人教版 七年级数学下册 一元一次不等式应用题 培优练习

合集下载

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练(含答案)

人教版七年级下册数学一元一次不等式解决实际问题应用题专项训练1.某校组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李;乙种汽车每辆最多能载30人和20件行李.请你帮助学校设计所有可能的租车方案.2.为加快老旧小区改造,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输60箱物资:5辆大货车与6辆小货车一次可以运输135箱物资.(1)求1辆大货车和1辆小货车一次分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用500元,每辆小货次需费用300元.若运输物资不少于150箱,且总费用小于5400元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?3.为了更好地治理水质,保护环境,市治污公司决定购买10台污水处理设备,现有A、B两种设备,A、B的单价分别为a万元/台和b万元/台,月处理污水分别为240吨/月和200吨/月,经调查,买一台A型设备比买一台B 型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a、b的值;(2)经预算,市治污公司购买污水处理器的资金不超过105万元,你认为该公司有哪几种购买方案?(3)在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案.4.疫情形势依然严峻,我们需要继续坚持常态化防控.卫生专家建议多补充维生素增强身体免疫力以抵御病菌,现有甲、乙、丙3种食物的维生素含量和成本如下表:某食品公司欲用这3种食物研制100千克食品,要求研制成的食品中至少含有36000单位的维生素A和40000单位的维生素B.(1)研制100千克食品,甲种食物至少要用多少千克?丙种食物至多能用多少千克?(2)若限定甲种食物用50千克,则研制这100千克食品的总成本S的取值范围是多少?5.某校开展以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,则需110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元;(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总金额不超过320元,则最多购进乙种笔记本多少个?6.为共产党建党一百周年,某校举行“礼赞百年,奋斗有我”演讲比赛,准备购买甲、乙两种纪念品奖励在活动中表现优秀的学生,已知购买2个甲种纪念品和3个乙种纪念品共需35元,购买1个甲种纪念品和4个乙种纪念品共需30元.(1)求购买一个甲种纪念品和一个乙种纪念品各需多少元?(2)若要购买这两种纪念品共100个,投入货金不多于900元,最多买多少个甲种纪念品?7.有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为170人,1辆甲种客车与2辆乙种客车的总载客量为100人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某单位组织180名员工到某革命家传统教育基地开展“纪念建党100周年”活动,拟租用甲、乙两种客车共5辆,总费用在1950元的限额内,一次将全部员工送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为320元,有哪几种租车方案,最少租车费用是多少?8.由甲、乙两运输队承包运输6000立方米沙石的任务.要求10天之内(含10天)完成,已知两队共有15辆汽车且全部参与运输,甲队每辆车每天能够运输50立方米的沙石,乙队每辆车每天能够运输40立方米的沙石,前3天两队一共运输了2070立方米.(1)甲队有________辆汽车,乙队有________辆汽车;(2)3天后,另有紧急任务要从甲队调出车辆支援,在不影响工期的情况下,利用(1)的结论求最多可以从甲队调出汽车多少辆?9.某学校计划从商店购买A,B两种商品,购买一个A种商品比购买一个B种商品多用20元,且购买10个A种商品和5个B种商品共需275元.(1)求购买一个A种商品、一个B种商品各需要多少元;(2)根据学校实际情况,该学校需要购买B种商品的个数是购买A种商品个数的3倍还多18个,经与商店洽谈,商店决定在该学校购买A种商品时给予八折优惠,如果该学校本次购买A,B两种商品的总费用不超过1000元,那么该学校最多可购买多少个A种商品?10.下表是某奶茶店的一款奶茶近两天的销售情况.(1)根据表格数据,这款奶茶中杯和大杯的销售单价各是多少元?(2)已知这款奶茶中杯成本3元/杯,大杯成本4元/杯,奶茶店每天最多供应200杯奶茶,如果奶茶店老板希望每天该款奶茶的利润不低于2000元,则至少需卖出多少杯大杯奶茶?11.某汽车贸易公司销售A,B两种型号的新能源汽车,A型车进货价格为每台12万元,B型车进货价格为每台15万元,该公司销售2台A型车和5台B型车,可获利3.1万元,销售1台A型车和2台B型车,可获利1.3万元.(1)求销售一台A型、一台B型新能源汽车的利润各是多少万元?(2)该公司准备用300万元资金,采购A,B两种新能源汽车,可能有多少种采购方案?(3)该公司准备用不超过300万,采购A,B两种新能源汽车共22台,问最少需要采购A型新能源汽车多少台?12.为为发展校园足球运动,我县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每个足球比每套队服多60元,5套队服与3个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a大于10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到哪家商场购买更优惠?13.深圳某校6名教师和234名学生外出参加集体活动,学校准备租用45座大车和30座小车若干辆.已知租用1辆大车、2辆小车的租车费用是1000元,租用2辆大车、1辆小车的租车费用是1100元.(1)求大、小客车每辆的租车费各是多少元?(2)学校要求每辆车上至少要有一名教师,且租车总费用不超过2300元,请问有几种符合条件的租车方案?14.某商店销售A,B两种型号的钢笔.下表是近两周的销售情况:(1)求A,B两种型号钢笔的销售单价;(2)某公司购买A,B两种型号钢笔共45支,若购买总费用不少于2600元,则B型号钢笔最少买几支?15.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用右表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)16.2021年元旦新冠病毒肆虐,为抗疫救灾,甲、乙两运输队接受了运输20000箱抗疫物资的任务,任务要求在11天之内(包含11天)完成.已知两队共有18辆汽车,甲队每辆车每天能够运输120箱的抗疫物资,乙队每辆车每天能够运输100箱的抗疫物资,前4天两队一共运输了8000箱.(1)求甲、乙两队各有多少辆汽车;(2)4天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?17.巴蜀中学两江校区和鲁能校区联合准备重庆市中学生新年文艺汇演.准备参加汇演的学生共102人(其中鲁能校区人数多于两江校区人数,且鲁能校区人数不足100人),按要求准备统一购买服装(一人买一套)参加演出,下面是服装厂给出的演出服装的价格表:如果两校区分别单独购买服装,一共应付7500元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)两江校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有7名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?18.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?19.某社区拟建甲,乙两类摊位以激活“地摊经济”,1个甲类摊位和2个乙类摊位共占地面积14平方米,2个甲类摊位和3个乙类摊位共占地面积24平方米.(1)求每个甲,乙类摊位占地面积各为多少平方米?(2)该社区拟建甲,乙两类摊位共100个,且乙类摊位的数量不多于甲类摊位数量的3倍,求甲类摊位至少建多少个?20.某班计划购买A、B两款文具盒作为期末奖品.若购买3盒A款的文具盒和1盒B款的文具盒需用22元;若购买2盒A款的文具盒和3盒B款的文具盒需用24元.(1)每盒A款的文具盒和每盒B款的文具盒各多少元.(2)某班决定购买以上两款的文具盒共40盒,总费用不超过210元,那么该班最多可以购买多少盒A款的文具盒?参考答案:1.第一种是租用甲种汽车5辆,乙种汽车3辆;第二种是租用甲种汽车6辆,乙种汽车2辆.2.(1)1辆大货车一次运输15箱物资,1辆小货车一次运输10箱物资;(2)方案①6辆大货车,6辆小货车,方案①7辆大货车,5辆小货车,方案①8辆大货车,4辆小货车;方案①,即当有6辆大货车,6辆小货车时,费用最小,最小费用为4800元.3.(1)a=12,b=10(2)三种方案,4.(1)即至少要用甲种食物35千克,丙种食物至多能用45千克(2)研制这100千克食品的总成本S的取值范围是470≤S≤5005.(1)甲种笔记本的单价是3元,乙种笔记本的单价是5元;(2)本次最多购买31个乙种笔记本.6.(1)购买一个甲种纪念品需10元,一个乙种纪念品需5元.(2)80个7.(1)1辆甲种客车的载客量为40人,1辆乙种客车的载客量为30人.(2)有2种租车方案,最少租车费用是1840元.8.(1)9;6;(2)最多可以从甲队调出汽车2辆.9.(1)购买一个A种商品需要25元,购买一个B种商品需要5元.(2)最多可购买26个A种商品.10.(1)这杯奶茶中杯和大杯的销售单价分别为12元,15元(2)至少需卖出100杯大杯奶茶11.(1)一台A型、一台B型新能源汽车的利润各0.3,0.5万元(2)可能有5种采购方案(3)最少需要采购A型新能源汽车10台12.(1)设每套队服售价90元,则每个足球售价为150元(2)甲商场购买装备所花费用(150a+7500)元,乙商场购买装备所花费用:(120a+9000)元(3)当购买足球数大于10而小于50时,到甲商场更优惠;当购买足球数等于50时,到甲、乙商场一样优惠;当购买足球数大于50时,到乙商场更优惠13.(1)大车每辆的租车费是400元、小车每辆的租车费是300元;(2)有两种租车方案,方案一:4辆大车,2辆小车;方案二:5辆大车,1辆小车.14.(1)A型号的钢笔销售单价为50元/支,B型号的钢笔销售单价为80元/支(2)最少买B型号的钢笔12支15.(1)288,356(2)小明每天读28页,小红每天读40页(3)小明至少平均每天要比原来多读8页,才能确保第10天结束时还不被小红超过16.(1)甲队有10辆汽车,乙队有8辆汽车(2)甲队最多可以抽调2辆汽车走17.(1)1380元(2)两江校区有学生36人,则鲁能校区有学生66人.(3)两校联合起来选择按60元每套一次购买100套服装最省钱.18.(1)水果店两次分别购买了800元和1400元的水果(2)6元19.(1)每个甲类摊位占地6平方米,每个乙类摊位占地4平方米(2)甲摊位至少建25个20.(1)每盒A款的文具盒为6元,每盒B款的文具盒为4元(2)该班最多可以购买25盒A款的文具盒。

人教版七年级下册数学 92 一元一次不等式 同步练习题应用题专篇

人教版七年级下册数学 92 一元一次不等式 同步练习题应用题专篇

同步练习(应用题专篇) 9.2 一元一次不等式一、选择题米以外的安全区域.甲工4001.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到/米米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01人在转移过程中,前40秒.为了确保甲工人的安全,则导火线/秒,骑车的速度为4米1秒,步行的速度为米/ )米.的长要大于(1.5 ..1.3 DA.1 B.1.2 C块,第二个月起降价,60元/块的价格售出2.某经销商销售一批电话手表,第一个月以550这批电话手表至少销售总额超过了5.5万元.以500元/块的价格将这批电话手表全部售出,)有(106块D.C.105块103A.块B.104块,爸爸坐在跷跷板的一端,体小红和爸爸、妈妈三人玩跷跷板,三人的体重一共为150kg3.重只有妈妈一半的小红和妈妈坐在跷跷板的另一端,这时爸爸那一端仍然着地,小红的( )体重应小于25kg.24kg D49kg B.50kg C. A.元,由于受市场供求关系的影响,现准备打折销售,12004.某商品进价为800元,售价为进价售价???利润率100%??但要求利润率( ) 不低于5%,则至少可打??进价?? A.六折 B.七折 C.八折 D.九折5.设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,结果如图所示,那么这三种物体的质量按从大到小的顺序排列应为( )A.■、●、▲ B.■、▲、● C.▲、●、■ D.▲、■、●6.现有若干本连环画册分给小朋友,如果每人分8本,那么不够分,现在每人分7本,还多10本,则小朋友人数最少有 ( )A.7人B. 8人C. 10人D.11人二、填空题7.当x_______时,代数式-3x+5的值是正数;当x_______时,它的值不大于4;当x______时,它的值不小于2.8.一家商店计划出售60件衬衫,要使销售总额不低于5100元,则每件衬衫的售价至少应为_______元.万元,辣椒每0.5已知茄子每亩的收入是亩,2亩或辣椒3名菜农,每名可种茄子10.有9.名菜农种茄________亩的收入是0.8万元,要使总收入不低于15.6万元,则最多只能安排子.倍的长方形,则可列不等160 cm的铁丝围成一个宽是x cm,长是宽的210.用一根长不足式_______.分,答德州期末)某次数学测验中有16道选择题,评分办法:答对一道得6201611.(春?道题,分.某学生有一道题未答,那么这个同学至少要答对错一道扣2分,不答得0成绩才能在60分以上.12.一个工程队规定在6天内完成300千米的修路工程,第一天完成了60千米,现在接到任务要比原计划至少提前2填完成任务,以后几天平均每天至少完成千米.三、解答题13.某工人计划在15天里加工408个零件,前三天每天加工24个,问以后每天至少加工多少个零件才能在规定时间内超额完成任务?14.某种飞机进行飞行训练,飞出去的速度为1200km/h,飞回机场的速度为1500km/h,飞机油箱中的燃油只能保持2.5h的飞行,则飞机最多飞出多少千米就应返回?(结果精确到10km) 15.某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和若干支钢笔.已知影集每本15元,钢笔每支8元,问他至少买多少支钢笔才能打折?16.沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器,下表是两天的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电器的销售单价;(2)若超市准备用不多于8200元的金额再采购这两种型号的电器共30台,求A种型号的电器最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;若不能,请说明理由.参考答案一、选择题【答案】C;1.【解析】解:设导火线的长度为x米,+由题意得,>, 1.3.解得:x> C.故选;2.【答案】C104 >55000解得x>500【解析】设这批手表有x块,550×60+(x﹣60)×∴这批电话手表至少有105块,故选C. 3. 【答案】D ;)x?2?x?2x?150(x25?x,解得:.由题意可得:【解析】解:设小红的体重为xkg, B 【答案】;4.x800?1200?10x≥75%≥,所以至少应打,解得【解析】解:设打x折,由题意得:8007折.5. 【答案】B;【解析】由图可得: 2■>■+▲①,●+▲=3●②,由①②得■>▲,2●=▲,所以可得:■>▲>●.6. 【答案】D;8x?7x?10x?10,所以小朋友至少为【解析】设小朋友人数为x人,可得:,解得:11人.二、填空题51?,≥,≤7.【答案】1;3315?3x?5?3x?5xx?3x?5?0,得x?由. 2≥得【解析】≤4得≥;由;由≤1338.【答案】85;60xxx≥85得元,则.≥5100【解析】设售价为9.【答案】4;【解析】设最多只能安排x名菜农种茄子,则有(10-x)人种辣椒,那么种茄子的收入为3×0.5x 万元,种辣椒的收入为2×0.8×(10-x)万元,那么总收入为3×0.5x+2×0.8(10-x)万元.根据题意:3×0.5x+2×0.8(10-x)≥15.6,解得x≤4,故最多安排4名菜农种茄子10.【答案】x+2x<80;11.【答案】x>.所以至少要答对12道题,【解析】设答对x道.故6x﹣2(15﹣x)>60解得:x>分以上.60成绩才能在.12.【答案】80;【解析】解:设以后几天平均每天完成x千米,由题意得:60+(6﹣1﹣2)x≥300,解得:x≥80,故以后几天平均每天至少完成80千米,故答案为:80.三、解答题13.【解析】解:设三天后每天加工x个零件,根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.14.【解析】解:设飞机最多飞出x千米就应返回,则:xx??2.5.1200150021666. x<解得3∴x取1660.∴飞机最多飞出1660千米就应返回.15.【解析】解:设该同学买x支钢笔,根据题题意,得:15×6+8x≥200,313x解得.≥4支钢笔才能打折.故该同学至少要买14 【解析】16. 元,x元和y(1)设A、B两种型号电器的销售单价分别为解:由题意,得:2x+3y=1700, 3x+y=1500,元,y=300元,解得x=400 300元;400∴A、B两种型号电器的销售单价分别为元和)台,aB种型号电器(30﹣A(2)设采购种型号电器a台,则采购)≤8200,(30﹣a依题意,得320a+250 ,a取最大值为10解得a≤10,台时,采购金额不多于8200元;∴超市最多采购A种型号电器10 3)依题意,得(﹣a)≥2100,)(320)a+300﹣250(30﹣(400 a≥20,解得的最大值为∵a10,)的条件下超市不能实现利润至少为∴在(22100元的目标.。

完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a200 x≤0<b ≤400 200<x0.92400x>(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙mm ﹣进价(元/双) 20160双) 240/售价(元(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售2000每吨获利(元) 1000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段种型号 B种型号 A 1200元第一周 3台 4台元 6台台 1900 第二周 5 销售收入﹣进货成本)(进价、售价均保持不变,利润= .B两种型号的电风扇的销售单价;)求(1A种型号的电风扇最多能台,求)若商场准备用不多于27500元的金额再采购这两种型号的电风扇共50A (采购多少台?元的目标?若能,请给出相应1850台电风扇能否实现利润超过50)的条件下,商场销售完这2)在(3(.的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b /台)a 价格(万元180240处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.. 6答:共有辆汽车运货2.3. 元,y元,乙种玩具每个x)设甲种玩具每个1(【解答】解:根据题意,得:,解得:,答:甲种玩具每个元.5元,乙种玩具每个10 ,(个)2a﹣=200个,则甲种玩具a)设购进乙种玩具2(.根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:所以方案①运费最少,最少运费是29600元.7.,解得:)根据题意得:1(解:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,,根据题意得,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)x+16000)a﹣60(= ),100≤x≤(.①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,,解之得:.依题意得:答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,:.:根据题意得,解得答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×0.9x=7.2x;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×0.6(x﹣6)=6x+24,22=.∴y2(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y<y,则7.2x<6x+24,解得:x<20;21令y=y,则7.2x=6x+24,解得:x=20;21令y>y,则7.2x>6x+24,解得:x>20.:当x<20时,选择甲种产品更省钱;21综上所述当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:, 150型单价元;A型电风扇单价为200元,B答:(≤a:得解,7500≤)a﹣50160a+120则,台a购采扇风电型A设)2(.,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14. 件,根据题意得:y件,乙种商品x)设商场购进甲种商品1解:(.,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

