18-泰克TDS220示波器使用指导书
泰克示波器说明书
break. So what does this mean to modern oscilloscopes?Wave Inspector®Navigation and Search: Simplifying Waveform AnalysisApplication Note 2As designs become faster and more complex, the need for long records, more bandwidth and higher sampling rate, will also increase. Record length is the number of samples an oscilloscope can digitize and store in a single acquisition. The longer the record length, the longer the time window the oscilloscope can capture with high timing resolution (high sample rate). The record length required for a specific application is directly affected by the bandwidth and sample rate. As bandwidth goes up, the sampling rate mustbe approximately five times higher to accurately capturethe signal’s high frequency content. As the sampling rate goes up, a given time window of signal acquisition requires more samples.For example, to capture 2 milliseconds of a 100 MHz signal at 5 GS/s requires a 10 million point record. (Divide2 milliseconds by the 200 picosecond sample interval.) Even at lower frequencies, there are many applications that require long records. Just capturing a single frame of NTSC video (two fields in a 1/30th of a second interval, at 100 MS/s to resolve all the luminance information) requires over3 million points (33 milliseconds divided by 10 nanoseconds). Capturing several seconds of bus traffic on a 1 Mb/sCAN bus to diagnose problems in an electro-mechanical system may require 10 million points for adequate resolution. These and a variety of other applications have driven and continue to drive the need for longer and more detailed data capture windows.Analyzing all that DataThe first digital oscilloscopes had very short record length. As such, it was easy to see everything the oscilloscope captured because it was all on the screen at one time. As oscilloscopes evolved and records got longer, horizontal scrolling was used to see all the data. This was not a big issue as you move from one screen’s worth of information to two, then up to four, eight, twenty, etc. However, as records became longer and longer with each generationof oscilloscope, the time required to look through all the data captured in a single acquisition grew longer and longer.We are now dealing with record lengths in the millions of points that represent thousands of screens worth of signal activity. By way of comparison, imagine trying to find what you’re looking for on the Internet without the assistance of your favorite search engine, web browser, or bookmarks.It would be like searching for a needle in a haystack. Until recently, this is what oscilloscope users faced with their long record length oscilloscopes. Clearly, the old solutions will no longer work.Wave Inspector ®Navigation and Search: Simplifying Waveform AnalysisApplication Note3/oscilloscopes Wave Inspector ®Navigation and SearchAvailable on the MSO/DPO4000, DPO3000, andMSO/DPO2000 Series oscilloscopes, Wave Inspector ®controls make working with long records and extracting the answers you need from your waveforms a simple and efficient process.Zoom / PanMost digital oscilloscopes on the market today offer some form of zoom capability. However, the controls associated with the zoom view (zoom factor and position) are oftenburied in menus or multiplexed with other front-panelcontrols. For example, the zoom window’s horizontal position is typically controlled by the horizontal position knob on the front-panel. Once you’ve zoomed in on an event of interest, if you want to move the zoom window to another location in the acquisition it typically means either turning the horizontal position knob countless times to slowly move the window to the new location, or zooming back out, adjusting the window’s location and then zooming back in. Neither approach is efficient or intuitive. It becomes even less efficient when you have to navigate through menus just to access these basic zoom controls.Figure 1.Wave Inspector ®provides dedicated front-panel controls for efficient waveform analysis.Wave Inspector ®ControlsWave Inspector®Navigation and Search: Simplifying Waveform AnalysisApplication NoteAs shown in Figure 1A, Wave Inspector provides a dedicatedtwo-tier front-panel Zoom / Pan knob for efficient waveformnavigation. The inner knob controls the zoom factor. Thefarther clockwise you turn it, the farther you zoom in. Turningit counter-clockwise zooms back out and ultimately turnszoom off.The outer ring is a force/rate sensitive pan control. Turningit clockwise pans the zoom window right on the waveform,counterclockwise pans it left. The farther you turn it, thefaster the zoom window moves across the waveform. InFigure 2, we can quickly navigate from one packet to thenext by simply turning the pan control in the desired direction.Even with a 10 million point aquisition, you can rapidly movethe zoom window from one end of the record to the otherin a few seconds, without ever having to change yourzoom factor.In Figure 2 we’re probing an I2C bus. The complete acquisitionis shown in the upper window and the zoomed portionis in the lower, larger window. In this case we’ve zoomedin to view the decoded address and data values for oneparticular packet.Figure 1A.Wave Inspector®provides dedicated front-panel zoomand pan controls.4Wave Inspector ®Navigation and Search: Simplifying Waveform AnalysisApplication Note5/oscilloscopes Figure 2.Navigating through a long acquisition of an I 2C bus.Wave Inspector®Navigation and Search: Simplifying Waveform AnalysisApplication NotePlay / PauseMany times when debugging a problem, you don’t know what’s causing the problem so you’re not sure what to look for in the waveform you’ve acquired. However, you know you’ve captured the time window that contained the problem and you now need to look through the data you’ve captured to see if you can find the issue. Again, on most modern oscilloscopes this is done by manually turning the horizontal position knob countless times to inspect the acquired waveforms for any suspicious activity. Wave Inspector®controls help in this area as well. You can simply press the Play button on the front-panel to have your zoom window automatically pan across the waveform. Play speed and direction are adjusted using the intuitive pan control. The farther you turn the pan control the faster the waveform plays by. This allows hands-free playback so you can concentrate on what’s important – the waveform itself. In the I2C example (Figure 2), you could play the waveform while watching