有机波谱综合解析35页PPT

合集下载

有机化学有机化合物的波谱分析PPT课件

有机化学有机化合物的波谱分析PPT课件
红外光谱是以波长λ或波数σ第为5横页/坐共8标0页,表示吸收峰的峰位;以透射比 T(以百分数表示,又称为透光率或透过率)为纵坐标,表示吸收强度。
5
7.2.1分子化学键的振动和红外光谱
1.振动方程式
可把双原子分子的振动近似地看成用弹簧连接着的两个小球的 简谐振动。根据Hooke定律可得其振动频率为:
分子化学键的振动是量子化的,其能级为:
式中: υ为振动量子数(0,1,2,…);h为Planck常量;ν振为化学 键的振动频率。
第8页/共80页
8
分子由基态υ =0跃迁到激发态υ =1时吸收光的能量为:
第9页/共80页
9
分子振动频率习惯以σ表示,由(7–2)式、(7–3)式和(7–5)式得:
红外吸收峰的峰位(σ)取决于键的力常数,以及键两端所连原子的 质量m1和m2,即取决于化合物分子的结构。这是红外光谱用来测 定化合物结构的理论依据。
n≥4在 725~720 处有吸 收。
32
1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明 烯烃为顺式构型。
综合以上分析,有双键吸收,无三键及甲基吸收,另一不饱 和≥4在 725~720 处有吸 收。
33
7.3核磁共振谱(NMR)
这样对测定有机化合物结构毫无意义。但实验证明,在相同频 率照射下,化学环境不同的质子在不同的磁场强度处出现吸收峰。
第20页/共80页
20
3.鉴定已知化合物
用被测物的标准试样与被测物在相同条件下测定红外光谱,若 吸收峰位置、强度和形状完全相同,可认为是同一种物质(对映异 构体除外)。若无标准试样而有标准谱图,可查阅标准谱图。
查阅时应注意被测物与标准谱图所用试样的状态、制样方法、 所用仪器的分辨率等是否相同。

有机波谱知识课件

有机波谱知识课件
有机波谱知识课件
• 分子对紫外光或可见光的吸收是基于分子的价电 子在不同电子能级上的跃迁。
• 紫外吸收光谱又称为电子光谱。但和原子光谱 不同,紫外光谱并不是一个纯的电子光谱,在电
子跃迁过程中同时伴随有振动和转动能级的跃迁。

因此,紫外光谱并非原子光谱式的线光谱,
而是由多个吸收波长极为相近的吸收线组成的带
• 非共轭的不饱和化合物 • 非共轭的不饱和化合物中所含的不饱键虽可产
生跃迁,但相应的吸收带仍在远紫外区,不能被 应用于结构分析。
有机波谱知识课件
• 含共轭体系的脂肪族化合物 • 当分子中存在共轭体系时,成键轨道和
反键轨道间的能级差变小,吸收波长总是 高于200nm,且吸收强度也增强。这是紫外 吸收光谱法研究的重点。
键轨道间的跃迁,因轨道间的能级差最大,所需 的能量最高,相应的吸收峰波长较短,一般为 150-160 nm,即在真空紫外(远紫外光)区。
有机波谱知识课件
• π→π*跃迁是不饱和键中的π电子吸收能 量跃迁到π*反键轨道的跃迁,其所需能量 较要小,吸收峰波长一般为160-180nm,仍 在远紫外光区。
动过程中必须有瞬间偶极矩的改变。 • 对称分子:没有偶极矩,辐射不能引起共振,
无红外活性。 如:N2、O2、Cl2 等。 非对称分子:有偶极矩,红外活性。
• 分子的振动可近似看为一些用弹簧连接的小球 的运动。
有机波谱知识课件
• 任意两个相邻的能级间的能量差为: •
• •
• K化学键的力常数,与键能和键长有关, m为双原子的折 合质量 m =m1m2/(m1+m2)
有机波谱知识课件
• F. X-H面内弯曲振动及X-Y伸缩振动区(14751000cm-1)

波谱分析有机化合物紫外光谱解析PPT课件

波谱分析有机化合物紫外光谱解析PPT课件

n→ * /nm n→π* /nm
CH3CHO 190 289 12.5
CH3COCH3 180 280 22
O
291 15
第11页/共42页
羧酸、酯、酰胺羰基的 n→π* 吸收紫移。
R-COOR’
R-CONR2’ R-COSH
λmax -205 nm
-205 nm
-219 nm
ε
E
101~2
102
39 0
30 33308
α
γ
β
δ
B
215 18 18
0 5
286
第19页/共42页
(1)苯
苯的吸收带