中学初一数学一元一次不等式培优.doc

中学初一数学一元一次不等式培优.doc

初一数学一元一次不等式培优(最新)一、选择题x≥3 0,1.不等式组 x3 的所有整数解之和是()2A 、9B 、12C 、 13D 、 152.如果不等式组2x1 3(x1)x m的解集是 x < 2,那么 m 的取值范围是()A 、 m=2B 、 m >2C 、 m < 2D 、 m ≥23.如果 ba 0,那么()1 1 B 、1 11 1 D 、baA 、babC 、baa4.如果 m <n < 0,那么下列结论中错误的是( )A 、1 1B 、- m >- nC 、 m - 9< n - 9D 、m> 1nmn5.方程组x y a,0, y 0 ,则 a 的取值(x y的解 x 、 y 适合 x)2a 1A 、 a1 B 、 a1C 、 1 a1 D 、 a1336.如果 0 x 1 ,则下列不等式成立的()A 、 x x21 B 、 x2x1 C 、1x x 2D 、1x 2 xxx x x7.某射击运动员在一次比赛中前 6 次射击共中 52 环 ,如果他要打破 89 环 (10 次射击 )的记录,第七次射击不能少于()环(每次射击最多是 10环)A 、 5B 、 6C 、 7D 、 8x 15x 3, 28.关于 x 的不等式组2x 2x a3只有 4 个整数解,则 a 的取值范围是( )14 14 14 14 A 、- 5≤ a <-B 、- 5≤ a ≤-C 、- 5<a ≤-D 、- 5<a<-33339.已知关于 x 的不等式组x a b5,则 b的值为 ( 2x a的解集为 3 x)2b 1a A . -21 C .-41B .D .2410.某城市的一种出租车起步价是 7 元(即在 3km 以内的都付 7 元车费),超过 3km 后,每增加 1km 加价 1.2 元(不足 1km 按 1km 计算),现某人付了 14.2 元车费,求这人乘的最大 路程是( ) A .10kmB . 9 kmC . 8kmD . 7 km二、填空题ax 2y 1,x 3, 则不等式 bx 2a 0 的解集是 ________.已知关于 x1.方程组3y的解是y b, 2x 0的不等式 x - 2a <3 的最大整数解- 5,则 a 的取值范围 __________.2( x 1) 3(x 2)6, ①2.关于 x 的不等式组x a恰好有两个整数解,那么a 的取值范围是1,②2_________.3.若不等式xa x a 1 的解集与 x < 6 的解集相同,则 a 的取值为 ___12_______3 24.若关于 x ,y 的二元一次方程组 3xy1 a的解满足 x+y < 2,则 a 的取值范围为 a < 4 .x3y35.某中学有若干名学生住宿,若每间宿舍住 4 人,则有 20 人没有宿舍住;若每间住 8 人,则有一间宿舍住不满,求住宿舍的学生人数为_____人 .6.已知: 3(5x 2) 5 4x 6( x1) ,化简: 3x 1 1 3x 的结果是 _______________.已知不等式 6x2 3x 4 和2x11 x 1同时成立,则 x 的整数解为 _________.323x y 2k,1,且 y 1,则整数 k 的个数是 _______.能使不等式 1( 3x7.方程组x的解满足 x2 y 32 - 1)-( 5x -2)> 1成立的 x 的最大整数值是 _______.45x2 3x 4x 3(x 2)48.不等式组 x8x ,的解集是 ___________.已知不等式组 a 2x的解集3x13是 1 ≤x < 2,则 a = ______.9.已知方程组3x y k 1x 3 y 的解为 x 、 y ,且 2< k < 4,则 x - y 的取值范围是 _________. 若32x a 1的解集是1 x 1,则 (a 1)(b 1) 的值等于 _______.不等式组2b 3x10.某种药品的价格第一年上升了 10%,第二年下降了 (m -5)%(m > 5)后,仍不低于原价,则m 的值应为 ________.1 x 1 2m11.已知 2x -y = 0,且 x - 5> y ,则 x 的取值范围是 ________.不等式组 3的解集2x m6是 x 6m 3 ,则 m 的取值范围是 __________.12.若不等式组x ax a 1x a 无解,那么不等式组x a的解集是 ________________.113.某厂生产一种零件,固定成本为 2 万元,每个零件成本 3 元,售价 5 元,应缴纳税金为总 销售额的 10%,若要使利润超过固定成本,至少销售 个 . 14.若不等式组x mn 3 x5 ,求不等式 mx n 的解集为 _______________.x m的解是n15.. x.yx y a3 0,化简已知关于的方程组2x y的 解 满 足 x y5a| a | | 3 a | =.a b bd ,已知 11 b ,则 b +d 的值为 _________16.对于整数 a ,b ,c ,d ,定义ac d 3d c4117.若不等式组x > 2( x 3)的整数解是关于 x 的方程 2x4 ax 的根,则 a=;已2x 3<1知 3x 4≤ 6 2( x 2) ,则 x 1 的最小值等于.三、解答题1.某体育用品商场采购员要到厂家批发购进篮球和排球共 100 只,付款总额不得超过 11 815 元.已知两种球厂家的批发价和商场的零售价如右表,试解答下列问题: (1)该采购员最多可购进篮球多少只?(2)若该商场把这 100 只球全部以零售价售出,为使商场获得的利润不低于 2580 元,则采购员至少要购篮球多少只,该商场最多可盈利多少元?品名 厂家批发价(元 / 只)商场零售价(元 / 只)篮球 130 160排球1001202.某校为了奖励在数学竞赛中获奖的学生 ,买了若干本课外读物准备送给他们.如果每人送 3 本 ,则还余 8 本 ; 如果前面每人送5 本 ,最后一人得到的课外读物不足3 本 .设该校买了m 本课外读物 ,有 x 名学生获奖 ,请解答下列问题:(1) 用含 x 的代数式表示 m;(2) 求出该校的获奖人数及所买课外读物的本数.3.某厂有甲、 乙两种原料配制成某种饮料, 已知这两种原料的维生素 C 含量及购买这两种原料的价格如下表:原料甲种原料乙种原料维生素 C 及价格维生素 C/(单位 / 千克)600 100原料价格 / (元 / 千克)8 4现配制这种饮料10 千克,要求至少含有4200 单位的维生素C,并要求购买甲、乙两种原料的费用不超过72 元,(1)设需用x千克甲种原料,写出x应满足的不等式组。

人教版初一数学下册一元一次不等式(组)及应用题精选练习

人教版初一数学下册一元一次不等式(组)及应用题精选练习

34. 若干名学生, 若干间宿舍, 若每间住 4 人将有 20 人无法安排住处; 若每间住 8 人, 则有一间宿舍的人不空也不满. 问 学生有多少人?宿舍有几间?
35. 某零件制造车间有 20 名工人,已知每名工人每天可制造甲种零件 6 个或乙种零件 5 个,且每制造一个甲种零件可 获利 150 元,每制造一个乙种零件可获利 260 元.在这 20 名工人中,车间每天安排 x 名工人制造甲种零件,其余 工人制造乙种零件. (1) 若此车间每天所获利润为 y(元),用 x 的代数式表示 y.
26. 适当选择 a 的取值范围,使 1.7<x<a 的整数解: (1) x 只有一个整数解; (2) x 一个整数解也没有.
27. 已知 A=2x2+3x+2,B=2x2-4x-5,试比较 A 与 B 的大小.
28. 已知 a 是自然数,关于 x 的不等式组
3x 4 a, 的解集是 x>2,求 a 的值. x 2 0
2 x 1 0, 4 x 0.
3x 0, 4 x 7 0.
1 x 1 x, 21. 2 2 x 4 3x 3.
2 x 5 3 x , x 2 x . 3 2
2 4 x 3x 7, 22. 解不等式组 6 x 3 5 x 4, 3x 7 2 x 3.
8.
1 x 2, 有解,则 k 的取值范围是( x k
(B)k≥2 (C)k<1
). (D)1≤k<2 ). (D)m≥1
9.
不等式组 (A)m≤2
x 9 5 x 1, 的解集是 x>2,则 m 的取值范围是( x m 1
(B)m≥2 (C)m≤1

人教版数学七年级下册:《一元一次不等式方程应用题》练习含答案

人教版数学七年级下册:《一元一次不等式方程应用题》练习含答案

一元一次不等式方程应用题练习一选择题:1.下列说法不一定成立的是( )A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b2.下列式子:(1)5>-3;(2)3x+1;(3)s=vt;(4)x2-4≤0;(5)5x-3=2x+2;(6)a>b;(7)a2+b2≠c2中,不等式有()A.4个;B.5个;C.6个;D.7个;3.若a>b,则下列各式中一定成立的是()①a+2>b+2;②ac<bc;③﹣2a>﹣2b;④3﹣a<3﹣b.A.①② B.③④ C.②③ D.①④4.下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2 D.若ac2>bc2,则a>b5.如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-aB.a>-a>b>-bC.b>a>-b>-aD.-a>b>-b>a6.不等式3(x-2)≤x+4的非负整数解有()个.A.4B.5C.6D.无数7.若关于x的方程的解为正数,则m的取值范围是()A.m>0;B.m<0;C.m>;D.m<;8.某书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分打八折.设一次购书数量为x本(x>10),则付款金额为( )A.6.4x元B.(6.4x+80)元C.(6.4x+16)元D.(144-6.4x)元9.在抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过()A.66厘米B.76厘米C.86厘米D.96厘米10.某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()11.小明准备用22元钱买笔和笔记本,已知每支笔3元,每本笔记本2元,他买了3本笔记本后,其余的钱用来买笔,那么他最多可以买()A.3支笔B.4支笔C.5支笔D.6支笔12.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%二填空题:13.不等式3x<2x-3变形成3x-2x<-3,是根据______________________________.14.王老师带领学生到植物园参观,门票每张5元,购票才发现所带的钱不足,售票处工作人员告诉他:如果参观人数50人以上(含50人),可以按团体票享受8折优惠,于是王老师买了50张票,结果发现所带的钱还有剩余,那么王老师和他的学生至少有人.15.某种商品进价为元,出售时标价为元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降元出售此商品.16.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了场.17.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共张.18.不等式2x+4>0的负整数解是_______。

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(包含答案)

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(包含答案)

人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(含答案)1.为了参加西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

人教版七年级数学下册一元一次不等式应用题培优练习含答案

人教版七年级数学下册一元一次不等式应用题培优练习含答案

人教版七年级数学下册一元一次不等式应用题培优练习含答案2021年七年级数学下册一元一次不等式应用题培优练习1.为了参加2021年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发商蔬菜展开零价,其中西红柿与西兰花的批发价格与零售价格例如表中.蔬菜品种批发价(元/kg)零售价(元/kg)西红柿3.65.4西兰花814(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发商西红柿和西兰花,必须想要当天全部售罄后所挣钱数不少于1050元,则该经营户最多能够批发商多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备工作1000元全部用以供货甲,乙两种玩具,计划销售每个甲种玩具可以荣获利润4元,销售每个乙种玩具可以荣获利润5元,且销售这两种玩具的总利润不高于600元,那么这个玩具店须要最多供货乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙掏出购物发票,辨认出的确搞错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,就可以推断出应属大于10元的整数,笔记本的单价可能将为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别出售了多少元的水果?(2)在销售中,尽管两次发货的价格相同,但水果店仍以相同的价格卖出,若第一次供货的水果存有3%的损耗,第二次供货的水果存有5%的损耗,该水果店期望售罄这些水果买进不高于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中a产品和b产品共320件,a产品比b产品多80件.(1)谋装箱成件的a产品和b产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装a产品40件和b产品10件,乙种货车最多可装a产品和b产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价推行阶梯收费,收费标准如下表中:一户居民每月用电量x(单位:度)0<x≤200200<x≤400x>400电费价格(单位:元/度)ab0.92(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备工作供货甲、乙两种运动鞋.其中甲、乙两种运动鞋的市场价和售价如下表中.未知供货60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格市场价(元/双)售价(元/双)甲m240乙m20160(1)谋m的值;(2)必须并使供货的甲、乙两种运动鞋共200双的总利润(利润=售价市场价)少于21000元,且不少于22000元,反问该专卖店存有几种发货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承揽a.b两种货物运输业务,未知5月份a货物运费单价为50元/吨,b货物运费单价为30元/吨,共缴纳运费9500元;6月份由于油价下跌,运费单价下跌为:a货物70元/吨,b货物40元/吨;该物流公司6月承揽的a种货物和b种数量与5月份相同,6月份共缴纳运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且a货物的数量不大于b货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部非政府学生展开“英语风采大赛”,须要出售甲、乙两种奖品.出售甲奖品3个和乙奖品4个,需花64元;出售甲奖品4个和乙奖品5个,需花82元.(1)谋甲、乙两种奖品的单价各就是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?。

9.2一元一次不等式 培优训练-2020-2021学年人教版七年级数学下册(附答案)

9.2一元一次不等式 培优训练-2020-2021学年人教版七年级数学下册(附答案)

第9章 不等式与不等式组第2节《一元一次不等式》同步培优训练一、选择。

1.根据下列数量关系,列出相应的不等式,其中错误的是( ) A .x 的23减去4小于1:2413x -< B .x 与5的差不大于9:59x -<C .y 与5的和的3倍是一个负数:()350y +<D .x 的2倍与2的差不小于零:220x -≥2.关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 3.下列说法正确的是( ).A .x =1是不等式-2x <1的解集B .x =3是不等式-x <1的解集C .x >-2是不等式112x -<的解集 D .不等式-x <1的解集是x <-14.x 的4倍与7的差不小于-1,可列关系式为( )A .4x -7≤-1B .4x -7<-1C .4x -7=-1D .4x -7≥-1 5.下列不等式的解集,不包括-4的是( )A .x≤-4B .x≥-4C .x <-6D .x >-6 6.解不等式3211722x x -+≤的过程如下: ①去分母,得3x -2≤11x +7,②移项,得3x -11x≤7+2,③合并同类项,得-8x≤9,④系数化为1,得98x ≤-. 其中造成错误的一步是( )A .①B .②C .③D .④ 7.小明拿40元购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x 支雪糕,则列出关于x 的不等式正确的是( )A .2 1.5540x +⨯<B .2 1.5540x +⨯≤C .25 1.540x ⨯+≥D .25 1.540x ⨯+≤ 8.某运输公司要将300吨的货物运往某地,现有A ,B 两种型号的汽车可调用,已知A 型汽车每辆可装货物20吨,B 型汽车每辆可装货物15吨.在每辆汽车不超载的情况下,要把这300吨货物一次性装运完成,并且A 型汽车确定要用7辆,至少调用B 型汽车的辆数为( )A .10B .11C .12D .139.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( ) A .小于8km/h B .大于8km/h C .小于4km/h D .大于4km/h 10.某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为( )A .18B .19C .20D .21二、填空。

人教版七年级数学下册一元一次不等式期末专题培优复习(含答案)

人教版七年级数学下册一元一次不等式期末专题培优复习(含答案)