the decoded address and data values to monitor activity on the bus. When you spot the event you’re looking for simply press the Play/Pause button again to stop the waveform.6Wave Inspector ®Navigation and Search: Simplifying Waveform AnalysisApplication Note7/oscilloscopes MarksWhile looking for the source of the problem, you may find numerous areas of the waveform that either warrant further investigation or are indicative of something happening in the device under test that you want to use as a reference point during the rest of your analysis. For example, assume you need to make timing measurements associated with the latency from when a driver presses the Passenger Window Down switch on the driver’s door panel to when the passenger window actually starts to move. The first event you’ll want to find in the acquisition is when the switch was pressed. The next may be when the CAN module in the driver’s side door issues the command to the CAN module in the passenger door. The last event may be when the motor engaged in the passenger door and the window started to move. Wouldn’t it be nice to mark each of these locations on the waveform so you can quickly jump back and forth between the areas of interest for timing measurements? With the Tektronix Wave Inspector ®Navigation Series you can.In Figure 3, Channel 1 is the output of the switch in the driver’s door, channel 2 is the CAN bus, and Channel 3 is monitoring the motor drive in the passenger door.Wave Inspector®Navigation and Search: Simplifying Waveform Analysis Application NoteWe’ve set the oscilloscope up to trigger on the packet of interest by specifying the appropriate Identifier and Data. Next, we’ve used the front-panel Set / Clear Mark button to mark each of the events of interest on the waveform. These user marks are shown as solid white triangles along the top edge in both the upper and lower windows. The rising edge on channel 1 indicates when the switch was pressed. The trigger event is the CAN module in the driver’s door issuing the command and the window beginning to move is the transition on Channel 3. Using the front-panel Previous and Next buttons we can instantly jump between marks to place cursors for quick and easy latency measurements. In Figure 3, we find that the total time from the press of the switch to window movement is 58.8ms, well within the amount ofacceptable delay.Figure 3.Placing marks on the waveform to assist in latency measurements on a CAN bus.8Wave Inspector ®Navigation and Search: Simplifying Waveform AnalysisApplication NoteSearch & MarkIn addition to placing marks on waveforms manually,Wave Inspector ®has the power to search through the entire acquisition and automatically mark every occurrence of a user-specified event. For example, imagine you are capturing laser pulses. The laser fires approximately every 20 µs, with each pulse being only 15 ns wide. You want to look at multiple pulses to characterize their shape and to make precise timing measurements between them, but to navigate from one to the next you need to sift through close to 20 µs of dead time. Then you need to repeat this for every other pulse in the acquisition. Clearly, it would be desirable to be able to move from pulse to pulse instantly without having towaste time “twiddling” a position knob.9/oscilloscopes Figure 3A.Wave Inspector's ®powerful Search capability allows you to find every occurrence of a user-specified event in the acquisition.Previous ButtonNextWave Inspector®Navigation and Search: Simplifying Waveform Analysis Application NoteA very simple search setup that looks for rising edges that cross a threshold of 300mV is illustrated in Figure 4. Marks generated by the search are shown as hollow white triangles along the top edge in both the upper and lower windows. This search resulted in 105 marks being placed throughout the record. Now all you have to do is press the front-panel previous and next buttons to jump from one pulse to the next, no adjustment of zoom scale or positionis required!Figure 4.Wave Inspector®marking every pulse that crosses 300mV in a long acquisition.10Wave Inspector®Navigation and Search: Simplifying Waveform AnalysisApplication NoteWave Inspector’s®Search goes well beyond simple edge searches. Imagine the chip you’re working with has an indeterminate output every so often that’s causing the overall system to crash. You suspect that it’s a metastability issue caused by Setup & Hold violations. In a matterof seconds, you can specify search criteria to have the oscilloscope automatically find every occurrence in the acquisition where setup and hold times you specify were violated. In this case, the part we’re using has published setup and hold times of 12 ns and 6 ns, respectively. To have the oscilloscope automatically find violations of these limits, we simply need to tell it clock is on Channel 1, Data is on Channel 2, set the thresholds, and enter the desired setup and hold times. The oscilloscope then checks the timing relative to every clock edge throughout the entire acquisition and marks the occurrences that violate the specified setup and hold times. In Figure 5, our search resulted in sixviolations. The six events are marked with hollow white11/oscilloscopes Figure 5.Setup & Hold violation search results in six occurrences found.Wave Inspector®Navigation and Search: Simplifying Waveform Analysis Application Notetriangles in the upper window. The lower window is showing a zoomed in view of one of the violations. It’s clear that the narrow negative pulse on the data line is violating the 12 ns setup time.We’ve found the metastability source without having to manually scroll through the waveform and without havingto use cursors to measure anything. You can even perform worst case checks by adjusting the setup and hold times and seeing how many events Wave Inspector®finds. For example, you can set the hold time to zero and then reduce the setup time until only one event is found.1Another powerful search capability provided by Wave Inspector is searching for data in a bus. You can use the front-panel bus buttons to define your signals as an I2C, SPI, CAN, RS-232, or parallel bus. Then the oscilloscope will decode the bus into packets, displaying the informationin a meaningful form. You can trigger on or search for datain the packets. (Requires optional application modules.) 