2010年山东临沂市中考数学试卷及答案(word版)
山东省临沂市中考数学试题及答案
2011年临沂市中考数学试卷一、选择题(本大题共14小题,毎小题3分,共42分)1.下列各数中,比﹣1小的数是()A、0 B、1 C、﹣2 D、22.下列运算中正确的是()A、(﹣ab)2=2a2b2 B、(a+b)2=a2+1 C、a6÷a2=a3 D、2a3+a3=3a33.如图.己知AB∥CD,∠1=70°,则∠2的度数是()A、60°B、70°C、80°D、1104.计算﹣6+的结果是()A、3﹣2B、5﹣C、5﹣D、25.化简(x﹣)÷(1﹣)的结果是()A、 B、x﹣1 C、 D、6.如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是()A、2cmB、3cmC、4cmD、2cm7.在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4.0,4.2,4.5,4.0,4.4,4.5,4.0,4.8.则下列说法中正确的是()A、这组数据的中位数是4.4B、这组数据的众数是4.5C、这组数据的平均数是4.3D、这组数据的极差是0.58.不等式组的解集是()A、x≥ B、3<x≤8C、0<x<2 D、无解9.如图是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的度数是()A、60°B、90°C、120°D、180°10.如图,A、B是数轴上两点.在线段AB上任取一点C,则点C到表示﹣1的点的距离不大于2的概率是()A、 B、 C、 D、11.如图.△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是()A、2B、3C、4D、412.如图,梯形ABCD中,AD∥BC,AB=CD.AD=2,BC=6,∠B=60°,则梯形ABCD的周长是()A、12B、14C、16D、1813.如图,△ABC中,cosB=,sinC=,AC=5,则△ABC的面积是()A、B、12 C、14 D、2114.甲、乙两同学同时从400m环形跑道上的同一点出犮,同向而行.甲的速度为6m/s,乙的速度为4m/s.设经过x (单位:s)后,跑道上此两人间的较短部分的长度为y(单位:m).则y与x(0≤x≤300)之间的函数关系可用图象表示为()A、B、C、D、二、填空题(本大题共5小题.毎小越3分.共15分)把答案填在题中横线上.15.分解因式:9a﹣ab2= .16.方程的解是.17.有3人携带会议材料乘坐电梯,这3人的体重共210kg.毎梱材料重20kg.电18.如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.19.如图,上面各图都是用全等的等边三角形拼成的一组图形.则在第10个这样的图形中共有个等腰梯形.三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数分布表:类别频数(人数)频率文学m 0.42艺术22 0.11科普66 n其他28合计 1(1)表中m= ,n= ;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人?21.去年秋季以来,我市某镇遭受百年一遇的特大旱灾,为支援该镇抗旱,上级下达专项抗旱资金80万元用于打井,已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?22.如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线.(1)求证:AC=AD;(2)若∠B=60°,求证:四边形ABCD是菱形.四、认真思考.你一定能成功!(本大题共2小题.共19分)23.如图.以O为圆心的圆与△AOB的边AB相切于点C.与OB相交于点D,且OD=BD,己知sinA=,AC=.(1)求⊙O的半径:(2)求图中阴影部分的面枳.24.如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kx+b>的解集;(3)过点B作BC⊥x轴,垂足为C,求S△ABC.五、相信自己,加油呀!(本大题共2小题,共24分)25.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD 于点F.另一边交CB的延长线于点G.(1)求证:EF=EG;(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.26.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.2011年山东省临沂市中考数学试卷一、选择题1、C考点:有理数大小比较。
(完整word版)山东省临沂市中考数学试题和答案(Word解析版2)
山东省临沂市2013年中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2013•临沂)﹣2的绝对值是()A.2B.﹣2C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2的绝对值是2,即|﹣2|=2.故选A.点评:本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•临沂)拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为( )A.0.5×1011千克B.50×109千克C.5×109千克D.5×1010千克考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将50 000 000 000用科学记数法表示为5×1010.故选D.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•临沂)如图,已知AB∥CD,∠2=135°,则∠1的度数是()A.35°B.45°C.55°D.65°考点:平行线的性质.分析:先求出∠3的度数,再根据平行线性质得出∠1=∠3,代入求出即可.解答:解:∵AB∥CD,∴∠1=∠3,∵∠2=135°,∴∠3=180°﹣135°=45°,∴∠1=45°,故选B.点评:本题考查了平行线性质和邻补角的应用,注意:两直线平行,内错角相等.4.(3分)(2013•临沂)下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4C.2x2•x3=2x5D.(x3)4=x7考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式专题:计算题.分析:A、本选项不是同类项,不能合并,错误;B、原式利用完全平方公式展开得到结果,即可作出判断;C、原式利用单项式乘单项式法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.解答:解:A、本选项不是同类项,不能合并,错误;B、(x﹣2)2=x2﹣4x+4,本选项错误;C、2x2•x3=2x5,本选项正确;D、(x3)4=x12,本选项错误,故选C点评:此题考查了完全平方公式,合并同类项,单项式乘单项式,以及幂的乘方,熟练掌握公式及法则是解本题的关键.5.(3分)(2013•临沂)计算的结果是()A.B.C.D.考点:二次根式的加减法.分析:首先把两个二次根式化简,再进行加减即可.解答:解:=4﹣3=,故选:B.点评:此题主要考查了二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.6.(3分)(2013•临沂)化简的结果是( )(完整word版)2013山东省临沂市中考数学试题和答案(Word解析版2) A.B.C.D.考点:分式的混合运算.分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.解答:解:=•=.故选A.点评:本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.7.(3分)(2013•临沂)如图是一个几何体的三视图,则这个几何体的侧面积是()A.12πcm2B.8πcm2C.6πcm2D.3πcm2考点:由三视图判断几何体;圆柱的计算.分析:首先判断出该几何体,然后计算其面积即可.解答:解:观察三视图知:该几何体为圆柱,高为3cm,底面直径为2cm,侧面积为:πdh=2×3π=6π,故选C.