七年级数学下册一元一次不等式期末专题培优复习、选择题:1、如果a<b,下列各式中正确的是()2、下列不等式变形正确的是(3、如图,表示下列某个不等式的解集,其中正确的是()-—!;■ ;—-4 ^3 -2 -1 0 1 I 3A.x > 2B.x V 2C.x >2D.x <- 24、如果关于x的不等式(a + 1)x> a+ 1的解集为x V 1,则a的取值范围是(A.a V 0B.a V —1C.a > 1D.a > —1r _ Q 3 x—25、不等式-..''的负整数解有()2 2A.1个B.2个C.3个D.4个6、已知数的大小关系如图所示,则下列各式:①' I /I ■ J ;②二.;';③应一:;④「;⑤.其中正确的个数为()W pl EA.1个B.2个C.3个D.4个〜’■的解集为x V 4,则a满足的条件是()A.a V 4B.a=4C.a < 4D.a > 4a - 1-x&如果关于x的分式方程---------- 3二——有负分数解,且关于x的不等式组空x + 1 X + 1解集为x V- 2,那么符合条件的所有整数a的积是()A. —3B.0C.3D.9D.A.由a>b,得a- 2v b - 2B. 由a>b, 得|a| > |b|C.由a>b,得-2a v- 2bD.由a>b,得a2>b22(盘一乂)1+ 的------ < X+129、一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不 扣分•小明有两道题未答•至少答对几道题,总分才不会低于 60分.则小明至少答对的题数是( ) A.11 道B.12 道C.13 道D.14 道10、某种商品的进价为 800元,标价为1200兀,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%则最低可打( )A.8折B.8.5 折C.7折D.6折学「2注+3貨>0-恰有3个整数解,则a 的取值范围是( )B. C. D. ■2x+5 £----- >x-512、 若关于x 的不等式组J ?只有5个整数解,则a 的取值范围()------ <x+a[2A. 一「一「;二 一B. 一「一. 一 …C. 一「二」.一 一 JD. - ;;:___「2 2 2 2二、填空题:13、 不等式2x - 1V- 3的解集是 ____________ .14、 不等式3x - 4>4+2 (x - 2)的最小整数解是 ___________ . 15、 若关于二元一次方程组 |'的解满足:+「_■;则整数a 的最大值为 _________________匕+莎=3717、 某商贩去菜摊买黄瓜,他上午买了 30斤,价格为每斤x 元;下午,他又买了 20斤,价格为每 斤y 元,后来他以每斤元—丄 的价格卖完后,结果发现自己赔了钱,则x 与y 的大小关系是 ______2 —18、 用锤子以相同的力将铁钉垂直钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大•当铁钉1未进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的,已知这个铁钉被敲击 3次后3全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是 a cm,若铁钉总长度为9cm, 则a 的取值范围是11、已知关于x 的不等式组1 16、已知关于X 的不等式组匸[l-2x<6 [3r+J <4只有两个整数解,:的取值范围三、解答题:19、解一元一次不等式:‘―川;_ ] .、I「•3 25x-9 <3(x-l)?20、解不等式组:l--x < -x-1.2 221、已知3(5x+2)+%4—6(JT+D,则化简3x+3-2-3xf^+3>x,①22、解不等式组请结合题意填空,完成本题的解答[j3(x-£)<6r,②(I) _____________________ 解不等式①,得;(n)解不等式②,得____________ ;(川)把不等式①和②的解集在数轴上表示出来;-3 -2 -1 0 1 2 3(w)原不等式组的解集为____________ .23、便利店老板从厂家购进A、B两种香醋,A种香醋每瓶进价为6.5元,B种香醋每瓶进价为8元,共购进140瓶,花了1000元,且该店A种香醋售价8元,B种香醋售价10元(1)该店购进A、B两种香醋各多少瓶?(2)将购进的140瓶香醋全部售完可获利多少元?(3)老板计划再以原来的进价购进A、B两种香醋共200瓶,且投资不超过1420元,仍以原来的售价将这200 瓶香醋售完,且确保获利不少于339 元,请问有哪几种购货方案?24、为了抓住当地“庙会”商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元:若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?25、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a >0), 且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本.参考答案1、答案为:C2、答案为:B3、答案为: B.4、答案为: B5、答案为:B6、答案为:B7、答案为: D.&答案为:D9、答案为:D10、答案为: :A11、答案为: :B12、答案为: :A13、答案为: :x v- 1.14、答案为: :4.15、答案为: 3 ;16、答案为: :4皿717、答案为: x>y18、答案为: 31^—<a < 1319、答案为: 3 420、答案为: :21、答案为: :-522、解: ",[1亠3(沈-IXL恥②(I)解不等式①,得X <2;(n)解不等式②,得X >- 1;(川)把不等式①和②的解集在数轴上表示出来;—[二^3401 2 3(W)原不等式组的解集为- 1 v X W 2.故答案为:x < 2; x >- 1; - 1 v X W 2.23、解:(1)设:该店购进A种香油x瓶,B种香油(140-x )瓶,由题意可得 6.5x+8 (140-x ) =1000,解得x=80, 140-x=60.答:该店购进A种香油80瓶,B种香油60瓶.(2)80X( 8-6.5 ) +60X( 10-8 ) =240.答:将购进140瓶香油全部销售完可获利240元.(3)设:购进A种香油a瓶,B种香油(200-a )瓶,由题意可知 6.5a+8 (200-a )< 1420,1.5a+2 (200-a )> 339,解得120w a< 122.因为a为非负整数,所以a取120, 121, 122.所以200-a=80或79或78.故方案1:A种香油120瓶B种香油80瓶.方案2:A种香油121瓶B种香油79瓶.方案3:A种香油122瓶B种香油78瓶.答:有三种购货方案:方案1:A种香油120瓶,B种香油80瓶;方案2:A种香油121瓶, B种香油79瓶;方案3: A种香油122瓶,B种香油78瓶.24、解:(1)设A购进一件A需要a元,购进一件B需要b元。

七年级数学下培优训练辅导讲座第23讲 一元一次不等式(组)的应用拔尖训练能力提升竞赛辅导试题含答案

七年级数学下培优训练辅导讲座第23讲  一元一次不等式(组)的应用拔尖训练能力提升竞赛辅导试题含答案

第23讲一元一次不等式(组)的应用【培优训练】1.某次测验共20道选择题,答对一题记5分,答错一题记-2分,不答记0分.某同学得48分,那么他答对的题目最多是道.2.将一筐橘子分给若干个小朋友,如果每人分4个橘子.则剩下9个橘子;如果每人分6个橘子,则最后一个小朋友分得的橘子数将少于3个.由以上可推知共有个小朋友分个橘子.3.小芳和爸爸、妈妈三人玩跷跷板.三人的体重一共为150千克.爸爸坐在跷跷板的一端,体重只有妈妈一半的小芳和妈妈一同坐在跷跷板的另一端,这时,爸爸的那一端仍然着地,请你猜一猜小芳的体重应小于千克.4.(2013,黄冈中考)为了支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资,现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.5.(2013,临沂中考)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金购买A、B 两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B丙种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?6.(2013,南京中考)某商场促销方案规定:商场内所有商品按标价的80%出售,同时,当顾客在商注:根据上述促销方案,顾客在该商场购物可以获得双重优惠.例如.若购买标价为400元的商品,则消费金额为320元,获得的优惠额为400×(1-80%)+30=110(元).(1)购买一件标价为1000元的商品,顾客获得的优惠额是多少?(2)如果顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为多少元?7.(2012,内江中考)某市为创建省卫生城市,有关部门决定利用现有的4200盆甲种花卉和3090盆乙种花卉,搭配A、B两种园艺造型共60个,摆放于入城大道的两侧,搭配每个造型所需花卉数量的情况(1)符合题意的搭配方案有几种?(2)如果搭配一个A种造型的成本为1000元,搭配一个B种造型的成本为1500元,试说朗选用哪种方案成本最低?最低成本为多少元?8.现计划把1240吨甲种货物和880吨乙种货物用一列货车运往某地,已知这列货车挂了A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元.(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出用A型车厢节数x表示总费用y的公式.(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?9.(2010,盐城中考)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲、乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲、乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元,请问购进时有哪几种搭配方案?10.双蓉眼装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元.(1)求A、B两种型号服装每件分别为多少元?(2)销售1件A型服装可获利18元,销售1件B型服装可获利30元.根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装的数量的2倍还多4件,A型服装最多可购进28件,这样服装全部售出后,可使总的利润不少于699元.问有几种进货方案?11.2013年某厂制定某种产品的年度生产计划,现有如下数据供参考:(1)生产此产品的现有工人为400人;(2)每名工人的年工时约计2200小时;(3)预测2014年的销售量在10万箱到17万箱之间;(4)每箱需用工时4小时,需用料10千克;(5)目前存料1000吨,2013年还需用料1400吨,到2014年年底可补充原料2000吨.试根据以上数据确定2014年可能生产的产量,并根据产量确定工人人数.【参考答案】1. 12. [提示:设他答对x 道题,答错y 道题,则524820x y x y -=⎧⎨+⎩≤,解得427x ≤1.∵x 为整数,故x 最大取12.]2. 7;37. [提示:设小朋友人数为x 人,由题意可得0≤(4x +9)-6(x -1)<3,解得6<x ≤7.5. 又∵人数是正整数,∴x =7,橘子数为4x +9=4×7+9=37.]3. 25.[提示:设小芳的体重为x 千克,爸爸的体重为y 千克,则妈妈的体重为2x 千克,依题意得21502x x y x x y ++=⎧⎨+<⎩,解得x <25.] 4.设租用甲种货车x 辆,则租用乙种货车(6-x )辆,依题意得45x +30(6-x )≥240,解得x ≥4.则租车方案有3种.方案一:租甲种货车4辆,乙种货车2辆,总费用为4×400+2×300=2200元;方案二:租甲种货车5辆,乙种货车1辆,总费用为5×400+1×300=2300元;方案三:租甲种货车6辆,乙种货车0辆,总费用为6×400=2400元,∴最省钱的租车方案是租用甲种货车4辆,乙种货车2辆.5.(1)设购买A 型学习用品x 件,则购买B 型学习用品(1000-x )件.依题意得20x +30(1000-x )=26000,解得x =400.∴1000-x =1000-400=600(件).∴购买A 型学习用品400件,B 型学习用品600件.(2)设购买B 型学习用品a 件,则购买A 型学习用品(1000-a )件,依题意得20(1000-a )+30a ≤28000,解得a ≤800.∴最多购买B 型学习用品800件.6.(1)标价为1000元的商品按80%的价格出售.消费金额为800元,消费金额800元在700元~900元之间,返还金额为150元,∴顾客获得的优惠额是1000×(1-80%)+150=350(元).(2)设标价为x 元,当80%x ≤500,即x ≤625时,顾客获得的优惠额不超过625×(1-80%)+60=185<226;当500<80%x ≤600,即625<x ≤750时,(1-80%)x +100≥226,解得x ≥630.∴630≤x ≤750;当600<80%x <800×80%,即750<x ≤800时,顾客获得优惠额大于750×(1-80%)+130=280>226. 综上所述,顾客购买标价不超过800元的商品,要使获得的优惠额不少于226元,那么该商品的标价至少为630元.7.(1)设搭配A ,B 两种园艺造型分别为x 个,y 个,依题意得6080504200(,40703090x y x y x y x y +=⎧⎪+⎨⎪+⎩≤为正整数)≤,解得20≤y ≤23.∴符合题意的搭配方案有4种.4039383720212223x x x x y y y y ====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩或或或 (2)设A ,B 两种园艺造型分别有x 个,y 个时,成本为W 元,则W =1000x +1500y .①当x =40,y =20时,W =1000X 40+1500×20=70000元;②当x =39,y =21时,W =1000×39+1500×21=70500元;③当x =38,y =22时,W =1000×38+1500×22=71000元;④当x =37,y =23时,W =1000×37+1500×23+71500元,∴当A ,B 两种园艺造型分别为40个,20个时,成本最低,最低成本为70000元.8.(1)依题意得y =0.6x +0.8(40-x )=32-0.2x .(2)依题意得3525(40)12401535(40)880x x x x +-⎧⎨+-⎩≥≥,解得24≤x ≤26. ∴共有3种安排车厢的方案.方案一:A 型车厢24节,B 型车厢16节,方案二:A 型车厢25节,B 型车厢15节,方案三:A 型车厢26节,B 型车厢14节.9.(1)设甲种药品的出厂价格为每盒x 元,乙种药品的出厂价格为每盒y 元.依题意得 6.65 2.2633.8x y x y +=⎧⎨-+=⎩,解之得 3.63x y =⎧⎨=⎩. 5×3.6-2.2=18-2.2=15.8(元),6×3=18(元).答:降价前甲、乙两种药品每盒的零售价格分别是15.8元和18元.(2)设购进甲种药品x 箱(x 为非负整数),购进乙种药品(100—x )箱,依题意得()815%10510%1010090010040x x x ⨯⨯+⨯⨯--⎧⎪⎨⎪⎩≥≥,解之得157607x ≤≤. 则x 可取:58,59,60,此时100-x 的值分别是:42,41,40.故有3种方案供选择;第一种方案:甲种药品购买58箱,乙种药品购买42箱;第二种方案:甲种药品购买59箱,乙种药品购买41箱;第三种方案:甲种药品购买60箱,乙种药品购买40箱.10.(1)设A ,B 型号服装每件分别为x 元,y 元,依题意得91018101281880x y x y +=⎧⎨+=⎩,解得90100x y =⎧⎨=⎩. (2)设B 种型号服装进m 件,则A 种型号服装进(2m +4)件,依题意得18(24)306992428m m m ++⎧⎨+⎩≥≤,解得19122m ≤≤. ∵m 为正整数,∴m =10,11,12,2m +4=24,26,28.∴共有3种进货方案,方案~:A 型服装进24件,B 型服装进10件;方案二:A 型服装进26件,B 型服装进11件;方案三:A 型服装进28件,B 型服装进12件.11.设2014年该厂计划年产量为x 箱,需用工人y 人,依题意得()4220040010100014002000100010100001710000x x x <⨯-+⨯⎧⎪⎨⎪⨯⨯⎩,≤≤≤,解得100000x ≤≤160000由2200≤160000×4得y ≤291;由2200≥100000×4得y ≥182;∴2014年可能生产的产量在10万箱到16万箱之间,工人人数不需要超过291人,但应不少于182人.。

