电路系统可靠性的计算
西南交《可靠性理论》离线作业

西南交《可靠性理论》离线作业一、单项选择题(只有一个选项正确,共10道小题)1. 失效率的浴盆曲线的三个时期中,不包括下列的(C)(A) 早期失效期(B) 随机失效期(C) 多发失效期(D) 耗损失效期2. 指数分布具有的特点中,不包括下列的(D)(A) 失效率为常数(B) 概率密度函数单调下降(C) 无记忆性(D) 多适用于机械产品3. 可靠性的特征量中,不包含下列的(D)(A) 可靠度(B) 失效率(C) 平均寿命(D) 性价比4. 失效率为常数的可靠性分布是(B)(A) 威布尔分布(B) 指数分布(C) 正态分布(D) 二项分布5. 可靠性特征量失效率的单位可以是(A)(A) 菲特(B) 小时(C) 个(D) 秒6. 常见的冗余系统结构中,不包含下列的(A)(A) 串联结构(B) 并联结构(C) n中取k结构(D) 冷储备系统结构7. 三参数威布尔分布的三个参数中,不包含下列的(B)(A) 位置参数(B) 特征参数(C) 尺度参数(D) 形状参数8. 一个由三个相同的单元组成的3中取2系统,若该单元的可靠度均为0.8,则系统的可靠度为:(C)(A) 0.512(B) 0.992(C) 0.896(D) 0.7649. 有四个相同的单元组成的系统中,其可靠度最高的系统结构是:(B)(A) 四个单元串联(B) 四个单元并联(C) 两两串联后再互相并联(D) 两两并联后再互相串联10. 故障树分析方法的步骤不包括以下的:(D)(A) 系统的定义(B) 故障树的构造(C) 故障树的评价(D) 故障树的拆散三、判断题(判断正误,共5道小题)11.(T)产品的故障密度函数反映了产品的故障强度。
12.(T)与电子产品相比,机械产品的失效主要是耗损型失效。
13.(F)相似产品可靠性预计法要求新产品的预计结果必须好于相似的老产品。
14.(T)故障树也是一种可靠性模型。
15.(F)一个由两个相同的单元并联组成的系统,若该单元服从指数分布且失效率为λ,则系统也服从指数分布且失效率为λ/2。
电力系统分析教案

第一章:电力系统基本概念1.1 电力系统简介电力系统的定义电力系统的基本组成部分电力系统的主要设备及其功能1.2 电力系统的分类交变电力系统与直流电力系统同步电力系统与异步电力系统高压电力系统与低压电力系统1.3 电力系统的运行方式电力系统的正常运行方式电力系统的不正常运行方式电力系统的稳定性和可靠性第二章:电力系统参数与电路模型2.1 电力系统参数电压、电流、功率和能量阻抗、电抗和容抗电力系统的等效电路2.2 电力系统的电路模型单相电路模型三相电路模型2.3 电力系统的相量图相量图的表示方法相量图的应用相量图的绘制与分析第三章:电力系统的稳定性与控制3.1 电力系统的稳定性电力系统稳定性的定义电力系统稳定性的判据电力系统稳定性的分析方法3.2 电力系统的控制电力系统控制的目标电力系统控制的方法电力系统控制的设备及其作用3.3 电力系统的保护与故障处理电力系统保护的作用与分类电力系统保护的方法与设备电力系统故障的类型与处理方法第四章:电力系统的优化与经济运行4.1 电力系统的优化电力系统优化的定义与目标电力系统优化的方法与算法电力系统优化的应用领域4.2 电力系统的经济运行电力系统经济运行的定义与目标电力系统经济运行的优化方法与算法电力系统经济运行的应用领域4.3 电力系统的节能与环保电力系统的节能措施与效果电力系统的环保措施与要求电力系统的可持续发展第五章:电力系统的负荷与短路分析5.1 电力系统的负荷电力系统负荷的分类与特性电力系统负荷的预测与计算电力系统负荷的分配与控制5.2 电力系统的短路分析短路故障的类型与特点短路分析的方法与步骤短路电流的计算与分析5.3 电力系统的保护与故障处理电力系统保护的作用与分类电力系统保护的方法与设备电力系统故障的类型与处理方法第六章:电力系统的传输与分配6.1 电力系统的传输输电线路的类型与特性输电线路的传输能力与损耗输电线路的优化设计与运行6.2 电力系统的分配配电线路的类型与特性配电线路的分配原则与方法配电线路的优化运行与维护6.3 电力系统的电压与无功控制电压控制的重要性与方法无功功率的概念与作用无功补偿设备的类型与配置第七章:电力系统的可靠性评估7.1 电力系统可靠性的指标与计算电力系统可靠性的基本指标电力系统可靠性的统计计算方法电力系统可靠性的评估模型7.2 电力系统的可靠性分析电力系统故障的类型与影响电力系统故障的传播与影响分析电力系统可靠性的优化提高措施7.3 电力系统的可靠性管理电力系统可靠性管理的重要性电力系统可靠性管理的方法与流程电力系统可靠性数据的收集与分析第八章:电力市场的运行与管理8.1 电力市场的概念与结构电力市场的定义与特点电力市场的结构与参与者电力市场的运作机制8.2 电力市场的运行与监管电力市场的运行规则与流程电力市场的监管机构与法规电力市场的竞争与公平性8.3 电力市场的交易与合同电力市场的交易类型与方式电力市场的合同管理与风险控制电力市场的信息技术支持第九章:电力系统的未来发展趋势9.1 电力系统的绿色与可持续发展清洁能源的发展与利用电力系统的绿色转型与减排电力系统的可持续发展战略9.2 电力系统的智能化与自动化智能电网的概念与架构电力系统的自动化控制技术电力系统的信息化与数字化转型9.3 电力系统的新技术与创新新能源技术的发展与应用电力系统的储能技术与需求响应电力系统的微电网与分布式能源第十章:电力系统的案例分析与实践10.1 电力系统的案例分析电力系统故障案例的分析与启示电力系统优化运行案例的分析与借鉴电力市场改革案例的分析与评价10.2 电力系统的实践操作电力系统的模拟与仿真电力系统的实验与测试电力系统的现场实习与操作培训10.3 电力系统的项目管理电力项目的基本流程与管理原则电力项目的风险评估与控制电力项目的质量管理与进度控制重点和难点解析一、电力系统的基本概念和分类:理解电力系统的定义、组成部分以及不同分类方式是理解后续内容的基础。
集成电路可靠性介绍

