《探索轴对称图形的性质》教学设计
二年级轴对称图形教案:探究轴对称图形的性质及其应用
二年级轴对称图形教案:探究轴对称图形的性质及其应用一、教学目标通过本课的教学,使学生掌握轴对称图形的基本概念和性质,能够正确地画出以给定轴为对称轴的轴对称图形,并能正确地判断轴对称图形是否对称,培养学生的观察能力和创造能力,提高学生的逻辑思维能力和数学应用能力,为学生今后的数学学习打下良好的基础。
二、教学内容1.轴对称图形的定义2.轴对称图形的性质3.作图法4.轴对称图形的应用5.小结三、教学重难点重点:掌握轴对称图形的基本概念和性质,理解作图法,正确地画出以给定轴为对称轴的轴对称图形。
难点:理解轴对称图形的应用,较难的练习题。
四、教学方法概念讲解法、示范演示法、讨论法、问答法、练习法。
五、教学过程1.教师引入由教师提问:同学们,你们知道什么是轴对称图形吗?请举个例子。
引导学生回答,了解学生的学习状况。
2.概念讲解(1)轴对称图形的定义:轴对称图形是指对称轴两侧部分完全相同的图形。
(2)轴对称轴与轴对称中心的概念:在轴对称图形中,将对称轴线称为轴对称轴,对称轴线上面的点称为轴对称中心。
(3)轴对称图形的性质:轴对称图形的性质是:对称轴线上的任意一点到对称轴线上的点的距离,与这个点在对称轴上的对称点到对称轴的距离相等。
3.课堂讲解(1)轴对称图形的特征:轴对称图形是对称的,即对称轴两侧的部分完全相同。
(2)作图法:通过把图形对称地摆放,就能不画轴对称轴的情况下,画出轴对称图形。
例如,将一个数字或一幅画垂直翻转,画出的图形就是它的轴对称图形。
(3)轴对称图形的判断:判断一幅图形是否轴对称图形,可以用一张透明纸在图形上叠加另一张图形,如果一边叠加完全覆盖另一边,则这幅图形是轴对称图形。
(4)轴对称图形的应用:轴对称图形可以用于艺术设计、建筑设计、机械制造等多个领域。
4.练习环节教师通过例题操作,让学生互相配对,学生自己做一做,再自己进行评价。
5.课堂总结(1)回顾本课所学的轴对称图形的基本概念和性质,梳理作图法和应用方法。
“轴对称图形”教学设计(优秀7篇)
“轴对称图形”教学设计(优秀7篇)《轴对称图形》教案篇一教学内容:北师大版义务教育课程标准实验教科书《数学》三年级下册第二单元第13—15页《轴对称图形》教学目标:1. 通过生活中的事例,使学生初步体会什么是轴对称图形。
2. 让学生通过看一看,折一折,剪一剪来加深对轴对称图形的理解。
3. 让学生应用所学知识来解决实际生活中简单的问题,初步培养学生的应用意识和实践能力。
教学重点:1. 了解轴对称图形的特征,能在方格纸上画出简单图形的轴对称图形。
2. 能正确判断轴对称图形。
教学难点:画出轴对称图形。
教学准备:课件剪刀彩色卡纸平行四边形纸一、情境导入1. 谈话:看到同学们一张张可爱的笑脸,老师非常开心。
课件出示不对称“脸图”问:“这张脸可爱吗?”生:不可爱!课件演示脸图由不对称变为对称,问:现在呢?生:可爱!师:看来,人人都喜欢美丽的东西。
今天老师给大家带来了一些美丽的图片,请欣赏。
2.图片欣赏(课件出示对称图形图片)看完图片后师问:这些图片中的图形有什么特点?(指名回答)学生可能会说,它们两边完全一样。
教师归纳学生的回答后说明:它们都是对称图形(板书:对称图形)二、探究新知1.认识轴对称图形师:在我们的生活中,还有很多事物都是对称的。
看,这是笑笑自己剪的一棵对称的小松树,你们想不想也动手剪一剪呢?(课件出示小松树的剪纸图形)生:想!师:老师和你们来一场比赛,看谁剪的又快又好,开始!师生同时动手剪,完成后教师把自己剪的贴在黑板上。
请剪的最快的学生拿剪出的小松树展示,并让他给到大家说说是怎么剪的。
(指导学生演示方法)问演示学生:你怎么让大家知道你剪的小松树是对称的呢?生:我把它对折(生边说边演示)(师板书:对折)师:同学们跟他一起把自己剪的小松树对折,对折后你们有什么发现?生:左右两边完全重合(师板书:完全重合)师演示左右对折并讲解,像这样把图形沿一条直线对折,图形的两边能够完全重合,我们就说这个图形是轴对称图形。
《轴对称图形》教案(优秀8篇)
《轴对称图形》教案(优秀8篇)轴对称图形教案篇一教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。
北师大版七年级数学下册 5.2 《探索轴对称的性质》教学课件(共31张ppt)
2.画轴对称图形的步骤: (1)确定对称轴; (2)根据对称轴确定关键点的对称位置; (3)将找到的对称点顺次连接起来.
再见
D'
B
E
E'
B'
活动2.右图是一个轴对称图形:
D
(1)你能找出它的对称轴吗?
3
(2)连接点A与点A1的线段探与对究称轴新有知A B
C
什么关系?连接点B与点B1的线段呢?
D1
4
A1
C1 B1
(3)线段AD与线段A1D1有什么关系?线 段BC与B1C1呢?为什么?
