x∈G;(2) 若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0* = a+b ∈G,即x∈G证明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)∴x+y=( a+b )+( c+d )=(a+c)+(b+d)∵a∈Z, b∈Z,c∈Z, d∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d) ∈G,又∵ =且不一定都是整数,∴ = 不一定属于集合G高中集合的教案2一、激发兴起,导入新课教师在上课之初,可以提问学生,谁愿意说一说自己有无曾经对某种物质过敏的现象?如果学生不愿意承认,教师可以帮助学生打消顾虑,指出大多数过敏反应来得快,去得也快,一般不会引起组织细胞的损伤。

高中必修一集合教案

高中必修一集合教案

高中必修一集合教案教案标题:高中必修一集合教案教案目标:1. 通过本节课的学习,学生将能够了解高中必修一的内容,并掌握相关知识点。

2. 培养学生的思维能力、分析能力和解决问题的能力。

3. 提高学生的学习兴趣和主动学习的能力。

教学内容:高中必修一的内容包括:1. 语文:古代诗词鉴赏、现代文阅读与写作、文言文阅读与写作等。

2. 数学:函数与方程、数列与数学归纳法、平面向量等。

3. 英语:词汇与语法综合运用、阅读理解、写作等。

4. 物理:力学、热学、光学等。

5. 化学:化学基础知识、化学实验等。

6. 生物:生物基础知识、生物实验等。

教学步骤:第一步:导入1. 利用多媒体工具或教学实例引入本节课的主题,激发学生的学习兴趣。

2. 回顾上节课的内容,为学生梳理知识框架,引导学生进入新的学习环节。

第二步:知识讲解与学习1. 分别介绍高中必修一的语文、数学、英语、物理、化学和生物的相关知识点。

2. 针对每个学科的重点知识进行详细讲解,结合实例和图表进行说明,帮助学生理解和掌握知识。

3. 引导学生进行课堂互动,提问和解答问题,加深对知识的理解。

第三步:练习与巩固1. 设计一些练习题,包括选择题、填空题和解答题,让学生进行个人或小组练习。

2. 鼓励学生在解答问题的过程中思考和分析,培养他们的解决问题的能力。

3. 对学生的答案进行讲解和讨论,纠正他们的错误,巩固学生的知识。

第四步:拓展与应用1. 给学生提供一些拓展阅读材料,让他们进一步了解高中必修一的相关内容。

2. 引导学生进行课外实践活动,如实验、调研等,将所学知识应用到实际生活中。

3. 鼓励学生进行创新思考,提出自己的观点和见解,培养他们的创造力和批判性思维能力。

第五步:总结与评价1. 对本节课的学习内容进行总结,梳理重点和难点,帮助学生进行知识的归纳和整理。

2. 鼓励学生提出问题和反馈意见,以便教师及时调整教学策略。

3. 对学生的学习情况进行评价,给予积极的鼓励和建议,激励他们继续努力学习。

2024年高一数学教案高一数学教案必修一

2024年高一数学教案高一数学教案必修一

2024年高一数学教案必修一第一章集合与函数概念第一课时集合的含义与表示方法一、教学目标1.理解集合的含义,掌握集合的表示方法。

2.能够运用集合的语言描述生活中的现象。

3.培养学生的抽象思维能力和语言表达能力。

二、教学重难点1.重点:集合的含义与表示方法。

2.难点:集合语言的应用。

三、教学过程(一)导入新课同学们,你们听说过集合吗?其实,在我们的生活中,集合无处不在。

今天我们就来学习一下集合的含义与表示方法。

(二)新课讲解1.集合的含义(1)集合的定义:集合是一些明确且不同的对象的全体。

(2)集合的元素:构成集合的对象叫做集合的元素。

(3)集合的性质:确定性、互异性、无序性。

2.集合的表示方法(1)列举法:将集合中的元素一一列举出来,用大括号表示。

(2)描述法:用文字或符号描述集合中元素的特征。

(3)图示法:用Venn图或树状图表示集合。

(三)案例分析1.例题1:下列各式中,哪些是集合?A.{1,2,3,4,5}B.{x|x是小于10的正整数}C.{a,b,c,a}D.{x|x是方程x²3x+2=0的解}解析:A、B是集合,C不是集合(元素不互异),D不是集合(方程解不明确)。