集成电路可靠性介绍作者:韩强,简维廷,黄宠嘉,中芯国际 2008-07-06 点击:316可靠性的定义是系统或元器件在规定的条件下和规定的时间内,完成规定功能的能力。
从集成电路的诞生开始,可靠性的研究测试就成为IC设计、制程研究开发和产品生产中的一个重要部分。
Jack Kilby 在1958年发明了集成电路,第一块商用单片集成电路在1961年诞生;1962年9月26日,第一届集成电路方面的专业国际会议在美国芝加哥召开。
当时会议名称为“电子学失效物理年会”;1967年,会议名称改为“可靠性物理年会”;1974年又改为“国际可靠性物会议”(IRPS) 并延续至今。
IRPS已经发展成集成电路行业的一个盛会,而可靠性也成为横跨学校研究所及半导体产业的重要研究领域。
集成电路可靠性评估体系经过四十多年的发展,集成电路的可靠性评估已经形成了完整的、系统的体系,整个体系包含制程可靠性、产品可靠性和封装可靠性。
制程可靠性评估采用特殊设计的结构对集成电路中制程相关的退化机理(Wearout Mechanism)进行测试评估。
例如,我们使用在芯片切割道(Scribe Line)上的测试结构来进行HCI ( Hot Carrier Injection) 和NBTI (Negative Bias Temperature Instability) 测试,对器件的可靠性进行评估。
产品可靠性和封装可靠性是利用真实产品或特殊设计的具有产品功能的TQV (Technology Qualification Vehicle) 对产品设计、制程开发、生产、封装中的可靠性进行评估。
集成电路可靠性工作者的主要任务可靠性定义中“规定的时间”即常说的“寿命”。
根据国际通用标准,常用电子产品的寿命必须大于10年。
显然,我们不可能将一个产品放在正常条件下运集成电路可靠性介绍行10年再来判断这个产品是否有可靠性问题。
可靠性评估采用“加速寿命测试”(Accelerated Life Test, ALT)。
电路初探必考知识点总结

电路初探必考知识点总结一、基础电路知识1. 电压、电流、电阻的基本概念及计算方法2. 电流、电压的测量方法3. 串联电路、并联电路的计算方法4. 电路中的功率计算5. 电路中的等效电阻计算6. 电路中的功率损耗计算二、基本电路元件1. 电阻的特性及其计算方法2. 电容的特性及其计算方法3. 电感的特性及其计算方法4. 理想电源的特性及其计算方法5. 片式元件的特性及其计算方法三、基本电路分析方法1. 基尔霍夫定律在电路分析中的应用2. 节点分析法在电路分析中的应用3. 微威尔定律在电路分析中的应用4. 叠加原理在电路分析中的应用5. 零极点分析法在电路分析中的应用四、电路中的复数方法1. 电压、电流的复数表示法及其应用2. 复数阻抗的计算方法3. 复数电路中的功率计算方法4. 复数方法在谐振电路分析中的应用5. 复数方法在滤波电路分析中的应用五、基本电路的分析与设计1. 交流电路中的幅度、相位计算方法2. 电路的共振频率及谐振曲线的计算方法3. 电源稳压电路的设计原理及方法4. 电源变换器的设计原理及方法5. 信号放大电路的设计原理及方法六、电路中的故障检测与维修1. 电路中的常见故障及其检测方法2. 电路中的维修方法及注意事项3. 电路中的安全知识与防护方法4. 电路中的地线与接地方法5. 电路中的防雷与过渡电压保护方法七、电路可靠性评估与改进1. 电路中的可靠性分析方法2. 电路中的MTBF(平均无故障时间)计算方法3. 电路中的故障模式及效应分析方法4. 电路中的故障排除与改进方法5. 电路中的可靠性测试与验证方法总结:电路初探必考知识点主要包括基础电路知识、基本电路元件、基本电路分析方法、电路中的复数方法、基本电路的分析与设计、电路中的故障检测与维修、电路可靠性评估与改进等内容。
掌握了这些知识点,就可以对电路进行初步的分析与设计,了解电路中的故障检测与维修方法,并对电路的可靠性进行评估与改进。
浅谈半导体集成电路可靠性测试及数据处理方法

浅谈半导体集成电路可靠性测试及数据处理方法发表时间:2018-05-28T16:38:58.417Z 来源:《基层建设》2018年第8期作者:董英伟[导读] 摘要:集成电路是半导体器件中较为重要的一类,使用集成电路的电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。
恩智浦半导体(中国)有限公司天津 300385摘要:集成电路是半导体器件中较为重要的一类,使用集成电路的电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。
随着集成电路的发展和应用,对其的使用要求也在逐渐提高。
现在要求集成电路能够在高温、高压、高频、辐射强以及大功率的环境正常运行。
因此,对半导体集成电路可靠性测试也成了很重要的一部分。
本文对半导体集成电路可靠性进行分析,进而探讨了半导体集成电路可靠性测试以及数据的处理方法。
关键词:半导体集成电路;可靠性测试;数据处理一、半导体集成电路可靠性分析1.半导体可靠性集成电路是半导体构件中十分重要的组成部分,现在的集成电路具有高效率、低能耗、高精度等特点,集成度也有了明显的提高。
对于集成电路的研究尺寸渐渐趋向小工艺特点,提升构件二维效应进而提高内部的电流与电场密度,提升电路性敏感性。
伴随着集成电路的研发,能够应用在恶劣环境下,可以应对高温、高压、高频条件下,半导体集成电路可靠性问题日益显著。
2.集成电路技术可靠性评级和控制在产品提高可靠性的过程中,可以采取的主要措施和途径之一就是对制造工艺可靠性的研究,这也是研究产品可靠性的重要环节。
控制与评价技术的可靠性分析利用了较高的技术可靠性,这样为原产品可靠性提供了保障,成为分析的落脚点。
技术分析中,关于有关失效机理在各种状态下设置微电子检测结构,同时展开加速度检测确保得出有关数据。
检测结构中将产品可靠性标准与其标准之问的关系连接在一起,进行技术可靠性判定。
讨论分析中,载体利用的集成电路生产线来源于国内控制,在集成电路生产线前提下展开适用可靠性与评价形式分析。
电路设计中的可靠性

电路设计中的可靠性电路设计中的可靠性电路设计中的可靠性是指电路在使用寿命内能够稳定、可靠地工作的能力。
随着技术的不断发展和应用范围的扩大,对电路设计的可靠性要求也越来越高。
在电子产品中,例如手机、电脑、汽车等,在电路设计中的可靠性问题直接关系到产品的性能、质量和寿命,因此非常重要。
首先,电路设计中的可靠性涉及到设计阶段和制造阶段两个方面。
在设计阶段,设计工程师需要合理地选择和配置电子元器件,以确保电路可以稳定地工作。
例如,在选择电容器时,需要考虑其耐压和容量等参数,以适应电路的工作环境。
此外,还需要合理地选择和配置电源、保护电路和散热器等,以提高电路的稳定性和可靠性。
在制造阶段,需要注意的是电路的布局和连接方式。
例如,在制作电路板时,需要保证线路的精确连接和电子元器件的正常焊接,避免因接触不良、高温等导致电路出现故障或失效。
其次,电路设计中的可靠性还与材料的选择和质量有关。
电子元器件的材料质量直接影响电路的可靠性。
在电路设计中,需要选择可靠的、高质量的电子元器件。
例如,在选择集成电路时,需要注意其耐高温、耐电磁干扰、抗震动等性能,以适应工作环境的需求。
另外,还需要考虑电子元器件的寿命和可靠度等参数,以确保电路的长期稳定工作。
此外,电路设计中的可靠性还需要考虑一些特殊的因素。
例如,温度对电路的可靠性有着重要影响。
过高或过低的温度都会降低电路的可靠性。
因此,在设计阶段,需要合理地安排散热器和通风孔,以保持电路的正常工作温度。
另外,还需要注意电路对电磁干扰的抵抗能力。
在电磁环境复杂的场合,需要采取一些电磁屏蔽措施,避免电路因电磁干扰而发生故障。
最后,电路设计中的可靠性还需要进行可靠性分析和测试。
可靠性分析可以通过模拟和计算等方法,预测电路的可靠性,找出潜在的问题和风险。
可靠性测试则是通过现场实测的方式,验证电路的可靠性。
在电路设计过程中,需要进行成本与可靠性的平衡。
对于一些高可靠性要求的电子产品,例如航天器、医疗设备等,可以采用冗余设计、备份系统等方法来提高电路的可靠性。
监控系统硬件电路可靠性计算

