第2章机械设计中的约束问题
(完整版)机械设计课后习题答案

第一章绪论1-2 现代机械系统由哪些子系统组成,各子系统具有什么功能?答:组成子系统及其功能如下:(1)驱动系统其功能是向机械提供运动和动力。
(2)传动系统其功能是将驱动系统的动力变换并传递给执行机构系统。
(3)执行系统其功能是利用机械能来改变左右对象的性质、状态、形状或位置,或对作业对象进行检测、度量等,按预定规律运动,进行生产或达到其他预定要求。
(4)控制和信息处理系统其功能是控制驱动系统、传动系统、执行系统各部分协调有序地工作,并准确可靠地完成整个机械系统功能。
第二章机械设计基础知识2-2 什么是机械零件的失效?它主要表现在哪些方面?答:(1)断裂失效主要表现在零件在受拉、压、弯、剪、扭等外载荷作用时,由于某一危险截面的应力超过零件的强度极限发生的断裂,如螺栓的断裂、齿轮轮齿根部的折断等。
(2)变形失效主要表现在作用在零件上的应力超过了材料的屈服极限,零件产生塑性变形。
(3)表面损伤失效主要表现在零件表面的腐蚀、磨损和接触疲劳。
2-4 解释名词:静载荷、变载荷、名义载荷、计算载荷、静应力、变应力、接触应力。
答:静载荷大小、位置、方向都不变或变化缓慢的载荷。
变载荷大小、位置、方向随时间变化的载荷。
名义载荷在理想的平稳工作条件下作用在零件上的载荷。
计算载荷计算载荷就是载荷系数K和名义载荷的乘积。
静应力不随时间变化或随时间变化很小的应力。
变应力随时间变化的应力,可以由变载荷产生,也可由静载荷产生。
2-6 机械设计中常用材料选择的基本原则是什么?答:机械中材料的选择是一个比较复杂的决策问题,其基本原则如下:(1)材料的使用性能应满足工作要求。
使用性能包含以下几个方面:①力学性能②物理性能③化学性能(2)材料的工艺性能应满足加工要求。
具体考虑以下几点:①铸造性②可锻性③焊接性④热处理性⑤切削加工性(3)力求零件生产的总成本最低。
主要考虑以下因素:①材料的相对价格②国家的资源状况③零件的总成本2-8 润滑油和润滑脂的主要质量指标有哪几项?答:衡量润滑油的主要指标有:粘度(动力粘度和运动粘度)、粘度指数、闪点和倾点等。
机械设计基础复习题1

机械设计基础复习题1第二章复习题⒈填空题(1)两构件通过面接触组成的运动副称为低副,低副又分为转动副副和移动副两种。
(2)两构件通过点或线接触的运动副叫作高副(3)机构中存在与整个机构运动无关的自由度称为在计算机构自由度时应。
(4)在任何一个机构中,只能有1个构件作为机架。
⒉选择题(1)一个作平面运动的自由构件具有自由度。
a.一个b.二个c.三个d.四个(2)平面机构中的高副所引入的约束数目为。
a.一个b.二个c.三个d.四个(3)平面机构中的低副所保留的自由度数目为。
a.一个b.二个c.三个d.四个(4)当机构的原动件数机构的自由度数时,该机构具有确定的相对运动。
a.大于b.等于c.小于(1)何谓运动副?何谓高副和低副?每种运动副各引入几个约束?(2)何谓机构运动简图?它有何实际意义?由实际机械绘制机构运动简图的步骤如何?(3)平面机构自由度的计算公式是什么?应用公式计算机构自由度时应注意哪些问题?(4)平面机构具有确定运动的条件是什么?第二章复习题1.填空题1.填空题(1)按凸轮形状来分,凸轮机构可分为、及三类。
(2)在凸轮的休止角范围内,随凸轮的转动,从动件的运动位置停留不动(3)凸轮机构的压力角指的是凸轮机构中从动件的运动方向线与其受力方向线之间所夹的锐角。
(4)变转动为移动的机构有凸轮机构及曲柄滑块机构。
(5)依靠外力维持接触的凸轮机构,在回程时发生自锁的可能性很小,故对这类凸轮只需对其推程压力角进行校核。
(6)凸轮轮廓曲线是由从动件运动规律所决定的。
(7)滚子推杆盘形凸轮的基圆半径是从()到()的最短距离。
1.与连杆机构相比,凸轮机构最大的缺点是A.惯性力难以平衡B.点、线接触,易磨损C.设计较为复杂D.不能实现间歇运动2.与其他机构相比,凸轮机构最大的优点是A.可实现各种预期的运动规律B.便于润滑C.制造方便,易获得较高的精度D.从动件的行程较大3.下述几种运动规律中,既不会产生柔性冲击也不会产生刚性冲击,可用于高速场合的是。
机械原理复习题第2章机构的结构分析