点评:本题考查了由三视图判断几何体及圆柱的计算,解题的关键是首先判断出该几何体.8.(3分)(2013•临沂)不等式组的解集是()A.x≥8B.x>2C.0<x<2D.2<x≤8考点:解一元一次不等式组.分析:先求出不等式的解集,再根据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式①得:x>2,解不等式②得:x≤8,∴不等式组的解集为2<x≤8,故选D.点评:本题考查了解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集.9.(3分)(2013•临沂)在一次歌咏比赛中,某选手的得分情况如下:92,88,95,93,96,95,94.这组数据的众数和中位数分别是( )A.94,94B.95,95C.94,95D.95,94考点:众数;中位数.分析:根据众数、中位数的定义求解即可.解答:解:这组数据按顺序排列为:88,92,93,94,95,95,96,故众数为:95,中位数为:94.故选D.点评:本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.10.(3分)(2013•临沂)如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.A B=AD B.A C平分∠BCD C.A B=BD D.△BEC≌△DEC考点:线段垂直平分线的性质.分析:根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.解答:解:∵A C垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,∴Rt△BCE≌Rt△DCE(HL),故选:C.点评:此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.11.(3分)(2013•临沂)如图,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( )A.B.C.D.考点:列表法与树状图法;等腰三角形的判定.分析:根据题意画出树状图,进而得出以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形是等腰三角形的情况,求出概率即可.解答:解:∵以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,∴画树状图得:共可以组成4个三角形,所作三角形是等腰三角形只有:△OA1B1,△OA2B2,所作三角形是等腰三角形的概率是:=.故选:D.点评:此题主要考查了利用树状图求概率以及等腰三角形的判定等知识,利用树状图表示出所有可能是解题关键.12.(3分)(2013•临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是()A.75°B.60°C.45°D.30°考点:圆周角定理.分析:首先连接OC,由OB=OC=OA,∠CBO=45°,∠CAO=15°,根据等边对等角的性质,可求得∠OCB 与∠OCA的度数,即可求得∠ACB的度数,又由圆周角定理,求得∠AOB的度数.解答:解:连接OC,∵OB=OC=OA,∠CBO=45°,∠CAO=15°,∴∠OCB=∠OBC=45°,∠OCA=∠OAC=15°,∴∠ACB=∠OCB﹣∠OCA=30°,∴∠AOB=2∠ACB=60°.故选B.点评:此题考查了圆周角定理以及等腰三角形的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.13.(3分)(2013•临沂)如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图象经过OB边的中点C,则点B的坐标是()A.(1,)B.(,1)C.(2,)D.(,2)考点:反比例函数综合题.分析:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),再求出b和a的关系和C点的坐标,由点C在双曲线上,求出a的值,进而求出B点坐标.解答:解:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),∵三角形OAB是等边三角形,∴∠BOA=60°,在Rt△BOA中,tan60°==,∴b=a,∵点C是OB的中点,∴点C坐标为(,),∵点C在双曲线上,∴a2=,∴a=2,∴点B的坐标是(2,2),故选C.点评:本题主要考查反比例函数的综合题,解答本题的关键是求出点B的坐标,此题难度不大.14.(3分)(2013•临沂)如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C 两点同时出发,以1cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为( )A.B.C.D.考点:动点问题的函数图象.分析:由点E,F分别从B,C两点同时出发,以1cm/s的速度沿BC,CD运动,得到BE=CF=t,则CE=8﹣t,再根据正方形的性质的OB=OC,∠OBC=∠OCD=45°,然后根据“SAS"可判断△OBE≌△OCF,所以S△OBE=S△OCF,这样S四边形OECF=S△OBC=16,于是S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t,然后配方得到S=(t﹣4)2+8(0≤t≤8),最后利用解析式和二次函数的性质对各选项进行判断.解答:解:根据题意BE=CF=t,CE=8﹣t,∵四边形ABCD为正方形,∴OB=OC,∠OBC=∠OCD=45°,∵在△OBE和△OCF中,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△OBC=×82=16,∴S=S四边形OECF﹣S△CEF=16﹣(8﹣t)•t=t2﹣4t+16=(t﹣4)2+8(0≤t≤8),∴s(cm2)与t(s)的函数图象为抛物线一部分,顶点为(4,8),自变量为0≤t≤8.故选B.点评:本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.(3分)(2013•临沂)因式分解4x﹣x3= ﹣x(x+2)(x﹣2) .考点:提公因式法与公式法的综合运用;因式分解—运用公式法.专题:因式分解.分析:先提出公因式,再用平方差公式因式分解.解答:解:4x﹣x3=﹣x(x2﹣4)=﹣x(x+2)(x﹣2).故答案是:﹣x(x+2)(x﹣2).点评:本题考查的是因式分解,先提出公因式,再用平方差公式因式分解.16.(3分)(2013•临沂)分式方程的解是x=2 .考点:解分式方程.专题:计算题.分析:分式方程变形后,去分母转化为整式方程,求出整式方程得到解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x﹣1=3(x﹣1),去括号得:2x﹣1=3x﹣3,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(3分)(2013•临沂)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是3.考点:菱形的性质;等边三角形的判定与性质分析:首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积.解答:解:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD∴AB•AE=CD•AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE=2,∴EF=AE=2,过A作AM⊥EF,∴AM=AE•cos60°=3,∴△AEF的面积是:EF•AM=×2×3=3.故答案为:3.点评:此题考查菱形的性质,等边三角形的判定及三角函数的运用.关键是掌握菱形的性质,证明△AEF是等边三角形.18.(3分)(2013•临沂)如图,等腰梯形ABCD中,AD∥BC,DE⊥BC,BD⊥DC,垂足分别为E,D,DE=3,BD=5,则腰长AB= .考点:等腰梯形的性质;勾股定理.分析:利用勾股定理列式求出BE的长,再利用∠CBD的正切值列式求出CD,然后根据等腰梯形的腰长相等解答.