2.例题2:用列举法表示下列集合。

A.所有小于5的正整数B.所有大于0且小于10的偶数解析:A.{1,2,3,4}B.{2,4,6,8}(四)课堂练习1.判断下列各式是否为集合,并说明理由。

A.{1,2,3,4,5}B.{x|x是大于5的正整数}C.{a,b,c,a}D.{x|x是方程x²4x+3=0的解}2.用列举法表示下列集合。

A.所有大于3且小于10的奇数B.所有小于0的整数1.本节课我们学习了集合的含义与表示方法,掌握了集合的性质。

2.能够运用集合语言描述生活中的现象,提高抽象思维能力和语言表达能力。

四、作业布置1.抄写并背诵集合的定义、性质及表示方法。

2.完成课后练习题。

第二章函数及其性质第一课时函数的概念一、教学目标1.理解函数的概念,掌握函数的表示方法。

高中一数学集合教案

高中一数学集合教案

高中一数学集合教案1. 了解集合的基本概念和符号表示;2. 掌握集合的运算:并集、交集和差集的计算方法;3. 能够解决集合运算的相关问题;4. 进一步理解集合与逻辑命题之间的关系。

二、教学重点和难点:1. 集合的基本概念和符号表示;2. 集合的运算:并集、交集和差集的计算;3. 集合的应用问题。

三、教学内容:1. 集合的基本概念和符号表示- 集合的定义- 集合的元素、空集与全集- 集合的表示方法:文氏图、列举法、描述法2. 集合的运算- 并集的定义和计算方法- 交集的定义和计算方法- 差集的定义和计算方法3. 集合的应用问题- 集合运算的实际问题- 集合与逻辑命题的关系四、教学方法:1. 讲授与示范:通过教师讲解集合的基本概念、运算方法和应用问题,让学生理解和掌握相关知识;2. 练习与演练:设置不同难度的练习题和案例,让学生巩固和应用所学内容;3. 合作与交流:组织学生进行小组讨论、合作解题,促进学生之间的交流和合作。

五、教学过程:1. 导入:通过一个生活中的例子引入集合的概念,引起学生思考和讨论。

2. 讲解:讲解集合的基本概念和符号表示,以及集合的运算方法。

3. 演示与练习:进行一些实例演示,并让学生练习相关题目,巩固所学内容。

4. 合作与交流:组织学生进行小组讨论、合作解题,促进学生之间的交流和合作。

5. 总结与拓展:对本节课的内容进行总结,引出拓展内容或思考题,激发学生的思考和兴趣。

六、教学资源:1. 课堂教学用具:黑板、彩色粉笔、教学PPT等;2. 教材:高中数学教材;3. 练习册:相关练习册和习题辅导材料。

七、教学评价:1. 课堂表现:学生是否积极参与课堂讨论和练习;2. 作业表现:学生是否独立完成作业,并且正确率和完成情况如何;3. 考试成绩:学生在考试中的表现如何,是否掌握了相关知识。

以上是一份高中一数学集合教案范本,具体实施时可根据具体情况进行调整和改进。

集合的概念教案5篇

集合的概念教案5篇

集合的概念教案5篇教师需要了解学生的学习偏好,以确保教案包括多种教学方法,以满足不同学生的需求,教案包括教学评估的方法,用于测量学生的学习成果和教学效果,以下是作者精心为您推荐的集合的概念教案5篇,供大家参考。

集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1,3)} 6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。