(完整版)(人教版)初一数学下册不等式测试题及答案(一)培优试卷

(完整版)(人教版)初一数学下册不等式测试题及答案(一)培优试卷

一、选择题1.若关于x 的一元一次不等式组3210x x a ->⎧⎨->⎩恰有3个整数解,那么a 的取值范围是( )A .21a -<<B .32a -<≤-C .32a -≤<-D .32a -<<-2.若整数a 使关于x 的不等式组125262x x x a++⎧≤⎪⎨⎪->⎩至少有4个整数解,且使关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,那么所有满足条件的整数a 的值的和是( ).A .-3B .-4C .-10D .-143.从-2,-1,0,1,2,3,5这七个数中,随机抽取一个数记为m ,若数m 使关于x 的不等式组22141x m x m >+⎧⎨--≥+⎩无解,且使关于x 的一元一次方程(m -2)x =3有整数解,那么这六个数所有满足条件的m 的个数有( ) A .1B .2C .3D .44.若实数x 和y 满足x >y ,则下列式子中错误的是( ) A .x +1>y +1B .2x -6>2y -6C .-3x >-3yD .-3x<-3y5.已知3a >-,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,那么所有符合条件的整数a 的个数为( ) A .6个B .7个C .8个D .9个6.已知关于x 的一元一次不等式组10,20.x x a ->⎧⎨-<⎩有2个整数解,若a 为整数,则a 的值为( ) A .5B .6C .6或7D .7或87.如果关于x 的不等式组3021x a x b -≥⎧⎨+<⎩的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对(),a b 共有( )A .4个B .6个C .8个D .9个8.下列说法错误..的是( ) A .由20x +>,可得2x >- B .由102x <,可得0x < C .由24x >-,可得2x <-D .由312x ->-,可得23x <9.若关于x 的不等式组2x ax >⎧⎨<⎩恰有3个整数解,则字母a 的取值范围是( )A .a ≤﹣1B .﹣2≤a <﹣1C .a <﹣1D .﹣2<a ≤﹣110.一个物体在天平上两次称重的情况如图所示,则这个物体的质量的取值范围在数轴上表示正确的是()A .B .C .D .二、填空题11.已知2153+132x xx--≥-,则代数式23x x--+最大值与最小值的差是________.12.按图中程序计算,规定:从“输入一个值x”到“结果是否17≥”为一次程序操作,如果程序操作进行了两次才停止,则x的取值范围为_______________________.13.关于x的不等式组23284a xx a->⎧⎨+>⎩的解集中每一个值均不在18x≤≤的范围内,则a的取值范围是____________.14.已知关于x的不等式组114()324x mx x+>⎧⎪⎨-≤+⎪⎩有2019个整数解,则m的取值范围是_______.15.运行程序如图所示,规定:从“输入一个值x"”到“结果是否19≥为次程序如果程序操作进行了三次才停止,那么x的取值范围是______________16.已知15325x y zx y z++=⎧⎨--+=-⎩,x、y、z为非负数,且54N x y z=++,则N的取值范围是__________.17.植树节期间,市团委组织部分中学的团员去东岸湿地公园植树.三亚市第二中学七(3)班团支部领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有_____棵.18.已知关于x ,y 的方程组24223x y kx y k +=⎧⎨+=-+⎩,的解满足x ﹣y >0,则k 的最大整数值是______________.19.若关于x 的一元一次不等式组3136xx x m-⎧<-⎪⎨⎪<⎩的解集是3x <,那么m 的取值范围是______.20.用{}a 表示不小于数a 的最小整数.例如:{}4.25=,{}5.35-=-,{}00=,{}33-=-.在此规定下:数a 都能满足{}a a b =-,其中01b ≤<.则方程{}13222x x -=+的解是__________.三、解答题21.我们定义,关于同一个未知数的不等式A 和B ,若A 的解都是B 的解,则称A 与B 存在“雅含”关系,且A 不等式称为B 不等式的“子式”.如:0A x <,:1B x <,满足A 的解都是B 的解,所以A 与B 存在“雅含”关系,A 是B 的“子式”.(1)若关于x 的不等式:21A x +>,:3B x >,请问A 与B 是否存在“雅含”关系,若存在,请说明谁是谁的“子式”; (2)已知关于x 的不等式11:23x a C -+<,():233D x x --<,若C 与D 存在“雅含”关系,且C 是D 的“子式”,求a 的取值范围; (3)已知2m n k +=,3m n -=,12m ≥,1n <-,且k 为整数,关于x 的不等式:64P kx x +>+,():62142Q x x -≤+,请分析是否存在k ,使得P 与Q 存在“雅含”关系,且Q 是P 的“子式”,若存在,请求出k 的值,若不存在,请说明理由.22.如图,数轴上两点A 、B 对应的数分别是﹣1,1,点P 是线段AB 上一动点,给出如下定义:如果在数轴上存在动点Q ,满足|PQ |=2,那么我们把这样的点Q 表示的数称为连动数,特别地,当点Q 表示的数是整数时我们称为连动整数.(1)﹣3,0,2.5是连动数的是 ;(2)关于x 的方程2x ﹣m =x +1的解满足是连动数,求m 的取值范围 ;(3)当不等式组11212()3x x a +⎧>-⎪⎨⎪+-⎩的解集中恰好有4个解是连动整数时,求a 的取值范围.23.某水果店到水果批发市场采购苹果,师傅看中了甲、乙两家某种品质一样的苹果,零售价都为8元/千克,批发价各不相同,甲家规定:批发数量不超过100千克,全部按零价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠,乙家的规定如下表:数量范围(千克) 不超过50的部分 50以上但不超过150的部分 150以上的部分 价格(元)零售价的95%零售价的85%零售价的75%(1)如果师傅要批发240千克苹果选择哪家批发更优惠?(2)设批发x 千克苹果(100x >),问师傅应怎样选择两家批发商所花费用更少? 24.某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(进价、售价均保持不变,利润 = 销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.25.定义:如果一个两位数a 的十位数字为m ,个位数字为n ,且m n ≠、0m ≠、0n ≠,那么这个两位数叫做“互异数”.将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为()W a .例如:14a =,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为411455,和与11的商为55115,所以(14)5W .根据以上定义,解答下列问题:(1)填空:①下列两位数:20,21,22中,“互异数”为________; ②计算:(36)W ________;(10)W mn ________;(m 、n 分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b 的十位数字是x ,个位数字是y ,且()7W b ;另一个“互异数”c的十位数字是2x +,个位数字是21y -,且()13W c ,请求出“互异数”b 和c ;(3)如果一个“互异数”d 的十位数字是x ,个位数字是3x +,另一个“互异数”e 的十位数字是2x -,个位数字是3,且满足()()25W d W e ,请直接写出满足条件的所有x 的值________;(4)如果一个“互异数”f 的十位数字是4x +,个位数字是x ,且满足()W f t 的互异数有且仅有3个,则t 的取值范围________. 26.阅读理解:例1.解方程|x |=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x |=2的解为x =±2.例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.参考阅读材料,解答下列问题:(1)方程|x﹣2|=3的解为;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.27.某加工厂用52500元购进A、B两种原料共40吨,其中原料A每吨1500元,原料B 每吨1000元.由于原料容易变质,该加工厂需尽快将这批原料运往有保质条件的仓库储存.经市场调查获得以下信息:①将原料运往仓库有公路运输与铁路运输两种方式可供选择,其中公路全程120千米,铁路全程150千米;②两种运输方式的运输单价不同(单价:每吨每千米所收的运输费);③公路运输时,每吨每千米还需加收1元的燃油附加费;④运输还需支付原料装卸费:公路运输时,每吨装卸费100元;铁路运输时,每吨装卸费220元.(1)加工厂购进A、B两种原料各多少吨?(2)由于每种运输方式的运输能力有限,都无法单独承担这批原料的运输任务.加工厂为了尽快将这批原料运往仓库,决定将A原料选一种方式运输,B原料用另一种方式运输,哪种方案运输总花费较少?请说明理由.28.我们把关于x的一个一元一次方程和一个一元一次不等式组合成一种特殊组合,且当一元一次方程的解正好也是一元一次不等式的解时,我们把这种组合叫做“有缘组合”;当一元一次方程的解不是一元一次不等式的解时,我们把这种组合叫做“无缘组合”.(1)请判断下列组合是“有缘组合”还是“无缘组合”,并说明理由;①240 523xx-=⎧⎨-⎩<;②5323233124x xx x--⎧=-⎪⎪⎨+-⎪-⎪⎩<.(2)若关于x的组合515032xx aa+=⎧⎪⎨-⎪⎩>是“有缘组合”,求a的取值范围;(3)若关于x的组合5323212a xx ax ax a-⎧-=-⎪⎪⎨-⎪+≤+⎪⎩是“无缘组合”;求a的取值范围.29.定义一种新运算“a ※b ”:当a ≥b 时,a ※b =2a +b ;当a <b 时,a ※b =2a ﹣b . 例如:3※(﹣4)=2×3+(﹣4)=2,(﹣6)※12=2×(﹣6)﹣12=﹣24. (1)填空:(﹣2)※3= ;(2)若(3x ﹣4)※(2x +3)=2(3x ﹣4)+(2x +3),则x 的取值范围为 ; (3)已知(2x ﹣6)※(9﹣3x )<7,求x 的取值范围;(4)小明在计算(2x 2﹣2x +4)※(x 2+4x ﹣6)时随意取了一个x 的值进行计算,得出结果是0,小丽判断小明计算错了,小丽是如何判断的?请说明理由. 30.如图,在平面直角坐标系中,已知,0,0,A a B b 两点,且a 、b 满足()224210a b a b ++++-=点(),0C m 在射线AO 上(不与原点重合).将线段AB 平移到DC ,点D 与点A 对应,点C 与点B 对应,连接BC ,直线AD 交y 轴于点E .请回答下列问题:(1)求A 、B 两点的坐标;(2)设三角形ABC 面积为ABC S ∆,若4<ABC S ∆≤7,求m 的取值范围; (3)设,BCA AEB αβ∠=∠=,请给出,αβ,满足的数量关系式,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可. 【详解】解不等式3﹣2x >1,得:x <1, 解不等式x ﹣a >0,得:x >a , 则不等式组的解集为a <x <1,∵不等式组恰有3个整数解, ∴不等式组的整数解为﹣2、﹣1、0, 则﹣3≤a <﹣2, 故选C . 【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是能得出关于a 的不等式组.2.D解析:D 【分析】根据不等式组求出a 的范围,然后再根据关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数得到26a -=-或12-,从而确定所有满足条件的整数a 的值的和. 【详解】解:125262x x x a++⎧⎪⎨⎪->⎩, 不等式组整理得:22x x a ⎧⎨>+⎩,由不等式组至少有4个整数解,得到21a +<-, 解得:3a <-,解方程组206ax y x y +=⎧⎨+=⎩,得12262x a a y a ⎧=-⎪⎪-⎨⎪=⎪-⎩,又关于x ,y 的方程组206ax y x y +=⎧⎨+=⎩的解为正整数,26a ∴-=-或12-,解得4a =-或10a =-,∴所有满足条件的整数a 的值的和是14-.故选:D . 【点睛】本题考查解一元一次不等式组,学生的计算能力以及推理能力,解题的关键是根据不等式组以及二元一次方程组求出a 的范围,本题属于中等题型.3.D解析:D 【分析】不等式组整理后,根据无解确定出m 的范围,进而得到m 的值,将m 的值代入检验,使一元一次方程的解为整数即可. 【详解】解:解:不等式组整理得:221x m x m >+⎧⎨--⎩,由不等式组无解,得到221m m +--, 解得:1m -,即1m =-,0,1,2,3,5;当m=-1时,一元一次方程(m -2)x =3解为x=-1,符合题意; 当m=0时,一元一次方程(m -2)x =3解为x=-1.5,不合题意; 当m=1时,一元一次方程(m -2)x =3解为x=-3,符合题意; 当m=2时,一元一次方程(m -2)x =3无解,不合题意; 当m=3时,一元一次方程(m -2)x =3解为x=3,符合题意; 当m=5时,一元一次方程(m -2)x =3解为x=1,符合题意. 故选:D 【点睛】本题考查根据不等式组的解集确定字母取值及一元一次方程解法,理解好求不等式组的解集的口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题关键.4.C解析:C 【分析】直接利用不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;分别分析得出答案. 【详解】 解:A .∵x >y ,∴x +1>y +1,故此选项不合题意; B .∵x >y , ∴2x >2y ,∴2x −6>2y −6,故此选项不合题意; C .∵x >y ,∴−3x <−3y ,故此选项符合题意; D .∵x >y ,∴-3x<-3y ,故此选项不合题意;故选:C . 【点睛】本题主要考查了不等式的性质,掌握不等式的基本性质是解题关键.5.B解析:B 【分析】分别求得不等式组中每一个不等式的解集,再根据不等式组无解以及3a >-解答即可 【详解】解不等式1x a +<,得1x a <-, 解不等式212x x -≥+,解得3x ≥,关于x 的不等式组1212x ax x +<⎧⎨-≥+⎩无解,13a ∴-≤解得4a ≤又3a >-,且a 为整数,34a ∴-≤≤且为整数∴a 的值为2,1,0,1,2,3,4--共7个故选B 【点睛】本题考查了接一元一次不等式组,根据不等式的解集求参数的范围,求不等式组的整数解,掌握不等式组的解法是解题的关键.6.D解析:D 【分析】先解出每个不等式的解集,即可得到该不等式组的解集,然后根据该不等式组有2个整数解确定a 的取值范围,从而求出a 的整数值. 【详解】10,20.x x a ->⎧⎨-<⎩解不等式①,得:x > 1, 解不等式②,得:2ax <, ∴不等式组的解集为12a x <<, 又该不等式组有2个整数解,∴2个整数解为2和3,342a∴<≤, 解得:68a <≤,∴整数a 的值为7或8,故选:D . 【点睛】本题考查的是解一元一次不等式组,不等式组的整数解,属于基础题,难度一般,熟知“同大取大;同小取小;大小小大中间找,大大小小找不到”的原则是解题的关键.7.B解析:B 【分析】解不等式组,然后根据不等式组的整数解仅有1,2即可确定a ,b 的范围,即可确定a ,b 的整数解,即可求解.【详解】解:3021x a x b -⎧⎨+<⎩①②,解不等式①,得:3ax , 解不等式②,得:12bx -<, ∴不等式组的解集为132a b x -<, 不等式组的整数解仅有1、2,013a ∴<,1232b-<, 解得:03a <,53b -<-,∴整数a 有1;2;3,整数b 有4-;3-,整数a 、b 组成的有序数对(,)a b 有(1,4)-;(2,4)-;(3,4)-;(1,3)-;(2,3)-;(3,3)-,共6个, 故选:B . 【点睛】此题主要考查了不等式组的整数解,根据不等式组整数解的值确定a ,b 的取值范围是解决问题的关键.8.C解析:C 【分析】根据不等式的性质求解判断即可. 【详解】解:A .由20x +>,可得2x >-,故A 说法正确,不符合题意; B .由102x <,可得0x <,故B 说法正确,不符合题意; C .由24x >-,可得2x <-,故C 说法错误,符合题意; D .由312x ->-,可得,23x <,故D 说法正确,不符合题意; 故选:C . 【点睛】本题考查了不等式的性质,熟记不等式的性质是解题的关键.9.B【分析】先确定不等式组的整数解,再求出a 的范围即可.【详解】解:∵关于x 的不等式组2x a x >⎧⎨<⎩恰有3个整数解, ∴a<x<2∴整数解为1,0,﹣1,∴﹣2≤a <﹣1,故选:B .