解答:解:∵DE=3,BD=5,DE⊥BC,∴BE===4,又∵BD⊥DC,∴tan∠CBD==,即=,解得CD=,∵梯形ABCD是等腰梯形,AD∥BC,∴AB=CD=.故答案为:.点评:本题考查了等腰梯形的两腰相等,勾股定理的应用,利用锐角三角函数求解更加简便.19.(3分)(2013•临沂)对于实数a,b,定义运算“﹡":a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= 3或﹣3 .考点:解一元二次方程-因式分解法专题:新定义.分析:首先解方程x2﹣5x+6=0,再根据a﹡b=,求出x1﹡x2的值即可.解答:解:∵x1,x2是一元二次方程x2﹣5x+6=0的两个根,∴(x﹣3)(x﹣2)=0,解得:x=3或2,①当x1=3,x2=2时,x1﹡x2=32﹣3×2=3;②当x1=2,x2=3时,x1﹡x2=3×2﹣32=﹣3.故答案为:3或﹣3.点评:此题主要考查了因式分解法解一元二次方程以及利用材料分析解决新问题,根据已知进行分类讨论是解题关键.三、开动脑筋,你一定能做对!(本大题共3小题,共21分)20.(7分)(2013•临沂)2013年1月1日新交通法规开始实施.为了解某社区居民遵守交通法规情况,小明随机选取部分居民就“行人闯红灯现象”进行问卷调查,调查分为“A:从不闯红灯;B:偶尔闯红灯;C:经常闯红灯;D:其他"四种情况,并根据调查结果绘制出部分条形统计图(如图1)和部分扇形统计图(如图2).请根据图中信息,解答下列问题:(1)本次调查共选取80 名居民;(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;(3)如果该社区共有居民1600人,估计有多少人从不闯红灯?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据为A的人数与所占的百分比列式计算即可求出被调查的居民人数;(2)求出为C的人数,得到所占的百分比,然后乘以360°,从而求出扇形统计图中“C"所对扇形的圆心角的度数,然后补全条形统计图即可;(3)用全区总人数乘以从不闯红灯的人数所占的百分比,进行计算即可得解.解答:解:(1)本次调查的居民人数=56÷70%=80人;(2)为“C"的人数为:80﹣56﹣12﹣4=8人,“C"所对扇形的圆心角的度数为:×360°=36°补全统计图如图;(3)该区从不闯红灯的人数=1600×70%=1120人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(7分)(2013•临沂)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B 两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?考点:二元一次方程组的应用;一元一次不等式的应用.分析:(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论;(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.解答:解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得,解得:.答:购买A型学习用品400件,B型学习用品600件;(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,由题意,得20(1000﹣a)+30a≤28000,解得:a≤800答:最多购买B型学习用品800件.点评:本题考查了列二元一次方程组合一元一次方程不等式解实际问题的运用,解答本题时找到等量关系是建立方程组的关键.22.(7分)(2013•临沂)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.考点:全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.分析:(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.解答:(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=DC,∴平行四边形ADCF是菱形.点评:本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,主要考查学生的推理能力.四、认真思考,你一定能成功!(本大题共2小题,共18分)23.(9分)(2013•临沂)如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积(结果保留π和根号).考点:切线的性质;扇形面积的计算分析:(1)连接OD,求出∠ODB=90°,求出∠B=30°,∠DOB=60°,求出∠DCB度数,关键三角形内角和定理求出∠A,即可得出答案;(2)根据勾股定理求出BD,分别求出△ODB和扇形DOE的度数,即可得出答案.解答:(1)证明:连接OD,∵AB是⊙O切线,∴∠ODB=90°,∴BE=OE=OD=2,∴∠B=30°,∠DOB=60°,∵OD=OC,∴∠DCB=∠ODC=∠DOB=30°,∵在△ABC中,∠ACB=90°,∠B=30°,∴∠A=60°,∴∠A=2∠DCB;(2)解:∵∠ODB=90°,OD=2,BO=2+2=4,由勾股定理得:BD=2,∴阴影部分的面积S=S△ODB﹣S扇形DOE=×2×2﹣=2﹣π.点评:本题考查了含30度角的直角三角形性质,勾股定理,扇形的面积,勾股定理,切线的性质等知识点的应用,主要考查学生综合性运用性质进行推理和计算的能力.24.(9分)(2013•临沂)某工厂投入生产一种机器的总成本为2000万元.当该机器生产数量至少为10台,但不超过70台时,每台成本y与生产数量x之间是一次函数关系,函数y与自变量x的部分对应值如下表:x(单位:台)102030y(单位:万元∕台)605550(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求该机器的生产数量;(3)市场调查发现,这种机器每月销售量z(台)与售价a(万元∕台)之间满足如图所示的函数关系.该厂生产这种机器后第一个月按同一售价共卖出这种机器25台,请你求出该厂第一个月销售这种机器的利润.(注:利润=售价﹣成本)考点:一次函数的应用.分析:(1)设y与x之间的关系式为y=kx+b,运用待定系数法就可以求出其关系式,由该机器生产数量至少为10台,但不超过70台就可以确定自变量的取值范围;(2)根据每台的成本乘以生产数量等于总成本建立方程求出其解即可;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ka+b,运用待定系数法求出其解析式,再将z=25代入解析式求出a的值,就可以求出每台的利润,从而求出总利润.解答:解:(1)设y与x之间的关系式为y=kx+b,由题意,得,解得:,∴y=﹣x+65.∵该机器生产数量至少为10台,但不超过70台,∴10≤x≤70;(2)由题意,得xy=2000,﹣x2+65x=2000,﹣x2+130x﹣4000=0,解得:x1=50,x2=80>70(舍去).答:该机器的生产数量为50台;(3)设每月销售量z(台)与售价a(万元∕台)之间的函数关系式为z=ka+b,由函数图象,得,解得:,∴z=﹣a+90.当z=25时,a=65.当x=50时,y=40总利润为:25(65﹣40)=625万元.答:该厂第一个月销售这种机器的利润为625万元.点评:本题考查了待定系数法求一次函数的解析式的运用,一元二次方程的运用,销售问题利润=售价﹣进价的运用,解答时求出一次函数的解析式是关键.五、相信自己,加油呀!(本大题共2小题,共24分)25.(11分)(2013•临沂)如图,矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线AC,BD的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别于边AB,BC所在的直线相交,交点分别为E,F.(1)当PE⊥AB,PF⊥BC时,如图1,则的值为;(2)现将三角板绕点P逆时针旋转α(0°<α<60°)角,如图2,求的值;(3)在(2)的基础上继续旋转,当60°<α<90°,且使AP:PC=1:2时,如图3,的值是否变化?证明你的结论.