集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。

然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。

把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。

从知识结构上来说是为了引入函数的定义。

因此在高中数学的模块中,集合就显得格外的举足轻重了。

高一数学集合优质教案

高一数学集合优质教案

高一数学集合优质教案教案标题:高一数学集合优质教案教案目标:1. 理解集合的基本概念和符号表示法。

2. 掌握集合的运算法则。

3. 能够解决与集合相关的实际问题。

4. 培养学生的逻辑思维和分析能力。

教学重点:1. 集合的基本概念和符号表示法。

2. 集合的运算法则。

教学难点:1. 集合的运算法则的理解和应用。

2. 解决与集合相关的实际问题。

教学准备:1. 教材:高中数学教材《数学》(必修部分)。

2. 教具:黑板、彩色粉笔、投影仪。

教学过程:一、导入(5分钟)1. 引入集合的概念:通过提问和举例,引导学生思考集合的含义和作用。

2. 引导学生回顾集合的基本概念和符号表示法。

二、讲授(30分钟)1. 集合的基本概念和符号表示法(10分钟):a. 解释集合的含义和特点。

b. 介绍集合的符号表示法,并通过示例进行讲解和演示。

2. 集合的运算法则(20分钟):a. 介绍集合的交、并、差和补运算,并通过示例进行讲解和演示。

b. 强调运算法则的注意事项和规则。

三、练习(15分钟)1. 分组练习:将学生分成小组,每个小组完成一定数量的练习题。

2. 教师巡回指导:在学生练习的过程中,教师巡回指导,解答学生的问题,并提供必要的帮助。

四、拓展(10分钟)1. 引导学生思考集合在实际生活中的应用,如调查统计、排列组合等。

2. 提供一些与集合相关的实际问题,让学生尝试解决并分享解题思路。

五、总结(5分钟)1. 对本节课的内容进行总结和回顾。

2. 引导学生思考集合的重要性和应用领域。

六、作业布置(5分钟)1. 布置相关的课后作业,巩固和拓展学生对集合的理解和应用能力。

2. 提醒学生及时复习和预习下一节课的内容。

教学反思:本节课通过引入集合的概念和符号表示法,讲解集合的运算法则,以及练习和拓展环节的设计,使学生能够全面理解和掌握集合的基本概念和运算法则。

通过实际问题的引导和解决,培养了学生的逻辑思维和分析能力。

同时,通过分组练习和教师巡回指导,提高了学生的参与度和学习效果。

高中数学必修一《集合》优秀教学设计

高中数学必修一《集合》优秀教学设计

集合知识目标:(1)使学生初步理解集合的概念,知道常用数集的概念及其记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力;德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。

教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家);4.“物以类聚”,“人以群分”;5.教材中例子。

二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念(例子见书):1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合。

(2)元素:集合中每个对象叫做这个集合的元素。

2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合。

记作N(2)正整数集:非负整数集内排除0的集。

记作N*或N+(3)整数集:全体整数的集合。

记作Z(4)有理数集:全体有理数的集合。

记作Q(5)实数集:全体实数的集合。

记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。

记作N*或N+、Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A;(2)不属于:如果a不是集合A的元素,就说a不属于A,记作.4、集合中元素的特性(1)确定性:(2)互异性:(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……2、“∈”的开口方向,不能把a∈A颠倒过来写。

高一必修一集合教案设计完整版(精心整理)06214

高一必修一集合教案设计完整版(精心整理)06214

集合的含义及其表示一、问题引入:二、建构数学:1.集合:一般地,把一些能够确定的、不同的对象看成一个整体,就说这个集体是由这些对象的全体构成的集合(或集set ),常用大写字母来表示,如A ,B ,…… 元素:集合中的每个对象称为该集合的元素(或成员element )。

集合的元素常用小写字母来表示。

如a 、b 、c 、…… 集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A 2.关于集合的元素的特征 (1)确定性:(所有的老人) (2)互异性:(3)无序性:{1,2,3}={2,1,3} 3.有限集、无限集和空集的概念:4.常用数集的记法:(1)自然数集(非负整数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N +{},3,2,1*=N(3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括0(2)非负整数集内排除0的集,记作N *或N +, 同样的符号还有+R ……。

5.集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在花括号内,逗号隔开。

如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…。

(2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示出来,写成{|()}x p x 的形式。

(3)韦恩(Venn )图6.两个集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等。

三、数学运用: 1.例题:例1.用列举法和描述法表示方程2230x x --=的解集。

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇高一必修一数学集合教案篇1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。

本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:教学目标:(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。

加强函数教学可帮助学好其他的内容。

而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。

而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。

函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。

为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

高一必修一集合教案完整版(精心整理)

高一必修一集合教案完整版(精心整理)

必修一第一章预习教案(第1次)1.1集合 1.1.1 集合的含义及其表示教学目标:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程:一、问题引入:我家有爸爸、妈妈和我; 我来泉州市第九中学; 五中高一(1)班; 我国的直辖市。

分析、归纳上述各个实例的共同特征,归纳出集合的含义。

二、建构数学:1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。

集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市; (2)五中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于100的数; (6)小于0的正数。

2.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3.集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (“∈”的开口方向,不能把a ∈A 颠倒过来写)4.有限集、无限集和空集的概念:5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合Q ,{}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集N *或N +。

高中数学集合教案

高中数学集合教案

高中数学集合教案【篇一:高一数学集合教学案(4课时)】高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。

情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。

(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

难点:能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本p3(3)元素:集合中每个叫做这个集合的元素,元素通常用表示 2、元素与集合的关系(1)属于:记作:a___a;(2)不属于:记作:a___a;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为2(3) 方程方程x=1的解的全体构成的集合; 其中元素为(4) 不等式x+12x+2的解的全体构成的集合. 其中元素为你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1);(2);(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点o的距离等于定长r的点的全体;(3) 方程x+1=x+2的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有个元素的集合叫做有限集(2)含有个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集:的集合.记作;(2)正整数集:的集合.记作;(3)整数集:的集合.记作;(4)有理数集:的集合.记作;(5)实数集:的集合.记作。

高中数学必修1集合教案精选全文

高中数学必修1集合教案精选全文

可编辑修改精选全文完整版高中数学必修1集合教案第一篇:高中数学必修1 集合教案学习周报专业辅导学习集合(第1课时)一、知识目标:①内容:初步理解集合的基本概念,常用数集,集合元素的特征等集合的基础知识。