121The MSO4000, MSO2000, and DPO2000 Series oscilloscopes can search for setup & hold violations on every channel in the oscilloscope.Wave Inspector®Navigation and Search: Simplifying Waveform AnalysisApplication NoteWhile this triggering is critical to isolate the time window that contains the problem, it’s highly likely that you’ll need to view bus activity over many packets to understand what’s going on at a system level. The bus search feature enables you to specify packet level criteria and mark every occurrence of it in the record for quick viewing,navigation and analysis. Continuing the earlier CAN example, in Figure 6 we’ve searched for every message in a long acquisition of a CAN bus with the specific Identifier (549) and Data (A1) values we’re interested in.Wave Inspector®found four messages in the acquisition that met the criteria. Again, moving the zoom window from one occurrence to the next is as simple as pressing the previous and next buttons on the front-panel. And because the oscilloscope is decoding the packets for you, you can instantly see all the relevant information without having to manually decode from analog waveforms.In addition to the examples provided above, Wave Inspector®can search for many other types of events. The full list ofsearch capabilities is shown in Table 1.13/oscilloscopes Figure 6.Searching for specific Identifier and Data values in CAN messages.Wave Inspector ®Navigation and Search: Simplifying Waveform AnalysisApplication Note14Table 1.Search events.Search Type DescriptionEdge Searches for edges (rising or falling) with a user-specified threshold level.Pulse Width Searches for positive or negative pulse widths that are >, <, =, or ≠ a user-specified pulse width. RuntSearches for positive or negative pulses that cross one amplitude threshold but fail to cross a second threshold before crossing the first again. Search for all runt pulses or only those with duration >, <, =, or ≠ a user-specified time.LogicSearch for a logic pattern (AND, OR, NAND, or NOR) across multiple waveforms with each input set to either High, Low, or Don’t Care. Search for when the event goes true, goes false or stays valid for >, <, =, or ≠ a user-specified time. Additionally, you can define one of the inputs as clock for synchronous (state) searches.Setup & Hold Search for violations of user-specified Setup and Hold times.Rise / Fall Time Search for rising and/or falling edges that are >, <, =, or ≠ a user-specified time.BusI 2C: Search for Start, Repeated Start, Stop, Missing Ack, Address, Data or Address & Data.SPI: Search for SS Active, MOSI, MISO, or MOSI & MISO.CAN: Search for Start of Frame, Type of Frame (Data, Remote, Error, Overload), Identifier (standard or extended), Data, Identifier & Data, End of Frame, or Missing Ack.LIN: Search for Sync, Identifier, Data, Identifier and Data, Wakeup Frame, Sleep Frame or Errors such as Sync, Parity, or Checksum Errors.RS-232/422/485/UART: Search for Tx Start Bit, Rx Start Bit, Tx End of Packet, Rx End of Packet,Tx Data, Rx Data, Tx Parity Error and Rx Parity Error. Parallel: Search for data value.FlexRay (MSO/DPO4000 Series only): Search for Start of Frame, Type of Frame (Normal, Payload, Null,Sync, Startup), Identifier, Cycle Count, Complete Header Field, Data, Identifier and Data, End of Frame or Errors such as Header CRC, Trailer CRC, Null Frame, Sync Frame, or Startup Frame Errors.Multiple SearchesAn obvious question at this point is,“What if I want to perform another search, but don’t want to lose the results (marks) from my first search?”Simply select the Save All Marks menu selection and you’ll see that the hollow white triangle search marks become filled in, appearing the same as marks placed with the front-panel Set Mark button. These marks are now saved on the waveform and a new search can be performed. You can do this as many times as you like, effectively creating unlimited searching ability. Of course, if you would like to start over with a clean slate you can press the Clear All Marks button to remove all marks from the waveform or you can remove any single mark using theSet/Clear Mark front-panel button.Search Interaction with TriggerTwo other powerful and time-saving capabilities are included in the Search menu: the ability to copy trigger settings to search and copy search settings to trigger. Copying the current trigger settings to the search menu is most useful when you want to search through the acquisition to see if there are any other occurrences of the trigger event in the captured data. Alternatively, copying search settings to the trigger menu is most useful when you’ve found an event in your data and you want to reacquire new data using that event as the trigger criteria.ConclusionModern digital oscilloscopes can capture massive amounts of data. Until now, searching through that data has beena time-consuming and frustrating process. With Tektronix Wave Inspector®Navigation and Search, you can extract the answers you need with efficiency and precision and unlikeany other oscilloscope.Wave Inspector®Navigation and Search: Simplifying Waveform AnalysisApplication Note15/oscilloscopes MSO/DPO4000 Series DPO3000 Series MSO/DPO2000 Series Bandwidth 1 GHz, 500 MHz, 350 MHz500 MHz, 300 MHz, 100 MHz200 MHz, 100 MHzChannels (analog) 2 or 4 analog 2 or 4 analog 2 or 4 analogChannels (digital)16 digital (MSO series)–16 digital (MSO series)Record Length10 M 5 M 1 M(All Channels)Sample Rate 5 GS/s*, 2.5 GS/s 2.5 GS/s 1 GS/sDisplay10.4 in. XGA9 in. WVGA7 in. WQVGASerial Bus Triggering I2C, SPI, CAN, LIN, FlexRay, I2C, SPI, CAN, LIN,I2C, SPI, CAN, LIN,and Analysis RS-232/422/485/UART RS-232/422/485/UART RS-232/422/485/UARTWave Inspector®Navigation and Search is available on the following oscilloscopes:Figure 7.Search side menu.*1 GHz bandwidth models.For Further InformationTektronix maintains a comprehensive, constantly expandingcollection of application notes, technical briefs and otherresources to help engineers working on the cutting edge oftechnology. Please visit Copyright © 2008, Tektronix. All rights reserved. Tektronix products are coveredby U.S. and foreign patents, issued and pending. Information in this publicationsupersedes that in all previously published material. Specification and pricechange privileges reserved. TEKTRONIX and TEK are registered trademarksof Tektronix, Inc. All other trade names referenced are the service marks,trademarks or registered trademarks of their respective companies.09/08 EA/WOW 48W-19039-3Contact Tektronix:ASEAN / Australasia (65) 6356 3900Austria +41 52 675 3777 Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777Belgium 07 81 60166Brazil & South America (11) 40669400Canada 1 (800) 661-5625 Central East Europe, Ukraine and the Baltics +41 52 675 3777Central Europe & Greece +41 52 675 3777Denmark +45 80 88 1401Finland +41 52 675 3777France+33 (0) 1 69 86 81 81Germany +49 (221) 94 77 400Hong Kong (852) 2585-6688India (91) 80-22275577Italy +39 (02) 25086 1Japan 81 (3) 6714-3010Luxembourg +44 (0) 1344 392400 Mexico, Central America & Caribbean 52 (55) 5424700Middle East, Asia and North Africa +41 52 675 3777The Netherlands 090 02 021797Norway 800 16098People’s Republic of China 86 (10) 6235 1230Poland +41 52 675 3777Portugal 80 08 12370Republic of Korea 82 (2) 6917-5000Russia & CIS +7 (495) 7484900South Africa +27 11 206 8360Spain (+34) 901 988 054Sweden 020 08 80371Switzerland +41 52 675 3777Taiwan 886 (2) 2722-9622United Kingdom & Eire +44 (0) 1344 392400USA 1 (800) 426-2200 For other areas contact Tektronix, Inc. at: 1 (503) 627-7111Updated 12 November 2007。
