20-1-2 中位数和众数(第一课时)教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.1.2 中位数和众数(第一课时)
一、教学目标
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:
1、重点:认识中位数、众数这两种数据代表
2、难点:利用中位数、众数分析数据信息做出决策。
3、难点的突破方法:
首先应交待清楚中位数和众数意义和作用:
中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。
三、例习题的意图分析
1、教材P143的例4的意图
(1)这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)
(3)问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材P145例5的意图
(1)通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售最好,以便给商家合理的建议。
(2)例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)(3)例5也反映了众数是数据代表的一种。
四、课堂引入
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。五、例习题的分析
教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材P145例5,由表中第二行可以查到23.5号鞋的频数最大,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。
六、随堂练习
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
根据表格回答问题:
商店出售的各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
七、课后练习
1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是
2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.
3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是()
A.97、96
B.96、96.4
C.96、97
D.98、97
4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他
的数据,则这组数据的众数和中位数分别是()
A.24、25
B.23、24
C.25、25
D.23、25
(1).该组数据的中位数是什么?
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?