考点:几何变换综合题分析:(1)证明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值;(2)如答图1所示,作辅助线,构造直角三角形,证明△PME∽△PNF,并利用(1)的结论,求得的值;(3)如答图2所示,作辅助线,构造直角三角形,首先证明△APM∽△PCN,求得的值;然后证明△PME∽△PNF,从而由求得的值.与(1)(2)问相比较,的值发生了变化.解答:解:(1)∵矩形ABCD,∴AB⊥BC,PA=PC;∵PE⊥AB,BC⊥AB,∴PE∥BC,∴∠APE=∠PCF;∵PF⊥BC,AB⊥BC,∴PF∥AB,∴∠PAE=∠CPF.∵在△APE与△PCF中,∴△APE≌△PCF(ASA),∴PE=CF.在Rt△PCF中,=tan30°=,∴=.(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴.由(1)知,=,∴=.(3)答:变化.证明:如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN,∴△APM∽△PCN,∴,得CN=2PM.在Rt△PCN中,=tan30°=,∴=.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴=.∴的值发生变化.点评:本题是几何综合题,考查了相似三角形的判定与性质、矩形的性质、全等三角形的判定与性质、解直角三角形等知识点.本题三问的解题思路是一致的:即都是直接或作辅助线构造直角三角形,通过相似三角形或全等三角形解决问题.26.(13分)(2013•临沂)如图,抛物线经过A(﹣1,0),B(5,0),C(0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.考点:二次函数综合题. 专题:探究型. 分析: (1)设抛物线的解析式为y=ax 2+bx+c(a≠0),再把A (﹣1,0),B (5,0),C(0,)三点代入求出a 、b 、c 的值即可;(2)因为点A 关于对称轴对称的点A 的坐标为(5,0),连接BC 交对称轴直线于点P ,求出P 点坐标即可; (3)分点N 在x 轴下方或上方两种情况进行讨论. 解答: 解:(1)设抛物线的解析式为y=ax 2+bx+c(a≠0), ∵A(﹣1,0),B (5,0),C (0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x 2﹣2x ﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N 在x 轴上方时, 如图,过点N 作ND⊥x 轴于点D , 在△AND 与△MCO 中,∴△AND≌△MCO(ASA ), ∴ND=OC=,即N 点的纵坐标为. ∴x 2﹣2x ﹣=, 解得x=2+或x=2﹣, ∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为(4,﹣),(2+,)或(2﹣,).点评:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.。
(完整word版)年山东省临沂市中考数学试题(WORD解析版)
2011年山东省临沂市中考数学试卷-解析版一、选择题(本大题共14小题,毎小题3分,共42分)在每小题所给的四个选项中。
只有一项是符合题目要求的。
1、(2011•临沂)下列各数中,比﹣1小的数是()A、0B、1C、﹣2D、22、(2011•临沂)下列运算中正确的是()A、(﹣ab)2=2a2b2B、(a+b)2=a2+1C、a6÷a2=a3D、2a3+a3=3a33、(2011•临沂)如图.己知AB∥CD,∠1=70°,则∠2的度数是( )A、60°B、70°C、80°D、1104、(2011•临沂)计算﹣6+的结果是()A、3﹣2B、5﹣C、5﹣D、25、(2011•临沂)化简(x﹣)÷(1﹣)的结果是( )A、B、x﹣1 C、D、6、(2011•临沂)如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5.则AB的长是( )A、2cmB、3cmC、4cmD、2cm7、(2011•临沂)在一次九年级学生视力检查中.随机检查了8个人的右眼视力,结果如下:4。
0,4.2,4.5,4.0,4.4,4.5,4。
0,4。
8.则下列说法中正确的是()A、这组数据的中位数是4。
4B、这组数据的众数是4。
5C、这组数据的平均数是4。
3D、这组数据的极差是0.5考点:极差;算术平均数;中位数;众数。
专题:计算题。
分析:分别计算这组数据的中位数,众数、平均数及方差后找到正确的选项即可.解答:解:将这组数据排序后为:4。
0、4。
0、4.0、4.2、4。
4、4.5、4.5、4.8,∴中位数为:=4.3,∴A选项错误;∵4.0出现了3次,最多,∴众数为4.0,∴B选项错误;∵=(4.0+4.0+4。
0+4。
2+4。
4+4.5+4。
5+4.8)=4。
3,∴C选项正确.故选C.点评:本题考查了平均数、中位数、众数及极差的知识,此类考题是中考的必考点,题目相对比较简单.8、(2011•临沂)不等式组的解集是()A、x≥8B、3<x≤8C、0<x<2D、无解考点:解一元一次不等式组。
2010届山东省临沂市兰陵县九年级中考数学二模试卷(含详解)
2010届山东省临沂市兰陵县九年级中考二模试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共14小题,每小题3分,共42分)1.的倒数是()A. ﹣2B. 2C.D.【答案】A【解析】试题分析:的倒数是﹣2.故选:A.考点:倒数2.如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...A. 100°B. 110°C. 120°D. 130°【答案】D【解析】,故选D.3.下列运算正确的是( )A. 3m-2m=1B. (m3)2=m6C. (-2m)3=-2m3D. m2+m2=m4【答案】B【解析】本题考查整式的运算, 因为,故选B.4.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A. B. C. D.【答案】D【解析】从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.5. 从数字2,3,4中任选两个数组成一个两位数,组成的数是偶数的概率是()A. B. C. D.【答案】A【解析】试题分析:树状图为:共有6种等可能的结果数,其中组成的数是偶数的结果数为4,所以组成的数是偶数的概率.故选A.考点:列表法与树状图法.6.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A. 60°B. 72°C. 90°D. 108°【答案】B【解析】试题分析:首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选B.考点:多边形内角与外角.7.为了践行“绿色生活”的理念,甲、乙两人每天骑自行车出行,甲匀速骑行30公里的时间与乙匀速骑行25公里的时间相同,已知甲每小时比乙多骑行2公里,设甲每小时骑行x公里,根据题意列出的方程正确的是( )A. B.C. D.【答案】C【解析】解:设甲每小时骑行x公里,根据题意得:.故选C.点睛:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程.8.一元一次不等式组的解集在数轴上表示出来,正确的是()A. B. C. D.【答案】D【解析】分析:先求出不等式组的解集,再在数轴上表示.详解:解不等式组得-3<x≤2,在数轴上表示为:故选D.点睛:解一元一次不等式组,通常采用“分开解,集中定”的方法,即单独的解每一个不等式,而后集中找它们的解的“公共部分”.在找“公共部分”的过程中,可借助数轴或口诀两种方法确定不等式组的解集.其中确定不等组解集的方法为:“大大取大,小小取小,大小小大中间找,大大小小是无解”.在数轴上表示解集时,大于向右画,小于向左画,含等号取实心点,不含等号取空心圆圈.9.李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:则关于这20名学生阅读小时数的说法正确的是()A. 众数是8B. 中位数是3C. 平均数是3D. 