【点睛】本题考查了一元一次不等式组的整数解的应用,能根据已知不等式组的解集和整数解确定a 的取值范围是解此题的关键.10.C解析:C【分析】根据已知可看出物体质量的取值范围,再在数轴上表示.【详解】有已知可得,设物体的质量为xg ,则40<x <50在数轴表示为故选C【点睛】考核知识点:在数轴表示不等式组的解集.利用数轴表示不等式的解集是关键.二、填空题11.【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a|=a ;当a 为0时,|a|=0;当a 为负时,|a|=-a .【详解】 解析:10411【分析】首先解一元一次不等式,解题时要注意系数化一时:系数是-11,不等号的方向要改变.在去绝对值符号时注意:当a 为正时,|a |=a ;当a 为0时,|a |=0;当a 为负时,|a |=-a .解:2153+132x x x --≥-, 去分母得:22166353x x x -+≥--()(), 去括号得:4266159x x x -+≥-+,移项得:4691526x x x --≥-+-,合并同类项得:1119x -≥-, 解不等式组得:1911x ≤; (1)当19311x -≤≤时,()23232312x x x x x x x --+=--+=---=--, 当1911x=时有最小值4911-, 当=3x -时有最大值5;(2)当3x -<时,()2323235x x x x x x --+=-++=-++=,∴当3x -<时23x x --+的值恒等于5(最大值);∴最大值与最小值的差是494910455111111==⎛⎫--+ ⎪⎝⎭. 故答案为:10411. 【点睛】 此题考查了一元一次不等式的求解与绝对值的性质.解题时要注意一元一次不等式的求解步骤,绝对值的性质.12.【分析】根据题意得到第一次运算结果小于17,第二次运算结果大于等于17,列出不等式组,解不等式组即可求解.【详解】解:由题意得解不等式①得 ,解不等式②得,∴不等式组的解集为.故答案 解析:763x ≤<【分析】根据题意得到第一次运算结果小于17,第二次运算结果大于等于17,列出不等式组,解不等式组即可求解.【详解】解:由题意得()3117331117x x -⎧⎪⎨--≥⎪⎩<①② 解不等式①得 6x <,解不等式②得73x ≥, ∴不等式组的解集为763x ≤<. 故答案为:763x ≤< 【点睛】 本题考查了一元一次不等式组的应用,理解运算程序并根据题意列出不等式组是解题关键.13.或【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:∵解不等式①得,解不等式②得,∴不等式组的解集是.∵关于x 的不等式组的解集中每一个值均解析:6a ≥或2a ≤【分析】先求出不等式组的解集,根据已知得出关于a 的不等式组,求出不等式组的解集即可.【详解】解:23284a x x a ->⎧⎨+>⎩①②∵解不等式①得23x a <-,解不等式②得24x a >-,∴不等式组的解集是2423a x a -<<-.∵关于x 的不等式组23284a x x a->⎧⎨+>⎩的解集中每一个值均不在18x ≤≤的范围内, ∴248a -≥或231a -≤,解得6a ≥或2a ≤.【点睛】本题考查了解一元一次不等式组,能根据不等式组的解集和已知得出关于a 的不等式组是解此题的关键.注意理解:解集中每一个值均不在18x ≤≤的范围内的意义.14.【分析】先求出不等式组的解集为,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】解:解不等式①得, ,解不等式②得解析:20162017m【分析】先求出不等式组的解集为13m x ,又知小于等于3且大于-2016的整数有2019个,结合不等式组的解集特征可得1-m 的取值范围,从而确定m 的范围.【详解】 解:114()324x m x x ①②+>⎧⎪⎨-≤+⎪⎩解不等式①得,1x m >- ,解不等式②得,3x ≤,∴不等式组的解集为13m x ,∵原不等式组有2019个整数解,分别为3,2,1,0,-1…-2014,-2015,共2019个,∴201612015m∴20162017m .故答案为:20162017m .【点睛】本题考查不等式组的整数解,理解解集的意义及处理临界点值是解答此题的关键. 15.【分析】由输入的数运行了三次才停止,即可得出关于x 的一元一次不等式组,解之即可得到x 的取值范围【详解】解:根据题意前两次输入值都小于19,第三次值大于19可得不等式组为: ,解得故答案为 解析:342x ≤<【分析】由输入的数运行了三次才停止,即可得出关于x 的一元一次不等式组,解之即可得到x 的取值范围【详解】解:根据题意前两次输入值都小于19,第三次值大于19可得不等式组为:()()211922111922211119x x x ⎧+<⎪⎪++<⎨⎪⎡⎤+++≥⎪⎣⎦⎩,解得342x ≤< 故答案为342x ≤< 【点睛】本题考查程序框图以及不等式的解法,理解程序框图为解题关键16.【解析】【分析】由,可得到y 和z 的关于x 的表达式,再根据y ,z 为非负实数,列出关于x 的不等式组,求出x 的取值范围,并将N 转化为关于x 的表达式,将x 的最大值和最小值代入解析式即可得到N 的最大值和解析:5565N ≤≤【解析】【分析】由15325x y z x y z ++=⎧⎨--+=-⎩,可得到y 和z 的关于x 的表达式,再根据y ,z 为非负实数,列出关于x 的不等式组,求出x 的取值范围,并将N 转化为关于x 的表达式,将x 的最大值和最小值代入解析式即可得到N 的最大值和最小值.【详解】解:∵15325x y z x y z ++=⎧⎨--+=-⎩, ∴解关于y ,z 的方程可得:2025y x z x =-⎧⎨=-⎩, ∵x 、y 、z 为非负数,∴2020500y x z x x =-≥⎧⎪=-≥⎨⎪≥⎩, 解得510x ≤≤,∴54N x y z =++=54(202)(5)x x x +-+- =275x -+,∵-2<0,∴N 随x 增大而减小,∴故当x=5时,N 有最大值65;当x=10时,N 有最小值55.∴55≤N≤65.故答案为55≤N≤65.【点睛】本题主要考查一次函数的性质的知识,解决本题的关键是根据题目方程组,求得用N 表示的x 、y 、z 表达式,进而根据x 、y 、z 皆为非负数,求得N 的取值范围.17.121【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x人,则解析:121【分析】设共有x人,则有4x+37棵树,根据“若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵”列不等式组求解可得.【详解】设市团委组织部分中学的团员有x人,则树苗有(4x+37)棵,由题意得1≤(4x+37)-6(x-1)<3,去括号得:1≤-2x+43<3,移项得:-42≤-2x<-40,解得:20<x≤21,因为x取正整数,所以x=21,当x=21时,4x+37=4⨯21+37=121,则共有树苗121棵.故答案为:121.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.18.0【分析】方程组两方程相减表示出,代入已知不等式即可求出的范围,进而确定出最大整数值即可.【详解】解:,②①得:,∵x﹣y>0,∴,解得:,∴的最大整数值为0.故答案为:0.【解析:0【分析】-,代入已知不等式即可求出k的范围,进而确定出最大整数方程组两方程相减表示出x y值即可.【详解】解:24223x y k x y k +=⎧⎨+=-+⎩①②, ②-①得:63x y k -=-+,∵x ﹣y >0,∴630k -+>, 解得:12k <, ∴k 的最大整数值为0.故答案为:0.【点睛】此题考查了解一元一次不等式以及解二元一次方程组,熟练掌握各自的解法是解本题的关键.19.【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】解:,解不等式,,解得:,因为不等式组的解集是,所以,故答案为:.【点解析:3m ≥【分析】先根据解一元一次不等式的步骤逐个求解不等式,再根据不等式组解集“同小取小”求参数m 的范围.【详解】 解:3136x x x m-⎧<-⎪⎨⎪<⎩, 解不等式3136x x -<-, ()263x x <--,解得:3x <,因为不等式组3136x x x m-⎧<-⎪⎨⎪<⎩的解集是3x <, 所以3m ≥,故答案为:3m ≥.【点睛】本题主要考查由不等式组解集求参数的取值范围,解决本题的关键是要熟练掌握不等式组解集确定.20.或【分析】根据题意得出,其中,即,将转化为,且为整数,解出不等式组,再求出的范围,取整数再解方程即可求得.【详解】解:∵,其中,∴,其中,∴,∴可以转化为:,且为整数,解得,,∴ 解析:74x =或94x = 【分析】根据题意得出{}a a b =+,其中01b ≤<,即{}1a a a ≤<+,将{}13222x x -=+转化为1322(32)12x x x -≤+<-+,且122x +为整数,解出不等式组,再求出122x +的范围,取整数再解方程即可求得.【详解】解:∵{}a a b =-,其中01b ≤<,∴{}a a b =+,其中01b ≤<,∴{}1a a a ≤<+,∴{}13222x x -=+可以转化为: 1322(32)12x x x -≤+<-+,且122x +为整数, 解得,3522x <≤,∴13.52 5.52x <+≤, ∴整数122x +为4或5, 解得,74x =或94x =, 故答案为:74x =或94x =. 【点睛】本题考查了一元一次不等式组的解法和不等式的性质,解题关键是读懂题意,正确转换题意得到一元一次不等式组.三、解答题21.(1)A 与B 存在“雅含”关系,B 是A 的“子式”;(2)12a ≤;(3)存在,0k =. 【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出C D ,解集,根据“雅含”关系的定义得出2423a +≤,解不等式即可; (3)首先解关于m n ,的方程组即可求得m n ,的值,然后根据12m ≥,1n <-,且k 为整数即可得到一个关于k 的范围,从而求得k 的整数值.【详解】解:(1)不等式A :x +2>1的解集为1x >-,∵:3B x >∴A 与B 存在“雅含”关系,B 是A 的“子式”;(2)不等式:C 1123x a -+<,解得:253a x +<, 不等式D :()233x x --<,解得:2x <,∵C 与D 存在“雅含”关系,且C 是D 的“子式”, ∴2523a +≤,解得:12a ≤, (3)存在;由23m n k m n +=⎧⎨-=⎩解得:3363k m k n +⎧=⎪⎪⎨-⎪=⎪⎩, ∵12m ≥,1n <-,即:3132613k k +⎧≥⎪⎪⎨-⎪<-⎪⎩,解得:332k -≤<, ∵k 为整数,∴k 的值为10,1,2-,, 解不等式:64P kx x +>+得:()12k x ->-,解不等式():62142Q x x -≤+得:1x ≤,∵P 与Q 存在“雅含”关系,且Q 是P 的“子式”,∴不等式:64P kx x +>+的解集为:21x k -<-, ∴10k -<,且211k ->-, 解得:11k -<<,∴0k =.【点睛】本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小无解.22.(1)﹣3,2.5;(2)﹣4<m <﹣2或0<m <2;(3)1≤a <2.【分析】(1)根据连动数的定义逐一判断即得答案;(2)先求得方程的解,再根据连动数的定义得出相应的不等式组,解不等式组即可求出结果;(3)先解不等式组中的每个不等式,再根据连动整数的概念得到关于a 的不等式组,解不等式组即可求得答案.【详解】解:(1)设点P 表示的数是x ,则11x -≤≤,若点Q 表示的数是﹣3,由2PQ =可得()32x --=,解得:x =﹣1或﹣5,所以﹣3是连动数;若点Q 表示的数是0,由2PQ =可得02x -=,解得:x =2或﹣2,所以0不是连动数; 若点Q 表示的数是2.5,由2PQ =可得 2.52x -=,解得:x =﹣0.5或4.5,所以2.5是连动数;所以﹣3,0,2.5是连动数的是﹣3,2.5,故答案为:﹣3,2.5;(2)解关于x 的方程2x ﹣m =x +1得:x =m +1,∵关于x 的方程2x ﹣m =x +1的解满足是连动数,∴112112m m ---<⎧⎨-->⎩或112112m m +-<⎧⎨++>⎩, 解得:﹣4<m <﹣2或0<m <2;故答案为:﹣4<m <﹣2或0<m <2;(3)()112123x x a +⎧>-⎪⎨⎪+-≤⎩①②,解不等式①,得x >﹣3,解不等式②,得x ≤1+a ,∵不等式组()112123x x a +⎧>-⎪⎨⎪+-≤⎩的解集中恰好有4个解是连动整数, ∴四个连动整数解为﹣2,﹣1,1,2,∴2≤1+a <3,解得:1≤a <2,∴a 的取值范围是1≤a <2.【点睛】本题是新定义试题,以数轴为载体,主要考查了一元一次不等式组,正确理解连动数与连动整数、列出相应的不等式组是解题的关键.23.(1)在乙家批发更优惠;(2)当x=200时他选择任何一家批发所花费用一样多;当100<x <200时,师傅应选择甲家批发商所花费用更少;当x >200时,师傅应选择乙家批发商所花费用更少.【分析】(1)分别求出在甲、乙两家批发240千克苹果所需费用,比较后即可得出结论;(2)分两种情况:①若100<x≤150时,②若x>150时,分别用含x 的代数式表示出在甲、乙两家批发x 千克苹果所需费用, 再比较大小,列出不等式,求出x 的范围,即可得到结论.【详解】(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(240−150)×8×75%=1600(元), ∵1632>1600,∴在乙家批发更优惠;(2)①若100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(x−50)×8×85%=6.8x+40,∵6.8x <6.8x+40,∴师傅应选择甲家批发商所花费用更少;②若x>150时,在甲家批发所需费用为:8×85%x=6.8x ,在乙家批发所需费用为:50×8×95%+(150−50)×8×85%+(x−150)×8×75%=6x+160,当6.8x=6x+160时,即x=200时,师傅选择两家批发商所花费用一样多,当6.8x >6x+160时,即x >200时,师傅应选择乙家批发商所花费用更少,当6.8x <6x+160时,即150<x <200时,师傅应选择甲家批发商所花费用更少.综上所得:当x=200时他选择任何一家批发所花费用一样多;当100<x <200时,师傅应选择甲家批发商所花费用更少;当x >200时,师傅应选择乙家批发商所花费用更少.【点睛】本题主要考查代数式,一元一次方程,一元一次不等式的综合实际应用,理清数量关系,列出代数式,不等式或方程,是解题的关键.24.(1)A、B两种型号电风扇的销售单价分别为250元、210元;(2)超市最多采购A 种型号电风扇10台时,采购金额不多于5400元;(3)超市不能实现利润1400元的目标;【分析】(1)根据第一周和第二周的销售量和销售收入,可列写2个等式方程,再求解二元一次方程组即可;(2)利用不多于5400元这个量,列写不等式,得到A型电风扇a台的一个取值范围,从而得出a的最大值;(3)将B型电风扇用(30-a)表示出来,列写A、B两型电风扇利润为1400的等式方程,可求得a的值,最后在判断求解的值是否满足(2)中a的取值范围即可【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:3518004103100x yx y+=⎧⎨+=⎩,解得:250210xy=⎧⎨=⎩,答:A、B两种型号电风扇的销售单价分别为250元、210元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台.依题意得:200a+170(30-a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250-200)a+(210-170)(30-a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.【点睛】本题是二元一次方程和一元一次不等式应用题的综合考查,解题关键是依据题意,找出等量关系式(不等关系式),然后按照题目要求相应求解25.(1)①21;②9,m+n;(2)b=25,c=49;(3)3或4;(4)10<t≤12【分析】(1)①由“互异数”的定义可得;②根据定义计算可得;(2)由W(b)=7,W(c)=13,列出二元一次方程组,即可求x和y;(3)根据题意W(d)+W(e)<25可列出不等式,即可求x的值;(4)根据“互异数”f的十位数字是x+4,个位数字是x,分类讨论f,根据满足W(f)<t 的互异数有且仅有3个,求出t的取值范围.【详解】解:(1)①∵如果一个两位数a的十位数字为m,个位数字为n,且m≠n、m≠0、n≠0,那么这个两位数叫做“互异数”,∴“互异数”为21,故答案为:21;②W(36)=(36+63)÷11=9,W(10m+n)=(10m+n+10n+m)÷11=m+n;。

