高分子材料应力-应变曲线的测定

合集下载

高分子材料性能测试力学性能

高分子材料性能测试力学性能

3.1.2 高分子经典应力-应变曲线 I
3.1 拉伸性能
(c)旳特点是硬而强。拉伸强度和弹性模量大,且有合适旳伸长率,如硬聚氯乙烯等。(d)旳特点是软而韧。断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
3.1 拉伸性能
3.1.2 高分子经典应力-应变曲线 III
(e)旳特点是硬而韧。弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等
塑性(Plasticity):外力作用下,材料发生不可逆旳永久性变形而不破坏旳能力。
Mechanical properties of materials
应 力
应 变
Mechanical properties of materials
3.1 拉伸性能
3.1.1 应力-应变曲线
Байду номын сангаас
高分子应力-应变过程
3.1 拉伸性能
电子万能试验机
3.1 拉伸性能
3.1 拉伸性能
3.1.5 拉伸性能测试原理 拉伸试验是对试样延期纵轴方向施加静态拉伸负荷,使其破坏,经过测量试样旳屈服力、破坏力和试样标距间旳伸长来求得试样旳屈服强度拉伸强度和伸长率。
3.1 拉伸性能
3.1.6 测量方法即实验环节 ①试样旳状态调节和试验环境按国家原则规定。②在试样中间平行部分做标线,示明标距。③测量试样中间平行部分旳厚度和宽度,精确到0.01mm,II型试样中间平行部分旳宽度,精确到0.05mm,测3点,取算术平均值。④夹具夹持试样时,要使试样纵轴与上下夹具中心连线重合,且松紧适宜。⑤选定试验速度,进行试验。⑥记录屈服时负荷,或断裂负荷及标距间伸长。试样断裂在中间平行部分之外时,此试样作废,另取试样补做。

高分子的力学性能

高分子的力学性能

力等)作用下,材料的形变随时间的增加而逐渐增大的现象。
7.3 3 聚合物的粘弹性 聚合物的力学松弛
蠕变过程包括 三种形变
普弹形变ε1 运动单元:键长、键角 形变特点:形变量小,与时间无关,形变 可完全回复 高弹形变ε2
2 +3
1 2 3
1
运动单元:链段 形变特点:形变量大,与时间有关,可逐 渐回复 t 粘性流动ε3 运动单元:分子链 形变特点:不可逆形变
于应力,摩擦阻力越大,链段运动越困难,应变也就越跟不上 应力的变化,δ也就越大。
7.3 3 聚合物的粘弹性 聚合物的力学松弛
4.力学损耗(内耗、阻尼) 粘弹性材料的应变变化跟不上应力的变化,在循环 变化过程中有能量的消耗,这种消耗称为力学损耗或滞 后损耗。 高分子材料内耗的产生在于外力在改变分子链构象 的同时还要克服内摩擦力。
7.3 3 聚合物的粘弹性 聚合物的力学松弛
3.滞后现象 粘弹性材料的力学响应在弹性材料和粘性材料之间,应变的 变化落后于应力的变化一个相位角δ。
(t ) 0 sin(t )
滞后现象:应变的变化落后于应力变化的现象. 聚合物滞后现象也是松弛过程,它的发生是由于链段运动
要受到内摩擦力作用,运动跟不上外力的变化,所以形变落后
下,在标准试样上沿轴向施加拉伸载荷,直到试样被
拉断为止。
1 玻璃态与结晶态聚合物的力学性质
试样断裂前所受的最大
负荷P与试样横截面积之比
为抗张强度t: t = P / b • d
1 玻璃态与结晶态聚合物的力学性质
(2) 弯曲强度(挠曲强度) 弯曲强度是在规定试验条件下,对标准试样施力。 静弯曲力矩直到试样折断为止 。 设试验过程中最大的负荷 为P,则抗弯强度f为: f = 1.5Pl0 / bd2

高分子材料力学性能

高分子材料力学性能

高分子材料力学性能姓名:程小林学号:5701109004 班级:高分子091 学院:材料学院研究背景:在世界范围内, 高分子材料的制品属於最年轻的材料.它不仅遍及各个工业领域, 而且已进入所有的家庭, 其产量已有超过金属材料的趋势,將是2 1世纪最活跃的材料支柱.高分子材料在我们身边随处可见。

在我们的认识中,高分子材料是以高分子化合物为基础的材料。

高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料。

今天,我想就高分子材料为主线,简单研究一下高分子材料所具有的一些方面的力学性能。

从我们以前学过的化学知识中可以知道,高分子材料其实是有机化合物, 有机化合物是碳元素的化合物.除碳原子外, 其他元素主要是氢、氧、氮等.碳原子与碳原子之间, 碳原子与其他元素的原子之间, 能形成稳定的结构.碳原子是四价, 每个一价的价键可以和一个氢原子键连接, 所以可形成为数众多的、具有不同结构的有机化合物.有机化合物的总数已接近千万种, 远远超过其他元素的化合物的总和, 而且新的有机化合物还不断地被合成出來.這样, 由於不同的特殊结构的形成, 使有机化合物具有很独特的功能.高分子中可以把某些有机物结构(又称为功能团)替换, 以改变高分子的特性.高分子具有巨大的分子量,达到至少1 万以上,或几百万至千万以上所以, 人們將其称为高分子、大分子或高聚物.高分子材料包括三大合成材料, 即塑料、合成纤维和合成橡胶研究理论:高分子材料的使用性能包括物理、化学、力学等性能。