监控系统硬件电路板可靠性计算
程 王晓丹“ ,杨公钊‘ ,于
(.中国矿业大学 ,北京 1
10 8 003
主3 尚 欣,
2 .河南理工大学, 河南 信阳 440 ; 600 3 .北京高等实用技术学校,北京 120) 020
摘要:文中主要以调频激励器监控板 F C 2 MD 2A为例,结合国内外硬件可靠性分析计算的方法以及 自己从事硬件开发工作的经验, 总结出了硬件工程师计算印刷电路板可靠性指标的方法和步骤;文中主要从系统的模块划分、 建模、基本元件计算、模块电路计算、系 统计算等几个方面辅以分析,实例阐述了印刷电路板可靠性研究的精髓,对硬件工程师开发电路板会有很大的帮助。 关键词:监控系统;印刷电路板 ;可靠性;可靠性计算
计算机测量与控制.0 6 1 ( 1 20 . 4 1 )
1 9 2 4
C mp tr esrme t& C nrl o ue M au e n ot o
中图分类号 : P 0 . T 32 7 文献标识码 : A
工业控制
文章编号:61 49 (0 61 一 42 0 17 一 5820 )1 19 一 4
1 可靠性的主要数量指标
所谓系统,是为了完成某一特定功能 ,由若干个彼此有联
{< +A} At 二 P X毛 t } x> t _ 尸 t X( t t () { +, t} } P{ X> t }
系 且又 相 协 工 单 所组 综 体。 分为可 而 能 堂 调 作的 元 成的 合 可以
修复系统与不可修复系统两类[ n l
制理论与控制工程方向的研究。 杨公训, 教授, 男, 博士生导师, 主要从事控制工程与计算机应用的
研究 。
对于可修复产品,平均寿命是指产品发生两次故障之间的 平均工作时间,称为平均故障间隔时间 (Me Tm Bten ( a ie we n e Fi r, B ) aue MT F 。 l
电路失效分析、可靠性、稳定性测试

随着电子电器行业的不断发展,消费者水平也在不断提升,人们已经不仅仅满足于产品的外观和功能,电子电器产品的可靠性已成为产品质量的重要部分。
RTS.LTD 可靠性测试能帮助电子电器制造企业尽可能地挖掘由设计、制造或机构部件所引发的潜在性问题,在产品投产前寻找改善方法并解决问题点,为产品质量和可靠性做出必要的保证。
失效分析RTS.LTD 可靠性实验室配备了扫描电子显微镜、傅立叶转换红外光谱仪、能谱仪、切片、金相显微镜等精密设备提供失效分析,可进行切片测试、焊点拉伸强度、可焊性测试、镀层厚度测试、锡须观察、成分分析等实验。
气候环境试验RTS.LTD 环境可靠性实验室拥有一批国际、国内著名的专业环境试验设备制造商生产的气候环境试验设备,设备技术先进、性能稳定、功能齐全,可编程控制,自动绘制试验曲线。
测试项目测试范围高温室温~300 ℃低温室温~-70 ℃恒温恒湿20 ℃~ 95 ℃,20 ~ 98%RH低湿 5 ℃~ 95 ℃,5 ~ 98%RH温度/ 湿度循环-70 ℃~ 150 ℃,20 ~ 98%RH冷热冲击-65 ℃~ 150 ℃快速温变-70 ℃~ 150 ℃,25~98%RH ,≦15 ℃/min高压蒸煮105 ℃~ 142.9 ℃, 75~100%RH, 0.020~0.196Mpa盐雾中性盐雾、醋酸盐雾、铜加速醋酸盐雾气体腐蚀SO 2, H 2 S, Cl 2 , NO 2 ,NH 3臭氧测试0---500ppmUV 老化UV exposure UVA340, UVA351,UVB313太阳辐射辐照度:450W/m 2 ----1200W/m 2低气压室温~200 ℃,常压~10kPa防水滴水、摆管淋雨、喷水(IPX0~IPX8 )防尘钢球、铰接试指、金属丝、防尘箱(IP0Y~IP6Y )机械环境实验RTS.LTD 机械环境实验室拥有具有国际先进水平的高频振动实验系统和机械冲击实验系统,100kg 自由跌落实验台等机械环境实验设备。
半导体集成电路的可靠性设计