方差是0.34【答案】B【解析】A、由统计表得:众数为3,不是8,所以A选项不正确;B、随机调查了20名学生,所以中位数是第10个和第11个学生的阅读小时数,都是3,故中位数是3,所以B选项正确;C、平均数= =3.35,所以C选项不正确;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]= =0.2825,所以D选项不正确;故选B.10.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E是AD的中点,以点B为圆心,BE 长为半径画弧,交BC于点F,则图中阴影部分的面积是()A. B. C. D.【答案】B【解析】试题解析:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=.故选B.11.如图,是一组按照某种规律摆放成的图案,则图20中三角形的个数是()A. 100B. 76C. 66D. 36【答案】B【解析】【分析】由图可知:第一个图案有三角形1个,第二图案有三角形1+3=4个,第三个图案有三角形1+3+4=8个,第四个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n-1)个,由此得出规律解决问题.【详解】根据题意可得:第20个图形中三角形有:4×19=76个,故选B.【点睛】本题主要考查了图形的变化规律,属于基础题型.注意由特殊到一般的分析方法.这类题型在中考中经常出现,关键就是根据已知的几个图形得出一般性的规律.12.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A. ∠ABD=∠EB. ∠CBE=∠CC. AD∥BCD. AD=BC【答案】C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△AB D为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.13.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:从上表可知,下列说法中,错误的是()A. 抛物线于x轴的一个交点坐标为(﹣2,0)B. 抛物线与y轴的交点坐标为(0,6)C. 抛物线的对称轴是直线x=0D. 抛物线在对称轴左侧部分是上升的【答案】C【解析】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.14.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标为(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为()A. (,0)B. (2,0)C. (,0)D. (3,0)【答案】C【解析】解:过点B作BD⊥x轴于点D,∵∠ACO+∠BCD=90°,∠OAC+ACO=90°,∴∠OAC=∠BCD,在△ACO 与△BCD中,∵∠OAC=∠BCD,∠AOC=∠BDC,AC=BC,∴△ACO≌△BCD(AAS),∴OC=BD,OA=CD,∵A(0,2),C(1,0),∴OD=3,BD=1,∴B(3,1),∴设反比例函数的解析式为,将B(3,1)代入,∴k=3,∴,∴把y=2代入,∴x=,当顶点A恰好落在该双曲线上时,此时点A移动了个单位长度,∴C也移动了个单位长度,此时点C的对应点C′的坐标为(,0).故选C.点睛:本题考查反比例函数的综合问题,涉及全等三角形的性质与判定,反比例函数的解析式,平移的性质等知识,综合程度较高,属于中等题型.二、填空题(本题共5小题,每小题3分,共15分)15.因式分解:a2﹣3a= .【答案】a(a﹣3)【解析】试题分析:直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).【考点】因式分解-提公因式法.16.化简:__________.【答案】0【解析】分析:利用完全平方公式和提取公因式法对:、的分子分别进行因式分解,然后通过约分进行化简,最后计算减法即可.详解:==x+1-x-1=0.故答案是:0.点睛:本题考查了分式的加减法,熟练练掌握分式的减法法则和因式分解的方法是解答本题的非关键.因式分解的方法有:提公因式法、平方差公式法、完全平方公式法、十字相乘法、分组分解法.17.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么EC= .【答案】4.【解析】试题分析:因为BE平分∠ABC,所以∠ABE=∠CBE,又因为DE∥BC,所以∠CBE=∠DEB,所以∠ABE=∠DEB,所以DE=DB,因为DE=2AD,所以AD=DE,因为DE∥BC,所以,即,,所以,解得:EC=4.故答案为4.考点:1.角平分线意义;2.平行线分线段成比例定理;3.平行线性质.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB的中线,若CD=6.5,BC=12.sinB的值是_____【答案】【解析】【分析】首先根据直角三角形斜边上的中线求出AB的长度,根据勾股定理求出AC的长度,最后根据三角函数的计算法则求出答案.【详解】∵∠ACB=90°,CD为中线,CD=6.5,∴AB=2CD=13,∴AC=,∴sinB=.【点睛】本题主要考查的是锐角三角函数的计算法则,属于基础题型.找出所求角所在的直角三角形是解决这个问题的关键.19.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有_____(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.【答案】①③【解析】试题分析:根据正比例函数的性质:k>0,直线过一三象限,y随x增大而增大;当k<0时,直线过二四象限,y随x增大而减小;由k=2可知y=2x符合增函数的定义,故正确.根据一次函数的性质:k>0,b>0时,直线过一二三象限,y随x增大而增大;当k>0,b<0时,直线过一三四象限,y随x增大而增大;当k<0,b>0时,直线过一二四象限,y随x增大而减小;当k<0,b <0时,直线过二三四象限,y随x增大而减小;由k=-1可知y=-x+1不是增函数,故不正确.根据二次函数的性质知y=的图像过原点,当a>0时,开口向上,对称轴为y轴(直线x=0),x>0时y 随x增大而增大,x<0时,y随x增大而减小;当a<0时,开口向下,对称轴为y轴(直线x=0),x>0时y随x增大而增减小,x<0时,y随x增大而增大;由(x>0)可知a=1,符合增函数的定义,故正确.根据反比例函数的图像是双曲线可知其增减性是不连贯的,因此不是增函数,故错误.因此正确的有①③.考点:函数的图像与性质视频三、解答题(本大题共7小题,共63分)20.计算:|﹣2|+2sin60°+()﹣1【答案】5【解析】【分析】根据绝对值、三角函数值以及负指数次幂的计算法则求出各式的值,然后进行求和得出答案.【详解】解:原式=2﹣+2×+3=2﹣++3=5.【点睛】本题主要考查的是实数的计算法则,属于基础题型.明确各种计算法则是解决这个问题的关键.21.某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.【答案】(1)50名;(2)补图见解析;(3)144°;(4)360名.【解析】分析:(1)用“诚信”的人数除以所占的百分比求出总人数;(2)用总人数减去“爱国”“敬业”“诚信”“的人数,求出“友善”的人数,从而补全统计图,分别求出百分比即可补全扇形图;(3)用360°乘以“爱国”的百分比即可求解;(4)用样本估计总体的思想解决问题即可.详解:(1)本次调查共抽取的学生有3÷6%=50(名);(2)选择“友善”的人数有50-20-12-3=15(名),条形统计图和扇形统计图如图所示,(3)选择“爱国”主题所对应的圆心角是144°;(4)该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有1200×30%=360名.点睛:本题考查读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.小明在热气球A上看到横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,36°.已知大桥BC与地面在同一水平面上,其长度为100m.请求出热气球离地面的高度(结果保留小数点后一位).参考数据:tan36°≈0.73.