E带
K带
B带
λmax/nm 187
204
256
εmax
68000
8800
250
E 超出检测范围,被K带遮蔽
E
K B
(2)烷基取代苯:
烷基对苯环结构产生影响较小,由于σ→π超共轭效应, E2带和B带红移,精细结构消失。
102 ~ 103 10~100
若取代基含n电子的生色团,还会出现低强度的R带,较B 带红移。(苯乙酮: B带278nm , R带319nm)
第23页/共42页
(5)稠环芳烃 稠环芳烃较苯形成更大的共轭体系,紫外吸收比苯更移
向长波方向,吸收强度增大,精细结构更明显。 线型稠环化合物(蒽,并四苯)
对称性较强,苯的三个典型谱带强烈红移且产生明显的 精细结构,随环的增加逐渐可达可见区。
+30 +5 +5
0
+6 nm +30
+5 +60 nm
41
第6页/共42页

有机化合物解析波普PPT课件

有机化合物解析波普PPT课件
(3)在常温下,分子处于最低的振动能级,化学键振动 与简谐振动模型非常近似。由于通常的红外光谱主要பைடு நூலகம் 论从基态跃迁到第一激发态或从基态跃迁到第二激发态 引起的吸收。因此,可以用谐振子运动规律近似地讨论 化学键的振动。
(4)因振动量子数越大,振幅也随之加宽,故势能曲线 的能级间隔将越来越小。
(5)振幅超过一定值,化学键断裂,分子离解,势能曲 线趋于一条水平线,这时的势能就等于离解能。
第65页/共110页
羰基峰位的计算方法
第66页/共110页
第67页/共110页
第68页/共110页
第69页/共110页
(七)C-H弯曲振动区(面内) (1475~1300cm-1) X-Y
说明:
偕二甲基双峰强度相当,裂距15~30cm-1以上。(振动 偶合)
偕三甲基双峰一强一弱,裂距30cm-1以上。
第56页/共110页
(三)饱和烃的C-H和醛基C-H伸 缩振动区(3000~2700cm-1)
第57页/共110页
第58页/共110页
第59页/共110页
说明:
1、烷烃的υC-H均在3000cm-1以下。原因? 2、-CH3、-CH2均表现为双峰,其中,高频端
υas ,低频为υs, -CH的υC-H为单峰。 3、醛基上的C-H在2820、2720处有两个吸收峰,
第16页/共110页
三、分子的偶极矩与峰强
• (一)峰强的表示方法
红外光谱用百分透光率(T)表示峰强 T%=I/I0×100% 也可用摩尔吸光系数表示:εa=1/c×L*lg(T0/T) εa大于100时,示峰带很强(vs) εa 等于20~100,为强峰(v) εa 等于10~20,为中强峰(m) εa小于1时,峰很弱(vw)

《有机波谱分析》课件

《有机波谱分析》课件

紫外-可见光谱分析
紫外-可见光谱原理
解释紫外-可见光谱的原理和 作用。
紫外-可见光谱仪的 组成和使用
详细介绍紫外-可见光谱仪的 构成和正确使用方法。
吸收峰的解析和比 较光法、内标法、 工作曲线法的应用
教授如何分析紫外-可见光谱 图中的吸收峰,并介绍比较 光法、内标法和工作曲线法 的应用。
质谱分析
《有机波谱分析》PPT课件
基本概念介绍
波谱分析的定义、有机化合物的基本特点、波长、频率和波数的关系。
红外光谱分析
1
红外光谱原理
介绍红外光谱分析的原理和应用。
红外光谱仪的组成和使用
2
详细解释红外光谱仪的组成,以及如
何正确使用。
3
光谱峰的解析和峰谷法、拔山
法的应用
教授如何分析红外光谱图中的峰和谷, 并介绍峰谷法和拔山法的应用。
1 质谱分析的原理
解释质谱分析的原理和作用。
2 质谱仪的组成和使用
详细介绍质谱仪的构成和正确使用方法。
3 质谱图的解析和母离子峰、片段离子峰的应用
教授如何分析质谱图中的母离子峰和片段离子峰,并介绍它们的应用。
多元分析
多光谱分析的原理
介绍多光谱分析的原理和它在 有机波谱分析中的应用。
主成分分析和聚类分析 的应用
说明主成分分析和聚类分析如 何应用于有机波谱分析中。
多元分析在有机波谱分 析中的实践
详细说明多元分析是如何在有 机波谱分析中得到实际应用的。
结论
1 有机波谱分析的应用前景
展望有2 knowledge check: 选择题
提供一些选择题,用于检验听众对于有机波谱分析的理解。