4
ω1 1
5 3
2
2
题9图
• • • •
解: F=3n-(2pL+pH)=3×4-2×6=0 或F=3n-(2pL+pH-p')-F′ =3×4-(2×7+0-2)-0=0 此方案有结构组成原理的错误。因为它 的自由度为零,不能运动。 • 修改方案如答图a、b所示。
• 例题2 图示为毛纺设备洗毛机中所采用的双 重偏心轮机构,偏心轮1可以在偏心轮2中相 对转动,偏心轮2可以在构件3的圆环中相对 转动。⑴试绘制其在图示位置时的机构运动 简图;⑵当以偏心盘1为原动件时,该机构是 否有确定的运动?
B 3 3 1 O A B
2
O΄
O 1 2 A
O΄
题2图
题答图
• 解 在绘制机构运动简图时,首先必须搞清 机构的组成及运动传递情况。在图示机构中, 偏心盘1为原动件,其与机架构成转动副A; 偏心盘1与偏心盘2构成转动副O;偏心盘2 与带环的构件3构成转动副O΄;构件3与机 架组成转动副B。 • 根据上述分析,再选定一适当的比例尺和视 图平面,并依次定出各转动副的位置。就不 难画出其机构运动简图,如答图所示。
O 1 A
O A 1 2
3 B 题4图
4
2
3
B
题答图
• 解 在绘制机构运动简图时,首先必须搞
清机构的组成及运动传递情况。在图示
机构中,偏心盘1为原动件,其与机架4
构成转动副O;偏心盘1与构件2构成转
动副A;构件2与滑块3构成转动副B;滑
块3与机架4组成移动副,其相对移动方
向沿OB方向。
• 根据上述分析,再选定一适当的比例尺和 视图平面,并依次定出各转动副的位置和 移动副导路的方位。就不难画出其机构运 动简图,如答图所示。 • 由于该机构具有3个活动构件、3个转动副 和1个移动副,没有高副,没有局部自由 度和虚约束,故机构的自由度为 O1 A • F=3n-(2pL+pH) OA 2 • =3×3-(2×4+0) 1 2 3B • =1
西北工业大学机械原理课后答案第2章

第二章 机构的结构分析题2-11 图a 所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方案。
解:1)取比例尺,绘制机构运动简图。
(图2-11a)2)要分析是否能实现设计意图,首先要计算机构的自由度。
尽管此机构有4个活动件,但齿轮1和凸轮2是固装在轴A 上,只能作为一个活动件,故 3=n 3=l p 1=h p01423323=-⨯-⨯=--=h l p p n F原动件数不等于自由度数,此简易冲床不能运动,即不能实现设计意图。
分析:因构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架。
故需增加构件的自由度。
3)提出修改方案:可以在机构的适当位置增加一个活动构件和一个低副,或用一个高副来代替一个低副。
(1) 在构件3、4之间加一连杆及一个转动副(图2-11b)。
(2) 在构件3、4之间加一滑块及一个移动副(图2-11c)。
(3) 在构件3、4之间加一滚子(局部自由度)及一个平面高副(图2-11d)。
11(c)题2-11(d)54364(a)5325215436426(b)321讨论:增加机构自由度的方法一般是在适当位置上添加一个构件(相当于增加3个自由度)和1个低副(相当于引入2个约束),如图2-1(b )(c )所示,这样就相当于给机构增加了一个自由度。
用一个高副代替一个低副也可以增加机构自由度,如图2-1(d )所示。
题2-12 图a 所示为一小型压力机。
图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。
在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。
同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。
机械设计基础第二章