泰克示波器使用方法
常用按钮解释:
1.save/recall:存储或者取回波形到软盘合作存;
2.测量:点击,自动进行波形测量;
3.Acquire采集:采样设置;
4.Utility功用:激活系统工具,诸如语言选择;
5.Cursor 光标:点击按钮,激活光标,可以测量波形参数;
6.Display显示:改变波形外观或者显示屏????
7.help帮助:点击按钮,激活系统的帮助系统;
8.默认设置default setup:点击按钮,回复出厂设置;
9.Autoset 自动设置:点击按钮,根据被测波形,自动的设计垂直、水平和触发控制器,
以利于被测波形全部的显示;
10.Single SEQ:????
11.Run/stop运行停止:点击按钮,停止捕获波形(停止后,即会显示已经捕捉到的波动,
即波动的静止状态),或者点击重新启动捕获,可以观察动态的波形;
12.Print 打印:
1.Position:旋转按钮,可调节所选波形的垂直位置
2.CH1 MENU:点击按钮,可以打开或者关闭通道1
3.VOLTS/DIV:旋转按钮,可调节所选波形垂直方向刻度系数
备注:3跟15同时也为cursor1和cursor2的位置旋转按钮
4.MATH/MENU:显示所选运算波形类型
5.Position:旋转按钮,可调节所选波形的水平位置
6.HORIZ MENU:调节水平视窗及释抑菜单
7.SET to ZERO:设置相对于已捕获波形的触发点至中点
15
8.SEC/DIV:调节所选波形的水平刻度系数
9.触发电平:
10.触发菜单:。
泰克示波器安全使用指南
泰克示波器安全使用指南向来备受广阔工程师的青睐,能够协助他们更快诊断和测试明天的设计。
泰克拥有全面的数字示波器系列、基础示波器、混合域示波器和高性能示波器,协助客户完成不同的测试项目,今日安泰测试给大家共享一则泰克示波器平安用法指南,协助大家正确规范的操作仪器,削减不须要的损坏。
一、常规平安概要:请务必根据规定用法产品。
具体阅读下列平安性预防措施,以避开人身损害,并防止损坏本产品或与本产品衔接的任何产品。
仔细阅读全部解释。
保留这些解释以备未来参考。
为了保证正确平安地操作产品,除本手册规定的平安性预防措施外,您还必需遵守普遍公认的平安规程。
产品仅限经过培训的人员用法。
惟独了解相关危急的合格人员才干举行开盖修理、保养或调节。
用法前,请务必检查产品是否来自已知来源,以确保正确操作。
本产品不适用于检测危急。
假如有危急的带电导体裸露,请用法个人庇护装备以防电击和强电弧损害。
用法本产品时,您可能需要用法一套大型系统的其他部件。
有关操作这类系统的警告和注重事项,请阅读其他组件手册的平安性部分。
将本设备集成到某系统时,该系统的平安性由系统的组装者负责。
用法合适的电源线:用法本产品专用并经所在国家/地区认证的电源线,不要用法为其他产品提供的电源线。
将产品接地:本产品通过电源线的接地导线接地。
为避开电击,必需将接地导线与大地相连。
在对本产品的输入端或输出端举行衔接之前,请务必将本产品正确接地。
不要切断电源线的接地衔接。
断开电源:电源线可以使产品断开电源。
请参阅有关位置的解释。
请勿将设备放在难以临近电源线的位置;必需保证用户可以随时操作电源线,以在需要时迅速断开衔接。
正确衔接并正确断开衔接:探头或测试导线衔接到电压源时请勿插拔。
仅用法产品附带的或 Tektronix 指明适合产品用法的绝缘电压探头、测试导线和适配器。
遵守全部终端额定值:为避开火灾或电击危急,请遵守产品上全部的额定值和标志解释。
在衔接产品之前,请先查看产品手册,了解额定值的具体信息。
泰克TDS220示波器使用指导书-B
泰克TDS220示波器使用指导书华为技术有限公司版权所有侵权必究修订记录目录1现以测漂移产生为例说明示波器使用基本操作规范及步骤: (5)2抖动产生测试操作步骤: (7)3相位瞬变测试操作步骤: (7)关键词:泰克TDS220示波器摘要:TDS 220,该产品具有100MHz带宽,采样速率为1GS/s,2500点记录长度,为双通道数字实时示波器(超取样率至少为10倍),有光标读数功能、波形持续显示功能,示波器操作温度0℃~50℃,能够满足SYNLOCK对漂移产生、抖动产生、相位瞬变的测试需要。
本文主要介绍了它的使用方法。
缩略语清单:无。
参考资料清单无。
泰克TDS220示波器使用指导书我公司现在提供给新产品工程部工程师使用的示波器为美国Tektronix公司产品TDS 220,该产品具有100MHz带宽,采样速率为1GS/s,2500点记录长度,为双通道数字实时示波器(超取样率至少为10倍),有光标读数功能、波形持续显示功能,示波器操作温度0℃~50℃,能够满足SYNLOCK对漂移产生、抖动产生、相位瞬变的测试需要。
示波器控制面板上有如下功能区:右上角3个键:分别执行AUTOSET、HARDCOPY、RUN/STOP功能;MENUS区:该区6个键负责示波器主功能菜单选择;菜单子项选择区:该区5个键负责显示屏上某一主菜单各功能子项选择;由控制面板最左面一排按键控制;通道垂直位置及分辨率调节区:通道1、通道2垂直位置与分辨率由VERTICAL区各键及旋钮选择调节;通道水平位置及分辨率调节区:HORIZONAL区负责调整水平位置及水平分辨率;TRIGGER区:一个旋钮及4个按键负责对触发作调整。
1 现以测漂移产生为例说明示波器使用基本操作规范及步骤:1) 为了防止电击,示波器一定要用三脚插座,以保证可靠接入大地;2) 为使观察到的波形客观、准确,在某一环境第一次测试前应对示波器进行自校正:按MENUS框中的UTILITY钮,选择自校正项既可(一定将所有探棒或导线从通道CH1、CH2 及EXT TRIG断开;如果环境温度变化范围达到或超过5℃时,您必须执行此项操作);3) 示波器在规定操作温度(0℃~50℃)下持续运行10分钟后,进入稳定工作状态,既需预热10分钟;4)将TOG板输出的2.048MHz信号与示波器CH1相连,铷钟自由振荡的2.048MHz输出与示波器CH2相连;5)按AUTOSET键;6)按TRIGGER MENU按钮,将“信源”设置成“CH2”,如波形不稳定,调节TRIGGER LEVEL旋钮,应使示波器屏幕右方“←”符号位于所选触发源波形最大与最小值范围内,使波形稳定(示波器上方“↓”表示水平触发位置即触发时间;右上方Pos时间值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右方“←”表示垂直触发位置即触发电平高度);7)这时如不想观察CH2通道触发信号波形,可按CH2的MENU键两次,以关闭CH2通道波形(该键为通道是否显示波形开关键);8)调节CH1通道VERTICAL项下的 POSITION旋钮,将波形的调节到屏幕中间(相对垂直坐标);9)将 CH1的VOLTS/DIV旋钮旋到最右端即2mV/格;10)先向左旋HORIZONIAL项下的POSITION钮使屏幕中心上升沿向左移动一个周期,此时右上方Pos=1UI=448ns,即所测信号位置距触发位置一个周期,也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮直至10ns/格;11)按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会记录在显示屏上);12)记录测试开始时间,测试30分钟后,按STOP键(注意这时除了按如下说明操作外,不要动任何钮及键,否则测试结果波形有被刷新可能);13)按CURSOR按钮,将类型设置成时间,用VERTICAL项下CH1通道的POSITION旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL项下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光标读数位置应为阴影水平值最宽处);14)读出显示屏右区菜单项增量下的ns时间值,此值即为漂移产生时间值;15) 示波器在安装了TDS200系列扩展模块的情况下,具有硬拷贝功能(打印)功能,可以在几种示波器支持的打印格式(LaserJet、Epson、BMP、PCX、EPSIMAGE、INTERLEAF、DPU411、DPU412、ThinkJet、DeskJet)下将测试波形打印出来;16) 测试前应在示波器与HPLaserJet 打印机皆断电情况下,将打印电缆连到示波器上的Centronics口;17) 按UTILITY键,在显示屏的菜单上选择“选件”项;18) 显示屏的菜单上选择“硬拷贝”,然后将“版面格式”选为“竖向”,“拷贝格式”选为“LaserJet”(以HP激光打印机为例),“拷贝接口”选为“Centronics”;19) 按HARDCOPY键,数十秒钟后测试结果从打印机输出。
示波器 泰克使用方法
示波器泰克使用方法
示波器是一种用于观测和测量电子信号波形的仪器。
以下是使用Tektronix示波器的一般步骤:
1. 连接电源:将示波器连接到电源,并打开电源开关。
2. 连接信号源:使用万用表或手动设置恢复恢复示波器到工作范围内。
使用信号源通过BNC或其他适配器连接示波器的输入通道。
确保正确连接地线。
3. 设置水平扫描:选择水平控制通道,通过调节扫描扩展、扫描速度和触发设置来调整水平范围和时间基准。
4. 设置垂直扫描:选择垂直控制通道,通过调整增益、偏移和衰减设置来调整电压范围和信号位置。
5. 设置触发器:选择触发控制通道,通过设置触发的信号类型(例如边沿、脉宽等)和触发电压来触发示波器。
6. 扫描波形:打开示波器的扫描按钮,可以看到输入信号的波形,通过调整设置和触发条件可以获得所需的波形。
7. 分析波形:使用示波器上的光标、测量功能或自动功能来分析波形的各种参
数和特性。
8. 调整设置:根据需要调整扫描范围、时基、增益、触发设置等,以获得更好的波形显示和分析。
值得注意的是,示波器具有许多高级功能和设置选项,因此具体使用方法可能因型号和型号而有所不同。
因此,在使用示波器之前,建议阅读Tektronix示波器的用户手册以了解具体的操作步骤和设置说明。
泰克示波器远程使用指南说明书
Working Remotely with Tektronix Oscilloscopes ––TECHNICAL BRIEFThere are several approaches you can take to Array work remotely with Tektronix oscilloscopes. The available techniques differ somewhat between instruments that run the Windows operating system and instruments that do not. This guide is designed to help you interface with your oscilloscope without needing to physically interact with the instrument after the initial setup. This document applies to most Tektronix oscilloscopes that do not have a PC operating system installed.Oscilloscopes that run the Windows operating system offer different alternatives for working remotely. The Technical Brief “Working Remotely with Tektronix Oscilloscopes Running the Windows Operating System”offers information on interfacing with Windowsoscilloscopes.2 | | 3Figure 1. The rear panel of a 6 Series MSO includes Ethernet LAN and USB device interfaces available for remote access.REMOTE CONTROL USING BUILT-IN WEB SERVERMany modern Tektronix oscilloscopes feature a built-in webserver called e*Scope. On the 4 Series MSO, 5 Series MSO, and 6 Series MSO, e*Scope is an easy to set up, real-time display and interface that runs on a web browser as if you were at the instrument with a mouse and keyboard. Anyone