对于用于工程中作为构件和零件的结构高分子材料,人们最关心的是它的力学性能。

力学性能也称为机械性能。

任何材料受力后都要产生变形,变形到一定程度即发生断裂。

这种在外载作用下材料所表现的变形与断裂的行为叫力学行为,它是由材料内部的物质结构决定的,是材料固有的属性。

同时, 环境如温度、介质和加载速率对于高分子材料的力学行为有很大的影响。

因此高分子材料的力学行为是外加载荷与环境因素共同作用的结果。

高分子材料应力-应变曲线的测定

高分子材料应力-应变曲线的测定

实验一高分子材料应力-应变曲线的测定聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。

聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。

一、目的要求1.熟悉拉力机(包括电子拉力机)的使用;2.测定不同拉伸速度下PE板的应力-应变曲线;3.掌握图解法求算聚合物材料抗张强度、断裂伸长率和弹性模量;二、实验原理应力-应变试验通常实在张力下进行,即将试样等速拉伸,并同时测定试样所受的应力和形变值,直至试样断裂。

应力是试样单位面积上所受到的力,可按下式计算:tP bdσ=式中P为最大载荷、断裂负荷、屈服负荷b为试样宽度,m;d为试样厚度,m。

应变是试样受力后发生的相对变形,可按下式计算:0 0100%t I I Iε-=⨯式中I0为试样原始标线距离,m;I为试样断裂时标线距离,m。

应力-应变曲线是从曲线的初始直线部分,按下式计算弹性模量E(MPa,N/m2):Eσε=式中σ为应力;ε为应变。

在等速拉伸时,无定形高聚物的典型应力-应变曲线见图15-1:a点为弹性极限,σa为弹性(比例)极限强度,εa为弹性极限伸长率。

由0到a点为一直线,应力-应变关系遵循虎克定律σ=Eε,直线斜率E称为弹性(杨氏模量)。

y点为屈服点,对应的σy和εy称为屈服强度和屈服伸长氯。

材料屈服后可在t点处断裂,σt、εt为材料的断裂强度、断裂伸长率。

(材料的断裂强度可大于或小于屈服强度,视不同材料而定)从σt的大小,可以判断材料的强与弱,而从εt的大小(从曲线面积的大小)可以判断材料的脆与韧。

晶态高聚物材料的应力-应变曲线:在c点以后出现微晶的取向和熔解,然后沿力场方向重排或重结晶,故σc称重结晶强度。

高分子物理实验讲义

高分子物理实验讲义

实验一偏光显微镜法观察聚合物球晶形态一、实验目的1. 了解偏光显微镜的基本结构和原理。

2. 掌握偏光显微镜的使用方法和目镜分度尺的标定方法。

3. 用偏光显微镜观察球晶的形态,估算聚乙烯试样球晶的大小。

二、实验原理球晶是高聚物结晶的一种最常见的特征形式。

当结晶性的高聚物从熔体冷却结晶时,在不存在应力或流动的情况下,都倾向于生成球晶。

球晶的生长过程如图1-1所示。

球晶的生长以晶核为中心,从初级晶核生长的片晶,在结晶缺陷点发生分叉,形成新的片晶,它们在生长时发生弯曲和扭转,并进一步分叉形成新的片晶,如此反复,最终形成以晶核为中心,三维向外发散的球形晶体。

实验证实,球晶中分子链垂直球晶的半径方向。

图1-1 聚乙烯球晶生长的取向(a)晶片的排列与分子链的取向(其中a、b、c轴表示单位晶胞在各方向上的取向)(b) 球晶生长(c) 长成的球晶用偏光显微镜观察球晶的结构是根据聚合物球晶具有双折射性和对称性。