6.2半导体集成电路的可靠性设计军用半导体集成电路的可靠性设计是在产品研制的全过程中,以预防为主、增强系统治理的思想为指导,从线路设计、幅员设计、工艺设计、封装结构设计、评价试验设计、原材料选用、软件设计等方面,采取各种有效举措,力争消除或限制半导体集成电路在规定的条件下和规定时间内可能出现的各种失效模式,从而在性能、费用、时间〔研制、生产周期〕因素综合平衡的基础上,实现半导体集成电路产品规定的可靠性指标.根据内建可靠性的指导思想,为保证产品的可靠性,应以预防为主,针对产品在研制、生产制造、成品出厂、运输、贮存与使用全过程中可能出现的各种失效模式及其失效机理,采取有效举措加以消除限制.因此,半导体集成电路的可靠性设计必须把要限制的失效模式转化成明确的、定量化的指标.在综合平衡可靠性、性能、费用和时间等因素的根底上,通过采取相应有效的可靠性设计技术使产品在全寿命周期内到达规定的可靠性要求.6.2.1概述1.可靠性设计应遵循的根本原那么〔1〕必须将产品的可靠性要求转化成明确的、定量化的可靠性指标.〔2〕必须将可靠性设计贯穿于产品设计的各个方面和全过程.〔3〕从国情出发尽可能地采用当今国内外成熟的新技术、新结构、新工艺.〔4〕设计所选用的线路、幅员、封装结构,应在满足预定可靠性指标的情况下尽量简化, 预防复杂结构带来的可靠性问题.〔5〕可靠性设计实施过程必须与可靠性治理紧密结合.2.可靠性设计的根本依据〔1〕合同书、研制任务书或技术协议书.〔2〕产品考核所遵从的技术标准.〔3〕产品在全寿命周期内将遇到的应力条件〔环境应力和工作应力〕.〔4〕产品的失效模式分布,其中主要的和关键的失效模式及其机理分析.〔5〕定量化的可靠性设计指标.〔6〕生产〔研制〕线的生产条件、工艺水平、质量保证水平.3.设计前的准备工作〔1〕将用户对产品的可靠性要求,在综合平衡可靠性、性能、费用和研制〔生产〕周期等因素的根底上,转化为明确的、定量化的可靠性设计指标.〔2〕对国内外相似的产品进行调研,了解其生产研制水平、可靠性水平〔包括产品的主要失效模式、失效机理、已采取的技术举措、已到达的质量等级和失效率等〕以及该产品的技术发展方向.〔3〕对现有生产〔研制〕线的生产水平、工艺水平、质量保证水平进行调研,可通过通用和特定的评价电路,所遵从的认证标准或统计工艺限制〔SPC〕技术,获得在线的定量化数据.精品文档4.可靠性设计程序〔1〕分析、确定可靠性设计指标,并对该指标的必要性和科学性等进行论证.〔2〕制定可靠性设计方案.设计方案应包括对国内外同类产品〔相似产品〕的可靠性分析、可靠性目标与要求、根底材料选择、关键部件与关键技术分析、应限制的主要失效模式以及应采取的可靠性设计举措、可靠性设计结果的预计和可靠性评价试验设计等.〔3〕可靠性设计方案论证〔可与产品总体方案论证同时进行〕.〔4〕设计方案的实施与评估,主要包括线路、幅员、工艺、封装结构、评价电路等的可靠性设计以及对设计结果的评估.〔5〕样品试制及可靠性评价试验.〔6〕样品制造阶段的可靠性设计评审.〔7〕通过试验与失效分析来改良设计,并进行“设计一试验一分析一改良〞循环,实现产品的可靠性增长,直到到达预期的可靠性指标.〔8〕最终可靠性设计评审.〔9〕设计定型.设计定型时,不仅产品性能应满足合同要求,可靠性指标是否满足合同要求也应作为设计定型的必要条件.6.2.2集成电路的可靠性设计指标1.稳定性设计指标半导体集成电路经过贮存、使用一段时间后,在各种环境因素和工作应力的作用下,某些电性能参数将逐渐发生变化.如果这些参数值经过一定的时间超过了所规定的极限值即判为失效,这类失效通常称为参数漂移失效,如温漂、时漂等.因此,在确定稳定性设计指标时,必须明确规定半导体集成电路在规定的条件下和规定的时间内,其参数的漂移变化率应不超过其规定值. 如某CMOS集成电路的两项主要性能参数功耗电流I OD和输出电流I OL、10H变化量规定值为:在125℃环境下工作24小时,△ I0D小于500mA;在125℃环境下工作24小时,I0L、I0H变化范围为±20%.2.极限性设计指标半导体集成电路承受各种工作应力、环境应力的极限水平是保证半导体集成电路可靠性的主要条件.半导体集成电路的电性能参数和热性能参数都有极限值的要求,如双极器件的最高击穿电压、最大输出电流、最高工作频率、最高结温等.极限性设计指标确实定应根据用户提出的工作环境要求.除了遵循标准中必须考核的工程之外,对影响产品可靠性性能的关键极限参量也应制定出明确的量值,以便在设计中采取举措加以保证.3.可靠性定量指标表征产品的可靠性有产品寿命、失效率或质量等级.假设半导体集成电路产品的失效规律符合指数分布时,寿命与失效率互为倒数关系.通常半导体集成电路的可靠性指标也可根据所遵循技术标准的质量等级分为S级、B级、B1 级.4. 应限制的主要失效模式精品文档半导体集成电路新品的研制应根据电路的具体要求和相似产品的生产、使用数据,通过可靠性水平分析,找到可能出现的主要失效模式,在可靠性设计中有针对性地采取相应的纠正举措, 以到达限制或消除这些失效模式的目的.一般半导体集成电路产品应限制的主要失效模式有短路、开路、参数漂移、漏气等,其主要失效机理为电迁移、金属腐蚀、静电放电、过电损伤、热载流子效应、闩锁效应、介质击穿、a辐射软误差效应、管壳及引出端锈蚀等.6.2.3集成电路可靠性设计的根本内容1.线路可靠性设计线路可靠性设计是在完成功能设计的同时,着重考虑所设计的集成电路对环境的适应性和功能的稳定性.半导体集成电路的线路可靠性设计是根据电路可能存在的主要失效模式,尽可能在线路设计阶段对原功能设计的集成电路网络进行修改、补充、完善,以提升其可靠性.如半导体芯片本身对温度有一定的敏感性,而晶体管在线路到达不同位置所受的应力也各不相同,对应力的敏感程度也有所不同.因此,在进行可靠性设计时,必须对线路中的元器件进行应力强度分析和灵敏度分析〔一般可通过SPICE和有关模拟软件来完成〕,有针对性地调整其中央值,并对其性能参数值的容差范围进行优化设计,以保证在规定的工作环境条件下,半导体集成电路整体的输出功能参数稳定在规定的数值范围,处于正常的工作状态.线路可靠性设计的一般原那么是:〔1〕线路设计应在满足性能要求的前提下尽量简化;〔2〕尽量运用标准元器件,选用元器件的种类尽可能减少,使用的元器件应留有一定的余量, 预防满负荷工作;〔3〕在同样的参数指标下,尽量降低电流密度和功耗,减少电热效应的影响;〔4〕对于可能出现的瞬态过电应力,应采取必要的保护举措.如在有关端口采用箝位二极管进行瞬态电压保护,采用串联限流电阻限制瞬态脉冲过电流值.2.幅员可靠性设计幅员可靠性设计是根据设计好的幅员结构由平面图转化成全部芯片工艺完成后的三维图像, 根据工艺流程根据不同结构的晶体管〔双极型或MOS型等〕可能出现的主要失效模式来审查版图结构的合理性.如电迁移失效与各部位的电流密度有关,一般规定有极限值,应根据幅员考察金属连线的总长度,要经过多少爬坡,预计工艺的误差范围,计算出金属涂层最薄位置的电流密度值以及出现电迁移的概率.此外,根据工作频率在超高频情况下平行线之间的影响以及对性能参数的保证程度,考虑有无出现纵向或横向寄生晶体管构成潜在通路的可能性.对于功率集成电路中发热量较大的晶体管和单元,应尽量分散安排,并尽可能远离对温度敏感的电路单元.3.工艺可靠性设计为了使幅员能准确无误地转移到半导体芯片上并实现其规定的功能,工艺设计非常关键.一般可通过工艺模拟软件〔如SUPREM等〕来预测出工艺流程完成后实现功能的情况,在工艺生产过程中的可靠性设计主要应考虑:〔1〕原工艺设计对工艺误差、工艺限制水平是否给予足够的考虑〔裕度设计〕,有无监测、监控举措〔利用PCM测试图形〕;精品文档〔2〕各类原材料纯度的保证程度;〔3〕工艺环境洁净度的保证程度;〔4〕特定的保证工艺,如钝化工艺、钝化层的保证,从材料、工艺到介质层质量〔结构致密度、外表介面性质、与衬底的介面应力等〕的保证.4.封装结构可靠性设计封装质量直接影响到半导体集成电路的可靠性.封装结构可靠性设计应着重考虑:〔1〕键合的可靠性,包括键合连接线、键合焊点的牢固程度,特别是经过高温老化后性能变脆对键合拉力的影响;〔2〕芯片在管壳底座上的粘合强度,特别是工作温度升高后,对芯片的剪切力有无影响.此外,还应注意粘合剂的润湿性,以限制粘合后的孔隙率;〔3〕管壳密封后气密性的保证;〔4〕封装气体质量与管壳内水汽含量,有无有害气体存在腔内;〔5〕功率半导体集成电路管壳的散热情况;〔6〕管壳外管脚的锈蚀及易焊性问题.5.可靠性评价电路设计为了验证可靠性设计的效果或能尽快提取对工艺生产线、工艺水平有效的工艺参数,必须通过相应的微电子测试结构和测试技术来采集.所以,评价电路的设计也应是半导体集成电路可靠性设计的主要内容.一般有以下三种评价电路:〔1〕工艺评价用电路设计主要针对工艺过程中误差范围的测定,一般采用方块电阻、接触电阻构成的微电子测试结构来测试线宽、膜厚、工艺误差等.〔2〕可靠性参数提取用评估电路设计针对双极性和CMOS电路的主要失效模式与机理,借助一些单管、电阻、电容,尽可能全面地研究出一些能评价其主要失效机理的评估电路.〔3〕宏单元评估电路设计针对双极型和CMOS型电路主要失效模式与机理的特点,设计一些能代表复杂电路中根本宏单元和关键单元电路的微电子测试结构,以便通过工艺流程研究其失效的规律性.6.2.4可靠性设计技术可靠性设计技术分类方法很多,这里以半导体集成电路所受应力不同造成的失效模式与机理为线索来分类,将半导体集成电路可靠性设计技术分为:〔1〕耐电应力设计技术:包括抗电迁移设计、抗闩锁效应设计、防静电放电设计和防热载流子效应设计;〔2〕.耐环境应力设计技术:包括耐热应力、耐机械应力、耐化学应力和生物应力、耐辐射应力设计;〔3〕稳定性设计技术:包括线路、幅员和工艺方面的稳定性设计.在下面几节将对这些技术进行详细阐述.精品文档6.2.5耐电应力设计技术半导体集成电路所承受过高电应力的来源是多方面的,有来自于整机电源系统的瞬时浪涌电流、外界的静电和干扰的电噪声,也有来自于自身电场的增强.此外,雷击或人为使用不当(如系统接地不良,在接通、切断电源的瞬间会引起输入端和电源端的电压逆转)也会产生过电应力. 过电流应力的冲击会造成半导体集成电路的电迁移失效、CMOS器件的闩锁效应失效、功率集成电路中功率晶体管的二次击穿失效和电热效应失效等;过电压应力那么造成绝缘介质击穿和热载流子效应等.1.抗电迁移设计电迁移失效是在一定温度下,当半导体器件的金属互连线上流过足够大的电流密度时,被激发的金属离子受电场的作用形成离子流朝向阴极方向移动,同时在电场作用下的电子通过对金属离子的碰撞给离子的动量形成朝着金属模阳极方向运动的离子流.