12
(4)∠1与∠2有什么关系? ∠ 3与∠4呢?说说你的理由?
纸打开后铺平.如图
A
D B
C
1
3
F
E
C'
2
4
F'
E'
A'
D' B'
A
C
1
C'
A'
2
问(题 轴对1:称两)个“14”有什探么关究系新? 知B D
3
F
E
4
F'
E'
D' B'
问题2:在上面扎字的过程中,点E与点E′重合,点F与点F′重 合.设折痕所在直线为l,连接点E与点 E′的线段与l有什么关系?点F与 点F′呢?
6cm2
,
∴h=4 .
随堂练习
5.如图,已知牧马营地在M处,每天牧马人要 赶着马群先到河边饮水,再到草地吃草,然后
回到营地,试设计出最短的放牧路线.
随堂练习
解:以河为对称轴作M的对称点 ,过 作草地的 垂线,垂线和河的交点H就是所求的点.
轴对称图形教案设计(精选13篇)
轴对称图形教案设计(精选13篇)轴对称图形教案设计第1篇教学目标知道轴对称物体及轴对称图形,明了轴对称图形的概念。
能判断已知图形是否是轴对称图形,会判断常用的平面图形是不是轴对称图形,并能找出有几条对称轴。
通过操作,培养学生的动手操作能力,向学生渗透美的教育。
教学重点轴对称图形的意义及会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。
教学难点会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。
教学方法课前准备自主学习式;小黑板、投影片教学设计思路一、实物导入由轴对称物体向轴对称图形过渡。
举例:生活中的轴对称物体和常见的轴对称图形。
揭示轴对称图形的概念,特点及判断方法。
二、寻找对称轴1、出示一组图形,判断是否是轴对称图形。
通过操作寻找对称轴。
2、学生动手操作,寻找常用平面图形的对称轴。
三、巩固练习出示图形进行判断,并找对称轴。
轴对称图形教案设计第2篇课题:复习圆、轴对称图形,数学教案-复习圆、轴对称图形。
教学目标:1、使学生进一步掌握相关图形的特征及运算。
2、使学生的空间观念和想象能力得到培养。
教学重点:公式及计算。
教学难点:技能技巧。
教具准备:小黑板幻灯机教学过程一、基本训练:1、口算:在听算本上听算《口算卡片》(38)。
(1)统计3分钟以内做完的同学加以表扬,然后指名报答案。
(2)全班统一核对,老师选重点点拨,集体订正。
2、口答:指名回答上一节课所学知识。
解答百分数应用题应该注意什么?二、进行新课:1、复习圆的概念。
设计如下问题:(1)圆的圆心是如何确定的?(2)什么是半径、直径,同一个圆的半径和直径有什么关系?(3)不同的圆有不同的圆周率吗?(4)什么是圆的周长?什么是圆的面积?2、复习圆的周长和面积的计算:(1)做143页的第11题。
(2)集体讲评,让学生说一说圆周长的计算公式及面积的计算公式。
(3)教师和学生一起回忆公式推导过程,小学数学教案《数学教案-复习圆、轴对称图形》。
二年级数学下册《轴对称图形》教学设计(精选10篇)
二年级数学下册《轴对称图形》教学设计(精选10篇)二年级数学下册《轴对称图形》教学设计 1教学内容分析:在自然界和日常生活中具有轴对称性质的图形很多。
教材通过飞机、蝴蝶和天安门的实物图让学生观察、分析它们共同的特征,再做剪纸实验,然后揭示轴对称图形并画出对称轴,使学生进一步加深对轴对称图形的认识。
教材中安排了一些实际操作内容,使学生在实践活动中认识图形的特征,理解有关概念的含义。
教学对象分析:学生已认识了一些基本图形特征。
学生学习这些知识,一方面可以加深对一些已学过的图形特征的认识,另一方面,可以认识自然界和日常生活具有轴对称性质的一些事物,并为以后进一步学习数学研究一些问题的基本性质打下基础。
教学目标:一、知识与技能目标:1、使学生通过生活中的实例进一步理解轴对称图形,探索轴对称图形的特征,能用折叠重合这样的词语准确地描述轴对称图形的特征。
2、能识别轴对称图形,并能确定它的对称轴。
二、过程与方法目标:在丰富的现实情境中,让学生经历观察分析、欣赏想象、操作发现等数学活动过程,来提高学生的空间想象能力和思维能力,发展其空间观念和审美能力。
三、情感态度与价值观目标:主动参与画图形的活动,感受图形的对称美。
教学准备:教师:多媒体教学课件,剪好的树叶、大树、葫芦、爱心和小衣服等。
学生:彩纸3张、剪刀1把,直尺1把,学习材料1份。
教学重点:(1)认识轴对称图形的特点,建立轴对称图形的概念;(2)准确判断生活中哪些物体是轴对称图形,并能找出简单对称图形的对称轴。
教学难点:判断对称图形,做出轴对称图形。
教学过程:一、创设情境,导入新知。
1、老师在眼镜店看到这样一副眼镜,请你检验一下它是否合格,为什么?(出示课件:不对称的眼镜)生回答。
师揭示”对称”,并板书。
2、请看这幅眼镜合格吗,为什么?(出示课件:对称的眼镜)生回答。
3、这是一只美丽的蜻蜓,你看它对称吗?如果是哪里对称?生回答。
4、在生活中哪里还见过这样的对称现象?生回答。
人教版四年级下册《轴对称》教学设计及反思
第1课时轴对称
轴对称的性质。
的地方?