【答案】热气球离地面的高度约为270.4m【解析】试题分析:作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.试题解析:解:作AD⊥BC交CB的延长线于D,设AD为xm,由题意得,∠ABD=45°,∠ACD=36°.在Rt△ADB中,∠ABD=45°,∴DB=xm.在Rt△ADC中,∠ACD=36°,∴tan∠ACD=,∴=0.73,解得:x≈270.4.答:热气球离地面的高度约为270.4m.23.如图,已知三角形ABC的边AB是0的切线,切点为B. AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求O的半径.【答案】(1)证明见解析;(2).【解析】试题分析:(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2,∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.考点:切线的性质.24.赛龙舟是端午节的主要习俗,某市甲乙两支龙舟队在端午节期间进行划龙舟比赛,从起点A驶向终点B,在整个行程中,龙舟离开起点的距离y(米)与时间x(分钟)的对应关系如图所示,请结合图象解答下列问题:(1)起点A与终点B之间相距多远?(2)哪支龙舟队先出发?哪支龙舟队先到达终点?(3)分别求甲、乙两支龙舟队的y与x函数关系式;(4)甲龙舟队出发多长时间时两支龙舟队相距200米?【答案】(1)3000米;(2)甲龙舟队先出发,乙龙舟队先到达终点;(3)y=200x﹣1000(5≤x≤20);(4)甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米【解析】试题分析:(1)根据函数图象即可得出起点A与终点B之间的距离;(2)根据函数图象即可得出甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得甲龙舟队的y与x函数关系式;设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得乙龙舟队的y与x函数关系式;(4)分四种情况进行讨论,根据两支龙舟队相距200米分别列方程求解即可.试题解析:解:(1)由图可得,起点A与终点B之间相距3000米;(2)由图可得,甲龙舟队先出发,乙龙舟队先到达终点;(3)设甲龙舟队的y与x函数关系式为y=kx,把(25,3000)代入,可得3000=25k,解得k=120,∴甲龙舟队的y与x函数关系式为y=120x(0≤x≤25),设乙龙舟队的y与x函数关系式为y=ax+b,把(5,0),(20,3000)代入,可得:,解得:,∴乙龙舟队的y与x函数关系式为y=200x﹣1000(5≤x≤20);(4)令120x=200x﹣1000,可得x=12.5,即当x=12.5时,两龙舟队相遇,当x<5时,令120x=200,则x=(符合题意);当5≤x<12.5时,令120x﹣(200x﹣1000)=200,则x=10(符合题意);当12.5<x≤20时,令200x﹣1000﹣120x=200,则x=15(符合题意);当20<x≤25时,令3000﹣120x=200,则x=(符合题意);综上所述,甲龙舟队出发或10或15或分钟时,两支龙舟队相距200米.点睛:本题主要考查了一次函数的应用,解决问题的关键是掌握待定系数法求函数解析式的方法,解题时注意数形结合思想以及分类思想的运用.25.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.【答案】(1)AE=DB,AE⊥DB;(2)DE=AF,DE⊥AF.【解析】试题分析:(1)根据等腰直角三角形的性质、全等三角形的判定定理证明Rt△BCD≌Rt△ACE,根据全等三角形的性质解答;(2)证明△EBD≌△ADF,根据全等三角形的性质证明即可.试题解析:解:(1)AE=DB,AE⊥DB.证明如下:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF.证明如下:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,∵BE=AD,∠EBD=∠ADF,DE=DF,∴△EBD≌△ADF,∴DE=AF,∠E=∠F AD,∵∠E=45°,∠EDC=4 5°,∴∠F AD=45°,∴∠AND=90°,即DE⊥AF.点睛:本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.26.如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=ax2+x+c经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标;(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=﹣x2+x+4;(2)E(3,8);(3)点P的坐标是(﹣2,﹣)或(6,0)或(0,4).【解析】试题分析:(1)首先根据直线与x轴交于点C,与y轴交于点B,求出点B的坐标是,点C 的坐标是然后根据抛物线经过两点,求出的值是多少,即可求出抛物线的解析式.(2)首先过过E作EG∥y轴,交直线BC于G,然后设则求出的值是多少;最后根据三角形的面积的求法,求出进而判断出当面积最大时,点E的坐标和面积的最大值各是多少即可.(3)在抛物线上存在点P,使得以为顶点的四边形是平行四边形.然后分三种情况讨论,根据平行四边形的特征,求出使得以为顶点的四边形是平行四边形的点P的坐标是多少即可.试题解析:(1)当时,∴,当时,∴把和代入抛物线中得:解得:,∴抛物线的解析式为:(2)如图1,过E作EG∥y轴,交直线BC于G,设则∵∴S有最大值,此时(3)对称轴是:∴在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形.如图2,以AM为边时,由(2),可得点M的横坐标是3,∵点M在直线上,∴点M的坐标是(3,2),又∵点A的坐标是(﹣1,0),点Q的横坐标为2,根据M到Q的平移规律:可知:P的横坐标为﹣2,∴②如图3,以AM为边时,四边形AMPQ是平行四边形,由(2),可得点M的横坐标是2,∵A(﹣1,0),且Q的横坐标为2,∴P的横坐标为6,∴P(6,0)(此时P与C重合);③以AM为对角线时,如图4,∵M到Q的平移规律可得P到A的平移规律∴点P的坐标是(0,4)综上所述,在抛物线上存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形,点P的坐标是或(6,0)或(0,4).。
2010年山东省临沂市数学中考真题(word版含答案)
2010年临沂市初中学生学业考试试题数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至4页,第Ⅱ卷5至12页.满分120分.考试时间120分钟.第Ⅰ卷(选择题共42分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上.3.考试结束后,将本试卷和答题卡一并收回.一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.计算(-1)2的值等于(A)-1(B)1(C)-2(D)22.如果∠α=60°,那么∠α的余角的度数是(A)30°(B)60°(C)90°(D)120°3.下列各式计算正确的是(A)x2·x3=x6(B)2x+3x=5x2(C)(x2)3=x6(D)x6÷x2=x34.已知两圆的半径分别是2cm和4cm,圆心距是6cm,那么这两圆的位置关系是(A)外离(B)外切(C)相交(D)内切5.如图,下面几何体的俯视图是6.今年我国西南地区的严重干旱灾害,牵动着全国人民的心.某学校掀起了“献爱心,捐矿泉水”的活动,其中该校九年级(4)班7个小组所捐矿泉水的数量(单位:箱)分别为6,3,6,5,5,6,9,则这组数据的中位数和众数分别是(A)5,5(B)6,5(C)6,6(D)5,67.如图,平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是边BC的中点,AB =4,则OE 的长是(A)2 (C)1 (D)128.不等式组321,1x x -<⎧⎨+⎩≥0的解集在数轴上表示正确的是9.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全.