②重点:集合的基本概念及集合元素的特征③难点:元素与集合的关系④注意点:注意元素与集合的关系的理解与判断;注意集合中元素的基本属性的理解与把握。

二、能力目标:①由判断一组对象是否能组成集合及其对象是否从属已知集合,培养分析、判断的能力;②由集合的学习感受数学的简洁美与和谐统一美。

三、教学过程:Ⅰ)情景设置:军训期间,我们经常会听到教官在高喊:(x)的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到教官的身边,而那些不是咱们班的学生便会自动走开。

这样一来教官的一声“集合”(动词)就把“某些指定的对象集在一起”了。

数学中的“集合”这一概念并不是教官所用的动词意义下的概念,而是一个名词性质的概念,同学们在教官的集合号令下形成的整体即是数学中的集合的涵义。

Ⅱ)探求与研究:① 一般地,某些指定的对象集在一起就成为一个集合,也简称集。

问题:同学们能不能举出一些集合的例子呢?(板书学生们所举出的一些例子)② 为了明确地告诉大家,是哪些“指定的对象”被集在了一起并作为一个整体来看待,就用大括号{ }将这些指定的对象括起来,以示它作为一个整体是一个集合,同时为了讨论起来更方便,又常用大写的拉丁字母A、B、C……来表示不同的集合,如同学们刚才所举的各例就可分别记为……(板书)另外,我们将集合中的“每个对象”叫做这个集合的元素,并用小写字母a、b、c……(或x1、x2、x3……)表示同学口答课本P5练习中的第1大题③ 分析刚才同学们所举出的集合例子,引出:对某具体对象a与集合A,如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A的元素,就说a不属于集合A,记作a∉A④ 再次分析同学们刚才所举出的一些集合的例子,师生共同讨论得出结论:集合中的元素具有确定性、互异性和无序性。

高一数学集合教案优秀4篇

高一数学集合教案优秀4篇

高一数学集合教案优秀4篇高一数学集合教案篇一教学目标:1.使学生理解集合的含义,知道常用集合及其记法;2.使学生初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。

教学重点:集合的含义及表示方法。

教学过程:一、问题情境1.情境。

新生自我介绍:介绍家庭、原毕业学校、班级。

2.问题。

在介绍的过程中,常常涉及像家庭、学校、班级、男生、女生等概念,这些概念与学生相比,它们有什么共同的特征?二、学生活动1.介绍自己;2.列举生活中的集合实例;3.分析、概括各集合实例的共同特征。

三、数学建构1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合。

构成集合的每一个个体都叫做集合的一个元素。

2.元素与集合的关系及符号表示:属于,不属于。

3.集合的表示方法:另集合一般可用大写的拉丁字母简记为集合A、集合B.4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.5.有限集,无限集与空集。

6.有关集合知识的历史简介。

四、数学运用1.例题。

例1 表示出下列集合:(1)中国的直辖市;(2)中国国旗上的颜色。

小结:集合的确定性和无序性例2 准确表示出下列集合:(1)方程x2―2x-3=0的解集;(2)不等式2-x0的解集;(3)不等式组的解集;(4)不等式组2x-1-33x+10的解集。

解:略。

小结:(1)集合的表示方法列举法与描述法;(2)集合的分类有限集⑴,无限集⑴与⑴,空集⑴例3 将下列用描述法表示的集合改为列举法表示:(1){(x,y)| x+y = 3,x N,y N }(2){(x,y)| y = x2-1,|x |2,x Z }(3){y| x+y = 3,x N,y N }(4){ x R | x3-2x2+x=0}小结:常用数集的记法与作用。

例4 完成下列各题:(1)若集合A={ x|ax+1=0}=,求实数a的值;(2)若-3{ a-3,2a-1,a2-4},求实数a.小结:集合与元素之间的关系。

集合数学必修一教案5篇

集合数学必修一教案5篇

集合数学必修一教案5篇面对数学新课程、新教材的实施,更应提高课堂教学效果,提高自身的整体素质修养,改进传统的教学模式,创新教学方法和技巧。

这里给大家分享一些关于集合数学必修一教案,方便大家学习。

集合数学必修一教案篇1重点难点教学:1.正确理解映射的概念;2.函数相等的两个条件;3.求函数的定义域和值域。

教学过程:1. 使学生熟练掌握函数的概念和映射的定义;2. 使学生能够根据已知条件求出函数的定义域和值域;3. 使学生掌握函数的三种表示方法。

教学内容:1.函数的定义设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB81为从集合A到集合B的一个函数(function),记作:yf__A其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f__A83叫值域(range)。