波谱综合解析ppt课件

波谱综合解析ppt课件
IR能给出大部分官能团和某些结构单元存在的信息,从谱 图特征区可以清楚地观察到存在的官能团,从指纹区的某些
相关峰也可以得到某些官能团存在的信息。
(2) 有机质谱
MS除了能够给出分子式和相对分子量的信息,还可以 根据谱图中出现的系列峰﹑特征峰﹑重排峰和高质量区碎
片离子峰确定结构单元。
7
波谱综合解析步骤
的手段去解决剩余结构问题。
2
IR: 3030cm-1, 1600 cm-1, 1500 cm-1.
R 1H: 7.2ppm
13C: 120-140ppm UV: E, B吸收带。 MS:m/z=77,51,……
=91,65,39 ……
CH CH3 CH3
IR: 1380 cm-1裂分等高双峰。 1H: 双峰,多重峰。
谱图综合解析实例3
质谱MS验证结构: O
- O C CH3
CH2 O
CH2 O C CH3
-
O
- CH2 O C CH3
- CH3
CH2 O
O C CH3
m/z=43
m/z=77
- HC CH
O CH2 O C
- CO
m/z=91
HC CH
m/z=65
CH2 O
m/z=51
m/z=135
m/z=107
13C: 双峰,四重峰。
3
二、 波谱综合解析步骤
1) 解析前应了解尽可能多的信息
首先了解样品的来源和纯度; 纯物质要了解其熔点、沸点、溶解性能等物理化学性 质以及用其它分析手段所测得的数据(如分子量、元素
分析数据)等; 混合物需要精制后才能进行波谱分析,或采用一些联
用技术分析。
4

有机化合物波谱分析(课堂PPT)

有机化合物波谱分析(课堂PPT)
23
不同能量的电磁波能引起物质不同运动状态的变化,促 使一定能态的基态跃迁至激发态,在连续的电磁波谱上出现 吸收信号。
3
高能辐射区 光学光谱区
γ 射线 x 射线 紫外光 可见光 红外光
引起原子核的裂变

使内层电子逸出轨道
引起原子和分子外层价电子跃迁 引起分子振动和转动状态变化
波长
波谱区
微波 引起单电子自旋改变烯Βιβλιοθήκη 类型各类烯烃的特征吸收位置表
v=C–H/cm-1
vC=C/cm-1
RHC=CH2 R1R2C=CH2 R1HC=CHR2(Z)
3100~3000(m) 3100~3000(m) 3100~3000(m)
R1HC=CHR2(E) 3100~3000(m)
R1R2C=CHR3
3100~3000(m)
面外弯曲γ:包括面外摇摆和蜷曲。 面外摇摆ω
蜷曲τ
14
变形振动δ :包括对称变形振动和不对称变形振动。 对称的变形振动δs
不对称的变形振动δas
15
8.1.2 烃类化合物的IR谱图解析
8.1.2.1 烷烃
烷烃的IR谱应关注三个吸收段的情况: (1) C–H伸缩振动(vC–H):3000~2800cm-1;
形判断化合物的官能团,确定化合物类别。 红外光谱产生必要条件 分子在振、转过程中的净偶极矩的变化不为0,即分子产生
红外活性振动过程中:
Δμ ≠ 0
8
8.1.1 分子的振动和红外光谱
8.1.1.1 振动方程式
√ √ 1
v振 动 =2 π
μ K=2 1 π Km 11+m 12
√ 1
σ=2πc
K
m 11+

有机化合物的谱图解析PPT课件

有机化合物的谱图解析PPT课件

2.烯烃
1. 3030cm-1 =C—H伸缩振动; 2. C—H 伸缩振动; 3. 1625cm-1 C=C伸缩振动; 4. C—H(—CH3、— CH2)面内弯曲振动; 第20页/共75页
第21页/共75页
二者的明显差异: 1.C=C双键的伸缩振动吸收峰: 顺式—1650cm-1。 反式—与CH3、CH2的弯曲振动
第4页/共75页
微粒性:可用光量子的能量来描述:
式中: E h
E

hc λ
为光量子能量,单位为 J
代表 Planck 常数,其量值为6.63 × 10-34 J.s
该式表明:分子吸收电磁波,从低能级跃迁到高能 级,其吸收光的频率与吸收能量的关系。
由此可见,λ与E,ν成反比,即λ↓,ν↑(每秒 的振动次数↑),E↑。
在分子光谱中,根据电磁波的波长(λ)划分为几个 不同的区域,如下图所示:
第5页/共75页
分子的总能量由以下几种能量组成:
第6页/共75页
电子自旋 微波波谱
E总 = Ee + Ev + Er
电子能
振动能
转动能
紫外光谱
红外光谱
可见光谱 所需能量较 ,波长较
红外光谱
一、红外光谱的表示方法 一般指中红外(振动能级跃迁)。
第13页/共75页
结论:
产生红外光谱的必要条件是:
1. 红外辐射光的频率与分子振动的频率相当,才能满 足分子振动能级跃迁所需的能量,而产生吸收光谱。
2. 振动过程中必须是能引起分子偶极矩变化的分子才 能产生红外吸收光谱。 三、有机化合物基团的特征频率
总结大量红外光谱资料后,发现具有同一类型化学键或官 能团的不同化合物,其红外吸收频率总是出现在一定的波数范 围内,我们把这种能代表某基团,并有较高强度的吸收峰,称 为该基团的特征吸收峰(又称官能团吸收峰)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档