with the IP Address can simultaneously access and control the oscilloscope.On many entry-level and previous generation oscilloscopes, e*Scope is a remote User Interface that allows you to quickly see a snapshot of the oscilloscope display and make adjustments to settings and measurements. Examples of these oscilloscopes include TDS3000B, TDS3000C, DPO2000, MSO2000, DPO3000, MSO3000, MDO3000, DPO4000, MSO4000, MDO4000, 3 Series MDO and more.SETTING UP THE OSCILLOSCOPEe*Scope requires a network connection between a modern web-browser and an oscilloscope. The web-browser may be running on a computer, smartphone, or other device. The network connection can be a direct connection with an Ethernet cable, a Local Area Network connection with a network switch or router, over a VPN, or via an externally accessible IP Address. You may need your IT Department’s assistance or permission to connect the instrument to a network.When the oscilloscope is connected to a network that you can access, you need to find the oscilloscope’s IP Address. This istypically in a Utility or I/O configuration menu.Figure 2. Example of the I/O Menu on a 6 Series MSOIn the I/O settings, you can find an automatically configured IP address or set a static IP address. Make note of the IP addressto be ready to enter it into your web-browser’s address bar.Figure 3. Example of the LAN Settings on a 6 Series MSOACCESSING THE OSCILLOSCOPE THROUGH A WEB BROWSEREnter the oscilloscope’s IP Address into the address bar of a web-browser. When you navigate to that IP Address as if it were a website, the oscilloscope will present you with a Home page with several connection and configuration options, including a link toe*Scope. Click the link to e*Scope to connect to the oscilloscope for remote control.Figure 4. Example of the Home page connected to a 6 Series MSOFILE SHARINGNo file sharing method is built-in to e*Scope. The File Sharing section of this guide explains a method of mounting network drives that works nicely with most e*Scope instruments.TROUBLESHOOTING AND SUPPORTFor additional instrument-specific guidance on e*Scope, please refer to the Primary User Manual or Online Help Manual for that oscilloscope model on . You can also contact Tektronix technical support through /support orby asking your local Tektronix support contacts.4 | | 5TEKSCOPE PC WAVEFORM ANALYSIS SOFTWARE AND REMOTE SCOPE DATA ACQUISTIONTektronix offers a PC-based analysis application called TekScope that can allow you to analyze previously-saved waveforms for free, without connecting to an oscilloscope. You can also connect to one or more oscilloscopes as a paid service to pull real-time data from the remote scopes. You can access this software and see more details at .This software allows engineers to collaborate withoutnecessarily having to share physical access to an oscilloscope and provides increased flexibility in each individual’sworkflows. Consider the following examples of workflows that this software enables:• One engineer can take data in a lab and send it to several other engineers with this free software installed, and everyone can independently make measurements.• An engineer can spend one day in an instrumentation lab to collect a large set of data, but the rest of the week at their desk or out-of-office doing analysis.• As with other remote control options, users with the “Multi-Scope Analysis” option can connect directly to networked oscilloscopes to adjust instrument settings, collect newdata and transfer waveforms all from the TekScope interface to be viewed and analyzed in a centralized user interface.The TekScope interface duplicates the features and user-friendly interface of 4/5/6 Series MSOs. Any engineers that are familiar with those oscilloscopes will feel right at home with this software, and any unfamiliar users should find the interfaceeasy to pick up.Figure 5. TekScope software uses the same user interface as the 4, 5 and 6 Series MSOs. The basic analysis package is free. With the premium Multiscope option it can collect data from two oscilloscopes at once.TekScope supports importing waveforms in a variety of formats from a variety of vendors. Typical oscilloscope measurements, math capabilities, plots, cursors, etc. are available for free, while application-specific analysis features are available as paid services. For a summary of features and options, please see /#/packages .6 | FILE SHARINGEvery modern Tektronix oscilloscope has the capability to save Waveforms and Setups to internal and external storage. Habitually saving your work can make it easier to collaborate on-the-fly and look back at old projects. Anything from a TDS3000C oscilloscope to a 4 Series MSO to a DPO70000SX can save waveforms to a USB drive, for example. Many oscilloscopes can also be connected as a client to network drives for remote file management.Most recent non-Windows oscilloscopes, including DPO2000, MSO2000, DPO3000, MSO3000, MDO3000, DPO4000, MSO4000, MDO4000, 3 Series MDO, 4 Series MSO, 5 Series MSO, and 6 Series MSO have a File Utilities system through which you can mount a network drive as well.SAVING AND RECALLING FILESBoth direct and networked file management options can usually be accessed in the File menu of an oscilloscope. In the following example from a 6 Series MSO, the Recall selection can be used to load waveforms, setups, “sessions” (an all-in-one save type) and masks. The Save and Save As selectionscan be used to store screen captures, waveform data, setups, sessions and generate reports. The File Utilities selection is where you can connect to a network drive or do things like copy and paste, delete, and rename files on the oscilloscope’slocal memory.Figure 5. Example of the File menu on a 6 Series MSO.Figure 6. Example of saving a Session file on a 6 Series MSO.In the Save As menu, the save location can be altered with the “Browse” button. At the very least, the oscilloscope’s local memory (in this example, the C drive) will be accessible. If a USB Drive or Network Drive is connected, those locations will also appear as options.PREPARING A NETWORK DRIVE ON A WINDOWS PCConnecting to a Network Drive is often simple to configure on the oscilloscope but can sometimes be difficult to configure from a security and networking standpoint. The first step isto make some file, folder or directory accessible from a host server or computer to a network that the oscilloscope is on as well. The next step is to either Mount the network driveon a non-Windows oscilloscope