显然,值域是集合B的子集。

注意:① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.2.构成函数的三要素定义域、对应关系和值域。

3、映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4. 区间及写法:设a、b是两个实数,且a(1) 满足不等式axb8080的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式axb8787的实数x的集合叫做开区间,表示为(a,b);5.函数的三种表示方法①解析法②列表法③图像法集合数学必修一教案篇2教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.集合数学必修一教案篇3教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

高中数学必修一《集合》优秀教学设计

高中数学必修一《集合》优秀教学设计

集合一、知识结构本小节首先从初中代数与几何涉及的集合实例人手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.二、重点难点分析这一节的重点是集合的基本概念和表示方法,难点是运用集合的三种常用表示方法正确表示一些简单的集合.这一节的特点是概念多、符号多,正确理解概念和准确使用符号是学好本节的关键.为此,在教学时可以配备一些需要辨析概念、判断符号表示正误的题目,以帮助学生提高判断能力,加深理解集合的概念和表示方法.1.关于牵头图和引言分析章头图是一组跳伞队员编成的图案,引言给出了一个实际问题,其目的都是为了引出本章的内容无论是分析还是解决这个实际间题,必须用到集合和逻辑的知识,也就是把它数学化.一方面提高用数学的意识,一方面说明集合和简易逻辑知识是高中数学重要的基础.2.关于集合的概念分析点、线、面等概念都是几何中原始的、不加定义的概念,集合则是集合论中原始的、不加定义的概念.初中代数中曾经了解“正数的集合”、“不等式解的集合”;初中几何中也知道中垂线是“到两定点距离相等的点的集合”等等.在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识.教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集.”这句话,只是对集合概念的描述性说明.我们可以举出很多生活中的实际例子来进一步说明这个概念,从而阐明集合概念如同其他数学概念一样,不是人们凭空想象出来的,而是来自现实世界.3.关于自然数集的分析教科书中给出的常用数集的记法,是新的国家标准,与原教科书不尽相同,应该注意.新的国家标准定义自然数集N含元素0,这样做一方面是为了推行国际标准化组织(ISO)制定的国际标准,以便早日与之接轨,另一方面,0还是十进位数{0,1,2,…,9}中最小的数,有了0,减法运算仍属于自然数,其中 .因此要注意几下几点:(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;(2)自然数集内排除0的集,表示成或,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示,, ;(3)原教科书或根据原教科书编写的教辅用书中出现的符号如,,…不再适用.4.关于集合中的元素的三个特性分析集合中的每个对象叫做这个集合的元素.例如“中国的直辖市”这一集合的元素是:北京、上海、天津、重庆。

高一数学集合教案(精选)

高一数学集合教案(精选)

高一数学集合教案(精选)第一篇:高一数学教案:集合的表示方法1.1.2集合的表示方法教学目标:掌握集合的表示方法,能选择自然语言、图形语言、集合语言描述不同的问题.教学重点、难点:用列举法、描述法表示一个集合.教学过程:一、复习引入:1.回忆集合的概念2.集合中元素有那些性质?3.空集、有限集和无限集的概念二、讲述新课:集合的表示方法1、大写的字母表示集合2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集n:{1,2,3,4,…,n,…}(3)区分a与{a}:{a}表示一个集合,该集合只有一个元素.a表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.3、特征性质描述法:在集合i中,属于集合a的任意元素某都具有性质p(某),而不属于集合a的元素都不具有性质p(某),则性质p(某)叫做集合a的一个特征性质,于是集合a可以表示如下:{某∈i|p(某)}例如,不等式某23某2的解集可以表示为:{某r|某23某2}或{某|某23某2},所有直角三角形的集合可以表示为:{某|某是直角三角形}注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}(2)注意区别:实数集,{实数集}.4、文氏图:用一条封闭的曲线的内部来表示一个集合.例1:集合{(某,y)|y某21}与集合{y|y某21}是同一个集合吗?答:不是.集合{(某,y)|y某21}是点集,集合{y|y某21}={y|y1}是数集。