3.示例1图:这幅图有什么特点?
4.引导学生用尺子量一量或者数一数题中图形左右两侧相对的点到对称轴的距离,发现其中规律。
5.师生共同小结:轴对称图形,对称轴两侧相对应的点到对称轴的距离相等。
每组对应点的连线垂直于对称轴。
实践运用1.课件示例2:想一想:怎样画的又快又好?
2.分小组交流,探究画法。
3.引导学生在思考、分析谈论后,用铅笔试画。
4.课件演示画图全过程。
5.总结画一个图形的轴对称图形的方法。
课堂总结,拓展延伸。
1.完成教材第84~85页练习二十第1、4、5题。
2.在方格纸上设计一个轴对称图形。
3.完成教材第84页练习二十第3题。
教学板书
教学反思
1.以身边的事物为媒介,循序渐进地指导学生画出轴对称图形的另一半。
2.在实践操作中激活学生的思维。
学生是学习的主人,教学最终要落实到个体的学习行为上,学生只有通过自己的实践体验,才能真正对所学内容有所感悟,进而内化为己有,在学习实践中逐步学会学习。
3.小组合作是新课程标准所提倡的一种新的学习方式,本节课采用了小组合作的形式,学生在活动中养成了合作、分享、积极进取等良好的个性品质。
探索轴对称的性质教学设计(五四制)数学七年级上册
2、对应线段AB与A'B'有什么关系?为什么?
3、∠1与∠2有什么关系?说明理由
轴对称的性质:
在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等。
三、针对训练
《探索轴对称的性质》教学设计
复备人: 复备时间:
学科
数学
设计者
焦明炜
单位
泰安市岱岳区
开元中学
年级
七年级
来源
鲁教版数学七年级上册
课时
1
【课程标准】2022版
通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分,对应线段相等,对应角相等。
【学习目标】
1、通过探索,能发现并说出轴对称的性质
2、能利用轴对称的性质画出简单图形
3、经历探索轴对称性质的过程,发展学生的空间观念和推理能力
【德育融合点】
从探究轴对称性质中感悟数学中的对称之美,培养学生善于观察,发现,总结的能力。
【评价任务设计】
1.利用活动,探索两图形轴对称的性质。(检测目标1)
2.理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质。(检测目标2)
1、右图的对称轴是;
2、连接线段AA1,AA1被MN;
3、若AD=3,那么A1D1=;
4、若∠1=80°,那么∠2=;
四、学以致用
五、例题精讲
1、如图,将一张长方形纸片ABCD沿EF折叠,点D,C分别落在D',C'的位置处,若∠1=50°,则∠DEF的度数是。
六、课堂小结
《轴对称图形》教学设计_4
《轴对称图形》教学设计《轴对称图形》教学设计1教学设计一.教学内容:几何第二册二、单元设计:本单元内容分四快:逆命题与逆定理,角平分线的性质与判定,线段的垂直平分线的性质与判定,轴对称图形和两个图形的轴对称。
轴对称放在最后,利于学生运用观察比较归纳类比加强对问题的认识。
三、教学目标:1.了解形形色色的对称现象。
2.识别轴对称现象。
3.理解轴对称图形的性质,会利用性质解题。
四、教学过程:活动1:展示各种对称图形。
让学生体会对称美,认识生活中的数学,可提高学生学习数学的兴趣。
活动2:准备好角、等腰三角形、长方形、圆等图形,完全对折,让学生说出结论。
叙述出这个过程。
这个活动可培养学生动手能力,语言表达能力,但观察的结论不一,把范围缩小,语言叙述有困难,要注重。
活动3问题引入:有两对称点,如何画出对称轴?画线段、角、等腰三角形,试画对称轴。
观察,分析。
讨论:(1)△ABD和△ACD的关系,怎么说明?⑵对称点和对称轴之间存在什么关系?归纳结论。
性质:对称的两个部分全等。
对称轴是对称点连线的垂直平分线。
活动4:出示例题,让学生分析解答。
活动5:习题解答。
《轴对称图形》教学设计2教学内容:人教版《义务教育课程标准实验教科书·数学(二年级上册)》第五单元“观察物体”第二课时(第68页内容)教学目标:1.知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
2.能力目标:发展学生的空间观念,培养学生的观察能力和动手操作能力,学会欣赏数学美。
3.情感、态度、价值观:通过探究活动,激发学生学习的热情,培养主动探究的能力;让学生感受对称图形的美,学会欣赏数学美。
教学重点:理解对称图形的概念,能正确找、画对称轴。
教学难点:准确找对称轴。
教、学具准备:1.教具:图片、剪刀、彩纸、课件2.学具:蝴蝶几何图片、剪刀、白纸教学过程:一创设情境、激趣感知课件出示动画呈现:在绿草如茵的草地上,对称的房子、蝴蝶、蜻蜓、树叶、花朵……,一片迷人的景色。
《轴对称图形》教学设计(通用5篇)
《轴对称图形》教学设计《轴对称图形》教学设计(通用5篇)作为一名教职工,就难以避免地要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的《轴对称图形》教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
《轴对称图形》教学设计1教学目标:1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学重点:1、认识轴对称图形的特点,建立轴对称图形的概念。
2、能够准确的判断生活中的轴对称图形,并能找出它的对称轴。