七年级数学第21讲一元一次不等式组的应用培优讲义试题

七年级数学第21讲一元一次不等式组的应用培优讲义试题

第21讲 一元一次不等式〔组〕的应用制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅……日期:2022年二月八日。

考点·方法·破译1.进一步稳固一元一次不等式和一元一次不等式组的解法及它们的解集的意义,并会简单运用•2.会列不等式或者不等式组解决一些典型的实际问题•经典·考题·赏析【例1】当x 取何有理数时,代数式3221--x 的值不大于1? 【解法指导】从题目中找出不等关系来,并依此列出不等式,解此不等式即可求出此题所求“不大于〞,即是小于或者等于,类似的还有“不超过〞、“不多于〞、“顶多为〞,另外,“不少于〞、“不低于〞、“至少为〞等,即为“大于或者等于〞•解:依题意得 12123x --≤ 去分母,得 3-2(x -2)≤6去括号,得 3-2x +4≤6合并同类项,得 -2x ≤6-3-4即 -2x ≤-1系数化为1,得 12x ≥∴ 当x 取值不小于12时,3221--x 的值不大于1• 【变式题组】01.假如2(1)3x --的值是非正数,那么x 的取值范围是〔 〕 A .x ≤-1 B .x ≥-1 C .x ≥1 D .x ≤102.当x 取何值时,代数式2x -5的值:⑴大于0? ⑵等于0? ⑶不大于-3?03.假设代数式1132x x +--的值不小于16x -的值,求正整数x 的值• 【例2】〔〕某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午他又买了20斤,价格为每斤y 元•他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是〔 〕 A .x <y B .x >y C .x ≤y D .x ≥y【解法指导】假设要比拟两个有理数a 和b 的大小,有一种方法就是判断a -b 的值的正负:假设a -b =0,那么a =b ;假设a -b <0,那么a <b ,反之亦然•用这种方法比拟两数大小,称之为作差比拟法•此题本质就是比拟30x +20y 与502x y +⋅的大小的问题,所谓“赔了钱〞,就是进价3020502x y x y ++<⋅,也就是30205002x y x y ++-⋅<变形可得x >y ,应选B • 【变式题组】01.假如2213x x --比23-大,那么x 的取值范围是〔 〕 A .x >1 B .x <1 C .x ≤1 D .x ≠102.试比拟两个代数式322x x x +-与31x -的大小•03.假设代数式2321x x -+比231x x +-大,求x 的取值范围•【例3】某校餐厅方案购置12张餐桌和一批餐椅,从甲、乙两商场理解到统一餐桌每张均为200元,餐椅报价每把均为50元•甲商场称:每购置一张餐桌赠餐椅;乙商场称:所有的餐桌、餐椅均按报价的八五折销售,那么什么情况下到甲商场购置更优惠?什么情况下到乙商场购置更优惠?【解法指导】餐椅的购置数量是个变量,到哪个商场购置更优惠,取决于餐椅的数量多少•把餐椅数量设为x 把,到甲、乙两商场购置所需费用分别设为y 甲、y 乙,它们分别用含x 的式子表示,再比拟y 甲、y 乙的大小即可,在求y 甲是,应注意x 减去12后,在乘以50,即y 甲=200×12+50(x -12);同理y 乙=(200×12+50x )×85%•解:设方案购置x 把餐椅,到甲、乙两商场购置所需费用分别为y 甲元、y 乙元•根据题意,得:y甲=200×12+50(x-12),即y甲=1800+50x,y乙=(200×12+50x)×85%,即8520402y x=+乙•①当y甲<y乙时,85 18005020402x x+<+,解这个不等式,得x<32•即当购置的餐椅少于32把时,到甲商场购置更优惠•②当y甲>y乙时,85 18005020402x x+>+,解这个不等式,得x>32•即当购置的餐椅多于32把时,到乙商场购置更优惠•③当y甲=y乙时,85 18005020402x x+=+,解这个不等式,得x=32•即当购置的餐椅等于32把时,到两家商场购置均可•【变式题组】•请问,用那种缴费方式比拟适宜?02.某单位方案在新年期间组织员工到某地旅游,参加旅游的人数估计为10~25人,甲、乙两家旅行社的效劳质量一样,且报价都是每人200元•经协商,甲旅行社表示可以给予每位游客七五折优惠;乙旅行社表示可以免去一位游客的旅游费用,其余游客八折优惠,该单位选择哪一家旅行社支付的旅游费用较少?03.〔〕某蔬菜加工厂承当出口蔬菜加工任务,有一批蔬菜产品需要装入某一规格的纸箱•供给这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购置,每个纸箱价格为4元;•⑴假设需要这种规格的纸箱x个,请用含x的代数式表示购置纸箱的费用y1〔元〕和蔬菜加工厂自己加工制作纸箱的费用y 2〔元〕;⑵假设你是决策者,你认为应该选择哪种方案?并说明理由•【例4】〔〕为了美化校园环境,建立绿色校园,某准备对校园中30亩空地进展绿化•绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32,那么种植草皮的最小面积是多少? 【解法指导】应用题中,要充分挖掘题目中所蕴含的不等关系,一个也不能遗漏,否那么就会出错•注意到题中表示不等关系的关键词语“不少于〞,这是列不等式的根据•显然,此题中有三个不等式关系:①种植草皮与种植树木的面积都不少于10亩;②种植草皮面积不少于种植树木面积的32,根据这三个不等关系可以求出种植草皮的面积的范围•解:设种植草皮的面积为x 亩,那么种植树木的面积为(30-x )亩, 那么有1030103(30)2x x x x -⎧⎪⎪⎨⎪⎪-⎩≥≥≥,解得18≤x ≤20•故x 的最小值为18•答:种植草皮的最小面积为18亩•【变式题组】01.2021年某厂制定某种产品的年度消费方案,现有如下数据供参考:⑴消费此产品的现有工人为400人;⑵每名工人的年工时约计2200小时;⑶预测2021年的销售量在10万箱到17万箱之间;⑷每箱需用工4小时,需用料10千克;⑸目前村料1000吨,2021年还需用料1400吨,到2021年底可补充原料2000吨•试根据以上数据确定2021年可能消费的产量,并根据产量确定工人人数•02.某公司在下一年度方案消费出一种新型环保冰箱,下面是公司各部门提出的数据信息;HY :明年消费工人不多于80人,每人每年工作时间是2400h 计算;营销部:预测明年年销量至少为10000台;技术部:消费1台电冰箱平均用12个工时,每台机器需要安装5个某种主要部件;供给部:今年年终库存主要部件1000件,明年能采购到这种主要部件80000件•根据上述信息,下一年度消费新型冰箱数量应该在什么范围内?【例5】〔襄樊〕“六一〞儿童节前夕,某消防官兵理解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意购置了一些送给这个小学的小朋友作为节日礼物•假如每班分10套,那么余5套;假如前面的班级每个班分13套,那么最后一个班虽然分得有福娃,但缺乏4套•问:该小学有多少个班级?奥运福娃一共有多少套?【解法指导】抓住题中的关键词“虽然分有福娃,但缺乏4套〞来建立不等式组,这是此题的关键所在•解:设该小学有x 个班,那么奥运福娃一共有(10x +5)套,根据题意,得10513(1)410513(1)x x x x +<-+⎧⎨+>-⎩①②解①得x >143,解②得x <6• 因为x 只能取正整数,所以x =5,此时10x +5=55•答:该小学有5个班级,奥运福娃一共有55套•【变式题组】01.幼儿园有玩具假设干份,分给小朋友,假如每个小朋友分3件,难么还剩59件;假如每个小朋友分5件,那么最后一个小朋友还少几件,这个幼儿园有多少玩具?有多少个小朋友?02.某校为了奖励在数学竞赛中获奖的学生,买了假设干本课外读物准备送给他们•假设每名学生送3本,那么还余8本;假设前面每名学生送5本,那么最后一名学生得到的课外读物缺乏3本•设该校买了m 本课外读物,有x 名学生获奖,请你解答以下问题•⑴用含x 的代数式表示m ;⑵求出该校的获奖人数及所买的课外读物的本数•【例6】某工厂现有甲种原料360千克,乙种原料290千克,现方案用这两种原料消费A 、B 两种产品一共50件,消费一件A 产品需要甲种原料9千克,乙种原料3千克;消费一件B 产品,需要甲种原料4千克,乙种原料10千克,那么工厂安排A 、B 两种产品的消费件数,有哪几种方案?请你设计出来•【解法指导】此为典型的材料供给类设计方案的应用题,题中的不等关系不很明显,但经过认真分析,结合生活实际仍可挖掘出题中所蕴含的不等关系,即消费所使用的甲种原料总量不得超过360千克,乙原料总量不得超过290千克,据此可以列出两个一元一次不等式,从而组成一元一次不等式组•此类题的不等关系不非常显眼,开掘不等关系是解决此类题之关键所在•解:设安排消费A 种产品x 件,那么消费B 种产品(50-x )件•根据题意,得36029094(50)310(50)x x x x +-⎧⎨+-⎩≤≤,解这个不等式组,得30≤x ≤32• 因为x 需要取整数,所以x 可以取30、31、32,对应50-x 应取20、19、18•故可设计三种方案:A 种产品30件,B 种产品20件;A 种产品31件,B 种产品19件;A 种产品32件,B 种产品18件•【变式题组】01.〔〕近期以来,大蒜和绿豆的场价格离奇攀升,网民戏称“蒜你狠〞、“豆你玩〞•以绿豆为例,5月上旬某绿豆的场价已达16元/千克•政府决定采取价格临时干预措施,调进绿豆以平抑场价格•经场调研预测,该每调进100吨绿豆,场价格就下降1元/千克•为了既能平抑绿豆的场价格,又要保护豆农的消费积极性,绿豆的场价格控制在8元/千克到10元/千克之间〔含8元/千克和10元/千克〕•问调进绿豆的吨数应在什么范围内为宜?02.〔〕迎接亚运,美化,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A 、B 两种园艺找些一共50个摆放在迎宾大道两侧•搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆•⑴某校九年级⑴班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;⑵假设搭配一个A 种造型的本钱是800元,搭配一个B 种造型的本钱是960元,试说明⑴中哪种发案本钱最低?最低本钱是多少元?03.〔〕某校初三年级春游,现有36座和42座两种客车供选择租用,假设只租用36座客车假设干辆,那么正好坐满;假设只租用42座客车,那么能少租一辆,且有一辆车没有坐满,但超过30人;36座客车每辆租金400元,42座客车每辆租金440元•⑴该校初三年级一共有多少人参加春游?⑵请你帮该校设计一种最钱..的租车方案• 【例7】〔第17届竞赛题〕假如关于x 的不等式组0607x n x m -<-⎧⎨⎩≥的整数解仅为1,2,3,那么合适这个不等式组的整数对(m ,n )一共有( )对A .49B .42C .36D .13【解法指导】此题属于“由不等式的解集中包含的整数解来确定字母系数的值〞这类题,此类题首先根据不等式组的解集包含哪些整数来确定每个边界点的范围,据此求出符合条件的字母系数的值• 解:由此不等式组得到其解集是76x m n <≤• ∵此解集中仅含有整数1,2,3•∴107m <≤,即70m <≤,且436n <≤ 即2418n <≤ 故m =1,2,3,4,5,6,7,n =19,20,21,22,23,24故符合此不等式组的整数对(m ,n )一共有6×7=42对,即此题选B •【变式题组】01.〔赛题〕:关于x 的不等式组302x a b x -≥⎧⎪⎨<⎪⎩的整数杰有且仅有4个:-1,0,1,2,那么合适这个不等式组的所有可能的整数对(a ,b )一共有多少个?演练稳固 反应进步01.用不等式表示:⑴x 与2的和小于5________________;⑵a 与b 的差是非负数_________________•02.假设x <y ,那么x -y ______y -2;5-x _______5-y ;a 2x _______a 2y ;-x 3_____-y 5; x (a 2+1)______ y (a 2+1)•03.不等式组12305x x +>-⎧⎨⎩≤的解集是___________,其整数解是__________• 04.关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解一共有6个,那么a 的取值范围是 •05.:三角形的两边为3和4,那么第三边a 的取值范围是_________________•06.假设不等式(a -5)x >1的解集是x >1a -5,那么a 的取值范围是__________________• 07.假如不等式组737x x x n +<-⎧⎨>⎩的解集是x >7,那么n 的取值范围是〔 〕 A .n ≥7 B .n ≤ C .n =7 D .n <708.假设abcd >0,a +b +c +d >0,那么a 、b 、c 、d 中负数的个数至少有〔 〕A .1个B .2个C .3个D .4个09.假如2(1)3x--是非正数,那么x的取值范围是〔〕A.x≤1 B.x≥1 C.x≥1 D.x≤110.:关于x的不等式组152x ax->-⎧⎨⎩≥无解,那么a的取值范围是〔〕A.a>3 B.a≥3 C.0<a<3 D.a≤311.〔〕甲、乙两家超以一样的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超累计购置商品超过300元之后,超出局部按原价8折优惠;在乙超累计购置商品超过200元后,超出局部按原价8.5折优惠,设顾客预计累计购物x元〔x>300〕•⑴请用含x的代数式分别表示顾客在两家超购物所需费用;⑵试比拟顾客到哪家超购物更优惠?说明你的理由•12.七⑵班一共有50名学生,教师安排每人制作一件A型或者B型的陶艺品,现有甲种制作材料36kg,乙种制作材料29kg,制作A、B两种型号的陶艺品用料情况如下表:⑴设制作B型陶艺品x件,求x的取值范围;⑵请你根据现有的材料分别写出七⑵班制作A型和B型陶艺品的件数•13.〔〕某校准备组织290名学生进展野外考察活动,行李一共有100件,方案租用甲、乙两种型号的汽车一共8辆,经理解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李•⑴设租用甲种汽车x辆,请你帮助设计所有可能的租车方案;⑵假如甲、乙两种汽车每辆的租车费用分别为2000元、1800元,那么请你帮助选择哪一种租车方案更节费用•14.〔〕响应“家电下乡〞的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购置三种电冰箱的总金额不超过132000元•甲、乙、丙三种电冰箱的出厂价格分别为1200元/台、1600元/台、2000元/台•⑴至少购进乙种电冰箱多少台?⑵假设要求甲种电冰箱的台数不超过丙种电冰箱的台数,那么有哪些购置方案?15.〔〕某组织340名师生进展长途考察活动,带有行李170件,方案租用甲、乙两种型号的汽车10辆•经理解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李•⑴请你帮助设计所有可行的租车方案;⑵假如甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最•培优晋级奥赛检测01.假如不等式组809x bx a-<-⎧⎨⎩≥的整数解仅为1,2,3,那么合适这三个不等式组的整数a、b的有序数对(a,b)一共有〔〕对•A.17 B.64 C.72 D.8102.〔全国数学竞赛题〕设a、b、c的平均数为M,a与b的平均数为N,N与C的平均数为P,假设a>b>c,那么M与P的大小关系是〔〕A.M=P B.M>P C.M<P D.不确定的03.〔第18届竞赛题〕a1、a2、…、a2021都是正数,假如M=(a1+a2+…+a2021)(a2+a2+…+a2021),N=(a1+a2+…+a2021)( a2+a2+…+a2021),那么M、N的大小关系是〔〕A.M>N B.M=N C.MN D.不确定的04.〔“希望杯〞邀请赛试题〕设23ama+=+,12ana+=+,1apa=+,假设a<-3,那么〔〕A.m<n<p B. n<p<m C. p<n<m D.p<m<n05.〔“希望杯〞邀请赛试题〕:a、b、c、d都是整数,且a<2b,b<3c,c<4d,d<50,那么a的最大值是〔〕A.1157 B.1167 C.1191 D.119906.〔“CHSIO杯〞竞赛题〕关于x的不等式组4132x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,那么a的取值范围是________________•07.〔复赛题〕正六边形轨道ABCDEF的周长为,甲、乙两只机器鼠分别冲A、C两点同时出发,均按A →B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过_______秒钟时,甲、乙两只机器鼠第一次出如今同一条边上•08.〔“CHSIO杯〞竞赛题〕为了保护环境,某企业决定购置10台污水处理设备•现有A、B两种型号的设备,其中每台的价格、月处理污水及年消消耗如下表•经计算,该企业购置设备的资金不高于105万元,请你设计,该企业购置方案有_______种•09.〔竞赛题〕大、中、小三个正整数,大数与中数之和等于2021,中数减小数之差等于1000,那么这三个正整数的和为_____________•10.〔竞赛题〕不等式ax+3≥0的正整数解为1,2,3,那么a的取值范围是______•11.〔选拔赛试题〕小慧上宝塔观光,他发现:假设上了7阶楼梯时,剩下的楼阶梯数是已上的阶数的3倍多,假设再多上15阶楼梯时,已上阶数是剩下的楼梯阶数的3倍多,那么,此宝塔的楼梯一一共有多少阶•12.假设正整数x<y<z,k为整数,且111kx y z++=,试求x、y、z的值•13.〔华杯决赛题〕:a1+2a3≥3a2,a2+2a4≥3a3,a3+2a5≥3a4,…,a8+2a10≥3a9,a9+2a1≥3a10,a10+2a2≥3a1,且有a1+a2+a3+…+a10=100,求a1,a2,a3,…,a9,a10的值•制卷人:打自企;成别使;而都那。

人教版七年级下册 9.2 一元一次不等式的应用 专题练习

人教版七年级下册 9.2 一元一次不等式的应用 专题练习
4.某次篮球联赛初赛阶段,每队有 10 场比赛,每场比赛都要分出胜负,每队胜一场得 2 分,负一场得 1 分,积分超过 15 分才能获得参加决赛的资格. (1)已知甲队在初赛阶段的积分为 18 分,求甲队初赛阶段胜、负各多少场; (2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?
1/5
8.建设中的大外环路是我市的一项重点民生工程.某工程公司承建的一段路基工程的施工土 方量为 120 万立方,原计划由公司的甲、乙两个工程队从公路的两端同时相向施工 150 天完 成.由于特殊情况需要,公司抽调甲队外援施工,由乙队先单独施工 40 天后甲队返回,两队 又共同施工了 110 天,这时甲乙两队共完成土方量 103.2 万立方. (1)问甲、乙两队原计划平均每天的施工土方量分别为多少万立方? (2)在抽调甲队外援施工的情况下,为了保证 150 天完成任务,公司为乙队新购进了一批机 械来提高效率,那么乙队平均每天的施工土方量至少要比原来提高多少万立方才能保证按时 完成任务?
1若该店6月份购进两种水果的数量与5月份都相同将多支付货款300元求该店5月份这两种水果进货总量减少到120千克且甲种水果不超过乙种水果的3月份该店需要支付这两种水果的货款最少应是多少元
一元一次不等式的应用专题练习
1. “绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买 A,B 两种型号的垃圾 处理设备共 10 台(每种型号至少买 1 台).已知每台 A 型设备日处理能力为 12 吨,每台 B 型 设备日处理能力为 15 吨,购回的设备日处理能力不低于 140 吨. (1)请你为该景区设计购买 A,B 两种设备的方案. (2)已知每台 A 型设备价格为 3 万元,每台 B 型设备价格为 4.4 万元.厂家为了促销产品, 规定货款不低于 40 万元时,则按 9 折优惠,问:采用(1)设计的哪种方案,使购买费用最少, 为什么?

人教版七年级数学下册92 一元一次不等式同步测试提优题

人教版七年级数学下册92 一元一次不等式同步测试提优题

《9.2 一元一次不等式》同步测试提优题一、选择题1. 解不等式的下列过程中错误的是B. A. 去括号得去分母得D. 1 C. ,得移项,合并同类项得系数化为xb2. a的不等式的解集为,,则关于是常数,不等式设的解集是C.A.B.D.x1?x a1x?a?1)(a?的取值范围是(的解集为),则3.如果关于.的不等式1?a?aa?a?00?1? D C A B09?3?x).不等式4.的非负整数解有(无数个 D A 2个 B 3个 C 4个)15.不等式>﹣的正整数解的个数是(1A.个BD.4个3C.2个.个6.< - 1 )(与不等式有相同解集的不等式是 A.3x-3< (4x+1)-1B.3(x-3)<2(2x+1)-1D.3x-9<4x-4C.2(x-3)<3(2x+1)-6307.100件,已元班费去购买笔记本和钢笔共班级组织有奖知识竞赛,小明用 2 5)(元,那么小明最多能买钢笔元,钢笔每支知笔记本每本A. 50B.20C.14D.13 支支支支ay3xyx-8的取值,,的解满足.若关于的二元一次方程组<,则)范围是(5DaBa5 - Ca-5 aA5 >>..<..<二、填空题+1ba⊕b=aa-9ab,其中等式右边是通(、).定义新运算:对于任意实数都有5-3+1=-2⊕5=2×2-5+1=2×,那么不()()常的加法、减法及乘法运算.例如:4⊕x13.<等式的解集为k x10.2k+1x2k+11.的范围是的解集是若不等式(>)<,则11.的解,已知不等式的最小整数解是方程a= 则12. .的取值范围是的解集中的最小整数为已知,则aax?2?页,5要在10天之内读完,开始两天每天只读刘天借到一本有13..72页的图书,所列那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x页,。

不等式为x1x35x2”“14. 的取值范围是的倍大于的差不大于,且已知的一半与,则______ .三、解答题x-y-3yx15,求出满>的解满足的二元一次方程组.若关于、m的所有非负整数解.足条件的.16.51日举行促销优惠活动,当天到该商店购买商品有两种方案,方月某商店168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按案一:用8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律商品价格的9.551 日前不是该商店的会员.折优惠.已知小敏按商品价格的月1120 实际应支付多少元?若小敏不购买会员卡,所购买商品的价格为(元时,)2 采用方案一更合算?所购买商品的价格在什么范围内时,)(请帮小敏算一算,10?kk(x?5)?x?3)?kk2(? 17.x的不等式的解集.时,求关于当43 1?1yy?x1??3)?x≤?2x35(y,的大小.,并比较18.分别解不等式和36答案:1. D 2. B 3.D 4.C 5.D 6.D7.D8.D5×2≥72 14 .x13. 10210.1 k 11.4 9.x+(>)<﹣-2???3?a 12.y15.x的二元一次方程组、在关于3m+6y=-⊕-⊕x-,,得:-3⊕x-y,>-3⊕-3m+6,>3m,<解得:201m⊕.,满足条件的的所有非负整数解有,120×0.95=11416.1(元)()114元.所以实际应支付x2元,由题意得:()设购买商品的价格为xx0.8+1680.95<x>1120解得1120元时,采用方案一更合算.所以当购买商品的价格超过.10?k??3)2(k 3 17.k10-18k-<64<k)5(x?kk??x 4k-44xkx-5k>k x>k(?4)k<x.4k?1??1yy1??.不等式≥43)的解集为x--18y的解集<-.不等式2x3≤5(x36 .9 yx故>.。

部编数学七年级下册 一元一次不等式组专项提升训练(重难点培优)2023培优(解析版)

部编数学七年级下册 一元一次不等式组专项提升训练(重难点培优)2023培优(解析版)