例2:(教材第7页例1)例3:(教材第7页例2)课堂练习:(1)教材第8页练习a、b(2)习题1-1a:1,小结:本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种)课后作业:p101,2第二篇:高一数学教案:1.1集合-集合的概念(2).doc课题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1(22、常用数集及记法(1n,n0,1,2,(2)正整数集:非负整数集内排除0n或n+,n某1,2,3,某1,2,(3z,z0,(4q,q所有整数与分数(5r,r数轴上所有点所对应的数3、元素对于集合的隶属关系(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a(2)不属于:如果a不是集合a的元素,就说a不属于a,记作aa4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,(2(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如a、b、c、p、q元素通常用小写的拉丁字母表示,如a、b、c、p、q(2)“∈”的开口方向,不能把a∈a二、讲解新课:(二)集合的表示方法1例如,由方程某210的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100}所有正奇数组成的集合:{1,3,5,7,}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条格式:{某∈a|p(某)}含义:在集合a中满足条件p(某)的某例如,不等式某32的解集可以表示为:{某r|某32}或{某|某32所有直角三角形的集合可以表示为:{某|某是直角三角形}注:(1如:{直角三角形};{大于10的实数}(2)错误表示法:{实数集};{全体实数}344、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列{某2,3某2,5y3某,某2y2}⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一如:集合{(某,y)|y某21};集合{1000以内的质数}例集合{(某,y)|y某21}与集合{y|y某21}是同一个集合吗?答:{(某,y)|y某21}是抛物线y某21上所有的点构成的集合,集合{y|y某21}={y|y1}是函数y某21(三)有限集与无限集1、有2、无3、空φ,如:{某r|某210}三、练习题:1、用描述法表示下列集合①{1,4,7,10,13}{某|某3n2,nn且n5}②{-2,-4,-6,-8,-10}{某|某2n,nn且n5}2、用列举法表示下列集合①{某∈n|某是15的约数}{1,3,5,15}②{(某,y)|某∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{某=1,y=2}某y282③{(某,y)|}{(,)}33某2y4④{某|某(1)n,nn}{-1,1}⑤{(某,y)|3某2y16,某n,yn}{(0,8)(2,5),(4,2)}}⑥{(某,y)|某,y分别是4的正整数约数{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于某的方程a某+b=0,当a,b满足条件____时,解集是有限集;当a,b满足条件_____4、用描述法表示下列集合:(1){1,5,25,125,625}=;(2){0,±4312,±,±,±,251017四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:第三篇:高一数学集合与简易逻辑教案11苏教版江苏省白蒲中学2022高一数学集合与简易逻辑教案11苏教版教材:含绝对值不等式的解法目的:从绝对值的意义出发,掌握形如|某|=a的方程和形如|某|>a,|某|<a(a>0)不等式的解法,并了解数形结合、分类讨论的思想。

高一数学集合的教案

高一数学集合的教案

高一数学集合的教案教案标题:高一数学集合的教案教学目标:1. 了解集合的基本概念和符号表示法。

2. 掌握集合的运算法则,包括并集、交集、差集和补集。

3. 能够解决与集合相关的实际问题。

4. 培养学生的逻辑思维和解决问题的能力。

教学重点:1. 集合的基本概念和符号表示法。

2. 集合的运算法则。

3. 集合的应用问题。

教学难点:1. 集合的运算法则的理解和应用。

2. 集合的应用问题的解决。

教学准备:1. 教材:高中数学教材。

2. 教具:黑板、粉笔、投影仪。

3. 学具:学生练习册、习题集。

教学过程:Step 1:导入(5分钟)通过提问和引入实际例子,激发学生对集合的兴趣和思考,例如:“你们曾经遇到过集合的概念吗?在日常生活中,你们能举出一些集合的例子吗?”Step 2:概念讲解(15分钟)2.1 集合的定义和符号表示法- 介绍集合的定义:集合是由一些确定的对象组成的整体。

- 解释集合的符号表示法:用大写字母表示集合,用大括号{}表示集合的元素。

2.2 集合间的关系- 并集:将两个或多个集合中的所有元素组合在一起,重复的元素只保留一个。

- 交集:取两个或多个集合中共有的元素组成的集合。

- 差集:从一个集合中去掉另一个集合中的元素,得到的新集合。

- 补集:相对于某个全集,一个集合中没有的元素组成的集合。

Step 3:运算法则的讲解和练习(20分钟)3.1 并集和交集的运算法则- 通过示意图和具体的例子,讲解并集和交集的运算法则。

- 给学生提供一些练习题,让他们在纸上进行计算和解答。

3.2 差集和补集的运算法则- 通过示意图和具体的例子,讲解差集和补集的运算法则。

- 给学生提供一些练习题,让他们在纸上进行计算和解答。

Step 4:应用问题的解决(15分钟)给学生提供一些与集合相关的实际问题,让他们运用所学的集合运算法则解决问题。

鼓励学生在解决问题的过程中思考和讨论,培养他们的逻辑思维和解决问题的能力。

Step 5:小结与作业布置(5分钟)对本节课所学内容进行小结,并布置相关的作业。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合的含义及其表示一、问题引入:二、建构数学:1.集合:一般地,把一些能够确定的、不同的对象看成一个整体,就说这个集体是由这些对象的全体构成的集合(或集set ),常用大写字母来表示,如A ,B ,…… 元素:集合中的每个对象称为该集合的元素(或成员element )。