第2章平面机构运动简图及自由度计算机械是替代人类完成各项体力劳动甚至脑力劳动的执行者。
在各种新型机械的设计初期,首先需要采用机械系统运动简图来对比各种运动方案及工作原理,一边从中选出最佳的设计方案。
然后再按照运动要求确定及其各组成构件的主要尺寸,按照强度条件和工作情况确定机构个部分的详细结构尺寸。
机械系统的运动简图设计是设计机械产品十分重要的内容,正确、合理地设计机械系统简图,对于满足机械产品的功能要求,提高性能和质量,降低制造成本和使用费用等是十分重要的。
机械系统要完成比较复杂的运动,一般都需要将若干个机构根据机械系统的运动协调配合的要求组合起来,因此机械系统的运动简图也是机构系统的运动简图。
机械系统的运动简图是用规定的符号,绘出能准确表达机构各构件之间的相对运动关系及运动特征的简单图形。
一般某机构可分为平面机构和空间机构。
平面机构是指各运动构件均在同意平面或相互平行平面内运动的机构。
空间机构是指虽有的机构不完全是相互平行的平面内运动的机构。
本章将着重介绍机构的结构分析。
第一节机构的组成构件任何机器都是由若干个零件组装而成的。
构件是指组成机械的各个相对运动的单元。
构件和零件的概念是有区别的。
构件是机械中的运动单元体,零件则是机械中不可拆分的制造单元体。
构件可以是一个零件,也可以是由两个或两个以上的零件组成。
如图2-1所示的内燃机中的连杆就是由单独加工的连杆体、轴套、连杆头、轴瓦、螺杆、螺母等零件组成的,这些零件分别加工制造,但是当它们装配成连杆后则作为一个整体在发动机内部作往复运动相互之间并不产生相对运动,因此连杆可以看做一个构件。
因此,从运动角度来看,任何机器都是许多独立运动单元组合而成的,这些独立运动单元体称为构件。
从加工制造角度来看,任何机器都是由许多独立制造单元体组合而成的,这些独立制造单元体称为零件。
通常,为了完成同一使命而在结构上组合在一起并协同工作的零件称为部件,如联轴器、减速器等。
机械设计中的约束问题

min m - a
a
2
max - min
m
max min
非对称循环变应力
2 r min / max
例2-1:设有一零件受变应力作用,已知变应力的平均应力 应力幅为 =129Mpa,试求该变应力的循环特征r。
=189Mpa,
(3)几种稳定循环变应力
(1)不同循环次数N时的疲劳极限:
当应力循环特征r一定时,应力增大,零件失效前 所经历的循环次数N减少;反之,应力减少,循环次数 N增加。当应力减小到某一数值时,零件可经"无数"次 循环而不发生疲劳破坏。图中来自劳曲线可以表示为:=常数
为材料的疲劳极限,即经"无数"次循环(无限寿命)而不发生疲劳破坏时的极限应力; 为材料条件疲劳极限,即应力循环次数为N(有限寿命)时的极限应力。
)作为
三、变应力作用下的强度问题
1、变应力的种类和特点
(1)静载荷和变载荷均可能产生变应力。在 静载荷F作用下,转动心轴上的a点所受的应 力就是一个对称循环的变应力。
(2)变应力参数(以正应力δ为例,可将τ替 换 δ)
最大应力 最小应力 应力幅 平均应力 循环特征
max a m
2、危险剖面处的计算安全系数[ ;或 式中: 为极限正应力; ]、[ ]不应小于许用安全系数[S],即: (2-2)
为极限剪切应力; 、 )作为极
•对于塑性材料:主要失效形式是塑性变形,取其屈服极限( 限应力,即 , ; •对于脆性材料:主要失效形式是脆性破坏,取其强度极限( 极限应力,即 , 。
、
§2-1 概述
机械设计的主要任务,就是要在由各种约束条件下,寻找设计方案。机械 设计中的约束主要有:经济方面的约束、社会方面的约束和技术方面的约束。
机械原理例题(第二章机构分析)

例1:试绘制图示偏心回转油泵机构的运动简图。图中偏心轮 1 绕固定轴心A转动,外环2上的叶片在可绕轴心 C 转动的圆 柱 3 中滑动。当偏心轮连续转动时,将低压油由右端吸入, 高压油从左端排出。
B A
解: 选取合适的比例尺绘 制运动简图; 计算机构自由度 n = 3, pl = 4, ph =0 F = 3n - 2 pl - ph = 3×3-2×4-0 =1 结论:此机构为曲柄 滑块机构,需要一个 原动件。
例2: 计算图示机构的自由度。
解:
D 点是三构件相铰接的复
合铰链, 凸轮从动件的滚子G引入 一个局部自由度,凸轮与 大齿轮固结为同一构件。 n = 9, pl = 12, ph = 2 F = 3n - 2pl - ph = 3×9-2×12-2 =1
例3:图示机构中,AB∥=EF ∥=CD,试计算机构自由度。 解: C处为复合铰链, m=3; G处为局部自由度;有一个 虚约束。 I处有一个高副虚约束。 机构ABCDEF为平行四边形 机构,构件EF及引入的约束 为虚约束。 机构自由度F
e)
f)
2-13:图示为一新型偏心轮滑阀式真空泵。其偏心轮1绕固定 轴心A转动,与外环2固连在一起的滑阀3在可绕固定轴心C转 动的圆柱4中滑动。当偏心轮1 按图示方向连续回转时,可将 设备中的空气吸入,并将空气从阀5中排出,从而形成真空。 试绘制其运动简图,并计算其自由度。
选取比例尺作机构运动简图, 如图所示。
求自由度: n = 3, Pl = 4, ph =0,
F = 3n - 2pl - ph
= 3×3-2×4-0 = 1
2-16:计算图示机构的自由度: (a)齿轮——连杆组合机构
机械系统设计 第二章 机械系统的方案设计与总体设计