2022-2023学年七年级数学下册尖子生培优题典【人教版】专题9.3一元一次不等式组专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•海珠区二模)不等式组x+1>23x−4≥2的解集是( )A.x≥2B.1<x<2C.1<x≤2D.x≤2【分析】分别求出每个不等式的解集,继而可得答案.【解答】解:由x+1>2,得:x>1,由3x﹣4≥2,得:x≥2,则不等式组的解集为x≥2,故选:A.2.(2022•九龙坡区校级开学)已知在平面直角坐标系中,点A(m+4,2m+3)位于第四象限,则m的取值范围是( )A.m>−32B.m<﹣4C.﹣4<m<32D.﹣4<m<−32【分析】根据第四象限点的横坐标大于0,纵坐标小于0列出不等式组求解即可.【解答】解:∵点A(m+4,2m+3)在第四象限,∴m+4>02m+3<0,解得﹣4<m<−3 2.故选:D.3.(2022•河东区校级开学)不等式组x≥−2x≤1的解集在数轴上表示正确的是( )A.B.C.D.【分析】直接根据两个不等式的解集,在数轴上表示出来即可.【解答】解:∵x≥−2 x≤1,∴不等式组的解集为:﹣2≤x≤1,在数轴上表示为:故选:A.4.(2022春•相城区期末)若关于x的不等式组2(x+1)>4x>a的解集是x>1,则a的取值范围是( )A.a<1B.a≤1C.a>1D.a≥1【分析】求出不等式的解集,根据已知得出关于a的不等式,求出即可.【解答】解:2(x+1)>4①x>a②解不等式①得:x>1,解不等式②得:x>a,∵关于x的不等式组2(x+1)>4x>a的解集是x>1,∴a≤1,∴a的取值范围是a≤1,故选:B.5.(2022春•滦南县期末)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少25元”乙说:“至多22元,”丙说:“至多20元,”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为( )A.20<x<22B.22<x<25C.20<x<25D.21<x<24【分析】根据甲、乙、丙三人都说错了,即可得出关于x的一元一次不等式组,解之即可得出结论.【解答】解:依题意得:x<25 x>22 x>20,∴22<x<25.故选:B.6.(2022春•长沙期末)已知关于x的不等式组x−a≤1x+3>2的解集为﹣1<x≤2,则a的值为( )A.1B.﹣1C.2D.﹣2【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再结合已知不等式组的解集得出关于a的值.【解答】解:解不等式x ﹣a ≤1,得:x ≤a +1,解不等式x +3>2,得:x >﹣1,所以不等式组的解集为﹣1<x ≤a +1,∵不等式组的解集为﹣1<x ≤2,∴a +1=2,解得a =1,故选:A .7.(2022秋•宁海县校级期中)方程组2x +y =k +1x +2y =3的解满足0<x +y <1,则K 的取值范围是( )A .k <﹣1B .﹣1<k <0C .﹣4<k <﹣1D .k >﹣4【分析】①+②求出x +y =k ﹣1,根据已知得出不等式0<k ﹣1≤1,求出即可.【解答】解:2x +y =k +1①x +2y =3②,∵①+②得:3x +3y =k +4,∴x +y =k 43,∵方程组2x +y =k +1x +2y =3的解满足0<x +y <1,∴0<k 43<1,∴k 的取值范围为:﹣4<k <﹣1.故选:C .8.(2022秋•九龙坡区校级期中)若关于x ≤2<x 23的解集为x ≤4a ,且关于y 、z 的二元一次方程组y +2z =4a +52y +z =2a +4的解满足y +z ≥﹣1,则满足条件的所有整数a 的和为( )A .﹣3B .﹣2C .0D .3【分析】先解一元一次不等式组,再根据不等式组的解集为x ≤4a ,从而可得4a <1,进而可得a <14,然后再把两个二元一次方程相加可得y +z =2a +3,再结合已知可得2a +3≥﹣1,从而可得a ≥﹣2,进而可得﹣2≤a <14,最后进行计算即可解答.<②,解不等式①得:x ≤4a ,解不等式②得:x <1,∵不等式组的解集为x≤4a,∴4a<1,∴a<1 4,y+2z=4a+5①2y+z=2a+4②,①+②得:3y+3z=6a+9,∴y+z=2a+3,∵y+z≥﹣1,∴2a+3≥﹣1,解得:a≥﹣2,∴﹣2≤a<1 4,∴满足条件的所有整数a的和=﹣2+(﹣1)+0=﹣3,故选:A.9.(2022秋•巴南区校级期中)若关于x≥2x+1)有解,且最多有3个整数解,且关于y的方程3y﹣2=2m−3(8−y)2的解为非负整数,则符合条件的所有整数m的和为( )A.23B.26C.29D.39【分析】先解一元一次不等式组,根据题意可得2≤3m10<5,再解一元一次方程,根据题意可得2m−203≥0且2m−203为整数,从而可得10≤m<503且2m−203为整数,然后进行计算即可解答.≥2x①+1)②,解不等式①得:x≤3m 10,解不等式②得:x≥3 2,∵不等式组有解且至多有3个整数解,∴2≤3m10<5,∴203≤m<503,3y﹣2=2m−3(8−y)2,解得:y=2m−203,∵方程的解为非负整数,∴2m−203≥0且2m−203为整数,∴m≥10且2m−203为整数,综上所述:10≤m<503且2m−203为整数,∴m=13,16,∴满足条件的所有整数m的和=13+16=29,故选:C.10.(2022秋•坪山区校级期中)高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[﹣1]=﹣3:②[x]+[﹣x]=0;③若[x﹣1]=1,则x的取值范围是2<x<3;④当﹣1<x<1时,[x+1]+[﹣x+1]的值为0,1,2.其中正确结论的个数是( )A.1B.2C.3D.4【分析】根据[x]表示不超过x的最大整数,即可解答.【解答】解:①[﹣2.1]+[﹣1]=﹣3+(﹣1)=﹣4,故①错误;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x﹣1]=1,则x的取值范围是2≤x<3,正确;④当﹣1<x<1时,0<x+1<2,0<﹣x+1<2,∴[x+1]=1,[﹣x+1]=0或1,所以[x+1]+[﹣x+1]的值为1、2,故错误.所以正确的有③,共1.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022•襄阳)不等式组2x>x+1,4x−1>7的解集是 x>2 .【分析】分别解出每个不等式,再求公共解集即可.【解答】解:2x>x +1①4x−1>7②,解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.12.(2022春•钦北区期末)一个关于x的不等式组的解集在数轴上表示如图,则这个不等式组的解集 ﹣3<x≤2 .【分析】根据数轴上表示不等式解集的方法进行解答即可.【解答】解:由数轴可知,这个不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤2.13.(2022•青海)不等式组2x+4≥06−x>3的所有整数解的和为 0 .【分析】先解不等式组,求出x的范围,再求出满足条件的整数,相加即可得答案.【解答】解:2x+4≥0①6−x>3②,由①得:x≥﹣2,由②得x<3,∴﹣2≤x<3,x可取的整数有:﹣2,﹣1,0,1,2;∴所有整数解的和为﹣2﹣1+0+1+2=0,故答案为:0.14.(2022春•凤泉区校级期末)对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[﹣2.5]=﹣3,若[x﹣2]=﹣1,则x的取值范围为 1≤x<2 .【分析】根据定义列不等式直接求解即可.【解答】解:由已知可得,﹣1≤x﹣2<0,解得,1≤x<2.故答案为:1≤x<2.15.(2022春•庐江县期末)已知关于x、y的方程组x+3y=4−ax−y=3a其中﹣3≤a≤1.①当a= ﹣2 时,x、y的值互为相反数;②若x≤1,则y的取值范围是 1≤y≤4 .【分析】(1)将两方程相加可得x +y =a +2,再结合x +y =0可得关于a 的方程,解之即可;(2)由题意知x +a =4−3y x−3a =y ,据此得x =3−2y a =1−y ,再根据﹣3≤a ≤1,x ≤1知3−2y ≤11−y ≥−31−y ≤1,解之即可得出答案.【解答】解:(1)x +3y =4−a①x−y =3a②,①+②得:2x +2y =2a +4,∴x +y =a +2,∵x ,y 的值互为相反数,∴x +y =0,∴a +2=0,∴a =﹣2;(2)由题意得x +a =4−3y x−3a =y ,解得:x =3−2y a =1−y ,∵﹣3≤a ≤1,x ≤1,∴3−2y ≤11−y ≥−31−y ≤1,解得1≤y ≤4.16.(2022•绥化)不等式组3x−6>0x >m的解集为x >2,则m 的取值范围为 m ≤2 .【分析】分别求出每一个不等式的解集,根据口诀:同大取大,结合不等式组的解集可得答案.【解答】解:由3x ﹣6>0,得:x >2,∵不等式组的解集为x >2,∴m ≤2,故答案为:m ≤2.17.(2022•福州开学)若不等式组2x−1>a 1−2x ≥x−5无解,则a 的取值范围是 a ≥3 .【分析】分别求出每一个不等式的解集,根据口诀:大大小小无解了确定关于a 的不等式,解之可得.【解答】解:解不等式2x ﹣1>a ,得:x >a 12,解不等式1﹣2x ≥x ﹣5,得:x ≤2,∵不等式组无解,∴a 12≥2,解得a ≥3.故答案为:a ≥3.18.(2022春•平潭县期末)把一些书分给几名同学,如果每人分4本,那么余9本;如果前面的每名同学分6本,那么最后一人就分得不超过2本,则这些书有 37本 .【分析】设共有x 名同学分书,则这批书共有(4x +9)本,根据“如果前面的每名同学分6本,那么最后一人就分得不超过2本”,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,再结合x 为正整数即可得出结论.【解答】解:设共有x 名同学分书,则这批书共有(4x +9)本,依题意,得:4x +9>6(x−1)4x +9≤6(x−1)+2,解得:132≤x <152,又∵x 为正整数,∴x =7,∴4x +9=37.∴这些书有37本.故答案为:37本.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•3(x−1)−x ≤−1<x 12,并把不等式组的解集表示在数轴上.【分析】解出每个不等式的解集,再取公共部分即可.3(x−1)−x ≤−1①<x 12②,解不等式①得:x ≤1,解不等式②得:x >﹣3,解集表示在数轴上如下:∴不等式组的解集为﹣3<x≤1.20.(2022•≥−4<x−1并写出它的正整数解.【分析】解不等式组求出它的解集,再取正整数解即可.【解答】解:解不等式2(x﹣1)≥﹣4得x≥﹣1.解不等式3x−62<x﹣1得x<4,∴不等式组的解集为:﹣1≤x<4.∴不等式组的正整数解为:1,2,3.21.(2022春•南阳月考)北京2022官方特许商品旗舰店在北京冬奥会召开期间,购进一批A、B不同型号的盲盒,购进3个A型号的盲盒和4个B型号的盲盒需要566元;购进2个A型号的盲盒和1个B型号的盲盒需要264元.(1)A、B不同型号的盲盒单价各是多少元?(2)该旗舰店计划购进A、B不同型号的盲盒共100件,其中B型号的盲盒的个数不大于A型号的盲盒个数,并且计划费用不超过8450元,请问共有几种购买方案?【分析】(1)设A种型号的盲盒的单价为x元,B种型号的盲盒的单价为y元,根据题意,列出二元一次方程组可得出结论;(2)设购进A种型号盲盒m件,则购进B种型号盲盒(100﹣m)件,根据题意列出一元一次不等式,解之可得出结论.【解答】解:(1)设A种型号的盲盒的单价为x元,B种型号的盲盒的单价为y元,根据题意,得,3x+4y=566 2x+y=264,解得x=98 y=68,∴A种型号的盲盒的单价为98元,B种型号的盲盒的单价为68元;(2)设购进A种型号盲盒m件,则购进B种型号盲盒(100﹣m)件,根据题意,得100−m≤m98m+68(100−m)≤8450,解得50≤m≤55,且m为正整数,∴m可取50,51,52,53,54,55,共6种方案.22.(2022春•博罗县期末)已知关于x、y的方程组满足x+2y=3m+1x−y=m−2,且它的解x为负数,y为正数.(1)试用含m的式子表示方程组的解;(2)求实数m的取值范围;(3)化简|m+2|+|m﹣1|.【分析】(1)根据加减消元法,可以解答此方程组;(2)根据(1)中的结果和x为负数,y为正数,可以列出相应的不等式组,然后求解即可;(3)根据(2)中的结果,可以将绝对值符号去掉,然后化简即可.【解答】解:(1)x+2y=3m+1①x−y=m−2②,①﹣②,得:3y=2m+3,解得y=2m33,将y=2m33代入②,得:x=5m−33,∴方程组的解是x=5m−33y=2m33;(2)∵x为负数,y为正数,x=5m−33y=<0 0,解得−32<m<35,即实数m的取值范围是−32<m<35;(3)∵−32<m<35,∴m+2>0,m﹣1<0,∴|m+2|+|m﹣1|=m+2+1﹣m=3.23.(2022春•蜀山区校级期中)阅读理解:我们把|a b c d|称为二阶行列式,规定它的运算法则为|a b c d|=ad﹣bc ,例如:|2345|=2×5﹣3×4=﹣2.(1)填空:若|−12x−10.5x |=0,则x = 14 ,|213−x x |>0,则x 的取值范围 x >1 ;(2)若对于正整数m ,n 满足,1<|1n m 4|<3,求m +n 的值;(3)若对于两个非负数x ,y ,|x−1y 23|=|x −y 2−1|=k ,求实数k 的取值范围.【分析】(1)根据法则得到﹣x ﹣0.5(2x ﹣1)=0、2x ﹣(3﹣x )>0,然后解得即可.(2)根据法则得到1<4﹣mn <3,解不等式求得1<mn <3,由m 、n 是正整数,则可求得m +n =3;(3)根据法则得到3(x ﹣1)﹣2y =﹣x +2y =k ,解方程组求得x ,y 的值,然后根据题意得关于k 的不等式组,解得即可.【解答】解:(1)由题意可得﹣x ﹣0.5(2x ﹣1)=0,整理可得﹣x ﹣x +0.5=0,解得x =14;由题意可得2x ﹣(3﹣x )>0,解得x >1,故答案为14,x >1;(2)由题意可得,1<4﹣mn <3,∴1<mn <3,∵m 、n 是正整数,∴m =1,n =2,或m =2,n =1,∴m +n =3;(3)由题意可得3(x ﹣1)﹣2y =﹣x +2y =k ,∴3x−2y =k +3①−x +2y =k ②,①+②得:2x =2k +3,解得:x =2k 32,将x =2k 32代入②,得:−2k 32+2y =k ,解得y =4k 34,∵x 、均为非负数,≥0≥0,解得k≥−3 4.24.(2022春•济源期末)某校八(3)班同学在社会实践调研活动中发现,某超市销售A,B两种商品,进价和售价如表所示:商品进价(元/件)售价(元/件)A100120B150200已知该超市购进A,B两种商品共花费6000元,销售完成后共获得利润1600元.(1)填空:超市购进A种商品 30 件,B种商品 20 件;(2)若超市再次购进A,B两种商品共50件,其中B商品的数量不多于A商品数量的3倍,且两种商品的总利润不低于1900元,问共有几种购进方案?请求出利润最大的购进方案,并求出最大利润.【分析】(1)设超市购进A种商品m件,B种商品n件,根据该超市购进A,B两种商品共花费6000元,销售完成后共获得利润1600元列二元一次方程组,求解即可;(2)设服装店购进A种商品x件,购进B种商品(50﹣x)件,获得总利润为w元,表示出w与x的一次函数,根据B商品的数量不多于A商品数量的3倍,且两种商品总利润不低于1900元,列一元一次不等式组,求出x取值范围,即可确定购进方案以及取得最大利润时的购进方案.【解答】解:(1)设超市购进A种商品m件,B种商品n件,根据题意,得100m+150n=6000(120−100)m+(200−150)n=1600,解得m=30 n=20,∴超市购进A种商品30件,B种商品20件,故答案为:30,20;(2)设服装店购进A种商品x件,购进B种商品(50﹣x)件,获得总利润为w元,由题意,得w=(120﹣100)x+(200﹣150)(50﹣x)=﹣30x+2500,根据题意,得50−x≤3x−30x+2500≥1900,解得12.5≤x≤20,∵x为整数,∴x取13,14,15,16,17,18,19,20,∴共有8种方案,∵k=﹣30<0,∴w随x的增大而减小,∴当x=13时,w取得最大值,此时w=﹣30×13+2500=2110(元),50﹣13=37,答:共有8种购进方案,利润最大的购进方案是超市购进A种商品13件,购进B种商品37件.最大利润是2110元.。