教具准备:对称的剪纸作品,对称的图片,剪刀,彩纸等教学过程:一、创设情境,激发兴趣1、欣赏剪纸作品:师:我们班有许多同学都参加了剪纸兴趣小组,他们的作品多次参加学校的展览,我们教室里也贴有他们的作品,你们喜欢这些剪纸作品吗?老师也很喜欢这些作品,今天我带来了一些剪纸作品,我们一起欣赏。
(出示剪纸作品)师:这些作品美不美?美在哪里?(答案强调图形的两边是对称的,对称也是一种美。
)师:这节课我们就一起来欣赏图形中的对称美。
(板书课题:对称图形)(反思:利用学生自己的剪纸作品引入新课,更能激发学生的学习兴趣,让学生体会数学知识来源于生活,从而产生学习数学的欲望。
这一环节,主要是让学生发现对称的美,激发学生探究新知的欲望。
)二、自主探究,感悟新知1、剪一剪师:同学们都认为对称也是一种美,那么我这儿有一幅图,谁能把它补充完整,使它成为一种对称的美。
(出示一个只画了一半的花瓶。
)指生上来画完整。
师:画得美不美?对称吗?(肯定不太对称)师:你有什么好办法能使它两边完全对称?师:我有一个好办法,能使它两边完全对称。
探索轴对称的性质__教学设计 李静
探索轴对称的性质唐山市友谊中学李静教学设计思想:动手、动脑中进行发散思维训练,调动学生学习数学的积极性,激发学生学习数学的兴趣。
教学目标分析:本节内容需一课时讲授;在本节课中,教师引导学生通过对折、扎纸游戏、动手制作对轴对称图形的过程,引导学生对轴对称的性质进行自主探索并熟练掌握轴对称的性质,最后运用性质解决一些现实生活中的实际问题。
1.知识与能力:掌握轴对称的性质,学会运用轴对称性质作图。
2.过程与方法:通过动手操作探索轴对称的性质,运用轴对称性质解决实际问题。
3.情感、态度价值观:培养独立观察思考的习惯、体会合作的重要性,感受数学几何图形的美,体验将数学知识运用到生活中的快乐。
教学重点与难点:教学重点:理解“对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等”的性质。
教学难点:轴对称性质的探索及运用。
教具准备:多媒体、实物投影等课时安排:1课时。
教学过程:(一)创设情景,趣题导入通过一组图片回顾上节课所学的两个知识点:轴对称图形和轴对称。
接下来借助趣味数学问题引入新课(1)下图曾被哈佛大学选为入学考试的试题,请在下列一组图形符号中找出它们所蕴含的内在规律,然后把图形空白处填上恰当的图形。
(2)一次晚会上,主持人出了一道题目:“如何把变成一个真正的等式?”在很多成年人还在思考的时候,一个初中学生就已经给出了这道题目的答案,你知道她是怎样做的吗?说明:让学生带着问题学习,有利于激发学生的学习热情,更加长时间的保持注意力。
(二)提出问题,引发思考1、动动手(1)将一张矩形的白纸对折后,任意画一条线段AB,用笔尖在点A、点B处扎孔,然后将纸展开铺平(2)在折痕另一侧的两个扎空中,点A扎出的孔用点A′表示,点B扎出的孔用点B′表示,并连接A′、B′两点,得到线段A′B′,然后分别连接点A和点A′、点B和点B′,得到线段A A′和线段B B′(3)画出折痕所在的直线并用字母m 表示2、动动脑(1)点A与点A′关于折痕m成什么关系?点B与点B′呢?请说明理由在轴对称图形中,沿对称轴对折后,把能够互相重合的两个点称之为这两个点关于对称轴互为对应点(2)对应点A与点A′所连线段A A′与对称轴m之间有什么位置关系?线段B B′呢?你能说明理由吗?与同伴合作交流(3)你能说出对应点所连的线段与对称轴之间的关系吗?结论①:对应点所连的线段被对称轴垂直平分(4)线段AB和线段A′B′关于直线m成什么关系?请说明理由在轴对称图形中,沿对称轴对折后,把能够互相重合的两条线段称之为这两条线段关于对称轴互为对应线段(5)你能说出对应线段之间有什么大小关系吗?结论②:对应线段相等快速回答下图中△ABC与△A′B′C′关于直线m成轴对称(1)点A、B、C关于直线m的对应点分别是哪个点?(2)线段A A′、B B′、C C′与对称轴m之间分别有什么关系?为什么?(3)线段AB、BC、AC关于直线m的对应线段分别是谁?它们之间有什大小关系?为什么?动动脑下图中,△ABC 与△A ′B ′C ′关于直线m 成轴对称将△ABC 沿对称轴m 对折,与∠A 互相重合的角是谁?它们关于直线m 成什么关系? 在轴对称图形中,沿对称轴对折后,把能够互相重合的两个角段称之为这两个角关于对称轴互为对应角结论③:对应角相等(三) 归纳总结轴对称的性质1、对应点所连的线段被对称轴垂直平分2、对应线段相等,对应角相等如图,△ABC 与△A ′B ′C ′关于直线EF 对称,则EF ⊥A A ′,OA= O A ′,∠BAC=∠B ′A ′C ′另外,通过观察得出:两个图形关于某条直线对称,对应线段或其延长线相交,则交点必在对称轴上(四)新知应用扎纸游戏:把自己用笔尖扎出“14”这个数字,将纸打开后铺平。
《7.3探索轴对称的性质》教学设计
《7.3探索轴对称的性质》教学设计高新一中徐航胜教学目标:1、知识与技能:探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
2、过程与方法:经历探索轴对称的性质的过程,在操作活动和观察、分析过程中发展学生主动探究和合作交流的习惯,培养学生观察、探索、分类、归纳等能力。
3、情感态度与价值观:通过视频引入新课,加强励志教育,培养学生奋发向上、认真学习的态度;通过学生的操作活动和欣赏生活中的轴对称图形,培养其空间观念和审美意识,体会轴对称在生活中的广泛应用,提高他们的学习兴趣。