当一束光线进入各向同性的均匀介质中,光速不随传播方向而改变,因此个方向都具有相同的折射率。

而对于各向异性的晶体来说,其光学性质是随方向而异的。

当光线通过它时,就会分解为振动平面互相垂直的两束光,它们的传播速度除光轴外,一般是不相等的,于是就产生两条折射率不同的光线,这种现象称之为双折射。

晶体的一切光学性质都是和双折射有关。

偏光显微镜是研究晶体形态的有效工具之一,许多重要的晶体光学研究都是在偏光镜的正交场下进行的,即起偏镜与检偏镜的振动平面相互垂直。

在正交偏光镜间可以观察到球晶的形态,大小,数目及光性符号等。

当高聚物处于熔融状态时,呈现光学各向同性,入射光自起偏镜通过熔体时,只有一束与起偏镜振动方向相同的光波,故不能通过与起偏镜成90°的检偏镜,显微镜的视野为暗场。

高聚物自熔体冷却结晶后,成为光学各向异向体,当结晶体的振动方向与上下偏光镜振动方向不一致时,视野明亮,就可以观察到晶体。

图1-2画出了一轴晶一个平行于它的光轴Z的切面。

tpu材料应力应变曲线

tpu材料应力应变曲线

tpu材料应力应变曲线
摘要:
一、TPU 材料的简介
1.TPU 的定义
2.TPU 的特点
二、TPU 材料应力应变曲线的介绍
1.应力应变曲线的定义
2.应力应变曲线的表示方法
三、TPU 材料应力应变曲线的分析
1.弹性阶段
2.塑性阶段
3.破坏阶段
四、TPU 材料应力应变曲线的应用
1.设计中的应用
2.工程中的应用
正文:
TPU(热塑性聚氨酯弹性体)材料是一种具有优异弹性和耐磨性的高分子材料,广泛应用于各种领域。

TPU 材料具有很好的机械性能、化学稳定性和耐候性,因此被广泛应用于汽车、电子、医疗和建筑等行业。

应力应变曲线是描述材料在受到外力作用下,其应力和应变之间关系的一条曲线。

对于TPU 材料,应力应变曲线是一个非常重要的参数,可以反映材
料的弹性、塑性和破坏特性。

TPU 材料的应力应变曲线主要分为三个阶段:弹性阶段、塑性阶段和破坏阶段。

在弹性阶段,材料的应力和应变呈线性关系,这一阶段材料可以恢复到原来的形状。

在塑性阶段,材料的应力和应变不再呈线性关系,材料开始发生永久性形变。

在破坏阶段,材料的应力和应变迅速增加,最终导致材料的破裂。

TPU 材料应力应变曲线的应用非常广泛。

在设计过程中,通过分析应力应变曲线,可以优化材料的使用和设计,提高产品的性能和寿命。

在工程应用中,应力应变曲线可以帮助工程师了解材料的实际工作状态,为工程的安全性和稳定性提供保障。

总之,TPU 材料的应力应变曲线对于材料的设计和工程应用具有重要意义。

高分子材料应力-应变曲线的测定

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告实验名称:高分子材料应力-应变曲线的测定年级:09级材料化学日期: 2011-10-12 姓名:学号:同组人:一、预习部分1、应力—应变曲线拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。

应力与应变之间的关系,即:Pbdσ=0100%tI IIε-=⨯Eεσ=式中σ——应力,MPa;ε——应变,%;E——弹性模量,MPa;A为屈服点,A点所对应力叫屈服应力或屈服强度。

的为断裂点,D点所对应力角断裂应力或断裂强度聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图曲线分以下几个部分:OA:应力与应变基本成正比(虎克弹性)。

--弹性形变屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。

--屈服成颈BC:出现屈服点之后,应力下降阶段--应变软化CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变DE:试样均匀拉伸,应力增大,直到材料断裂。

断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。

但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。

根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。

(b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。

(c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。

pa66的应力应变曲线

pa66的应力应变曲线

pa66的应力应变曲线
聚酰胺66(PA66)是一种热塑性高分子材料,其应力-应变曲
线可以在材料工程和材料科学领域中进行详细讨论。

一般来说,
PA66的应力-应变曲线可以分为几个阶段来描述其力学行为。

首先是线性弹性阶段,这个阶段是指在应变较小的范围内,材
料的应力和应变呈线性关系。

在这个阶段,PA66表现出良好的弹性
行为,即在去除加载后能够完全恢复原状。

接下来是屈服阶段,当加载继续增加时,材料的应力逐渐增加,直到达到一个最大值,这个最大值即为屈服强度。

在这个阶段,
PA66开始表现出塑性变形,应变增加的同时材料的应力开始下降。

然后是应变硬化阶段,一旦超过屈服点,材料的应力-应变曲线
开始变得非线性,材料的应力逐渐增加,同时应变也在增加。

在这
个阶段,材料的变形变得更加明显,材料的强度也逐渐增加。

最后是断裂阶段,当材料的应力达到其极限时,就会发生断裂。

在这个阶段,材料的应力急剧下降,最终导致材料的破裂。

总的来说,PA66的应力-应变曲线可以通过这些阶段来描述其
力学行为,这对于工程设计和材料选择具有重要的指导意义。

当然,具体的应力-应变曲线还会受到材料的制备工艺、添加剂等因素的影响,因此在具体应用中需要进行详细的测试和分析。

高分子材料专业实验-高分子材料性能测试

高分子材料专业实验-高分子材料性能测试

高分子材料性能测试拉伸实验实验目的①熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作②了解测试条件对测定结果的影响实验原理将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力~应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力~应变曲线上屈服点处的应力(拉伸屈服应力)、应力~应变曲线偏离直线性达规定应变百分数(偏置)时的应力(偏置屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率。