在良好的导体中,动量交换力比静电力占优势,造成了金属离子向阳极端的净移动,最终在金属膜中留下金属离子的局部堆积(引起短路)和空隙(引起开路).MOS和双极器件对这一失效模式都很敏感,但由于MOS器件属于高阻抗器件,电流密度不大,相对而言,电迁移失效对MOS器件的影响比双极器件小. 在各种电迁移失效模型中引用较多的为下式MTF=AW P L qJ^n exp ((6.1) 式中,MTF是平均失效时间,A、p、q均为常数,W是金属条线宽,L是金属条厚度,J是电流密度,n 一般为2, E a为激活能,k是玻尔兹曼常数,T是金属条的绝对温度.为预防电迁移失效,一般采取以下设计举措:(1)在铝材料中参加少量铜(一般含2〜4%重量比),或参加少量硅(含0.3%重量比),或在铝条上覆盖Al-Cu合金.含铜的铝膜电迁移寿命是纯铝膜的40倍,但在高温下铜原子在电场作用下会迁移到PN结附近引起PN结劣化.(2)在铝膜上覆盖完整的钝化膜.(3)降低互连线中的电流密度.对于互连线厚度大于0.8 u m、宽度大于6u m的电流密度设计容限一般规定如下:有钝化层的纯铝合金条,电流密度J W5X105A/cm2;无钝化层的纯铝或铝合金条,JW2X105A/cm2;金膜,JW6X105A/cm2;其它各种导电材料膜条,JW2X105A/cm2. 对于VLSI中金属互连线的电流密度设计容限的要求应更加严格,应取JW2X105A/cm2.实际上, 这一设计容限值是导体电流、温度和温度梯度的函数.(4)增强工艺限制精度,减少铝互连线的工艺缺陷.(5)金(Au)互连线系统有很好的抗电迁移水平.为了预防形成Au-Si低熔点共晶体,需在金一硅之间引入衬垫金属,如Pt-Ti-Pt-Au结构.(6)可考虑用钼、钨、氮化钛氮化钨等高熔点金属替代铝作电极材料.2.抗闩锁设计CMOS集成电路含有n沟MOS和p沟MOS晶体管,不可预防地存在npnp寄生可控硅结构,在一定条件下,该结构一旦触发,电源到地之间便会流过较大的电流,并在npnp寄生可控硅结构中精品文档同时形成正反应过程,此时寄生可控硅结构处于导通状态.只要电源不切断,即使触发信号已经消失,业已形成的导通电流也不会随之消失,此现象即为闩锁效应,简称闩锁(Latch-up).(1)CMOS半导体集成电路产生闩锁的三项根本条件是:•外加干扰噪声进入寄生可控硅,使某个寄生晶体管触发导通.•满足寄生可控硅导通条件:上 + — 2 1(6.2)R J匚4+勺其中:a n和a p分别为npn管和pnp管的共基极电流增益;,和,分别为npn管和pnp管发射极串联电阻;R W和R S分别为npn管pnp管EB结的并联电阻.除了&「a「与外加噪声引起的初始导通电流有关外,所有以上各参数均由CMOS半导体集成电路的幅员和工艺条件决定.•导通状态的维持.当外加噪声消失后,只有当电源供应的电流大于寄生可控硅的维持电流或电路的工作电压大于维持电压时,导通状态才能维持,否那么电路退出导通状态.(2)抗闩锁的设计原那么抗闩锁可靠性设计总的原那么是:根据寄生可控硅导通条件,设法降低纵、横向寄生晶体管的电流放大系数,减少阱和衬底的寄生电阻,以提升造成闩锁的触发电流阈值,破坏形成正反应的条件.(3)幅员抗闩锁设计•尽可能增加寄生晶体管的基区宽度,以降低其8.对于横向寄生晶体管,应增加沟道MOS 管与P沟道MOS管的间距;对纵向寄生晶体管,应增加阱深,尽可能缩短寄生晶体管基极与发射极的n+区与p+区的距离,以降低寄生电阻.尽可能多开设电源孔和接地孔,以便增长周界;电源孔尽量设置在P沟道MOS管与P阱之间,接地孔开设在靠近P沟道MOS管的P阱内,尽量减少P 阱面积,以减少寄生电流.•采用阻断环结构,如图6.1所示.•采用保护环结构,如图6.2所示.•采用伪集电极结构,如图6.3所示.图6.1 CMOS电路防闩锁的阻断环结构精品文档P MQS的保沪讣nMQS的保炉图6.2 CMOS电路防闩锁的保护结构PMOS r图6.3体硅CMOS电路伪集电极结构及等效电路(4)工艺抗闩锁设计•采用掺金、本征吸杂、中子或电子辐照等方法,以降低寄生晶体管的电流放大系数;•在低阻的n+衬底上生长n-外延层,再作p阱和n+、p+源接触,形成低阻衬底来降低衬底寄生电阻;•用肖特基势垒代替扩散结制作MOS管的源区和漏区.由于肖特基势垒结发射效率比pn结低得多,可大大削弱闩锁效应;•采用在绝缘衬底上生长硅外延层的CMOS/SOI工艺技术.3.防静电放电设计静电放电(ESD)失效可以是热效应,也可以是电效应,这取决于半导体集成电路承受外界过电应力的瞬间以及器件对地的绝缘程度.假设器件的某一引出端对地短路,那么放电瞬间产生电流脉冲形成焦耳热,使器件局部金属互连线熔化或芯片出现热斑,以致诱发二次击穿,这就属于热效应. 假设器件与地不接触,没有直接电流通路,那么静电源不是通过器件到地直接放电,而是将存贮电荷传到器件,放电瞬间表现为产生过电压导致介质击穿或外表击穿,这就属于静电效应.预防半导体集成电路静电放电失效的设计举措主要有:(1)MOS器件防静电放电效应设计.图6.4为场效应管静电保护电路,图6.5为二极管防静电保护电路.精品文档〔2〕双极型器件防静电放电失效设计.图6.6为双极型器件防静电保护电路.〔3〕 CMOS器件防静电放电失效设计.图6.7是CMOS器件防静电保护电路.以上防静电保护电路中选用的元件一般要求具有高耐压、大功耗和小动态电阻,使之具有较强的抗静电水平.同时,还要求具有较快的导通速度和小的等效电容,以减少保护电路对电路性能的影响.图6.5 MOS器件二极管防静电保护电路〔a〕保护电路;〔b〕结构剖面图;〔c〕等效电路精品文档图6.6双极型器件静电保护电路〔a〕限流电阻;〔b〕钳位二极管“IL吐\L多X电阻叫书^i।不・1 ' .一■I保护电路〔a〕图6.7 CMOS器件防静电保护电路〔a〕采用多晶硅电阻;〔b〕采用扩散电阻4.防热载流子效应设计防热载流子效应设计主要是采取减弱MOS场效应晶体管漏极附近电场强度的结构,一般通过工艺来形成轻掺杂漏极〔LDD〕结构.首先对产品硅栅极进行掩膜形成n+区,再用化学气相淀积〔CVD〕技术把氧化膜淀积在整个芯片上,再利用各向异性刻蚀在多晶硅栅极侧面形成CVD氧化膜侧壁.对这个侧壁进行掩膜,便形成高浓度区n+.由于在LDD结构中n-、n+区是分别形成的,便于各区选取最正确浓度.这种工艺易于形成,重复性也好,是行之有效的方法.图6.8为LDD结构和普通结构电场强度的比拟.图6.9和图6.10分别为改良的LDD结构,即埋层LDD结构〔BLDD〕和双注入100结构〔DI-LDD〕.精品文档图6.8 LDD 结构和普通结构电场强度的比拟6.2.6耐环境应力设计技术1 .耐热应力设计(1)热应力引起半导体集成电路的失效热应力引起的失效可以分为两种情况:•由于高温而引起的失效.高温可能来自四周环境温度升高,也可能来自电流密度提升造 成的电热效应.温度的升高不仅可以使器件的电参数发生漂移变化,如双极器件的反向漏电流 和电流增益上升,MOS 器件的跨导下降,甚至可以使器件内部的物理化学变化加速劣化,缩短器件 寿命或使器件烧毁,如加速铝的电迁移、引起开路或短路失效等.•温度剧烈变化引起的失效.温度变化可以在具有不同的热膨胀系数的材料内形成不匹配应 力,造成芯片与管脚间的键合失效、管壳密封性失效和器件某些材料的热疲劳劣化.半导体集成电路集成度、功率密度的不断提升和封装管壳的不断减少,使热应力引起的可靠 性问题变得更加突出.(2)反映半导体集成电路热性能的主要参数反映半导体集成电路热性能的主要参数有两个,即器件的最高允许结温T m 和热阻R T .它们 精品文档■ 一圮重打辕tH J a r离界口一£/封蚂也留S2帏a 10 图6.9埋层LDD 结构图6.10双注入LDD 结构用来表征半导体集成电路的耐热极限和散热水平.半导体集成电路工作所消耗的功率会转换成热量,使电路的结温上升.当结温高于环境温度7;时,热量靠温差形成的扩散电流由芯片通过管壳向外散发,散发出的热量随温差的增大而增加,当结温上升到耗散功率能全部变成散发热量时, 结温不再上升,这时电路处于动态热平衡状态.平衡时结温的大小取决于耗散功率和电路的散热水平,耗散功率越大或电路的散热水平越差,结温就高;热阻越大那么表示散热水平越差.(3)耐热应力设计的方法半导体集成电路的热设计就是尽力预防器件出现过热或温度交变诱生失效,主要包括:•管芯热设计.主要通过幅员的合理布局使芯片外表温度尽可能均匀分布,预防出现局部的过热点.•封装键合热设计.主要通过合理选择封装、键合和烧结材料,尽可能降低材料之间的热不匹配性,预防出现过大的热应力.半导体集成电路常用材料的典型热特性值见表6.1.•管壳热设计.应着重考虑功率器件应具有足够大的散热水平.对于耗散功率较大的集成电路,为了改善芯片与底座接触良好,多采用芯片反面金属化和选用绝缘性与导热性好的氧化镀陶瓷,以增加散热水平.采用不同标准外壳封装的半导体集成电路热阻的典型值见表6.2.•为了使半导体集成电路能正常地、长期可靠地工作,必须规定一个最高允许结温T.m.综合各种因素,微电子器件的最大允许结温为:塑料封装硅器件一般为125〜150℃,金属封装硅器件一般为150〜175℃,锗器件一般为70〜90℃.112.耐机械应力设计半导体集成电路在运输和使用现场中将受到各种形式机械环境因素的作用,其中最常见、影 响最大的是振动和冲击.此外,离心、碰撞、跌落、失重、声振等机械作用也会对半导体集成电 路施加不同程度的机械应力.(1)振动和冲击对半导体集成电路性能的影响•振动的影响.振动是周期性的施加大小交替的力.根据力的作用频率不同,振动可分为固 定频率、周期变频和随机性振动等三种情况.通常遇到的振动是在一定范围内的随机振动,随机 振动实际可能到达0〜10000Hz ,电子产品受振动影响的频率范围通常为20〜2000Hz .一般认为, 低于20Hz 或高于2000Hz 频率是平安的.半导体集成电路在机械振动的反复作用下,机械构件会 产生疲劳损伤,使其结构松动,特别容易发生引线断裂、开焊、局部气密封接处出现裂缝等,轻 那么引起参数变化,重那么造成失效.特别是,当半导体集成电路本身的固有频率在设备的振动频率 谱范围内时,会出现共振现象.共振将使半导体集成电路的引线疲劳,使参数发生不可逆的变化而失效.此外,过大的振幅可能使脆性材料断裂,热性材料变形,造成产品结构严重损坏.•冲击的影响.冲击是对产品施加突发性的力,其加速度很大,致使半导体集成电路在瞬间 受到强烈的机械冲击,可造成电路的机械结构损坏,也可造成内引线的键合点脱开或内引线折断 而引起开路失效.此外,还会使芯片产生裂纹或与管座脱离.在各种环境条件下的冲击加速度如 表6.3所示.精品文档12。
半导体集成电路可靠性测试及数据处理