小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是 (A)18 (B)38 (C)58 (D)7810.菱形OABC 在平面直角坐标系中的位置如图所示,若OA =2,∠AOC =45°,则B 点的坐标是(A)( (B)(C) (D)11.已知反比例函数y =-7x图象上三个点的坐标分别是A (-2,y 1)、B (-1,y 2)、C (2,y 3)能正确反映y 1、y 2、y 3的大小关系的是 (A)y 1>y 2>y 3 (B)y 1>y 3>y 2 (C )y 2>y 1>y 3 (D)y 2>y 3>y 112.若x-y xy 则代数式()()11x y -+的值等于(A) (B)(C) (D)213.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD,则BD的长为(A)(B)2(C)3(D)414.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是(A)6π(B)5π(C)4π(D)3π第Ⅱ卷(非选择题共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上.2.答卷前将密封线内的项目及座号填写清楚.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15. 2010年5月1日世界博览会在我国上海举行,世博开园一周以来,入园人数累计约为1 050 000人,该数字用科学计数法表示为___________人.16.方程121x x=-的解是_______________.17.如图,∠1=∠2,添加一个条件使得△ADE∽△ACB___________.18.正方形ABCD的边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于____________.19.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a、b、c、d对应密文a+2b、2b+c、2c+3d、4d.例如明文1,2,3,4对应密文5,7,18,16.当按接收方收到密文14,9,23,28时,则解密得到的明文为__________.三、开动脑筋,你一定能做对!(本大题共3小题,共20分) 20.(本小题满分6分)先化简,再求值:211122a a a -⎛⎫-÷⎪++⎝⎭其中a =2.21.(本小题满分7分)为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况,并将所得数据进行了统计,结果如图1所示.(1)在这次调查中,一共抽查了____________名学生;(2)求出扇形统计图(图2)中参加“音乐活动”项目所对扇形的圆心角的度数; (3)若该校有2 400名学生,请估计该校参加“美术活动”项目的人数.22.(本小题满分7分)为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元.(1)求该学校为新增电脑投资的年平均增长率;(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?四、认真思考,你一定能成功!(本大题共2小题,共19分)23.(本小题满分9分)如图,AB 是半圆的直径,O 为圆心,BD 是半圆的弦,且∠PDA=∠PBD.(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果60BDE ∠=°,PD 求P A 的长.24.(本小题满分10分)某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相离10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1千米、y2千米,y1、y2与x的函数关系图象如图所示,根据图象解答下列问题:(1)直接写出y1、y2与x的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时?五、相信自己,加油呀!(本大题共2小题,共24分)25.(本小题满分11分)如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.(1)判断△ABC的形状,并说明理由;(2)保持图1中的△ABC固定不变,绕点C旋转DE所在的直线MN到图2中的位置(当垂线AD、BE在直线MN的同侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明;(3)保持图2中的△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.26.(本小题满分13分)如图,二次函数y=-x 2+ax+b 的图象与x 轴交于A 1,02⎛⎫- ⎪⎝⎭、B (2,0)两点,且与y 轴交于点C.(1)求该抛物线的解析式,并判断△ABC 的形状;(2)在x 轴上方的抛物线上有一点D ,且以A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标;(3)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由.2010年临沂市初中学生学业考试 数学试题参考答案及评分标准说明:第三、四、五大题给出了一种或两种解法,考生若用其它解法,应参照本评分标准给分.二、填空题(每小题3分,共15分) 15.1.05610⨯ 16.x =2 17.AD AED CE B AC AB∠=∠∠=∠=或或(本小题答案不唯一,填出一个即得满分) 18.212a 19. 6,4,1,7 三、开动脑筋,你一定能做对!(共20分)20.解:211122a a a -⎛⎫-÷⎪++⎝⎭ =()()1112222a a a a a a +-+⎛⎫-÷⎪+++⎝⎭………………………………………………(2分) =()()111222a a a a a +---÷++ =-()()12211a a a a a ++++-·=11.11a a ⎛⎫-⎪--⎝⎭或…………………………………………………………………(4分) 当a =2时,原式=111121a -=-=---.…………………………………………………(6分) 21.解:(1)48. ……………………………………………………………………………(2分) (2)由条形图可求出参加“音乐活动”项目的人数所占抽查总人数的百分比为12100%25%48⨯=. 所以参加“音乐活动”项目对扇形的圆心角的度数为36025%90⨯=°°.…………(4分) (3)2 400×648=300(人). 答:该校参加“美术活动”项目的人数约为300人. ……………………………………(7分)22.解:(1)设该校为新增电脑投资的年平均增长率为x ………………………………(1分) 根据题意,得一元二次方程()211118.59.x +=…………………………………………………………………………(4分)解这个方程,得120.3, 2.3x x ==-(不合题意,舍去).答:该学校为新增电脑投资的年平均增长率为30%.……………………………………(5分) (2)()111110.318.5943.89+⨯++=(万元).答:从2009年到2010年,该中学三年为新增电脑共投资43.89万元. ………………(7分) 四、认真思考,你一定能成功!(共19分)23.解:(1)PD 是⊙O 的切线.……………………………………(1分) 如图1,连接OD .,2.OB OD PBD =∴∠=∠∴2PDA ∠=∠.……………………………………………………………………………(3分) 又AB 是半圆的直径,∴90ADB ∠=°. 即1290∠+∠=°. ∴190PDA ∠+∠=°.即.OD PD ⊥∴PD 是⊙O 的切线. ………………………………………………………………………(5分) (2)方法一:60BDE ∠=°,90ODE ∠=°,90ADB ∠=°, 230∴∠=°,160∠=°. OD OA =,AOD ∴∆是等边三角形.60POD ∴∠=°. 30P PDA ∴∠=∠=°.PA AD AO OD ∴===.