教学重点:轴对称的性质教学难点:探索轴对称的性质教学方法:探究式教学为主,直观演示法,设疑诱导法为辅。
教学手段:多媒体等辅助手段教学过程:1、创造情境,引入新课纪念“5.12”灾难视频中“生死不离”片断,引入烛光组成的图案,通过设问,导入新课,并板书课题。
2探究活动(一)如图将一张矩形纸对折,然后用笔尖扎出“14”这个数字,将纸打开后铺平.用多媒体演示,学生动手操作,然后让学生通过操作和观察,能发现哪些结论,然后再设问回答。
1、上图中两个“14”有什么关系?2、在上面扎字的过程中,点E与点E′重合,点F与点F′重合.设折痕所在直线为l,连接点E与点E′的线段与l有什么关系?点F与点F′呢?3、线段AB与线段A′B′有什么关系?CD与C′D′呢?4、∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.探究活动(二)观察图所示的轴对称图形。
(1)找出它的对称轴.(2)连接点A与点A′的线段与对称轴有什么关系?连接点B与点B′的线段呢?(3)线段AD与线段A′D′有什么关系?线段BC与线段B′C′呢?为什么?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由. 让学生在准备好的图案上动手操作,通过观察测量,对折等解决以上问题。
解决问题的方法和结论学生会说出好多种,对这些结论进行整理,就是轴对称的性质。
【公开课】探索轴对称的性质教学设计
课题:5.2 探索轴对称的性质【北师大版七年级下学期】一、内容分析:《探索轴对称的性质》是义务教育教科书北师大版七年级数学下册第五章第二节的内容。
课程标准:在丰富的现实情境中,经历观察、折叠、图片欣赏、操作、交流合作等数学活动过程,进一步积累数学活动经验和发展空间观念。
通过丰富的生活实例了解轴对称的概念,探索轴对称的基本性质:对应点的连线被对称轴垂直平分、对应线段相等、对应角相等。
给定对称轴,能画出简单平面图形(点、线段、三角形等)关于给定对称轴的对称图形。
二、教材分析知识层面:《探索轴对称的性质》是学生了解了生活中的轴对称及简单的轴对称图形,有了探索全等三角形的性质的经验基础上,进行探究性学习的拓展和延续,是对小学学习轴对称图形有关知识的延伸和拓展,也为今后探索旋转、平移、中心对称、相似等有关知识积累数学活动经验,发展空间观念奠定基础。
轴对称的性质是进行图案设计、美化生活和学习后继课的重要工具,在学生的知识体系中起着承上启下的作用。
能力层面:在几何知识的学习活动中,学生已经掌握了简单的平面几何图形的特征、初步形成了空间观念,解决了一些简单的现实问题,因此获得了一些数学活动的经验,具备一定的实际操作能力;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的自主探索、合作交流的能力。
这些能力为本节课的教学奠定了技能基础。
思想层面:本节课在欣赏轴对称图形中感受大自然的美好;在实践中感受数学美;在合作中享受快乐;在创作中体验成功的喜悦,在交流中丰富了数学语言,产生了对生活的美好向往。
同时让学生感受数学与生活的密切联系,认识到数学知识来源于生活实践产生,反过来又能指导生活实践这一辩证思想,对数学产生浓厚兴趣,增强学好数学的自信。
三、学情分析七年级学生好奇心强,勤于思考,爱动手,但生活经验不太丰富,所以对生活中的数学缺乏有效的探究手段,在小学虽然已接触轴对称的有关知识,但课堂活动经验不广泛,本阶段从认识生活中的轴对称,到探索轴对称的性质特征,实现从感性认识到理性认识的过渡较难转化还可能有一定的困难。
人教版八年级数学上册《轴对称(第1课时)》示范教学设计
轴对称(第1课时)教学目标1.了解轴对称图形与两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区别与联系.2.探索成轴对称的两个图形的性质和轴对称图形的性质,体会由具体到抽象认识问题的过程,感悟类比方法在研究数学问题中的作用.教学重点轴对称图形与两个图形成轴对称的概念,轴对称图形和两个图形成轴对称的区别与联系.教学难点成轴对称的两个图形的性质和轴对称图形的性质.教学过程新课导入对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品中,人们都可以找到对称的例子(如图).【师生活动】教师出示图片,学生观看.【设计意图】通过观看生活中常见的对称现象,引出本节课的新知,让学生感受数学和生活的紧密联系.新知探究一、探究学习【问题】1.如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了美丽的窗花.观察得到的窗花,你能发现它们有什么共同的特点吗?【师生活动】学生按照要求动手操作,教师提示“折痕处不要完全剪断”.【答案】这些窗花沿一条直线折叠,直线两旁的部分能够互相重合.【问题】2.结合下面动图,总结你的发现.【新知】像窗花一样,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.【问题】你能举出一些轴对称图形的例子吗?【师生活动】学生独立思考,然后教师展示图片给出参考答案.【答案】【设计意图】让学生亲自动手制作日常生活中熟悉的窗花剪纸,教师提出问题,学生分小组合作交流,激发学生的学习兴趣,培养学生的动手能力和观察归纳能力.