寿命分布的参数估计是基本的可靠性数据处理方法,我们回顾并讨论了可靠
性寿命分布参数估计的各种常用方法。最佳线性无偏估计以次序统计量理论以及 高斯-马尔可夫定理为出发点,是一种高精度且有效的可靠性寿命分布参数估计 方法。然而,它只能应用于样本总数比较小的场合并且不能应用于I型截尾数据。
极大似然估计法是另一种具有良好性质的参数估计方法。我们通过对各种参数估
However,BLUE is applicable at small sample sizes and cannot be applied on type I censored datasets.The maximum likelihood estimation(MLE)is another parameter estimation method with several good properties.The perfect correlation between MLE and BLUE in our study makes it possible to use MLE instead of BLUE for reliability parameter estimations.
半导体集成电路的哥靠性测试及数据处理还有很多工作需要进行。希望我们 的研究对于国内半导体集成电路产业以及半导体集成电路可靠性工作的发展有 一定的帮助。
关键词:晶圆级可靠性,加速寿命试验,威卸尔分布,极大似然估计 中图分类号:TBll4.3
半导体集成电路可靠性测试发数据处理
II
Abstmct
Abstract
半导体集成电路口J靠件测试发数据处理
一————————————————————.——! ! ——————————————————————————————.———一 ———__—————————————●___———————————————————_——__●-_———_—————————————一
提高电路系统可靠性的措施