以百分率表示)。

实验步骤①试样的状态调节和实验环境按GB2918规定进行。

②测试样件中间平行部分的宽度和厚度,精确到0.01㎜.Ⅱ型试样中间平行部分的宽度,精确至0.05㎜。

每个试样测量三点,取算数平均值。

③在试样中间平行部分做标线示明标距,此标线对测试结果不应有影响.。

④夹持试样,夹具夹持试样时,要是试样纵轴与上、下夹具中间连线相重合,并且要松紧适宜,以防止试样滑脱或断在夹具内。

⑤选定试验速度,进行实验。

⑥记录屈服时的负荷,或断裂负荷及标距间伸长。

若试验断裂在中间平行部分之外时,此试样作废,另取试样补做。

实验试样本实验采用的是PS(燕山石化666D)实验设备实验机:数字化电子万能试验机型号3010 深圳瑞格尔公司实验数据I思考题1.分析试样断裂在先的外在原因。

答:试样断裂在先的外在原因有:①试样本身存在缺陷,产生了气泡,试样内杂质的分布也不不均匀;②安装的误差,浇口位置处造成断裂.。

2.拉伸速度对测试结果有何影响?答:拉伸速度过快,冲击强度变大,断裂会较早发生;拉伸速度过慢,分子发生取向,断裂将较晚发生。

3.同样是PS材料,为什么测定的拉伸性能(强度、断裂伸长率、模量)有差异?答:因为PS材料本身品质不同,多多少少存在缺陷,各材料的内部杂质分布不均匀,材料内部有起泡等方面也就有所不同。

高分子聚合物应力——应变曲线的测定实验分析

高分子聚合物应力——应变曲线的测定实验分析

高分子聚合物应力——应变曲线的测定实验分析越子豪【期刊名称】《《黑龙江科学》》【年(卷),期】2019(010)016【总页数】2页(P30-31)【关键词】高分子聚合物; 应力-应变曲线; 测定实验【作者】越子豪【作者单位】吉林大学化学学院长春130012【正文语种】中文【中图分类】TU528测定应力——应变曲线是经典的力学实验之一。

通过测定材料的应力——应变曲线,能够了解材料的最大相对变形和极限强度,进而为实际生产生活提供理论支持。

1 实验原理与传统的金属材料不同,高分子聚合物材料受测量环境影响较大,在某一特定温度或速度下测得的实验结果意义较小,必须在广泛的温度范围内和实验速度下进行测定才能得到具有指导意义的数据。

通常会在张力下进行应力——应变曲线的测定,要将样品条夹在夹具上,并以均匀速度进行拉伸,以测量实验样品条所受的力。

当实验样品条断裂时,其长度变化就是夹具的距离与初始距离的差。

高分子材料在刚进行拉伸时,应力与应变之间会呈现出较为严格的正比关系,即二者之间的关系满足胡克定律。

如果继续伸长,应力与应变之间的关系仍呈正相关,但不再成正比,并在某点处达到最大值。

如果材料是脆性的,一旦应变超过该点,材料就会立刻断裂。

对于韧性较好的材料而言,在超过该点后材料也不会立刻断裂,而是还能继续拉伸,但应力会有所降低[1]。

如果在最大值点前移除外加拉力,材料可以完全复原,就称其为弹性形变。

如果在最大值点后移除外加拉力,材料不能完全复原,则称其为塑性形变,该最大值点称为屈服点,继续拉伸,应力几乎保持不变。

当产生的应变达到某一点时,应力开始逐渐增大,直至样品条断裂,此时材料所处的伸长率被称为极限伸长率,相对变形被称之为最大相对变形。

少数高分子材料会由于自身特性出现2个屈服点[2]。

一般认为,屈服点前的形变是由于分子链键角的变化所引起的,移除外力后能够恢复原状。

而屈服点后的形变较为复杂,不仅包含键角变化和原子间距变化,还包含分子链段取向和分子链之间的相对滑移,移除外力后不能完全复原。

电子拉力机测定聚合物的应力-应变曲线

电子拉力机测定聚合物的应力-应变曲线

上海衡翼橡胶材料实验报告第页〔共页〕实验名称:电子拉力机测定聚合物的应力-应变曲线一.实验目的1.掌握拉伸强度的测试原理和测试方法,掌握电子拉力机的使用方法及共工作原理;2.了解橡胶在拉伸应力作用下的形变行为,测试橡胶的应力-应变曲线;3.通过应力-应变曲线评价材料的力学性能〔初始模量、拉伸强度、断裂伸长率〕;4.了解测试条件对测试结果的影响;5.熟悉高分子材料拉伸性能测试标准条件。