20
功能原理设计的要求(3项): 1)应设计出几种不同的功能原理方案; 2)按照机械系统设计的基本原则、设计要求以及系统功能进行 比较,以便从中选出一个较理想的。
26
第一步:用黑箱法寻找总功能的转换关系
2.1.4 系统(产品)原理方案的综合举 例
27
第二步:总功能分解
28
第三步:建立功能结构图
29
第四步:寻找原理解法和原理解组合
序 号
A B C D E F G H I
分功能
1 推压 铲斗 提升 回转 能量转换 能量传递与分配 制动 变速 行走 齿条 正铲斗 油缸 内齿轮传动 柴油机 齿轮箱 带式制动 液压式 履带
首先确定几个 根据一定的理论方法进行方案选择 方案或结构 确定最终 方案或结构
一般设计过程的缺点: 1)带有很大的盲目性 2)设计人员知识和经验的局限性,妨碍了思维,束缚了创造力
23
2.1.3 功能原理设计的设计方法——黑箱法 “黑箱法” 设计特点: 1)暂时摒弃那些附加功能和非必要功能,突出必要功能和基 本功能 2)将必要功能和基本功能用较为抽象的形式(如输入量和输 出量)加以表达。
30
利用相容性矩阵对原理对各个方案进行筛选 为了便于检验和了解有联系的分功能(功能元)之间的相容 性,可以列出相容性矩阵。检验相邻功能元所对应的技术、物 理效应之间的相容性。
31
1.总体设计的内容
总体设计是机械系统内部设计的主要内容之一,也是进行 系统技术设计的依据。总体设计对机械系统的性能、尺寸、 外形、质量及生产成本具有重大影响。因此,总体设计时 必须在保证实现已定方案的基础上,尽可能充分考虑与
机械原理课后答案第2章

(2)如将D处结构改为如图b所示形式,即仅由两个移动副组成。注意,此时在该处将带来一个虚约束。因为构件3、6和构件5、6均组成移动副,均要限制构件6在图纸平面内转动,这两者是重复的,故其中有一个为虚约束。经分析知这时机构的活动构件数为6,低副数为7,高副数和局部自由度数均为2,虚约束数为1,故机构的自由度为
(3)加速度分析:
以C为重合点,有
aC2== aB+ anC2B+ atC2B== aC3+ akC2C3+ arC2C3
大小ω12lABω22lBC? 0 2ω3vC2C3?
方向B—A C—B ┴BC ┴BC //BC
其中anC2B=ω22lBC=0.49 m/s2,akC2C3=2ω3vC2C3=0.7m/s2,以μa作加速度多在图示的摇块机构中,已知lAB=30mm,lAC=100mm,lBD=50 mm,lDE=40 mm,曲柄以等角速度ωl=40rad/S回转,试用图解法求机构在φ1=45º位置时,点D及E的速度和加速度,以及构件2的角速度和角加速度。
解(1)以μl作机构运动简图(a)所示。
F=3n- (2pl+ph- p’)- F’=3×6- (2ⅹ7+2-1)- 2=1
上述两种结构的机构虽然自由度均为一,但在性能上却各有千秋:前者的结构较复杂,但没有虚约束,在运动中不易产生卡涩现象;后者则相反,由于有一个虚约束,假如不能保证在运动过程中构件3、5始终垂直,在运动中就会出现卡涩甚至卡死现象,故其对制造精度要求较高。
VC=VB3+VCB3(2分)
(1分)
anB3+atB3=aB2+akB3B2+arB3B2(3分)
机械原理典型例题(第二章机构分析)10-13