提高电路系统可靠性的措施[摘要] 随着科学技术的迅速发展,对产品可靠性提出越来越高的要求。
电路系统是电器产品的最重要组成部分,其可靠性设计成为重要。
针对电路系统,从简化电路设计,元器件降额使用,PCB板设计及软件设计几方面来阐述可靠设计的相关措施。
[关键词] 电路系统可靠性降额设计[Abstract] With the rapid development of science and technology, the requirements of product reliability is Proposed higher and higher. The circuit system is the most important component of electrical products, its reliability design is important. For circuit system, the measures of reliability design are described, with simplified circuit design, component derating using, PCB board design , software design.[Key words] Circuit system Reliability Design of Reducing Rating0.引言随着科学技术的迅速发展,对产品的可靠性提出越来越高的要求。
所谓可靠性是指“产品在规定的条件下和给定的时间内,完成规定功能的能力”。
[1]它不但直接反映系统各组成部件的质量,而且还影响到整个系统质量性能的优劣。
电路系统是电器产品的最重要组成部分,容易受到热、湿度、振动、电磁波等干扰的影响,其自身的组成元件也存在老化、失效等问题,进而影响到产品的正常运行。
因此,电路系统的可靠性设计尤为重要。
电路设计要件

电路设计要件电路设计要件是指在进行电路设计时应遵循的一系列要求和规定。
电路设计是指根据具体的需求和目标,通过选择适当的电子元件和合理的连接方式,从而构成一个实现特定功能的电路系统。
下面将就电路设计要件进行详细的介绍。
1.功能需求:电路设计的首要要求是满足所需的功能需求。
在进行电路设计之前,需要明确电路需要实现的功能,例如放大、滤波、计算等。
不同的功能需求将会影响电路元件的选择和连线方式。
2.性能指标:电路设计需要满足一定的性能指标,例如增益、频率响应、稳定性等。
在设计电路之前,需要明确这些性能指标,并根据需求选择合适的元件和电路结构来实现。
3.元件选择:元件选择是电路设计的关键。
根据电路功能需求和性能指标,需要选择合适的元件来构建电路。
例如,对于放大电路,可以选择使用三极管或运算放大器作为放大器;对于滤波电路,可以选择使用电容、电感和滤波器等元件。
4.连接方式:连接方式是指将各个元件进行连接的方式。
电路设计需要选择合适的连接方式,例如串联、并联、反馈等。
不同的连接方式将会影响电路的性能和功能。
5.电源设计:电路设计需要考虑电源的设计和供电要求。
电源的设计需要满足电路工作所需要的电压、电流和稳定性等要求。
同时,还需要考虑电源的保护和过载保护等问题。
6.环境适应性:电路设计还需要考虑电路在不同环境条件下的适应性。
例如,对于工业环境中的电路,需要考虑其抗干扰能力和耐受性等;对于户外环境中的电路,需要考虑其防水、防尘等能力。
7.可靠性和稳定性:电路设计需要考虑电路的可靠性和稳定性。
可靠性是指电路在长期使用中的稳定性和可靠性,需要选择合适的元件和连接方式来提高电路的可靠性;稳定性是指电路在不同工作条件下的稳定性,需要考虑温度漂移、元件的参数变化等问题。
8.成本和效率:电路设计还需要考虑成本和效率的问题。
成本是指设计和制造电路所需要的费用,需要在满足功能和性能要求的前提下尽量降低成本;效率是指电路在工作时所消耗的能量和电路的能效,需要优化电路结构和元件的选择,提高电路的能效。
单片机复位电路的可靠性与抗干扰分析

单片机复位电路的可靠性与抗干扰分析单片机复位电路的可靠性与抗干扰分析1复位电路的数学模型及可靠性分析1.1微分型复位电路微分型复位电路的等效电路如图3所示。
以高电平复位为例。
建立如下方程:电源上电时,可以认为Us为阶跃信号,即。
其中U0是由于下拉电阻R在CPU 复位端引起的电压值,一般为0.3V以下。
但在实际应用中,Us不可能为理想的阶跃信号。
其主要原因有两点:(1)稳压电源的输出开关特性;(2)设计人员在设计电路时,为保证电源电压稳定性,往往在电源的输入端并联一个大电容,从而导致了Us不可能为阶跃信号特征。
由于第一种情况与第二种情况在本质上是一样的,即对Us的上升斜率产生影响,从而影响了的URST的复位特性。
为此假Us的上升斜率为k,从0V~Us需要T时间,即:当T<<τ时,us上电时可等效为阶跃信号。
与前相同,当t>>τ时,令A=T/τ,则:即此时的复位可靠性较前面的好。
另一种情况就是设计人员将一些开关性质的功率器件,如大功率LED发不管与单片机系统共享一个稳压电源,而单片机系统的复位端采用微分复位电路,由此也将造成复位的不正常现象。
具体分析如图4所示。
将器件等效为电阻RL,其中开关特性即RL很小或RL很大两种工作状态。
而稳压电源的基本工作原理是:ΔRL→ΔI→ΔU→-ΔI→-ΔU。
从中可以看出,负载的变化必然引电流的变化。
为了分析简单,假设R>RL,并且R>>R0.这样,可以近似地钭以上电路网络看作两个网络的组合,并且网络之间的负载效应可以忽略不计。
第一个电路网络等效为一个分压电路。
当RL从RLmin→Rlmax时,使其变化为阶跃性持,则U一个赋的阶跃信号。
UA(t)=[Rlmax/(Rlmax+R0)]Ut≥0UA(t)=[Rlmin/(Rlmin+R0)]Ut<0用此阶跃信号作为第二个电路网络,一阶微分电路的输入,则可得下式:(d/dt)UA(t)=(1/RC)URST(t)+(d/dt)URST(t)URST(0)=0解之得:从上式可以看出,由于负载的突变和稳压电源的稳压作用,将在复位端引入一个类脉冲,从而导致CPU工作不正常。
火灾报警电路设计实验报告