二.实验原理随着高分子材料的大量使用,人们迫切需要了解它的性能。

而拉伸性能是高分子聚合物材料的一种基本的力学性能指标。

拉伸试验是力学性能中一种常用的测试方法,它是在规定的试验温度、湿度和拉伸速度下,试样上沿纵向施加拉伸载荷至断裂。

在材料试验机上可以测定材料的屈服强度、断裂强度、拉伸强度、断裂伸长率。

影响高聚物实际强度的因素有:1〕化学结构。

链刚性增加的因素都有助于增加强度,极性基团过密或取代基过大,阻碍链段运动,不能实现强迫高弹形变,使材料变脆。

2)相对分子质量。

在临界相对分子质量之前,相对分子质量增加,强度增加,越过后拉伸强度变化不大,冲击强度随相对分子质量增加而增加,没有临界值。

3)支化和交联。

交联可以有效增强分子链间的联系,使强度提高。

分子链支化程度增加,分子间作用力小,拉伸强度降低,而冲击强度增加。

4)应力集中。

应力集中处会成为材料破坏的薄弱环节,断裂首先在此发生,严重降低材料的强度。

5)添加剂。

增塑剂、填料。

增强剂和增韧剂都可能改变材料的强度。

增塑剂使大分子间作用力减少,降低了强度。

又由于链段运动能力增强,材料的冲击强度增加。

惰性填料只降低成本,强度也随之降低,而活性填料有增强作用。

6)结晶和取向。

结晶度增加,对提高拉伸强度、弯曲强度和弹性模量有好处。

结晶尺寸越小,强度越高。

取向使材料的强度提高几倍甚至几十倍,此外,取向后可以阻碍裂缝向纵深方向发展。

7)外力作用速度和温度。

衡翼拉伸试验中提高拉伸速度和降低温度都会使强度降低。

高分子材料的拉伸性能测试

高分子材料的拉伸性能测试

高分子材料的拉伸性能测试《高分子材料的拉伸性能测试》实验指导书一、实验目的1、测试热塑性塑料弯曲性能。

2、掌握高分子材料的应力―应变曲线的绘制。

4、了解塑料抗张强度的实验操作。

二、实验原理拉伸试验是材料最基本的一种力学性能试验方法,可以得到材料的各种拉伸性能,包括拉伸强度、弹性模量、泊松比、伸长率、应力-应变曲线等。

拉伸试验是指在规定的温度、湿度和试验速度下,在试样上沿纵轴方向施加拉伸载荷使其破坏,此时材料的性能指标如下:1.拉伸强度为:(1)式中σ--拉伸强度,mpa;p---毁坏载荷(或最小载荷),n;b---试样宽度,cm;h---试样厚度,cm.2.拉伸破坏(或最大载荷处)的伸长率为:(2)式中ε---试样弯曲毁坏(或最小载荷处)伸长率,%;δl0-毁坏时标距内弯曲量,cm;l0---测量的标距,cm,3.弯曲弹性模量为:(3)式中et---弯曲弹性模量,mpa;δp―荷载-变形曲线上初始直线段部分载荷量,n;δl0―与载荷增量对应的标距内变形量,cm。

4.弯曲形变-快速反应曲线如果材料是理想弹性体,抗张应力与抗张应变之间的关系服从胡克定律,即:σ=eε式中:e-杨氏模量或拉伸模量;σ-应力;ε-应变聚合物材料由干本身长链分子的大分子结构持点,并使其具备多重的运动单元,因此不是理想的弹性体,在外力作用下的力学犯罪行为就是一个僵硬过程,具备显著的粘弹性质。

弯曲试验时因试验条件的相同,其弯曲犯罪行为存有非常大差别。

初始时,形变减少,快速反应也减少,在a点之前形变与快速反应成正比关系,合乎胡克定律,呈圆形理想弹性体。

a点叫作比例极限点。

少于a点后的一段,形变减小,快速反应仍减少,但二者不再成正比关系,比值逐渐增大;当达至y点时,其比值为零。

y点叫作屈服点。

此时弹性模最对数为零,这就是一个关键的材料持征点。

对塑料来说,它就是采用的音速。

如果再继续弯曲,形变维持维持不变甚至还可以上升,而快速反应可以在一个相当大的范围内减少,直到脱落。

高分子材料的力学行为模拟与分析

高分子材料的力学行为模拟与分析

高分子材料的力学行为模拟与分析引言:高分子材料是现代工程领域中一类重要的材料,具有广泛的应用,包括塑料、橡胶、纤维等。

这些材料的力学行为研究对于材料的设计和应用具有重要意义。

为了更好地理解和预测高分子材料的力学行为,研究人员使用了力学行为模拟和分析的方法。

本文将探讨高分子材料力学行为的模拟与分析方法及其在工程领域的应用。

第一部分:高分子材料的力学行为模拟在过去的几十年里,随着计算机技术的飞速发展,高分子材料的力学行为模拟方法得到了长足的发展。

目前常用的高分子材料力学行为模拟方法包括分子动力学(MD)和有限元方法(FEM)。

1. 分子动力学模拟分子动力学模拟是一种基于原子尺度的方法,通过模拟原子间的运动和相互作用,揭示高分子材料力学行为的微观机理。

通过建立分子的势能函数,模拟力的交换以及时间步进法,可以计算出高分子材料的动力学行为。

分子动力学模拟方法在高分子材料的弹性、屈服、断裂等方面具有很好的应用效果,能够提供重要的微观信息和机理理解。

2. 有限元模拟有限元模拟是一种常用的宏观力学行为模拟方法,通过将材料划分为有限大小的单元,建立单元之间的力学关系,再通过对这些单元进行求解,得到材料的应力分布和变形情况。