集合的元素常用小写字母来表示。

如a 、b 、c 、…… 集合元素与集合的关系用“属于”和“不属于”表示;(1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A (2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A 2.关于集合的元素的特征 (1)确定性:(所有的老人) (2)互异性:(3)无序性:{1,2,3}={2,1,3}3.有限集、无限集和空集的概念:4.常用数集的记法:(1)自然数集(非负整数集):全体非负整数的集合记作N ,{}Λ,2,1,0=N(2)正整数集:非负整数集排除0的集记作N *或N +{}Λ,3,2,1*=N(3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括0 (2)非负整数集排除0的集,记作N *或N +, 同样的符号还有+R ……。

5.集合的表示方法(1)列举法:把集合中的元素一一列举出来,写在花括号,逗号隔开。

如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…。

(2)描述法:把集合中的所有元素都具有的性质(满足的条件)表示出来,写成{|()}x p x 的形式。

(3)韦恩(Venn )图6.两个集合相等:如果两个集合所含的元素完全相同,则称这两个集合相等。

三、数学运用: 1.例题:例1.用列举法和描述法表示方程2230x x --=的解集。

例2.下列各式中错误的是 ( )(1){奇数}={|21,}x x k k Z =-∈ (2){|*,||5}{1,2,3,4}x x N x ∈<=(3)1{(,)|}2x y x y xy +=⎧⎨=-⎩ {(2,1),(1,2)}=-- (4)33N --∈例3.求不等式235x ->的解集例4.求方程2210x x ++=的所有实数解的集合。