2022年人教版七年级下册数学同步培优第九章不等式与不等式组第3节 一元一次不等式组

2022年人教版七年级下册数学同步培优第九章不等式与不等式组第3节 一元一次不等式组

9.3 一元一次不等式组
基础巩固
能力提升
拓展突破
-14-
解:(1) x-y=-a-1, ① 2x-y=-3a. ②
②-①,得 x=-2a+1, 将 x=-2a+1 代入①,得 y=-a+2, 所以方程组的解为 x=-2a+1,
y=-a+2.
9.3 一元一次不等式组
基础巩固
能力提升
拓展突破
-15-
5(x-1)>3x-1, ②
解:不等式组的解集是2<x≤4. 解集在数轴上的表示略.
9.3 一元一次不等式组
基础巩固
能力提升
拓展突破
-9-
10.若关于 x 的一元一次不等式组 6-3(x+1)<x-9,的解集是 x-m>-1
x>3,则 m 的取值范围是( D )
A.m>4 B.m≥4 C.m<4 D.m≤4
A.x>1 B.x≥1 C.x>3 D.x≥3
9.3 一元一次不等式组
基础巩固
能力提升
拓展突破
-4-
4.把不等式组 xx≤≥2-, 1的解集在数轴上表示正确的是( B )
9.3 一元一次不等式组
基础巩固
能力提升
拓展突破
-5-
5.下列四个不等式组中,其解集在数轴上的表示如图所示的是 (D)
x≥2
x≤2
取值范围是 6<a≤8 .
12.某小区前有一块空地,现准备将其建成一块面积大于48米2, 周长小于34米的矩形绿化草地.已知此矩形绿化草地的一条 边长为8米,则其邻边长(取整数)为 7或8 米.
9.3 一元一次不等式组
基础巩固

专题9.3一元一次不等式-2021-2022学年七年级数学下册尖子生同步培优题典(解析版)【人教版】

专题9.3一元一次不等式-2021-2022学年七年级数学下册尖子生同步培优题典(解析版)【人教版】

2021-2022学年七年级数学下册尖子生同步培优题典【人教版】专题9.3一元一次不等式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021春•会宁县月考)已知(k+3)x|k|﹣2+5<k﹣4是关于x的一元一次不等式,则不等式的解集是( )A.x<1B.x<﹣1C.x<2D.x>﹣1【分析】先根据一元一次不等式的概念得出k的值,代入不等式,解之可得.【解析】∵(k+3)x|k|﹣2+5<k﹣4是关于x的一元一次不等式,∴k+3≠0且|k|﹣2=1,解得k=3,则不等式为6x+5<3﹣4,解得x<﹣1,故选:B.2.(2021春•长葛市期末)框中是解不等式的过程,每一步只对上一步骤负责,则其中有错的步骤是( )解:∵∴x>6﹣2x﹣4①∴x﹣2x>6﹣4②∴﹣x>2③∴x>﹣2④A.只有④B.①③C.②④D.①②④【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解析】去分母,得:x>6﹣2(x﹣2),去括号,得:x>6﹣2x+4,故步骤①错误;由①移项,得:x+2x>6﹣4,故②错误;由②合并,得:﹣x>2,由③系数化为1,得:x<﹣2,故④错误;故选:D.3.(2020春•南平期末)某次知识竞赛共有20道选择题,答对一题得5分;答错或不答,每题扣1分.要使总得分不少于70分,则至少要答对几道题?若设答对x道题,可得式子为( )A.5x﹣(20﹣x)>70B.5x﹣(20﹣x)<70C.5x﹣x≥70D.5x﹣(20﹣x)≥70【分析】设答对的题数为x道,则答错或不答的题数为(30﹣x)道,根据总分=5×答对题数﹣1×答错或不答题数,结合总得分不少于70分,即可得出关于x的一元一次不等式.【解析】设答对x道题,则答错或不答的题数为(30﹣x)道,则5x﹣(20﹣x)≥70.故选:D.4.(2021•金华)一个不等式的解集在数轴上表示如图,则这个不等式可以是( )A.x+2>0B.x﹣2<0C.2x≥4D.2﹣x<0【分析】解不等式,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.【解析】A、x>﹣2,故A不符合题意;B、x<2,故B符合题意;C、x≥2,故C不符合题意;D、x>2,故D不符合题意.故选:B.5.(2021•兰州)关于x的一元一次不等式3x≤4+x的解集在数轴上表示为( )A.B.C.D.【分析】解出一元一次不等式的解集,然后选出正确结果.【解析】3x≤4+x,2x≤4,x≤2.故选:D.6.(2021•广东模拟)已知关于x的不等式2x+m>﹣5的解集是x>﹣3,那么m的值是( )A.﹣2B.﹣1C.0D.1【分析】首先解不等式得到解集为x>,再根据解集是x>﹣3,可得到方=﹣3,解方程即可.【解析】∵2x+m>﹣5,∴x>,∵解集是x>﹣3,∴=﹣3,∴m=1,故选:D.7.(2021•杭州模拟)已知x=4是关于x的方程kx+b=0(k≠0,b>0)的解,则关于x的不等式k(x﹣3)+2b>0的解集是( )A.x>11B.x<11C.x>7D.x<7【分析】将x=4代入方程,求出b=﹣4k>0,求出k<0,把b=﹣4k代入不等式,再求出不等式的解集即可.【解析】∵x=4是关于x的方程kx+b=0(k≠0,b>0)的解,∴4k+b=0,即b=﹣4k>0,∴k<0,∵k(x﹣3)+2b>0,∴kx﹣3k﹣8k>0,∴kx>11k,故选:B.8.(2021秋•沙坪坝区校级期末)若方程组的解满足2x+y>0,则k的值可能为( )A.﹣1B.0C.1D.2【分析】将方程组中两个方程相加可得2x+y=3k﹣3,由2x+y>0得出关于k的不等式,解之可得.【解析】,①+②,得:2x+y=3k﹣3,∵2x+y>0,∴3k﹣3>0,解得:k>1,故选:D.9.(2021春•峄城区期末)某文具开展促销活动,一次购买的商品超过200元时,就可享受打折优惠,小亮同学准备为班级购买奖品,需买8本活页本和若干支中性笔,已知活页本每本18元,中性笔每支5元,如果小亮想享受打折优惠,那么至少需要购买多少支中性笔( )A.12支B.11支C.10支D.9支【分析】设小亮同学需要购买x支中性笔,再根据题意列出不等式:18×8+5x>200,化简即可得出x的取值,取取值范围内的最小整数即为本题的答案.【解析】设小亮同学需要购买x支中性笔,根据题意得:18×8+5x>200,解得x>11.2,∵x为整数,∴x最小为12.答:至少需要购买12支中性笔.故选:A.10.(2020秋•北碚区校级期末)缤纷节临近,小西在准备爱心易物活动中发现班级同学捐赠的一个布偶的成本为60元,定价为90元,为使得利润率不低于5%,在实际售卖时,该布偶最多可以打( )折.A.8B.7C.7.5D.8.5【分析】设在实际售卖时,该布偶可以打x折,根据利润=售价﹣成本,结合利润率不低于5%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【解析】设在实际售卖时,该布偶可以打x折,依题意得:90×﹣60≥60×5%,解得:x≥7.故选:B.二.填空题(共8小题)11.若3m﹣5x3+m>4是关于x的一元一次不等式,则该不等式的解集是 x<﹣2 .【分析】根据一元一次不等式的定义得出3+m=1,求出m的值,再把m的值代入原式,再解不等式即可.【解析】∵3m﹣5x3+m>4是关于x的一元一次不等式,∴3+m=1,m=﹣2,∴﹣6﹣5x>4,∴该不等式的解集是x<﹣2.故答案为:x<﹣2.12.写出一个解集为x<﹣1,且未知数的系数为2的一元一次不等式: 2x<﹣2(答案不唯一) .【分析】把原不等式两边都乘以2就可以了;也可以根据不等式的基本性质再进行其它变形,所以答案不唯一.【解析】两边都乘以2,得2x<﹣2(答案不唯一).故答案为:2x<﹣2(答案不唯一).13.(2021春•兴国县期末)若关于x的不等式x﹣a>0恰好有两个负整数解,则a的范围为 ﹣3≤a<﹣2 .【分析】首先解不等式,然后根据条件即可确定a的值.【解析】∵x﹣a>0,∴x>a,∵不等式x﹣a>0恰有两个负整数解,∴﹣3≤a<﹣2.故答案为﹣3≤a<﹣2.14.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则m= 0 ;该不等式的解集为 x<﹣3 .【分析】先根据一元一次不等式的定义,可得2m+1=1且m﹣2≠0,求出m的值是0;再把m=0代入不等式,整理得:﹣2x﹣1>5,然后利用不等式的基本性质将不等式两边同时加上1,再同时除以﹣2,不等号方向发生改变,求解即可.【解析】根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,解得m=0,则原不等式化为:﹣2x﹣1>5,解得x<﹣3.故答案为:0,x<﹣3.15.(2021春•三门峡期末)当x <﹣ 时,代数式的值为负数.【分析】根据题意建立不等式,求得不等式的解集即可.【解析】由题意得<05x﹣1+2<0解得x<﹣,故答案为<﹣.16.(2021春•澄城县期末)已知a、b为非零常数,若ax+b>0的解集是x<,则bx﹣a>0的解集是 x>﹣3 .【分析】根据ax+b>0的解集是x<,可以解得a、b的值,再代入bx﹣a<0中求其解集即可.【解析】∵ax+b>0的解集是:x<,由于不等号的方向发生变化,∴a<0,又﹣=,即a=﹣3b,∴b>0,不等式bx﹣a>0即bx+3b>0,解得:x>﹣3.故答案是:x>﹣3.17.(2021春•嘉祥县期末)小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买 4 个作业本.【分析】设还可以买x个作业本,根据总价=单价×数量结合总价不超过40元,即可得出关系x的一元一次不等式,解之取其中的最大整数值即可得出结论.【解析】设还可以买x个作业本,依题意,得:2.2×7+6x≤40,解得:x≤4.又∵x为正整数,∴x的最大值为4.故答案为4.18.(2021•海东市模拟)若关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,则关于x的不等式ax>2bx+b的解集是 x>﹣1 .【分析】由已知得出a=b<0,进而即可求得关于x的不等式ax>2bx+b的解集.【解析】ax<﹣bx+b,(a+b)x<b,∵关于x的不等式ax<﹣bx+b(a,b≠0)的解集为x>,∴=,且a+b<0,∴a=b<0,∴ax>2bx+b变为﹣bx>b,∴x>﹣1,故答案为x>﹣1.三.解答题(共6小题)19.(2021春•迎泽区校级月考)聪聪解不等式﹣1<的步骤如下.解:x+5﹣1<3x+2①.﹣2x<﹣2②.x<1③.(1)聪聪解不等式时从第 ① 步开始出错的(只填序号).具体原因是 常数1没有乘2 .聪聪由不等式化为第一步的依据是 不等式的基本性质2 .(2)完成此不等式正确的解答过程.【分析】(1)根据不等式的基本性质2求解即可;(2)根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解析】(1)聪聪解不等式时从第①步开始出错的(只填序号).具体原因是常数1没有乘2.聪聪由不等式化为第一步的依据是不等式的基本性质2,故答案为:①,常数1没有乘2,不等式的基本性质2;(2)去分母,得:x+5﹣2<3x+2,移项、合并,得:﹣2x<﹣1,系数化为1,得:x>0.5.20.(2021春•金水区校级月考)解下列不等式:(1)5x﹣12≤2(4x﹣3);(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解析】(1)去括号,得:5x﹣12≤8x﹣6,移项,得:5x﹣8x≤﹣6+12,合并同类项,得:﹣3x≤6,系数化为1,得:x≥﹣2;(2)去分母,得:2(x+4)﹣3(3x﹣1)>6,去括号,得:2x+8﹣9x+3>6,移项,得:2x﹣9x>6﹣8﹣3,合并同类项,得:﹣7x>﹣5,系数化为1,得:x<.21.(2021春•菏泽月考)解下列不等式,并把解集在数轴上表示出来.(1)3(x+2)>x+4;(2)≤﹣1.【分析】(1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集;(2)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集.【解析】(1)去括号得,3x+6>x+4,移项得,3x﹣x>4﹣6,合并同类项,得2x>﹣2,∴x>﹣1.在数轴上表示此不等式的解集如下:(2)去分母,得4(2x﹣1)≤3(3x+2)﹣12,去括号,得8x﹣4≤9x+6﹣12,移项,得8x﹣9x≤6﹣12+4,合并同类项,得﹣x≤﹣2,∴x≥2.在数轴上表示此不等式的解集如下:22.(2020春•高邮市期末)已知关于x、y的二元一次方程组(1)若方程组的解满足x﹣y=6,求m的值;(2)若方程组的解满足x<﹣y,求m的取值范围.【分析】(1)用加减消元法解出x和y的值,把x和y用含有m的式子表示,代入x﹣y=6,求出m的值即可,(2)把x和y用含有m的式子表示,代入x+y<0,得到关于m的一元一次不等式,解之即可.【解析】(1),①+②得:8x﹣8y=4m+8,即x﹣y=1+m,代入x﹣y=6得:1+m=6,解得:m=10,故m的值为10,(2)②﹣①得:2x+2y=8﹣4m,即x+y=4﹣2m,∵x<﹣y,∴x+y<0,∴4﹣2m<0,解得:m>2,故m的取值范围为:m>2.23.(2021秋•武冈市期末)某校购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且购买乙种树苗的棵数比甲种树苗棵数的2倍多30棵.(1)若购买两种树苗的总费用不超过3400元,最多可以购买甲种树苗多少棵?(2)为保证绿化效果,学校决定再购买甲、乙两种树苗共24棵(两种树苗都要买),总费用不超过500元,问有哪几种可能的购买方案?【分析】(1)设购买甲种树苗x棵,由购买两种树苗的总费用不超过3400元,列出不等式,可求解;(2)设再购买甲种树苗m棵,则购买乙种树苗(24﹣m)棵,由总费用不超过500元,列出不等式,即可求解.【解析】(1)设购买甲种树苗x棵,由题意可得:30x+20(2x+30)≤3400,解得:x≤40,答:最多可以购买甲种树苗40棵;(2)设再购买甲种树苗m棵,则购买乙种树苗(24﹣m)棵,依题意得:30m+20(24﹣m)≤500,解得:m≤2.又∵m为正整数,∴m可以取1,2,∴该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵.24.(2021春•西城区校级月考)某公交公司有A,B型两种客车,它们的载客量和租金如下表:A B载客量(人/辆)4530租金(元/辆)400300红星中学根据实际情况,计划租用A,B型客车共7辆,同时送七年级师生到基地校参加社会实践活动,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:车辆数(辆)载客量租金(元)A x45x400xB7﹣x① 30(7﹣x) ② 300(7﹣x) (2)若要保证租车费用不超过2700元,求x的最大值;(3)在(2)的条件下,若七年级师生共有283人,写出最省钱的租车方案.【分析】(1)B型车辆数乘以每辆车载客量即是B型车载客量,B型车辆数乘以每辆车租金即为B型车的租金;(2)A型车租金为400x元,B型车租金300(7﹣x)元,列出不等式即可求解;(3)A型、B型车载客量不小于283,列出不等式即可得到x范围,分别在范围内取整数计算每种方案租金,比较即可得到答案.【解析】(1)B型车(7﹣x)辆,每辆载客30人,每辆租金300元,∴B型车载客为30(7﹣x)人,租金是300(7﹣x)元;故答案为:①30(7﹣x),②300(7﹣x);(2)A型车租金为400x元,B型车租金300(7﹣x)元,要保证租车费用不超过2700元,∴400x+300(7﹣x)≤2700,解得x≤6,∴x的最大值为6;(3)根据题意可得:45x+30(7﹣x)≥283,解得x≥,由(2)知x≤6,∴≤x≤6,x又为整数,∴x可以取5或6,x=5时,租金为400×5+300×(7﹣5)=2600,x=6时,租金为400×6+300×(7﹣6)=2700,∴x=5,即租A型客车5辆,租B型客车2辆最省钱.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a 200 <0x≤b 200<x≤400400 x>(1)已知李叔家四月份用电286度,缴纳电费元;五月份用电316度,缴纳电费元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙m﹣20/进价(元双) m160 /售价(元双) 240(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售2000 1000每吨获利(元)已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段种型号 B种型号 A 1200元第一周 3台 4台元 6台台 1900 第二周 5 销售收入﹣进货成本)(进价、售价均保持不变,利润= .B两种型号的电风扇的销售单价;)求(1A种型号的电风扇最多能台,求)若商场准备用不多于27500元的金额再采购这两种型号的电风扇共50A (采购多少台?元的目标?若能,请给出相应1850台电风扇能否实现利润超过50)的条件下,商场销售完这2)在(3(.的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b a 价格(万元/台)180处理污水量(吨/月) 240(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为元的课外书为x本,得:8x+12=1500﹣418,解得:x=(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:方案甲车乙车运费2×① 4000+6×3600=29600 2 63×② 4000+5×5 3600=30000 34 ③×4000+44 ×3600=30400 4所以方案①运费最少,最少运费是29600元.7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×+200×+(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.元运输费.19800月份最多将收到7所以该物流公司.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×=;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×(x﹣6)=6x+24,22∴y=. 2(3)当0≤x≤6时,∵<10,∴此时买甲种产品省钱;当x>6时,令y<y,则<6x+24,解得:x<20;21令y=y,则=6x+24,解得:x=20;21令y>y,则>6x+24,解得:x>20. 21综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。

相关文档
最新文档