有限元模拟方法在高分子材料的整体性能研究中得到广泛应用,通过调整单元的划分和边界条件,可以模拟材料在不同加载条件下的力学行为。

第二部分:高分子材料力学行为的分析高分子材料的力学行为分析是对力学行为数据进行处理和解释的过程,旨在从实验数据中提取有用的信息,如强度、刚度、延展性等。

1. 应力-应变分析应力-应变曲线是高分子材料力学行为分析的基础。

通过对应力-应变曲线的分析,可以提取出材料的弹性模量、屈服强度、断裂应变等力学特性参数。

这些参数可以进一步用于材料的性能评估和设计。

2. 破损机制分析高分子材料的破损机制研究对于材料的应用和改进具有重要意义。

通过对材料断裂面的观察和分析,可以揭示材料的断裂机制,如裂纹扩展、断裂模式等。

高分子材料典型力学性能测试实验

高分子材料典型力学性能测试实验

《高分子材料典型力学性能测试实验》实验报告实验序号:实验项目名称:机械性能测试学号姓名专业班级实验地点指导教师实验时间在这一实验中将选取两种典型的高分子材料力学测试实验,即拉伸实验及冲击试验作为介绍。

实验一:高分子材料拉伸实验一、实验目的(1)熟悉高分子材料拉伸性能测试标准条件、测试原理及其操作,了解测试条件对测定结果的影响。

(2)通过应力—应变曲线,判断不同高分子材料的性能特征。

二、实验原理在规定的实验温度、湿度和实验速率下,在标准试样(通常为哑铃形)的两端沿轴向施加载荷直至拉断为止。

拉伸强度定义为断裂前试样承受最大载荷与试样的宽度和厚度的乘积的比值。

实验不仅可以测得拉伸强度,同时可得到断裂伸长率和拉伸模量。

玻璃态聚合物在拉伸时典型的应力-应变曲线如下:1)弹性形变。

在Y 点之前,应力随应变正比增加,从直线斜率可以求出氏模量E。

从分子机理看,这阶段的普弹性行为主要是由高分子的键角、键长变化引起。

2)屈服。

应力在Y 点达到极大值,这点称为屈服点,其应力称为屈服应力。

3)强迫高弹形变(大形变):过了Y 点应力反而降低。

这是由于在大的外力帮助下,玻璃态聚合物本来被冻结的链段开始运动,高分子链的伸展提供了材料的大的形变。

运动本质与橡胶的高弹态一样,只不过是在外力作用下发生的,为了与普通高弹形变区分,通常称为强迫高弹形变。

这一阶段加热可恢复。

4)应变硬化。

继续拉伸,分子链取向排列,使硬度提高,需更大的力才能形变。

5)断裂。

达到B 点时,材料断裂,断裂对应的应力B 即抗强度;断裂时的应变又称为断裂伸长率。

直至断裂,整条曲线所包围的面积S 相当于断裂功。

结晶态聚合物拉伸时的应力-应变曲线,也同样经历了五个阶段,除了模量和屈服应力较大外,其主要特点是细颈化和冷拉。

所谓细颈化是指试样在一处或几处薄弱环节首先变细,此后细颈部分逐渐缩短,直至整个试样变细为止。

由于是在较低温度下出现的不均匀拉伸,所以又称为冷拉。

将试样夹持在专用夹具上,对试样施加静态拉伸负荷,通过压力传感器、形变测量装置以及计算机处理,测绘出试样在拉伸变形过程中的拉伸应力—应变曲线,计算出曲线上的特征点如试样直至断裂为止所承受的最大拉伸应力(拉伸强度)、试样断裂时的拉伸应力(拉伸断裂应力)、在拉伸应力-应变曲线上屈服点处的应力(拉伸屈服应力)和试样断裂时标线间距离的增加量与初始标距之比(断裂伸长率,以百分数表示)。

高分子聚合物应力——应变曲线的测定实验分析

高分子聚合物应力——应变曲线的测定实验分析

高分子聚合物应力——应变曲线的测定
实验分析
高分子聚合物应力——应变曲线是高分子聚合物材料力学性能曲线中
最重要的一种。

它反映了材料加载时的应力与应变的变化关系,可以用来
计算材料的应力——应变曲线中的曲线参数,从而确定材料的力学性能和
变形性能。

因此,本文通过高分子聚合物应力——应变曲线的实验分析,
来研究它的应力——应变特性。

实验中,主要进行的实验设备有材料试验机、载荷传感器、计算机等。

根据测试要求,我们设置材料试验机,将载荷传感器安装在试样上,通过
计算机收集悬臂梁试件在载荷过程中应力——应变变化情况。

通过实验,可以得到材料试件的应力——应变曲线。

实验中可以观察出,在低载荷阶段,材料试件应力随应变的增大而急剧增加,应力曲线处
于一种线性增长状态,这是材料的弹性变形、非线性区;在高载荷阶段,
材料的应力随应变的增大而出现下降,应力曲线出现平缓的波谷状变化,
这是材料的塑性变形和拉伸变形阶段;在拉伸变形阶段,在较大应变状态,材料试件的应力可以被稳定地保持承载能力。