ω
1 2 3
解: 机构的自由度, 机构的自由度, n = 4, pl = 6, ph = 0 F = 3n - 2 pl - ph = 3×4-2×6-0 × - × - =0 F<机构原动件数 < 不能运动。 不能运动。 修改: 修改: 增加机构自由度的 方法是: 方法是:在机构的 适当位置添加一个 活动构件和一个低 副或者用一个高副 代替原来机构中的 一个低副。 一个低副。
例9:图示牛头刨机构设计方案图。设计者的意图是动力由曲 :图示牛头刨机构设计方案图。 输入, 使摆动导杆3做往复摆动 柄1输入,通过滑块 使摆动导杆 做往复摆动,并带动滑枕 输入 通过滑块2使摆动导杆 做往复摆动,并带动滑枕4 往返移动以达到刨削的目的。 往返移动以达到刨削的目的。试分析此方案有无结构组成原理 上的错误,若有,请说明原因并修改。 作业:补充修改方案) 上的错误,若有,请说明原因并修改。(作业:补充修改方案)
计算图示机构的自由度,并进行机构组成分析, 例8: 计算图示机构的自由度,并进行机构组成分析, 确定杆组和机构的级别。 确定杆组和机构的级别。
2
1 1 3 33 4 4
7
4
5 5
6
2 1
不同的原动件, 不同的原动件,组成机构的杆 组与级别不相同。 组与级别不相同。
解: 计算机构的自由度 A处为复合铰链,则 处为复合铰链, 处为复合铰链 n = 6, pl = 8, ph = 0 F = 3n - 2 pl - ph = 3×6-2×8-0 =2 × - × - 机构的组成 ① 以构件1、2为原动件: 以构件 、 为原动件: 为原动件 6-5为Ⅱ级杆组;3-4为Ⅱ级杆组 为 级杆组; 为 机构为Ⅱ级机构。 机构为Ⅱ级机构。 以构件2、 为原动件 为原动件: 以构件 、6为原动件: 1-3-4-5为Ⅲ级杆组,机构为Ⅲ 为 级杆组,机构为Ⅲ 级机构。 级机构。 以构件1、 为原动件 为原动件: 以构件 、6为原动件: 4-5为Ⅱ级杆组;2-3为Ⅱ级杆组 为 级杆组; 为 机构为Ⅱ级机构。 机构为Ⅱ级机构。
机械设计中的约束分析

机械设计
五、机械零件的设计步骤
1)拟订零件的设计简图; 2)确定载荷的大小及位置;
L1 F L2
第二章 约束分析-一般问题
受力分析
3)选择材料; 4)根据失效形式选用承载能力判定条件,
设计或校核零件的主要参数;
强度条件(或刚度) 设计计算 尺寸 设计式
尺寸 校核计算 强度条件(或刚度) 校核式
5)结构设计,绘制零件工作图。
对称循环变应力
稳定循环变应力 脉动循环变应力
非对称循环变应力
机械设计
T
第二章 约束分析-强度问题
对称循环变应力
脉动循环变应力
非对称循环变应力
静应力
机械设计
第二章 约束分析-强度问题
3、变应力的五个特性参数
● 最大应力σmax m a
● 最小应力σmin m a
● 应力幅σa max min (总为正)
循环特征
r min 300 0.652 max 460
应力幅
a
max
min
2
460 300 80MPa 2
属于哪一种类型?
机械设计
问 题: 变应力是否一定由变载荷引起?
变载荷 → 变应力 静载荷 → 静应力 ?或 变应力
第二章 约束分析-强度问题
静载荷 F
n
●
为什么要将应力分成许多类?
2
● 平均应力σm max min
2
已知任意两个参数, 可确定其余参数
● 循环特征 r
min max
m a m a
1 r 1 即:| r | 1
定义规则:
σmax 总为正,且其值不小于σmin 的绝对值; σmax、σmin 在横轴同侧时,r 取“+”号; 否则,r 取“-”号
机械设计基础--第二章(平面机构的结构分析)

图2-6 1-中心轮 1 2-行星轮 3-中心轮2 4-转臂
二、学习指导
d) 在平行四边形机构中加入一 个与某边平行且相等的构件,造成轨 迹重合而产生的虚约束,见图2-7构 件5引入的运动副为虚约束,计算机 构的自由度时要将构件5及运动副都 除去不计。此时 n=3,PL =4,PH =0, 故机构的自由度数为
三、典型实例分析
例题2-4 已知一机构如图2-12所示,求其自由度。 解:n=4
PL= 6 PH=0
1 3
2 4
F=3n-2PL-PH=34-26-0=0
即该机构自由度为0,它的各 构件之间不能产生相对运动。
5
图2-12
三、典型实例分析
例2-5 计算图2-13所示大筛机构的自由度。
解:E′或 E 为虚约束 C为复合铰链 F为局部自由度
(3)机构中存在着与整个机构运动无关的自由度称为
在计算机构自由度时应
。
个构件作为机架。
(4)在任何一个机构中,只能有
四、复习题
⒉ 选择题
(1)一个作平面运动的自由构件具有
(A) 一个; (B) 二个;
自由度。
(D) 四个。 。 (D) 四个。 。
(C) 三个;
(2)平面机构中的高副所引入的约束数目为 (A) 一个; (B) 二个; (C) 三个;
三、典型实例分析
a)
b)
c)
图2-9
d)
三、典型实例分析
例2-2 计算图2-10中牛头刨床传动机构的自由度。
解:n=6,PL= 8,PH=1。
F=3n-2PL-PH=36-28-1=1
即该机构只有一个自由度, 与原动件数相同(齿轮 3 为原动 件)。所以,满足机构具有确定运 动的条件。 图2-10
02机械设计中的约束分析