二、典例精讲【例1】如图的每个图形都是轴对称图形吗?如果是,请画出它的对称轴.【师生活动】学生独立思考,教师给出答案并讲解.【答案】解:第1个图形上的字母不同,对折之后,直线两旁的部分不能互相重合,所以不是轴对称图形;第2个图形是轴对称图形,对称轴如图.【设计意图】通过例题1的练习与讲解,巩固学生对已学知识的理解及应用.三、探究学习【思考】下面的每对图形有什么共同特点?【师生活动】教师提出问题,学生独立思考并尝试作答.【答案】每一对图形沿着虚线折叠,左边的图形能与右边的图形重合.【新知】像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.【设计意图】通过问题思考,引出轴对称知识.【问题】请你标出图中点A,B,C的对称点A',B',C'.【师生活动】教师提出问题,学生独立作答.【答案】解:【设计意图】检验学生对轴对称知识的理解及应用.四、典例精讲【例2】下列给出的每幅图形中的两个图案是成轴对称吗?如果是,试着画出它们的对称轴.【师生活动】教师提出问题,学生独立作答.【答案】解:第1幅图形中的两个图案不成轴对称,第2幅图形中的两个图案成轴对称,对称轴如图.【归纳】成轴对称的两个图形一定全等,全等的两个图形不一定成轴对称.【设计意图】通过例题2的练习与讲解,让学生初步理解成轴对称的两个图形与全等的两个图形之间的关系.五、探究学习【思考】1.观察动图,试着说一说轴对称图形与轴对称有什么区别与联系?【师生活动】教师展示动图,学生观察并尝试归纳总结.【归纳】轴对称图形与轴对称的区别与联系【设计意图】通过对比讲解,加深学生对知识的理解与掌握.【思考】2.如图,△ABC 和△A ′B ′C ′关于直线MN 对称,点A ′,B ′,C ′分别是点A ,B ,C 的对称点,线段AA ′,BB ′,CC ′与直线MN 有什么关系?【分析】图中,点A,A′是对称点,设AA′交对称轴MN于点P,将△ABC或△A′B′C′沿MN折叠后,点A与A′重合.于是有AP=P A′,∠MP A=∠MP A′=90°.对于其他的对应点,如点B与B′,点C与C′也有类似的情况.因此,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.【新知】轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线.例如下图中,l垂直平分线段AA′,l垂直平分线段BB′.课堂小结板书设计一、轴对称图形二、轴对称三、轴对称及轴对称图形的性质课后任务完成教材第60页练习1~2题.。
《探索轴对称的性质》教学设计
《探索轴对称的性质》教学设计汉源河西初级杜朝威【教学内容】北师版数学七年级下册第五章《生活中的轴对称》之5.2 《探索轴对称的性质》。
【学情分析】学生的知识技能根底:在本章前面一节课中,学生已经认识了轴对称现象,学习了轴对称的概念,加强了对图形的理解和认识,为接下来的学习奠定了知识和技能根底。
学生活动经验根底:在相关知识的学习过程中,学生已经经历了一些认识轴对称以及轴对称图形的活动,解决了一些简单的现实问题,获得了一些数学活动经验的根底;同时在以前的数学学习生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
【教学任务分析】本节课是对轴对称图形的性质进行探索,主要是通过对轴对称图形的分析,培养学生动手、制作、实验、说理的能力,并且给了学生更多表述的时机。
本节课主要培养学生自主探索、合作交流、解决问题,并且要学生学会及时对自己的求解过程进行回忆与思考。
【教学目标】〖知识与能力〗理解和掌握轴对称的性质;会利用轴对称的性质解决生活中的实际问题。
〖过程与方法〗注重学生的自主探索与合作交流,通过观察、猜想、验证、交流、归纳的活动过程,形成自我解决问题的途径,积累数学活动的经验和方法。
〖情感、态度价值观〗培养独立观察思考的习惯,感受数学几何图形的美,体验设计轴对称图形带来的快乐。
【教学重难点】〖教学重点〗1.掌握轴对称的性质。
2.运用轴对称的性质解决实际问题。
〖教学难点〗轴对称的性质探索过程。
【教学方法】为了充分表达“以学生为主体〞的教学宗旨,结合本节课内容主要采取了“自主、合作、探究〞的探究式和启发式教学法。
【教学手段和教具准备】长方形A4纸一张,并运用了现代多媒体教学平台。
【课时安排】40分钟【教学设计思想】本节内容需一课时讲授;在本节课中,教师引导学生通过扎纸游戏、动手制作对轴对称图形的性质进行自主探索。
掌握轴对称的性质,并运用性质解决一些实际问题。
借助轴对称图形的设计进行交流,并在游戏中进行发散思维,激发学生学习数学的积极性。
数学《轴对称图形的性质》教案
数学《轴对称图形的性质》教案一、教学目标:1.掌握轴对称图形的定义,能够判断一个图形是否是轴对称图形;2.了解轴对称图形的种类及特点;3.能够通过画出轴线来找到图形的轴对称轴;4.能够在平面直角坐标系上进行轴对称变换。
二、教学重难点:轴对称轴的确定、平面直角坐标系上轴对称变换的理解和应用。
三、教学过程:1.导入新知识:请同学们参考书上的图片,思考一下,什么是轴对称图形?怎么判断一个图形是不是轴对称图形?2.课堂讲解:通过介绍和讨论,引导同学们了解一些基本概念和几何知识,如轴对称图形,轴对称轴等。
3.实例演示:通过举例,让同学们更加清晰地理解各种轴对称图形的定义和特点,以及如何画出轴对称轴等。
4.练习:让同学们尝试画出各种轴对称图形的轴对称轴,并在平面直角坐标系上进行一些简单的轴对称变换。