由应力——应变曲线可以分析出高分子聚合物的力学性能。

一方面,
它的断裂强度可以由应力曲线的峰值分析出来。

另一方面,它的延伸率可
以由应力——应变曲线的末端分析出来。

此外,高分子聚合物的力学模量可以从应力——应变曲线的下坡度来计算。

通过以上实验分析,我们可以很好地理解高分子聚合物应力——应变曲线的变化规律,确定其力学性能,并且最终给材料的设计应用提供了依据。

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法引言高分子材料是一类重要的工程材料,公认为21世纪最具潜力的材料之一。

高分子材料的性能与结构密切相关,因此对其进行分析测试与研究是非常必要的。

本文将介绍常用的高分子材料分析测试方法及其研究方法,包括物理性能测试、化学结构分析、热性能分析、力学性能测试以及相关的表征技术。

一、物理性能测试物理性能是高分子材料的基本性能之一,常用的物理性能测试包括密度测量、吸水性能测试、熔融指数测试等。

1. 密度测量密度是衡量材料物理性能的重要指标之一,可以通过比重法、浮力法或压缩气体法等方法进行测量。

其中,比重法是最常用的方法,通过称量样品质量和体积来计算密度。

2. 吸水性能测试吸水性能是衡量材料对水分的吸收能力的指标,可以通过浸泡法、浸水法或密闭测量等方法进行测试。

这些测试方法可以帮助评估材料的耐水性能及吸水后的性能变化。

3. 熔融指数测试熔融指数是衡量高分子材料熔融流动性能的指标,常用的测试方法有熔体指数法、熔体流动速率法等。

通过测量熔融材料的流动性能,可以评估材料的加工性能以及与其他材料的相溶性。

二、化学结构分析化学结构分析是研究高分子材料化学特性的重要手段,常用的化学结构分析方法包括红外光谱分析、核磁共振分析、质谱分析等。

1. 红外光谱分析红外光谱分析是研究材料化学结构的重要手段,通过研究材料在红外波段的吸收谱图,可以确定材料中的官能团、键的类型以及化学环境等信息。

2. 核磁共振分析核磁共振分析是研究材料分子结构及动力学性质的重要方法,通过测量核磁共振信号,可以获得材料中原子的化学环境、相对数量以及分子间的相互作用信息。

3. 质谱分析质谱分析是研究材料分子结构及组成的关键分析方法,通过测量不同质荷比的离子的相对丰度,可以确定材料中的化学元素、分子量以及它们的相对含量等信息。

三、热性能分析热性能是衡量材料耐热性、热膨胀性等重要性能的指标,常用的热性能分析方法包括热重分析、差示扫描量热分析等。

PP的拉伸应力-应变曲线的测定

PP的拉伸应力-应变曲线的测定
(d)的特点是软而韧。断裂伸长率 大,拉伸强度也较高,但弹性模 量低,如天然橡胶、顺丁橡胶等。
(e)的特点是硬而韧。弹性模量大、 拉伸强度和断裂伸长率也大,如 聚对苯二甲酸乙二醇酯、尼龙等。
三、仪器、设备和材料
1、 材料试样
(1) 试样的类型和尺寸 ① PP试样 I型试样形状及尺寸分别见图2-1和表 1-1。
根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类: (a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断 裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。
(b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具 高模量和抗张强度。
4、由于不同的高分子材料,在结构上不同,表现为应力应变曲线的状也不同。目前大致可归纳成5种类型
(a)的特点是软而弱。拉伸强度 低,弹性模量小,且伸长率也 不大,如溶胀的凝胶等。
(b)的特点是硬而脆。拉伸强 度和弹性模量较大,断裂伸长 率小,如聚苯乙烯等。
(c)的特点是硬而强。拉伸强度和 弹性模量大,且有适当的伸长率, 如硬聚氯乙烯等。
2、玻璃态高聚物拉伸时曲线发展的几个阶 段
(1)屈服区(2)延伸区(3) 增强区
3、影响高聚物机械强度的因素
(1)大分子链的主价链,分子间力以及高 分子链的柔性等,是 决定高聚物机械强度的主要内在因素。
(2)混料及塑化不均, 会产生细纹、凹陷、真空泡等形式留在制 品表面或内层。
(3)环境温度、湿度及拉伸速度等对机械强度有着非常重要的 影响 。