§2-1 概述 §2-2 机械设计中的强度问题 机械设计中的摩擦、 §2-3 机械设计中的摩擦、磨损和润滑问题
§1-1 概述
机械设计的基本特征之一是约束性。 机械设计的基本特征之一是约束性。 约束性 经济性约束:降低产品成本, 经济性约束:降低产品成本,将其控制在规定成本目标的 范围之内。 范围之内。 社会性约束:必须能对社会带来效益,而不会对社会造成 社会性约束:必须能对社会带来效益, 不良影响。 不良影响。 技术性约束:能否满足技术性能要求为目标,包括技术 技术性约束:能否满足技术性能要求为目标,包括技术 性能约束、标准化约束、可靠性约束、安全性约束、 性能约束、标准化约束、可靠性约束、安全性约束、维修性 约束等 约束等。
静应力下,对于塑性材料,可取其屈服极限( 静应力下,对于塑性材料,可取其屈服极限( σ s )作为极 限应力, 限应力,即 σ lim = σ s 。 对于脆性材料,可取其强度极限( 作为极限应力, 对于脆性材料,可取其强度极限( σ b )作为极限应力, 即 σ lim = σ b 。
三、变应力作用下的强度问题
注:静应力只在静载荷作用下产生,循环应力可由变载 静应力只在静载荷作用下产生, 荷产生,也可由静载荷产生。 荷产生,也可由静载荷产生。
2. 稳定循环变应力时的强度约束条件
强度:指机械零件工作时抵抗破坏的能力。 强度:指机械零件工作时抵抗破坏的能力。 强度条件有两种表示方法: 强度条件有两种表示方法: 用应力表示: 1) 用应力表示:
三、可靠性约束 可靠性:指产品、部件或零件在规定的使用条件下, 可靠性:指产品、部件或零件在规定的使用条件下, 在预期的使用寿命内能完成规定功能的概率。 在预期的使用寿命内能完成规定功能的概率。 四、安全性约束 (1)零件安全性。 )零件安全性。 (2)整机安全性。 )整机安全性。 (3)工作安全性。 )工作安全性。 (4)环境安全性。 )环境安全性。 安全性约束:所设计的机器应能满足上述各方面的限制。 安全性约束:所设计的机器应能满足上述各方面的限制。
《机械原理》第02章机构的结构分析与综合

(1)若F>0,且与原动件数 相等,则机构各构件间的 相对运动是确定的;
(2)若F>0,且多于原动件 数,则构件间的运动是不 确定的;
F=0、
F= 0
静定结构
F=- 1 超静定结构
(3)若机构自由度F≤0,则机构不能动;
总结
• (1)若机构自由度F≤0,则机构不能动;
• (2)若F>0,且与原动件数相等,则机构各构件间的相 对运动是确定的;这就是机构具有确定运动的条件。 • (3)若F>0,且多于原动件数,则构件间的运动是不确 定的; • (4)若F>0,且少于原动件数,则构件间不能运动或产 生破坏。
• (二)平面机构的级别 • (三)结构分析
(一)基本杆组及其级别
• 1. 定义
不能再分解的零自由度的构件组。(阿苏尔杆组)
• 2. 满足条件: 3n-2PL=0 PL=3n /2
n=2, PL=3 ; n=4, PL=6 • Ⅱ、Ⅲ、Ⅳ级杆组的基本类型*
Ⅱ级组的五种类型
Ⅲ级组的几种组合形式
Ⅳ级组
例:摆动从动件盘形凸轮机构
(2)若两接触轮廓之一为一点,其替代方法如图所示。
例:尖底直动从动件盘形凸轮机构
例:确定如图所示平面高副机构的级别。
例7
§2-5 平面机构的结构综合
平面机构的结构综合(设计):是结构分析的逆过程 是根据运动输入和输出特性进行机构运动简图的设计过程。 研究一定数量的构件和运动副可以组成多少种机构类型的综合过 程。机构设计:设计新机构运动简图。 基本杆组叠加法;平面机构如果没有高副,可按公式(2-4)综合出 各种类型的基本杆组,再利用串联、并联等方式将基本杆组与I
三、计算平面机构自由度时应注意的事项
约束问题的最优化方法