例5.已知2{2,,},{2,2,}M a b N a b ==,且M N =,求,a b 的值例6.已知集合{}2210,R A x ax x x =--=∈,若集合A 中至多有一个元素,数a 的取值围.2.练习:(2)用列举法表示下列集合:① {|x x 是15的正约数} ②{(,)|{1,2},{1,2}}x y x y ∈∈ ③{(,)|2,24}x y x y x y +=-=④ {|(1),}nx x n N =-∈ ⑤{(,)|3216,,}x y x y x N y N +=∈∈(3)用描述法表示下列集合:①{1,4,7,10,13}; ②{2,4,6,8,10}-----课堂练习:1. 下列说确的是 ( ) A.{}1,2,{}2,1是两个集合 B.{}(0,2)中有两个元素 C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}2|20x Q x x ∈++=且是空集 2.将集合{}|33x x x N -≤≤∈且用列举法表示正确的是 ( ) A.{}3,2,1,0,1,2,3--- B.{}2,1,0,1,2-- C.{}0,1,2,3 D.{}1,2,33.{},0.3,0,00R Q N +∉∈∈其中正确的个数是( )A.1个 B.2个 C.3个 D.4个 4.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为____________.5.已知集合A={}20,1,x x -则x 在实数围不能取哪些值___________.6.(创新题)已知集合{},,S a b c =中的三个元素是ABC ∆的三边长,那么ABC ∆一定不是 ( )A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形 五、回顾小结:1.集合的有关概念 2.集合的表示方法 3.常用数集的记法课后作业: 一、选择题1.下列元素与集合的关系中正确的是( ) A.N ∈21B.2∈{x ∈R|x ≥3}C.|-3|∉N*D.-3.2∉Q2.给出下列四个命题:(1)很小的实数可以构成集合;(2)集合{y |y =x 2-1}与集合{(x ,y )|y =x 2-1}是同一个集合; (3)1,23,46,21-,0.5这些数字组成的集合有5个元素;(4)集合{(x ,y )|xy ≤0,x ,y ∈R}是指第二象限或第四象限的点的集合. 以上命题中,正确命题的个数是( ) A.0B.1C.2D.33.下列集合中表示同一集合的是( ) A.M={(3,2)},N={(2,3)} B.M={3,2},N={(2,3)}C.M={(x ,y )|x +y =1},N={y |x +y =1}D.M={1,2},N={2,1}4.已知x ∈N,则方程220x x +-=的解集为( ) A.{x |x =-2}B. {x |x =1或x =-2}C. {x |x =1}D.∅5.已知集合M={m ∈N|8-m ∈N},则集合M 中元素个数是( ) A.6B.7C.8D.9二、填空题6.用符号“∈”或“∉”填空:0_______N,5______N,16______N.7.用列举法表示A={y |y =x 2+1,-2≤x ≤2,x ∈Z}为_______________. 8.用描述法表示集合“方程x 2-2x +3=0的解集”为_____________. 9.集合{x |x >3}与集合{t|t >3}是否表示同一集合?________10.已知集合P={x |2<x <a ,x ∈N},已知集合P 中恰有3个元素,则整数a =_________. 三、解答题11.已知集合A={0,1,2},集合B={x |x =ab ,a ∈A,b ∈A}. (1)用列举法写出集合B ;(2)判断集合B 的元素和集合A 的关系.12.已知集合{1,a ,b }与{-1,-b ,1}是同一集合,数a 、b 的值.13.(探究题)下面三个集合:①{}2|2x y x =-,②{}2|2y y x =-,③{}2(,)|2x y y x =- (1)它们是不是相同的集合? (2)试用文字语言叙述各集合的含义.必修一第一章预习教案(第2次)1.1集合 1.1.2集合间的基本关系【学习目标】1.理解集合之间的包含与相等的含义,能识别给定集合的子集;2.在具体情境中,了解全集与空集的含义. 【预习指导】1.集合间有几种基本关系?2.集合的基本关系分别用哪些符号表示?怎样用Venn 图来表示?3.什么叫空集?它有什么特殊规定?4.集合之间关系的性质有哪些? 【自主尝试】 1.判断下列集合的关系①{}{}1,2,3,2,1,3A B == ②{}{},,,,A a b B a b c ==2.判断正误① {}0是空集②{}5的子集的个数为1【课堂探究】一、问题1我们知道实数有大、小或相等的关系,哪么集合间是不是也有类似的关系呢? 1.{}{}1,2,3,1,2,3,4,5A B ==2.设集合A为高一(2)班全体女生组成的集合,集合B为这个班全体学生组成的集合. 3.设{}{}|,|C x x D x x ==是等边三角形是三角形. 4.{}{}|,|213A x x D x x =≥=-≥2.观察上面的例子,指出给定两个集合中的元素有什么关系?对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系则称集合A 为集合B 的子集.我们已经知道元素与集合的关系用 表示,那么集合A 是B 的子集如何表示呢?B A ⊆(或 A B ⊇),读作:“A 含于B ”(或“B 包含A ”)其中:“A 含于B ”中的于是被的意思,简单地说就是A 被B 包含.“⊆”类似于“≤”开口朝向谁谁就“大”.在数学中,除了用列举法、描述法来表示集合之外,我们还有一种更简洁、直观的方法——用平面上的封闭曲线的部来表示集合venn (韦恩)图.那么,集合A 是集合B 的子集用图形表示如下: B A ⊆问题2①{}{}1,3,5,5,1,3A B ==②}|{D }|{是两条边相等的三角形,是等腰三角形x x x x C == ③{}{}1,|10A B x x ==-= ④131(,)|,(,)222x y A x y B x y ⎧+=⎫⎧⎧⎫==-⎨⎨⎬⎨⎬-=⎩⎭⎩⎩⎭上面的各对集合中,有没有包含关系? 集合相等思考:上述各组集合中,集合A 是集合B 的子集吗?集合B 是集合A 的子集吗? 对于实数b a ,,如果b a ≥且a b ≥,则 a 与b 的大小关系如何?b a =用子集的观点,仿照上面的结论在什么条件下A=B⎩⎨⎧⊆⊆⇔=A B BA B A问题3 若B A ⊆,则集合A 与B 一定相等吗?若B A ⊆,则可能有A=B ,也可能B A ≠.当 B A ⊆,且B A ≠时,我们如何进行数学解释?如果B A ⊆,但存在元素B x ∈且A x ∉ ,则 称集合A 是集合B 的真子集.A B (或B A )A = BB A ⊆AB问题4:(1)2{|10}x R x ∈+= (2){|||20}x R x ∈+<上述两个集合有何共同特点? 集合中没有元素 ,我们就把上述集合称为空集 不含任何元素的集合叫做空集,记为∅,规定:空集是任何集合的子集 空集与集合{0}相等吗? ∅{0} 空集是任何非空集合的真子集 通过前面的学习我们可以知道: 1) 任何集合是它本身的 子集 2) 对于集合A ,B ,C ,如果B A ⊆,且C B ⊆,那么C A ⊆例题:写出集合{a,b,c}的所有子集并指出,真子集、非空真子集. 解:集合{a,b,c}子集:∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}集合{a,b,c}真子集∅,{a},{b},{c},{a,b},{a,c},{b,c}集合{a,b,c}的非空真子集 {a},{b},{c},{a,b},{a,c},{b,c} 【典型例题】:1.写出下列各集合的子集及其个数 {}{}{},,,,,,a a b a b c ∅2.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ⊆N,求k 的取值围.A B B A ⊆⊆且◆ 规律总结:有n 个元素的集合,含有2n 个子集,2n -1个真子集,2n -1个非空子集,n 个元素的非空真子集有2n -2个。

相关文档
最新文档