3 准备好楔形拉伸夹具。若夹具已安装到试验机上,则对 夹具进行检查,并根据试样的长度及夹具的间距设置好限位 装置。

橡胶应力应变曲线

橡胶应力应变曲线

橡胶应力应变曲线引言橡胶是一种具有高弹性和可塑性的高分子材料,广泛应用于工业中。

在工程领域,了解橡胶的力学性能对于设计和制造具有高可靠性和优良性能的橡胶制品至关重要。

橡胶应力应变曲线是描述橡胶受力变形行为的重要工具,通过研究应力应变曲线,可以深入了解橡胶的力学特性和性能。

橡胶的力学行为橡胶的力学行为可以用应力应变曲线来描述。

应力是单位面积上的力,通常用希腊字母σ表示,单位为帕斯卡(Pa)。

应变是物体的形变程度,可以用拉伸、剪切和压缩等方式引起。

橡胶的力学行为主要包括弹性变形和塑性变形。

橡胶的弹性变形橡胶在受力时,会发生弹性变形。

弹性变形是指橡胶在受力后,在去除外力后可以恢复到原始形状及大小的变形过程。

弹性变形区域的应力应变曲线呈线性关系,称为弹性区。

在弹性区内,应力与应变成正比。

弹性模量是衡量弹性变形能力的指标,其定义为单位应力下的应变,常用单位为帕斯卡(Pa)。

橡胶的塑性变形当橡胶受力超过一定限度时,会发生塑性变形。

塑性变形是指橡胶在受力后,即使去除外力,也无法完全恢复到原始形状及大小的变形过程。

塑性变形区域的应力应变曲线不再呈线性关系,而是出现了明显的非线性的变化。

在塑性区内,应力增加而应变增加的速率逐渐减小,最终趋于饱和。

橡胶的断裂点当橡胶的应力应变曲线达到一定阈值时,橡胶会发生断裂。

橡胶的断裂点是指应力应变曲线中应力达到最大值的点,也是橡胶失去功能和性能的临界点。

断裂点的应力称为抗拉强度,是衡量橡胶抵抗拉伸破坏能力的指标,常用单位为帕斯卡(Pa)。

橡胶的延展性橡胶的延展性是指橡胶在受力时的变形能力。

橡胶可以拉伸到很大的程度而不破裂,这是由于其高分子链结构的特性所决定的。

橡胶的延展性可以通过应力应变曲线中的延展区域来表征。

在延展区域内,应力几乎不变,而应变迅速增加。

橡胶的损耗在橡胶受力变形的过程中,会伴随能量的损耗,这种能量损耗称为橡胶的损耗。

橡胶的损耗可以通过应力应变曲线中的内聚区域来观察。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学化工学院材料化学专业实验报告
实验名称:高分子材料应力-应变曲线的测定
年级:09级材料化学 日期: 2011-10-12 姓名: 学号: 同组人:
一、预习部分
1、应力—应变曲线
拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。

应力与应变之间的关系,即:P bd
σ=
00
100%t I I I ε-=
⨯ E ε
σ
=
式中 σ——应力,MPa ; ε——应变,%;
E ——弹性模量,MPa ;
A 为屈服点,A 点所对应力叫屈服应力或屈服强度。

的为断裂点,D 点所对应力角断裂应力或断裂强度
聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图
曲线分以下几个部分:
OA:应力与应变基本成正比(虎克弹性)。

--弹性形变
屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。

--屈服成颈
BC:出现屈服点之后,应力下降阶段--应变软化
CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变
DE:试样均匀拉伸,应力增大,直到材料断裂。

断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化
通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。

但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。

根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。

(b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。

(c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。

(d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。

(e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。

如未硫化的天然橡胶。

(f)材料弱而脆:一般为低聚物,不能直接用做材料。

注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

2、玻璃态高聚物拉伸时曲线发展的几个阶段
(1)屈服区(2)延伸区(3)增强区
3、影响高聚物机械强度的因素
(1)大分子链的主价链,分子间力以及高分子链的柔性等,是决定高聚物机械强度的主
要内在因素。

(2)混料及塑化不均, 会产生细纹、凹陷、真空泡等形式留在制品表面或内层。

(3)环境温度、湿度及拉伸速度等对机械强度有着非常重要的影响。

4、由于不同的高分子材料,在结构上不同,表现为应力-应变曲线的形状也不同
目前大致可归纳成5种类型
(a)的特点是软而弱。

拉伸强度低,弹性模量小,且伸长率也不大,如溶胀的凝胶等。

(b)的特点是硬而脆。

拉伸强度和弹性模量较大,断裂伸长率小,如聚苯乙烯等。

(c)的特点是硬而强。

拉伸强度和弹性模量大,且有适当的伸长率,如硬聚氯乙烯等。

(d)的特点是软而韧。

断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。

(e)的特点是硬而韧。

弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等。

二、实验部分
(实验原理及步骤见材料化学专业实验讲义)
注意:选择的试样表面应光滑平整,无气泡,杂质,机械损伤等。

三、实验结果分析
CY聚丙烯拉伸试验数据
从记录的数据和图形可得:
抗张强度为22.75MPa,从抗张强度知道此材料是强性材料。

断裂伸长率为245.82%,从断裂伸长率的值可以知道材料是属于韧性的。

弹性模量
15.7271
669.2
0.0235
E
σ
===
ε
弹性模量较大,所以材料较硬。

由此可见,材料强而韧且硬,具有高模量和抗张强度,断裂伸长率较大,材料受力时,属于韧性断裂。

四、思考题
拉伸速度对实验结果有何影响?
答:拉伸速度不仅对测试数据有影响,它对拉伸曲线的形貌也是会有影响的。

相关文档
最新文档