or browse to it through File Explorer on a Windows Oscilloscope.As an example, to share from a Windows 10 PC, you can right click on a folder you wish to make your network drive, go to Properties, and then Sharing. In the new dialog that pops up, called Network Access, the list of Names are the users whose credentials can be used to access this shared folder. In other words, if left as the default, only your username and password can be used to access this new network drive, but you can optionally add more users or open the folder up to everyone on the network.When user access is configured as you like it, press Share in the Network Access dialog to finally host the network drive.The following image is an example of a simple configuration. Figure 7. Example of creating a shared folder on Windows 10. | 7MOUNTING THE NETWORK DRIVE FROM THE OSCILLOSCOPETo access this folder on a networked non-Windows oscilloscope, you can now go to File Utilities and enter the required fields. The following image shows a typical example of how each field maps to the folder settings in the previous image. An IP Address can be used instead of the server name.A more detailed walkthrough for this example is available at / support/faqs/how-do-i-set-network-drive-my-5-series-mso-or-6-series-mso.Figure 8. Example of mounting a network drive on a 6 Series MSO PROGRAMMATIC CONTROLNearly every Tektronix oscilloscope with an external communication port (e.g. GPIB, USB, Ethernet) can be controlled with remote commands. This is a powerful, flexible and scalable method of remotely controlling your instrument and automating measurements. There is a higher upfront development cost to get up and running when compared with the other methods available to you, but basic scripting is surprisingly easy to accomplish.Tektronix instruments use SCPI style commands which are industry standard ASCII strings and therefore language-agnostic, which means any language and environment can be used for control. Commonly used languages for this include Python (with PyVISA), MATLAB (with the Instrument Control Toolbox), LabVIEW, and the C-family.PROGRAMMING RESOURCESGuides on programmatic control and the variety of remote commands with detailed descriptions can be found in the instrument’s Programmer’s Manual. You can find this on , easily accessible by searching for your model number and filtering by“Manual” and then by “Programmer.”Figure 9. Example of searching for a programmer’s manual8 | Examples of scripts can be found around the internet. Tektronix resources include:• Tektronix online forum at /viewtopic.php?f=580&t=133570• Tektronix GitHub at /tektronix.In addition, the Tektronix Support YouTube channel has a video of getting started from the ground-up for free in Python here: /watch?v=W5Brxiwnp5g.INSTALL A VISAIt is important to be aware of VISA (Virtual Instrument Software Architecture) applications and to have one installed. VISA is an I/O API that is largely industry standard, with many Test and Measurement vendors supplying their own implementation. See /hardware-support/ni-visa-keysight-visa-tekvisa.html for a few examples. While in general which VISA you use should not matter, it sometimes does, and sometimes installing multiple VISAs can cause conflicts.Some additional standard protocol specifications that commonly manage I/O on top of VISA are USB-TMC forUSB control and VXI-11 for TCP/IP control. Some users choose to use Raw Sockets instead of VXI-11 based control over Ethernet.CONTROL WITH USB AND UTILITY APPLICATIONSMany oscilloscopes can be controlled over USB via theirUSB-B port. While USB control often results in lower throughput and latency than Ethernet-based control methods, USB provides a network-less and convenient connection. Often USB control uses SCPI commands, as discussed inthe Programmatic Control section of this guide, with a GUI on top. Three notable examples of applications that support USB connections are TekScope Utility, OpenChoice Desktop, and Keithley KickStart.TEKSCOPE UTILITY FREEWARETekScope Utility is a free utility application written by a Tektronix engineer with a simple, usable GUI with accessto commonly scripted features such as screenshot transfer, measurement logging, action-on-trigger, and waveformdata transfer. This utility supports most recent and several older Tektronix oscilloscopes range from entry-level toultra-high-performance.TekScope Utility freeware is available at / viewtopic.php?t=140451.Figure 10. Sample screenshot of TekScope UtilityOPENCHOICE DESKTOPOpenChoice Desktop is a free official utility application provided by Tektronix that supports the most common simple behaviors like screenshot and waveform transfer on many previous generation oscilloscopes.OpenChoice Desktop is available at /oscilloscope/tds210-software/tektronix-openchoice-desktop-application-tdspcs1-v26.KEITHLEY KICKSTARTKeithley KickStart is an inexpensive official software that supports a variety of Tektronix and Keithley instruments. Common simple behaviors on oscilloscopes are supported, but KickStart provides many built-in data collection behaviors on Keithley DAQs, SMUs, DMMs, and Power Supplies. Engineers working with Tektronix and Keithley instruments in tandem should consider Kickstart.Kickstart is available at /keithley-kickstart.There are many approaches to controlling and getting data from Tektronix oscilloscope that run the Windows operating systems. The approach you take depends on your application and may also depend on your company’s policies. | 9Find more valuable resources at Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes thatin all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies. 060420 SBG 48W-61707-0Contact Information:Australia 1 800 709 465Austria* 00800 2255 4835Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777Belgium* 00800 2255 4835Brazil +55 (11) 3759 7627Canada 180****9200Central East Europe / Baltics +41 52 675 3777Central Europe / Greece +41 52 675 3777Denmark +45 80 88 1401Finland +41 52 675 3777France* 00800 2255 4835Germany* 00800 2255 4835Hong Kong 400 820 5835India 000 800 650 1835Indonesia 007 803 601 5249Italy 00800 2255 4835Japan 81 (3) 6714 3086Luxembourg +41 52 675 3777Malaysia 180****5835Mexico, Central/South America and Caribbean 52 (55) 56 04 50 90Middle East, Asia, and North Africa +41 52 675 3777The Netherlands* 00800 2255 4835New Zealand 0800 800 238Norway 800 16098People’s Republic of China 400 820 5835Philippines 1 800 1601 0077Poland +41 52 675 3777Portugal 80 08 12370Republic of Korea +82 2 565 1455Russia / CIS +7 (495) 6647564Singapore 800 6011 473South Africa +41 52 675 3777Spain* 00800 2255 4835Sweden* 00800 2255 4835Switzerland* 00800 2255 4835Taiwan 886 (2) 2656 6688Thailand 1 800 011 931United Kingdom / Ireland* 00800 2255 4835USA 180****9200Vietnam 12060128* European toll-free number. If not accessible, call: +41 52 675 3777Rev. 02.2018。