5.总结:通过总结,让同学们更加深入地理解轴对称图形的性质,并巩固所学知识。
6.作业:布置一些练习题,让同学们在课后练习和巩固所学知识。
四、教学方法:通过导入新知识、课堂讲解、实例演示、练习和总结等多种教学方法,使学生更加深入地理解和掌握轴对称图形的性质。
五、板书设计:轴对称图形轴对称轴轴对称变换六、教学反思:本节课采用了多种教学方法,让同学们在学习轴对称图形的性质时,更加深入地理解相关知识。
同时,采用了讨论、演示和练习等方式,增强了同学们的课堂参与度和学习兴趣。
但在实际教学中,也面临一些问题,如时间安排上不够充分,教学重点难以突出等,需要今后进行进一步的改进和完善。
对于学习成绩较差的同学,可以增加一些巩固训练和个别辅导。
苏科版数学八年级上册《2.2 轴对称的性质》教学设计3
苏科版数学八年级上册《2.2 轴对称的性质》教学设计3一. 教材分析苏科版数学八年级上册《2.2 轴对称的性质》是学生在学习了平面几何基本概念和性质的基础上进一步研究轴对称图形的性质。
本节内容主要让学生掌握轴对称图形的性质,并能运用性质解决一些简单问题。
教材通过引入实例,引导学生发现轴对称图形的性质,并通过大量的练习让学生熟练掌握和应用。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何基本概念和性质,具备了一定的逻辑思维和推理能力。
但由于轴对称图形性质较为抽象,学生可能难以理解和掌握。
因此,在教学过程中,需要结合实例,让学生直观地感受轴对称图形的性质,并通过大量的练习让学生熟练掌握和应用。
三. 教学目标1.理解轴对称图形的性质;2.能够运用轴对称图形的性质解决一些简单问题;3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.轴对称图形的性质;2.如何运用轴对称图形的性质解决实际问题。
五. 教学方法1.实例教学:通过引入实例,让学生直观地感受轴对称图形的性质;2.小组讨论:让学生分组讨论,培养学生的合作能力和解决问题的能力;3.练习巩固:通过大量的练习,让学生熟练掌握和应用轴对称图形的性质。
六. 教学准备1.准备相关的实例和图片;2.准备练习题;3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过展示一些实例,如剪纸、折叠等,引导学生发现这些实例都具有一个共同的特点——轴对称。
从而引出本节内容,轴对称图形的性质。
2.呈现(10分钟)讲解轴对称图形的定义,引导学生发现轴对称图形的性质。
如:轴对称图形关于对称轴对称,对称轴是图形的中心线等。
3.操练(15分钟)让学生分组讨论,每组找出一些轴对称图形,并总结出它们的性质。
然后各组汇报,互相交流,共同总结出轴对称图形的性质。
4.巩固(10分钟)出示一些练习题,让学生运用刚学到的轴对称图形的性质进行解答。
教师巡回指导,帮助学生解决问题。
鲁教版-数学-七年级上册-《探索轴对称的性质》参考教案2
探索轴对称的性质一、教学目标:1、探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质;2、能够按要求作出简单平面图形经过轴对称后的图形;3、鼓励学生利用轴对称的性质尝试解决一些实际问题,经历观察、分析、作图等过程,进一步发展空间观念,培养学生分析问题的能力和有条理的语言表达能力.二、教学重点:1、轴对称的基本性质,利用轴对称的性质解决实际问题;2、进一步发展学生合作交流的能力和数学表达能力.三、教学难点:利用轴对称的性质解决实际问题.四、教学过程:(一)课前准备1、实验操作:将一张矩形纸对折,然后用笔尖扎出“14”这个数字,将纸打开后铺平.2、合作交流:(1)图中,两个“14”有什么关系?(2)在扎字的过程中,点E与点E′重合,点F与点F′重合.设折痕所在直线为l,连接点E与点E′的线段与l有什么关系?点F与点F′呢?(3)线段AB与A′B′有什么关系?CD与C′D′呢?(4)∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.在图中,沿对称轴对折后,点A与A′重合,称点A关于对称轴的对应点是点A′,类似的,线段AB关于对称轴的对应线段是线段A′B′,∠1关于对称轴的对应角是∠2.利用比较直观的方法使学生比较清晰地观察到每一组对应点与折痕之间的位置关系以及对应角、对应线段之间的大小关系.(二)情境引入观察这个轴对称图形:1.找出它的对称轴;2.连接点A与点A/的线段与对称轴有什么关系?连接点B与点B/的线段呢?3.线段AD与线段A/D/有什么关系?线段BC与线段B/C/呢?4.∠1与∠2有什么关系?∠3与∠4呢?说说你的理由.学生可以根据折叠过程中的某些元素的重合说明理由,进一步验证上一个活动得到的结论.轴对称的性质:1.对应点所连的线段被对称轴垂直平分;2.对应线段相等,对应角相等.(三)实战演习利用轴对称设计图案:图中给出了一个图案的一半,其中的虚线是这个图案的对称轴.1.你能猜出整个图案的形状吗?2.你能画出这个图案的另一半吗?利用轴对称设计图案: A ∟l过点A 作对称轴l 的垂线,垂足为B,延长AB 至A /, 使得BA /=AB.点A /就是点A 关于直线l 的对应点。
《轴对称》数学教案设计
《轴对称》數學教案設計标题:《轴对称》數學教案设计一、教学目标:1. 知识与技能:使学生理解轴对称的定义,能够识别和画出轴对称图形,并掌握轴对称图形的基本性质。