3. 优化方法: 选用内点惩罚法,惩罚函数形式为: 6 1 T k k x,r f x r 取 x 0 1,30 , r 0 3 , c 0.7 u 1 g x u 调用 Powell 法求序列无约束优化极值,以逐渐逼近原问 题的极值点。
k 2 x r ( 1 x ) x 1时; x, r k x 1时。 x
4
min.
s.t
f (x) = x
x ∈ R1
g (x) = 1-x ≤ 0
§5.3 外点惩罚函数法
二. 惩罚函数的形式:
①
x, r ( k ) f x r k maxg u x ,0 I u g u x 0 u 1,2,...,m,
(k ) (k ) m
1 u 1 g ( x ) u
m
其中:gu ( x) 0, u 1,2,...m
1 u 1 g ( x ) u m 1 (k ) (k ) ③ . ( x, r ) f ( x) ru u 1 g u ( x) m 1 (k ) (k ) ④ .( x, r ) f ( x) r 2 u 1 [ g ( x )] u
§5.2 内点惩罚函数法
4. 求解过程分析:
§5.3 外点惩罚函数法 (衰减函数法)
一. 基本思想: 外点法将新目标函数
Φ( x , r )
构筑在可行域 D
外,随着惩罚因子 r(k) 的不断 递增,生成一系列新目标函数
Φ(xk ,r(k)),在可行域外逐步
迭代,产生的极值点 xk*(r(k)) 序列从可行域外部趋向原目标 函数的约束最优点 x* 。 例:求下述约束优化问题的最优点。 新目标函数:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)不同循环次数N时的疲劳极限:
当应力循环特征r一定时,应力增大,零件失效前 所经历的循环次数N减少;反之,应力减少,循环次数 N增加。当应力减小到某一数值时,零件可经"无数"次 循环而不发生疲劳破坏。
图中疲劳曲线可以表示为:
=常数
为材料的疲劳极限,即经"无数"次循环(无限寿命)而不发生疲劳破坏时的极限应力; 为材料条件疲劳极限,即应力循环次数为N(有限寿命)时的极限应力。
2、稳定循环变应力时的强度条件
在变应力作用下,机械零件的损坏主要是疲劳断裂。疲劳断裂和静应力作 用下的断裂机理不一样:
疲劳断裂是零件表面最大应力处的应力若超过了某一极限值,就会出现疲 劳裂纹,在变应力的反复作用下,裂纹不断扩展,扩展到一定程度后,突然发 生断裂。
这种区别在强度约束条件中,主要表现为极限应力的不同。 静应力作用下:极限应力主要与材料的性能有关。 变应力作用下:其极限应力除了与材料的性能有关外,还与应力的循环特 征r、应力循环次数N、应力集中、零件的表面情况和零件的尺寸大小等有关。 变应力时的极限应力:也称材料的疲劳极限(或持久极限),是当循环特 征为r时,试件受“无数”次应力循环而不发生疲劳断裂的最大应力值。循环次 数不同,疲劳极限不同;循环特征不同,疲劳极限也不同。
简化极限应力图按下面的方法作出: 以平均应力 为横坐标,应力幅 为纵坐标,建立直角座标系。取三个特殊点:
A(0, );B( /2, /2);C( ,0)。
A、若材料为塑性材料:
再取点G( ,0),过G点作与横坐标成135°的直线和AB的延长线相交于D。折线
ADG即为塑性材料的极限应力曲线。
当工作应力的平均应力和应力幅分别为 和 时(对应图中的点n),对应的应力循
A、若材料为塑性材料:
当
时,
当
时,
B、若材料为脆性材料:
4、接触应力作用下的强度问题
对于高副机构,零件受载后,由于弹性变形,形成很小的面接触。这样在零件表层 产生很大的局部应力,称之为接触应力。