泰克示波器入门使用方法初学者必看(2024)
01
在使用泰克示波器前,务必先阅 读并理解用户手册中的安全操作 规范。
02
03
在连接或断开信号时,注意不要 触摸裸露的导线和连接器,以防 触电。
04
2024/1/29
20
维护保养建议
定期清洁示波器外壳和屏幕,以保持清晰的 显示效果和良好的散热性能。
定期检查示波器的电缆和连接器是否完好, 如有损坏应及时更换。
25
远程监控和数据共享实现方式
网络直播与实时展示
远程桌面控制
通过远程桌面软件实现对示波 器的远程控制,方便在不同地 点进行实时监控和调试。
数据导出与共享
将示波器采集的数据导出为标 准文件格式(如CSV、TXT等 ),方便与他人共享数据和分 析结果。
云存储与协作
利用云存储服务将示波器数据 上传至云端,实现多人协作分 析和数据共享。
2024/1/29
4
泰克示波器特点与优势
特点
泰克示波器具有高带宽、高分辨率、高采样率等特点,能够捕捉到更细微的信 号变化。
优势
泰克示波器在触发、存储、显示和分析等方面具有卓越的性能,能够满足各种 复杂信号的测试需求。此外,泰克示波器还提供了丰富的接口和协议解码功能 ,方便用户进行各种扩展应用。
2024/1/29
泰克示波器入门使用方法 初学者必看
2024/1/29
1
目录
2024/1/29
• 泰克示波器简介 • 示波器基本结构与功能 • 初学者操作指南 • 波形测量与数据分析应用实例 • 注意事项及常见问题解答 • 进阶功能探索与拓展应用
2
01
泰克示波器简介
2024/1/29
3
示波器定义与作用
示波器定义
TDS220示波器操作指导书
核准
审核
制订者
XX电子科技有限公司
文件类别:操作规范
文件编号:BQ-83-013
版本:1.00
文件名:TDS220示波器操作指导书
页பைடு நூலகம்次:1/1
制定日期:
操作步骤:
1、将电源线插入插座转换器,必须将接地脚架空。
2、按下“POWER”键。
3、待示波器自检结束进入测试界.
4、按下SAVE/RECALL键进入主菜单设置界面.显示屏幕右边显
示设置记忆对应的右边的按键,按动选择设置键,找出设置
存放的记忆,
5、显示屏右下角的调出对应的调出键,按下调出选择的记忆.
6、将测试治具探头线接在CH1位置.按AUTOSET键正常测试,
在显示屏幕上,观察测试到的波形。
7、测试过程中波形异常应立即停止测试并隔离,记录异常情况
待修.如无异常则为PASS
8、测试完毕,按起POWER键切断电源
泰克示波器资料简易操作
立肯科技 企劃處 客戶服務部
台北 (02) 8226-1366
新竹 (03) 564-6969
高雄 (07) 384-6369
2
2-2.何謂軌跡 ?
TRACE
打開任一波道,螢幕左側出現如下圖的方框,指示波道的時間檔位及電壓檔位。 電壓表示垂直軸,時間表示水平軸。
垂直共 8 格
VOLTS / DIV
調整垂直電壓之檔位使信號大小適合觀察。
波形適合觀察
波形太小
立肯科技 企劃處 客戶服務部
台北 (02) 8226-1366
新竹 (03) 564-6969
高雄 (07) 384-6369
6
2-6.如何微調波形大小 ?
VAR & VOLTS / DIV
垂直電壓檔位之微調控制。
請參照第五章放大及運算。
2.變更顯示設定 ?
請參照第六章顯示設定。
3.儲存及讀取波形 ?
請參照第六章波形儲存與讀取。
4.儲存操作環境設定 ?
請參照第六章操作設定。
5.如何列印資料 ?
請參照第六章列印及輸出。
1
2 5
6.使用參數量測 ?
請參照第六章量測功能。
高雄 (07) 384-6369
10
2-10.如何觸發信號 ?
TRIGGER LEVEL & DELAY
調整位準決定觸發信號的電壓位置 ( 垂直 ),調整延遲決定觀察觸發信號的前後波形 ( 水平 )。
沒有觸發
Trigger Level 調整
Level 與 Delay 交越的點為觸發點
Trigger Delay 調整
泰克示波器官方使用教程
示波器通过将被测信号与内部产 生的扫描信号进行比较,从而在 屏幕上显示出被测信号的波形。
示波器分类及特点
01
术,具有 简单、直观的特点,但精 度和稳定性相对较低。
数字示波器
采用数字信号处理技术, 具有高精度、高稳定性、 多功能等特点。
混合信号示波器
同时支持模拟和数字信号 测量,适用于复杂信号分 析。
触发故障
检查触发源设置是否正确,调整触发电平和 触发模式。
显示故障
检查显示屏连接是否松动,调整显示屏亮度 和对比度设置。
通道故障
检查通道连接是否良好,尝试重新插拔通道 模块或更换通道模块。
预防性维护保养计划制定和执行
定期清洁
定期清洁示波器外壳和显示屏,避免 灰尘和污垢堆积。
定期检查
定期检查电源插头、电源线、通道连 接等关键部件,确保设备正常运行。
自定义报告模板设计教程
模板创建
用户可以根据需求创建自定义报告模板。通过示波器的报 告生成功能,用户可以选择不同的布局、字体、颜色等, 以定制个性化的报告外观。
数据填充
在自定义模板中,用户可以设置动态数据填充区域。当导 入波形数据时,这些区域将自动填充相应的测量结果和波 形信息。
模板保存与调用
创建好的自定义模板可以保存到示波器内部或外部存储设 备中。在需要生成报告时,用户可以直接调用这些模板, 提高报告生成的效率。
泰克示波器简介
泰克(Tektronix)是全球知名 的电子测量仪器制造商,其示波 器产品具有高性能、高精度、高
可靠性等特点。
泰克示波器系列丰富,包括模拟 示波器、数字示波器、混合信号 示波器等,满足不同用户的需求
。
泰克示波器在科研、教育、工业 生产等领域得到广泛应用,为电 子工程师和技术人员提供了强大
TDS 220 数字实时示波器 使用指导
TDS 220 数字实时示波器使用指导TMSYNLOCK测试仪表使用指导新产品工程部 May.3,1999TDS 220 数字实时示波器使用指导我公司现在提供给新产品工程部工程师使用的示波器为美国Tektronix公司产品TDS 220,该产品具有100MHz带宽,采样速率为1GS/s,2500点记录长度,为双通道数字实时示波器(超取样率至少为10倍),有光标读数功能、波形持续显示功能,示波器操作温度0?~50?,能够满足SYNLOCK对漂移产生、抖动产生、相位瞬变的测试需要。
示波器控制面板上有如下功能区:, 右上角3个键:分别执行AUTOSET、HARDCOPY、RUN/STOP功能; , MENUS区:该区6个键负责示波器主功能菜单选择;, 菜单子项选择区:该区5个键负责显示屏上某一主菜单各功能子项选择;由控制面板最左面一排按键控制;, 通道垂直位置及分辨率调节区:通道1、通道2垂直位置与分辨率由VERTICAL区各键及旋钮选择调节;, 通道水平位置及分辨率调节区:HORIZONAL区负责调整水平位置及水平分辨率;TRIGGER区:一个旋钮及4个按键负责对触发作调整。
一、现以测漂移产生为例说明示波器使用基本操作规范及步骤:1) 为了防止电击,示波器一定要用三脚插座,以保证可靠接入大地;2) 为使观察到的波形客观、准确,在某一环境第一次测试前应对示波器进行自校正:按MENUS框中的UTILITY钮,选择自校正项既可(一定将所有探棒或导线从通道CH1、CH2 及EXT TRIG断开;如果环境温度变化范围达到或超过5?时,您必须执行此项操作);3) 示波器在规定操作温度(0?~50?)下持续运行10分钟后,进入稳定工作状态,既需预热10分钟;4) 将TOG板输出的2.048MHz信号与示波器CH1相连,铷钟自由振荡的2.048MHz输出与示波器CH2相连;5) 按AUTOSET键;6) 按TRIGGER MENU按钮,将“信源”设置成“CH2”,如波形不稳定,调节TRIGGER LEVEL旋钮,应使示波器屏幕右方“?”符号位于所选触发源波形最大与最小值范围内,使波形稳定(示波器上方“?”表示水平触发位置即触发TMSYNLOCK测试仪表使用指导新产品工程部 May.3,1999时间;右上方Pos时间值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右方“?”表示垂直触发位置即触发电平高度); 7) 这时如不想观察CH2通道触发信号波形,可按CH2的MENU键两次,以关闭CH2通道波形(该键为通道是否显示波形开关键);8) 调节CH1通道VERTICAL项下的 POSITION旋钮,将波形的调节到屏幕中间(相对垂直坐标);9) 将 CH1的VOLTS/DIV旋钮旋到最右端即2mV/格; 10) 先向左旋HORIZONIAL 项下的POSITION钮使屏幕中心上升沿向左移动一个周期,此时右上方 Pos=1UI=448ns,即所测信号位置距触发位置一个周期,也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮直至10ns/格; 11) 按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会记录在显示屏上);12) 记录测试开始时间,测试30分钟后,按STOP键(注意这时除了按如下说明操作外,不要动任何钮及键,否则测试结果波形有被刷新可能); 13) 按CURSOR 按钮,将类型设置成时间,用VERTICAL项下CH1通道的POSITION 旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL项下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光标读数位置应为阴影水平值最宽处);14) 读出显示屏右区菜单项增量下的ns时间值,此值即为漂移产生时间值;15) 示波器在安装了TDS200系列扩展模块的情况下,具有硬拷贝功能(打印)功能,可以在几种示波器支持的打印格式(LaserJet、Epson、BMP、PCX、EPSIMAGE、INTERLEAF、DPU411、DPU412、ThinkJet、DeskJet)下将测试波形打印出来;16) 测试前应在示波器与HPLaserJet 打印机皆断电情况下,将打印电缆连到示波器上的Centronics口;17) 按UTILITY键,在显示屏的菜单上选择“选件”项;18) 显示屏的菜单上选择“硬拷贝”,然后将“版面格式”选为“竖向”,“拷贝格式”选为“LaserJet”(以HP激光打印机为例)“拷贝接口”选为“,Centronics”; 19) 按HARDCOPY键,数十秒钟后测试结果从打印机输出。
泰克示波器的使用方法
泰克示波器的使用方法泰克示波器是一种用来测量电信号的仪器,广泛应用于电子工程、通信、计算机科学等领域。
它能够将电信号转换成图形显示,帮助人们分析信号的特征和性质。
本文将详细介绍泰克示波器的使用方法。
首先,泰克示波器的前期准备工作非常重要。
我们需要将示波器连接到待测信号的源头,确保信号传输的稳定和可靠。
通常情况下,示波器有两个输入通道,可以同时测量两路信号。
我们需要使用连接线将待测信号源与泰克示波器的输入通道连接起来。
在连接过程中,请务必确保连接线的质量良好,避免产生干扰和噪声。
接下来,我们需要对泰克示波器的设置进行调整。
首先是电压范围的调整。
我们需要根据待测信号的幅值范围来设定示波器的合适量程。
通常情况下,泰克示波器提供了多档量程可供选择,分别对应不同的信号幅值范围。
我们可以根据待测信号的预估幅值来选择相应的量程。
接着是时间基准的调整。
示波器的时间基准用来设定X轴的时间刻度。
根据待测信号的频率和时间长度,我们可以选择适当的时间基准,以便观察到信号的波形特征。
通常情况下,示波器提供了多个时间基准可供选择,包括微秒、毫秒、秒等。
我们可以根据需要灵活调整时间基准。
在设置完电压范围和时间基准后,我们需要对泰克示波器的触发功能进行配置。
触发功能能够使示波器只显示待测信号的一部分波形,以便我们能够更清晰地观察信号的特征。
触发功能包括触发源、触发方式和触发电平等设置。
触发源通常可以选择信号源或外部触发,触发方式可以选择边沿触发或脉冲触发,触发电平可以设置为上升沿、下降沿等。
我们可以根据待测信号的特点和需要来进行相应的触发配置。
接下来就是正式进行泰克示波器的测量操作了。
我们可以通过调整泰克示波器上的各种旋钮和按钮来获取我们需要的波形图像。
首先,我们可以通过调整竖直位置旋钮来使波形在屏幕上垂直居中。
然后,我们可以通过调整水平位置旋钮来使波形在屏幕上水平居中。
接着,我们可以通过调整增益旋钮来改变波形的放大倍数,以便更清晰地观察信号的细节。
示波器使用指导书
示波器使用指导书示波器使用指导书
目录
1、引言
1.1 读者对象
1.2 背景信息
2、示波器概述
2.1 示波器的定义
2.2 示波器的工作原理
2.3 示波器的分类
3、示波器的组成部分
3.1 示波器的外部组成部分
3.1.1 示波器的控制面板
3.1.2 示波器的连接口
3.2 示波器的内部组成部分
3.2.1 示波器的信号输入部分
3.2.3 示波器的显示部分
4、示波器的基本操作
4.1 示波器的开机和关机
4.2 示波器的信号连接
4.3 示波器的参数设置
4.3.1 时间基准设置
4.3.2 垂直增益设置
4.3.3 触发设置
4.4 示波器的波形显示
4.4.1 单次扫描模式
4.4.2 连续扫描模式
4.4.3 存储模式
5、示波器的高级功能
5.1 示波器的自动测量功能 5.2 示波器的存储和回放功能 5.3 示波器的追踪功能
6、故障排除与维护
6.1 常见问题与解决方法
6.2 示波器的维护方法
7、致谢
本文档涉及附件:无
法律名词及注释:
1、示波器:一种用于显示电子信号波形的仪器。
2、扫描模式:指示波器显示连续扫描(持续显示)或单次扫描(触发一次后停止)的模式。
3、垂直增益:指示波器放大输入信号的程度。
4、触发设置:指示波器触发输入信号以开始显示波形的设置。
5、自动测量功能:指示波器自动测量波形的幅值、周期等参数的功能。
6、存储和回放功能:指示波器存储所捕获波形并可以回放的能力。
7、信号发生器功能:指示波器具备产生基本信号波形的能力。
泰克示波器使用技巧
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
Confidential
iDPBG DSD MLBII-TE-FAE
精品课件!
Confidential
iDPBG DSD MLBII-TE-FAE
精品课件!