2. 过程与方法:通过观察、操作、推理等数学活动,培养学生的空间观念和几何直观能力。
3. 情感态度与价值观:激发学生学习数学的兴趣,培养他们的创新意识和合作精神。
二、教学重难点:重点:轴对称图形的识别和基本性质的理解。
难点:轴对称图形的绘制和实际应用。
三、教学过程:1. 导入新课:通过展示一些生活中的轴对称实例,引导学生思考这些实例的特点,引出轴对称的概念。
2. 新课讲解:(1)介绍轴对称的定义,强调轴对称图形的两个部分是完全一样的。
(2)演示如何识别轴对称图形,引导学生自己尝试识别。
(3)讲解轴对称图形的基本性质,如对称轴两边的点到对称轴的距离相等等。
3. 实践操作:(1)让学生在纸上画出一些常见的轴对称图形,如矩形、正方形、等腰三角形等。
(2)布置小组活动,让每个小组选择一个轴对称图形,然后用剪纸的方式制作出来。
4. 巩固练习:给出一些轴对称图形,让学生判断是否为轴对称图形,如果是,找出其对称轴。
5. 课堂小结:回顾本节课的主要内容,强调轴对称的重要性和应用。
四、作业布置:1. 完成课本上的相关习题。
2. 在生活中找寻更多的轴对称实例,并尝试解释为什么它们是对称的。
五、教学反思:通过对轴对称的教学,我希望能帮助学生建立良好的空间观念,提高他们的观察能力和动手能力。
同时,我也希望通过各种实践活动,激发他们对数学的兴趣,培养他们的创新思维和团队协作精神。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索轴对称的性质
【教学目标】
1.探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
2.鼓励学生利用轴对称的性质尝试解决一些实际问题。
3.让学生研讨活动中,进一步发展学生合作交流的能力和数学表达能力。
【重点难点】
1.探索轴对称的基本性质,理解对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等的性质。
2.鼓励学生利用轴对称的性质尝试解决一些实际问题。
【教学课时】
一课时
【教学过程】
一、引入新课
1、各小组派代表展示自己课前所做的“14”,
2、再结合幻灯片直接得到本节课的核心内容——轴对称的基本性质:
对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等。
二、练习提高
1.如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
2.图⑴是轴对称图形,则相等的线段是AB=CD,BE=CE,相等的角是∠B=∠C。
3.两个图形关于某直线对称,对称点一定在(D)
A.这直线的两旁B.这直线的同旁
C.这直线上D.这直线两旁或这直线上
4.轴对称图形沿对称轴对折后,对称轴两旁的部分 (A)
A.完全重合B.不完全重合 C.两者都有
5.下面说法中正确的是(C)
A.设A,B关于直线MN对称,则AB垂直平分MN。
B.如果△ABC≌△DEF,则一定存在一条直线MN,使△ABC与△DEF关于MN对称。
C.如果一个三角形是轴对称图形,且对称轴不止一条,则它是等边三角形。
D.两个图形关于MN对称,则这两个图形分别在MN的两侧。
6. 已知互不平行的两条线段AB,CD关于直线l对称,AB,CD所在直线交于点P,下列结论中:①AB=CD;②点P在直线l上;③若A,C是对称点,则l垂直平分线段AC;④若B,D是对称点,则PB=PD 。
其中正确的结论有(D)
A. 1个
B. 2个
C. 3个
D. 4个
三、合作探究
活动内容:
1.若直角三角形是轴对称图形,这个三角形三个内角的度数为45°, 45°,90°。
2.学完轴对称的性质后,小明认为:关于直线MN对称的两个图形全等;小颖认为:若△ABC与△DEF关于MN对称,则△ABC是轴对称图形;小刚认为:AD是△ABC的中线,若△ABC不是等腰三角形,则△ABC关于直线AD对称的图形不存在。
你认为他们谁对(D)
A. 小明和小刚
B. 小明和小颖
C. 小刚
D. 小明
3.如图⑵,已知点P是∠AOB内任意一点,点P1,P关于OA对称,点P2,P关于OB 对称。
连接P1P2,分别交OA,OB于C,D。
连接PC,PD。
若P1P2=10cm,则△PCD的周长为10cm。
4.如图⑶,△ABC 与△DEF 关于直线l 成轴对称。
①请写出其中相等的线段;
②如果△ABC 的面积为6cm,且DE=3cm ,
求△ABC 中AB 边上的高h 。
5.如图:MNPQ 是一张台球桌子,球A 与球B 之间有其他球阻隔,现在要打A 球,经桌边PQ 反弹再碰到B 球,请你画出A 球的行走路线。
变换题型:
1. 如将上题中的“经桌边PQ 反弹”中的PQ 去掉,你有几种做法?
2. MNPQ 是一张台球桌子,球A 与球B 之间有其他球阻隔,现在要打A 球,经桌边MN ,NP 两次反弹再碰到B 球,请你画出A 球的行走路线。
四、 课堂小结
师生互相交流总结这节课的体会,重新回顾这节课的知识点以及新知识点应用方面的一些技巧。
A B C F
D
E l
(3)
(2)
活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想包括在研讨活动中的收获(学生畅所欲言,教师给予鼓励)。
五、布置作业
1.书上习题7.4知识技能。
2.小组合作完成数学理解第2题。
【教学反思】。