火灾报警电路设计实验报告设计火灾报警电路的实验报告引言:火灾是一种非常危险且具有破坏力的天然灾害,给人民生命和财产安全带来了巨大威胁。
因此,开发有效的火灾报警系统对于预防火灾事故非常重要。
本次实验旨在设计一个简单而可靠的火灾报警电路,并通过实验验证其性能。
一、概述本次实验中,我们将使用一些基础的电子元件,例如温度传感器、比较器、继电器等构建一个基于温度检测的火灾报警电路。
当环境温度超过设定值时,电路将触发报警装置并控制继电器进行相应操作。
二、材料与方法1. 所需材料:温度传感器、比较器IC、继电器模块、蜂鸣器2. 实验步骤:(1) 连接电路:根据以下所示的原理图连接所需电子元件。
(2) 设置温度阈值:根据需要设置合适的温度阈值。
(3) 测试电路性能:以不同温度条件下测试报警系统是否正常工作。
三、结果与讨论通过对火灾报警电路的设计和实验测试,我们得出以下结果和讨论。
1. 温度传感器与比较器:在本次实验中,我们使用温度传感器测量环境温度,并将其与预设的阈值进行比较。
当环境温度超过预设阈值时,比较器将输出高电平信号,并触发报警装置。
2. 报警装置:为了确保及时有效地报警,我们选择继电器模块作为报警装置的控制元件。
当比较器输出高电平信号时,继电器将被触发,并相应地激活蜂鸣器来发出声音提示火灾危险。
3. 实验性能验证:我们对设计的火灾报警电路进行了多组实验,在不同的环境温度下进行测试。
实验结果表明,在设置合适的温度阈值后,系统能够准确、稳定地检测到超过该阈值的环境温度,并及时触发报警机制。
4. 系统可靠性:在整个实验过程中,我们没有观察到误报或未响应等问题。
这表明所设计的火灾报警电路具有良好的可靠性和稳定性。
5. 优化及改进:为了进一步提升火灾报警电路的性能,我们可以考虑以下优化措施:(1) 引入多个温度传感器以实现对更大区域的监测;(2) 使用数字温度传感器并采用微控制器进行数据处理和报警逻辑控制。
四、结论在本次实验中,我们成功设计了一个基于温度检测的火灾报警电路,并通过实验验证其性能。
可靠性预计——精选推荐

②黑白电视机电源的可靠性预计。 (i)硅整整流桥(2CP24×4) 第一步 查 GJB/Z299B 一 98 电子设备可靠性预计手册(以下数据均来自此标准, 简称《手册》目次,查出“半导体分立器件”P.38—82。 第二步 在 P.65 查出“电压调整、电压基准及电流调整二极管。
工作失效率模型为:λ p=λ bπ Eπ θ π A 第三步 选择此器件的质量等级,并查出质量系数π θ 。 查 P.41 表 5,1,2-3,选择符合民用产品质量要求的质量等级:B2,并在 P.65 的表 5, 1,2,8-2 查出π θ =1。 第四步 根据该电源的工作环境 GF1,查 P.65 表 5.1.2.8-1,查出π E=1.7。 第五步 查 P.65 表 5,1,2,8—3,由于 2CP24 二极管用于整流,即“电压调整”,
1 π θ =1(表 5.1.12.1
(0.00017×
0.0316
属化孔
-2)
40+0.0011)=0.0079
π E=4(表 5.1.12.1
-1)
π C=1(表 5.1.12.1 -3)
9
λ sp=Σ Niλ Giπ θ i
i=1
3.1287
④元器件应力分析法 应用此法是在产品设计的后期(技术设计)阶段的可靠性预计。这时产品已有原理图、 详细工作电路图、结构图、详细的元器件清单,以及产品的使用环 境,元器件的质量等级和 工作应力已确定的条件下,才能应用。 此法以元器件的基本失效λ b 为基础,根据元器件使用环境、质量等级、工作能力、工 作方式以及对产品的制造工艺等项的不同,计算出元器件的工作失效率(使用失效率),进 而求出部件或单元的失效率,最后计算出系统(产品)的失效率。 元器件的工作失效率(使用失效率)可用下式表述:
考虑NBTI效应的组合电路软错误率计算方法

考虑NBTI效应的组合电路软错误率计算方法一、介绍NBTI效应及其对电路可靠性的影响1. NBTI效应的概述和背景2. NBTI效应对电路性能和可靠性的影响二、组合电路的软错误和软错误率的定义1. 组合电路的软错误定义2. 软错误率的定义和计算方法三、考虑NBTI效应的软错误率计算方法1. 传统软错误率计算方法的不足之处2. 考虑NBTI效应的软错误率计算方法的基本思路3. 考虑NBTI效应的软错误率计算方法的详细步骤四、实验验证和结果分析1. 实验方案设计2. 实验结果分析3. 讨论分析结果的意义和价值五、总结与展望1. 本文工作的主要贡献2. 未来研究方向和挑战一、介绍NBTI效应及其对电路可靠性的影响随着集成电路技术的发展,晶体管的尺寸不断缩小,面临的问题也日益复杂和严峻。
其中,晶体管注入氧气化过程中的负面效应NBTI(Negative Bias Temperature Instability)效应已经引起了越来越多人的关注。
NBTI效应是指在制造过程中,由于缩短晶体管长度、缩小尺寸等原因,使得硅结构中的氧含量增加,导致晶体管在负偏压电场和高温环境下产生的时间依赖性失调现象。
这种现象会导致晶体管的门极阈值电压不断上升,从而影响了晶体管的电学特性和可靠性。
NBTI效应不仅对单个晶体管的性能有影响,还对整个电路的可靠性产生影响,特别是对于高可靠性要求的电路,例如航天器和核电站控制系统等。
在这些高可靠性电路中,甚至少一个故障都是不能被容忍的。
因此,对于这些具有特殊要求的电路,必须考虑NBTI效应对电路可靠性的影响,以提高系统的可靠性。
另外,集成电路系统中的组合电路也受到NBTI效应的影响。
组合电路使用了逻辑门和寄存器等基本逻辑部件来执行计算任务,因此在评估集成电路系统的可靠性时,组合电路的可靠性也必须被考虑。
尽管现在已有一些研究论文探讨了组合电路的NBTI效应问题,但仍然需要进一步的研究来理解和建模NBTI效应对组合电路的影响,以便预测整个系统的可靠性。