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAEPBG DSD MLBII-TE-FAE
Confidential
iDPBG DSD MLBII-TE-FAE
Confidential
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料编码产品名称
使用对象产品版本
编写部门资料版本
泰克TDS220示波器使用指导书
拟制:日期:
审核:日期:
审核:日期:
批准:日期:
华为技术有限公司
版权所有侵权必究
修订记录
目录
1现以测漂移产生为例说明示波器使用基本操作规范及步骤: (5)
2抖动产生测试操作步骤: (7)
3相位瞬变测试操作步骤: (7)
关键词:
泰克TDS220示波器
摘要:
TDS 220,该产品具有100MHz带宽,采样速率为1GS/s,2500点记录长
度,为双通道数字实时示波器(超取样率至少为10倍),有光标读数功能、
波形持续显示功能,示波器操作温度0℃~50℃,能够满足SYNLOCK对漂
移产生、抖动产生、相位瞬变的测试需要。
本文主要介绍了它的使用方法。
缩略语清单:
无。
参考资料清单
无。
泰克TDS220示波器使用指导书
我公司现在提供给新产品工程部工程师使用的示波器为美国Tektronix公司
产品TDS 220,该产品具有100MHz带宽,采样速率为1GS/s,2500点记
录长度,为双通道数字实时示波器(超取样率至少为10倍),有光标读数
功能、波形持续显示功能,示波器操作温度0℃~50℃,能够满足SYNLOCK
对漂移产生、抖动产生、相位瞬变的测试需要。
示波器控制面板上有如下功能区:
右上角3个键:分别执行AUTOSET、HARDCOPY、RUN/STOP功能;
MENUS区:该区6个键负责示波器主功能菜单选择;
菜单子项选择区:该区5个键负责显示屏上某一主菜单各功能子项选择;由
控制面板最左面一排按键控制;
通道垂直位置及分辨率调节区:通道1、通道2垂直位置与分辨率由
VERTICAL区各键及旋钮选择调节;
通道水平位置及分辨率调节区:HORIZONAL区负责调整水平位置及水平分
辨率;
TRIGGER区:一个旋钮及4个按键负责对触发作调整。
1 现以测漂移产生为例说明示波器使用基本操作规范及步骤:
1) 为了防止电击,示波器一定要用三脚插座,以保证可靠接入大地;
2) 为使观察到的波形客观、准确,在某一环境第一次测试前应对示波器进
行自校正:按MENUS框中的UTILITY钮,选择自校正项既可(一定将所有
探棒或导线从通道CH1、CH2 及EXT TRIG断开;如果环境温度变化范围
达到或超过5℃时,您必须执行此项操作);
3) 示波器在规定操作温度(0℃~50℃)下持续运行10分钟后,进入稳定
工作状态,既需预热10分钟;
4)将TOG板输出的2.048MHz信号与示波器CH1相连,铷钟自由振荡的
2.048MHz输出与示波器CH2相连;
5)按AUTOSET键;
6)按TRIGGER MENU按钮,将“信源”设置成“CH2”,如波形不稳定,
调节TRIGGER LEVEL旋钮,应使示波器屏幕右方“←”符号位于所选触发源
波形最大与最小值范围内,使波形稳定(示波器上方“↓”表示水平触发位
置即触发时间;右上方Pos时间值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右方“←”表示垂直触发位置即触发电平高度);
7)这时如不想观察CH2通道触发信号波形,可按CH2的MENU键两次,以关闭CH2通道波形(该键为通道是否显示波形开关键);
8)调节CH1通道VERTICAL项下的 POSITION旋钮,将波形的调节到屏幕中间(相对垂直坐标);
9)将 CH1的VOLTS/DIV旋钮旋到最右端即2mV/格;
10)先向左旋HORIZONIAL项下的POSITION钮使屏幕中心上升沿向左移动一个周期,此时右上方Pos=1UI=448ns,即所测信号位置距触发位置一个周期,也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮直至10ns/格;
11)按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会记录在显示屏上);
12)记录测试开始时间,测试30分钟后,按STOP键(注意这时除了按如下说明操作外,不要动任何钮及键,否则测试结果波形有被刷新可能);
13)按CURSOR按钮,将类型设置成时间,用VERTICAL项下CH1通道的POSITION旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL项下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光标读数位置应为阴影水平值最宽处);
14)读出显示屏右区菜单项增量下的ns时间值,此值即为漂移产生时间值;
15) 示波器在安装了TDS200系列扩展模块的情况下,具有硬拷贝功能(打印)功能,可以在几种示波器支持的打印格式(LaserJet、Epson、BMP、PCX、EPSIMAGE、INTERLEAF、DPU411、DPU412、ThinkJet、DeskJet)下将测试波形打印出来;
16) 测试前应在示波器与HPLaserJet 打印机皆断电情况下,将打印电缆连到示波器上的Centronics口;
17) 按UTILITY键,在显示屏的菜单上选择“选件”项;
18) 显示屏的菜单上选择“硬拷贝”,然后将“版面格式”选为“竖向”,“拷贝格式”选为“LaserJet”(以HP激光打印机为例),“拷贝接口”选为“Centronics”;
19) 按HARDCOPY键,数十秒钟后测试结果从打印机输出。
做其它测试也以如上所述操作为参考,如操作过程中出现操作错误,而无法得到预期显示效果,感到很迷惑时,请从第5步开始从新按步骤进行即可解决问题(既第5步对示波器设置作了复位)。
2 抖动产生测试操作步骤:
1) 将TOG板输出的2.048MHz信号与示波器CH1相连;
2) 按AUTOSET键;
3) 如波形不稳定,按TRIGGER MENU按钮,调节TRIGGER LEVEL旋
钮,应使示波器屏幕右方“←”符号位于所选触发源波形最大与最小值范围
内,使波形稳定(示波器上方“↓”表示水平触发位置即触发时间;右上方
Pos时间值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右
方“←”表示垂直触发位置即触发电平高度);
4) 调节CH1通道VERTICAL项下的POSITION旋钮,将波形的调节到屏
幕中间(相对垂直坐标);
5) 将CH1的VOLTS/DIV旋钮旋到最右端即2mV/格;
6) 先向左旋HORIZONIAL项下的POSITION钮使屏幕中心上升沿向左移
动一个周期,此时右上方Pos=1UI=448ns,即所测信号位置距触发位置一
个周期,也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮
直至5ns/格;
7) 按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会记录
在显示屏上);
8) 记录测试开始时间,测试10秒钟后,按STOP键(注意这时除了按如
下说明操作外,不要动任何钮及键,否则测试结果波形有被刷新可能);
9) 按CURSOR按钮,将类型设置成时间,用VERTICAL项下CH1通道
的POSITION旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL
项下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光
标读数位置应为阴影水平值最宽处);
10) 读出显示屏右区菜单项:增量下的ns时间值,此值即为抖动产生时间
值;
3 相位瞬变测试操作步骤:
1) 将TOG板输出的2.048MHz信号与示波器CH1相连;
2) 按AUTOSET键;
3) 如波形不稳定,按TRIGGER MENU按钮,调节TRIGGER LEVEL旋
钮,应使示波器屏幕右方“←”符号位于所选触发源波形最大与最小值范围
内,使波形稳定(示波器上方“↓”表示水平触发位置即触发时间;右上方
Pos时间值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右方“←”表示垂直触发位置即触发电平高度);
4) 如波形不在纵轴中间位置,调节CH1通道VERTICAL项下的POSITION旋钮,将波形的调节到屏幕中间(相对垂直坐标);
5) 将CH1的VOLTS/DIV旋钮旋到最右端即2mV/格;
6) 先向左旋HORIZONIAL项下的POSITION钮使屏幕中心上升沿向左移动一个周期,此时右上方Pos=1UI=448ns,即所测信号位置距触发位置一个周期,也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮直至5ns/格;
7) 按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会记录在显示屏上);
8) 在终端上作切换操作,应马上可以观察到相位瞬变,按STOP键(注意这时除了按如下说明操作外,不要动任何钮及键,否则测试结果波形有被刷新可能);
9) 按CURSOR按钮,将类型设置成时间,用VERTICAL项下CH1通道的POSITION旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL 项下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光标读数位置应为阴影水平值最宽处);
10) 读出显示屏右区菜单项:增量下的ns时间值,此值即为相位瞬变时间值;。