在机械零件设计中遇到的接触应力多为变应力,在这种情况下产生的失效属于接触 疲劳破坏,它的特点是:零件在接触应力的反复作用下,首先在表面或表层产生初始疲 劳裂纹,然后,在滚动接触过程中,由于润滑油被挤进裂纹内而形成高的压力,使裂纹 加速扩展,最后,使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,这种现 象称为疲劳点蚀。疲劳点蚀常是齿轮、滚动轴承等零件的主要失效形式。影响疲劳点蚀 的主要因素是接触应力的大小,因而,接触应力作用下的强度约束条件是最大接触应力 不超过其许用值,即
对于两圆柱体接触如图所示,其接触表面的最大接触应力 为
(MPa)
式中:
为综合曲率半径; 、 分别为两圆柱
体的曲率半径(mm),其中“+”、“-”号分别用于外接触
和内接触; 、 分别为两圆柱体材料的弹性模
量; 、 分别为两圆柱体材料的泊桑比。
§2-3 机械设计中的摩擦、磨损和润滑问题
一、机械中的摩擦 1、摩擦的定义和分类 干摩擦:表面间无任何润滑剂或保护膜的纯金属接触时的摩擦; 边界摩擦:表面间被极薄的润滑膜所隔开,且摩擦性质与润滑剂的粘度无关而取决 于两表面的特性和润滑油油性的摩擦; 流体摩擦:表面间的润滑膜把摩擦副完全隔开,摩擦力的大小取决于流体分子内部 摩擦力的摩擦; 混合摩擦:摩擦副处于干摩擦、边界摩擦和流体摩擦混合状态时的摩擦。
环特征
。连接on并延长与线段AD相交于点m( , ),该点即为应力循环特
征为的r时的极限应力。
当
(n点在OAD区域)时,其相应的极限应力由线段AD决定,为:
式中:
为等效系数
当
(n点在ODC区域内)时,其极限应力由线段DG决定,为:
B、若材料为脆性材料:
脆性材料的极限应力常用极限应力图中的AC直线来描述,为:
解: (1)
(2) 因
(3)
(4) 故得
因此,该零件安全。
3、复合应力状态下用安全系数表示的强度约束条件
当零件同时受弯曲应力和扭转应力的同时作用,且这两种应力都是对称循环应力, 并具有相同的周期和相位时,其安全系数的计算式为:
其中:
;
对于受非对称循环复合变应力作用的零件,也可以近似地应用上面的公式进行计算, 但这时的Sδ和Sτ应分别按下式计算。
;
由于它们只对变应力的应力幅部分产生影响,因而考虑上述因素的极限应力为: A、若材料为塑性材料:
当
时,
当
时,
=
B、若材料为脆性材料:
(4)用安全系数表示的强度约束条件
安全系数:
用安全系数表示的强度约束条件:
A、若材料为塑性材料:
当
时,
当
时,
B、若材料为脆性材料:
例2-2 有一热轧合金钢零件,其材料的抗弯疲劳极限: =658MPa, = 400MPa,屈服极限 =780MPa,所承受的弯曲变应力同例2-1,零件的应力集中系 数 =1.26,尺寸系数 =0.78,表面状态系数β=1。如取安全系数Smin=1.5, 核验此零件是否安全。
式中:
(3)考虑应力集中、绝对尺寸、表面状态时的极限应力
零件剖面的绝对尺寸越大,其疲劳极限越低。这主要是因为尺寸大时,材料晶粒粗, 出现缺陷的概率多和机械加工后表面冷作硬化层相对较薄。
应力集中、绝对尺寸、表面状态对疲劳极限的影响分别用应力集中系数 (或 )绝 对尺寸系数 (或 )和表面状态系数β来考虑。它们的综合影响系数为:
则条件疲劳极限 与应力循环次数 的关系为:
式中:
称为寿命系数。因N≥N0时,疲劳极限为 ,此时KN =1;N<N0时,
此时KNห้องสมุดไป่ตู้1;m为与材料性能、应力状态等有关的指数,可由有关手册查取。
(2)不同应力循环特征r时的疲劳极限:
材料相同但应力循环特征r不同时,其极限应力 不同。 最小, 次之,静应 力下的极限应力 或 最大。 、 、 或 均可通过实验取得。非对称循变应 力(-1<r<+1,r ≠1)下的极限应力,可利用简化的极限应力图直接求得。
a)干摩擦
b)边界摩擦
c)液体摩擦
d)混合摩擦
2、机械设计中摩擦约束的实质 摩擦具有二重性:一方面,摩擦是有利的,此时摩擦约束条件是:摩擦必须足够大,
即摩擦系数或摩擦力矩或摩擦力应大于规定的许用值,以保证机器工作的可靠性; 另一方面,摩擦是有害的,会带来能量损耗、工作温度上升,还会产生振动和噪声;