…………………………………………………………………(7分)在Rt PDO ∆中,设OD x =,()2222x x ∴+=,121,1x x ∴==-(不合题意,舍去).1.PA =………………………………………………………………………………………(9分)方法二:,,60OD PE AD BD BDE ⊥⊥∠=°,230PBD PDA ∴∠=∠=∠=°,60OAD ∴∠=°, 30P ∴∠=°..PA AD OD ∴==…………………………………………………………………………(7分)在Rt PDO ∆中,30P ∠=°,PD =,OD PD P ∴=∠·tan tan30°1=. 1.PA ∴=……………………………………………………………………………………(9分)24.解(1)()140 2.5,y x x =≤≤………………………………………………………(2分) ()251002y x x =-+≤≤.…………………………………………………(4分) (2)根据题意可知:两班相遇时,甲、乙离A 地的距离相等,即21.y y =由此得一元一次方程5104.x x -+=………………………………………………………(5分)解这个方程,得109x =(小时).………………………………………………………………(6分)当109x =时,2104051099y =-⨯+= (千米).答:甲、乙两班相遇时的时间为109小时,相遇时乙班离A 地409千米.………………(7分)(3)根据题意,得21 4.y y -=即5104 4.x x -+-=……………………………………………………………………… (9分)解这个方程,得23x =(小时). 答:甲、乙两班首次相距4千米时所用时间是23小时.…………………………………(10分) 五、相信自己,加油呀!(共24分)25.解:(1)ABC ∆为等腰直角三角形.……………………………………………………(1分) 如图2,在矩形ABED 中,∵点C 是边DE 的中点,且2AB AD =, ∴,AD DC CE EB ===90D E ∠=∠=°.∴△ADC ≌△BEC .…………………………………………………………………………(2分) ∴AC BC =, 1245∠=∠=°. ∴90ACB ∠=°.∴ABC ∆为等腰直角三角形.……………………………………………………………… (3分)(2)DE AD BE =+.…………………………………………………………………… (4分) 如图3,在Rt △ADC 和Rt △CEB 中,190CAD ∠+∠=°,1290∠+∠=°, 2CAD ∴∠=∠.又∵,90AC CB ADC CEB =∠=∠=°, ∴Rt △ADC ≌Rt △CEB .…………………………………………………(6分) ∴,.DC BE CE AD ==,DC CE BE AD ∴+=+即.DE AD BE =+……………………………………………………………………………(7分) (3)DE BE AD =-.…………………………………………………………………………(8分) 如图4,在Rt △ADC 和Rt △CEB 中,190CAD ∠+∠=°,1290∠+∠=°, 2CAD ∴∠=∠.又∵90ADC CEB AC CB ∠=∠==°,, ∴Rt △ADC ≌Rt △CEB .…………………………………………………(10分) ∴,.DC BE CE AD ==DC CE BE AD ∴-=-,即.DE BE AD =-…………………………………………………………………………(11分) 26.解:(1)根据题意,将1,02A ⎛⎫-⎪⎝⎭,B (2,0)代入2y x ax b =-++中, 得110,42420.a b a b ⎧--+=⎪⎨⎪-++=⎩ 解这个方程,得3,21.a b ⎧=⎪⎨⎪=⎩ ∴该抛物线的解析式为231.2y x x =-++ ………………………………………………(2分)当0x =时,1y =. ∴点C 的坐标为(0,1). ∴在AOC ∆中,AC ==在BOC ∆中,BC ==15222AB OA OB =+=+=. ∵222525544AC BC AB +=+==, ∴ABC ∆是直角三角形.…………………………………………………………………… (4分) (2)点D 的坐标为3,12⎛⎫ ⎪⎝⎭……………………………………………………………… (6分) (3)存在.……………………………………………………………………………………(7分)由(1)知,AC BC ⊥.①若以BC 为底边,则BC ∥AP ,如图5所示.可求得直线BC 的解析式为112y x =-+.…………………………………………………(8分)直线AP 可以看作是由直线BC 平移得到的, 所以设直线AP 的解析式为12y x b =-+. 把点1,02A ⎛⎫- ⎪⎝⎭代入直线AP 的解析式, 求得14b =-, ∴直线AP 的解析式为1124y x =--.……………………………………………………… (9分)∵点P 既在抛物线上,又在直线AP 上,∴点P 的纵坐标相等, 即23111.224x x x -++=-- 解得1251,22x x ==-(不合题意,舍去). 当52x =时,32y =-. ∴点P 的坐标为53,22⎛⎫ ⎪⎝⎭.…………………………………………………………………(10分)②若以AC 为底边,则BP ∥AC ,如图6所示.可求得直线AC 的解析式为21y x =+.…………………………………………… (11分) 直线BP 可以看作是由直线AC 平移得到的,所以直线BP 的解析式为2y x b =+.把点(2,0)B 代入直线BP 的解析式,求得 4.b =- ∴直线BP 的解析式为24y x =-.………………………………………(12分)∵点P 既在抛物线上,又在直线BP 上. ∴点P 的纵坐标相等, 即231242x x x -++=-.解得125,22x x =-= (不合题意,舍去). 当52x =-时,9y =-. ∴点P 的坐标为5,92⎛⎫-- ⎪⎝⎭. 综上所述,满足题目条件的点P 为53,22⎛⎫-⎪⎝⎭或5,92⎛⎫-- ⎪⎝⎭.……………………………(13分)。
2010年山东临沂中考真题(word版试卷,word版答案)
2010年临沂市中考化学试题可能用到的相对原子质量:H 1 C 12 O 16 S 32 K 39 Ca 40 Ba 137一、选择题(共18分)1、下列变化属于物理变化的( )A.食物腐烂B.钢铁生锈C.酒精挥发D.蜡烛燃烧2、在下列物质中,属于化合物的是()A.液氧B.生铁C.石油D.干冰3、被病菌污染的粮食会产生黄曲霉素,其化学式为C17H12O6,人类的特殊基因在黄曲霉素作用下会发生突变,继而诱发癌症。
下列关于黄曲霉素的说法中错误的是()A.黄曲霉素属于有机化合物B.黄曲霉素由碳、氢、氧三种元素组成C.黄曲霉素中含有17个碳原子、12个氢原子和6个氧原子D.黄曲霉素中碳氢氧三种元素的质量比为17:1:84、下列实验设计与实验目的不一致的是()5、下列实验方案中,不合理的是()A.用肥皂水可以检验硬水和软水B.用浓硫酸除去氧气中混有的水蒸气C.用酚酞溶液鉴别稀盐酸和氯化钠溶液D.用燃烧的方法区别棉纤维和羊毛纤维6、点燃下列各组混合气体,一定不会发生爆炸的是()A.二氧化碳和氧气B.一氧化碳和空气C.液化石油气和空气D.天然气和氧气7、如图是X、Y两种固体物质的溶解度曲线,下列说法中错误的是()A.X、Y两种物质的溶解度都随温度升高而增大B.X物质的溶解度大于Y物质的溶解度C.降低温度可使接近饱和的X溶液变为饱和溶液D.t℃时,X物质的溶解度等于Y物质的溶解度8、化学与生产、生活密不可分,下列说法中正确的是()A.微量元素是人体必需的,应尽量可能多吃含微量元素的营养补剂B.防止“白色污染”,将废弃塑料集中到野外焚烧C.采用步行、骑自行车等外出是较为低碳的出行方式D.熟石灰可以改良酸性土壤,又能和硫酸铵混合使用9、将X 、Y 、Z 三种金属,如果把X 、Y 和Z 分别投入到稀盐酸中,只有Y 溶解并产生气泡,X 、Z 不反应;如果把X 和Z 分别放入硝酸银溶液中,过一会儿,在X 表面有银析出,而Z 没有变化。
临沂中考数学试题及答案
临沂中考数学试题本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共14题,每小题3分,共42分,在每小题所给的4个选项中,只有一项是符合题目要求的)1.﹣的倒数是A.6B.﹣6C .D .﹣2.太阳的半径大约是696000千米,用科学记数法可表示为A.696×103千米B.69.6×104千米C.6.96×105千米D.6.96×106千米3.下列计算正确的是A.2a2+4a2=6a4B.(a+1)2=a2+1C.(a2)3=a5D.x7÷x5=x24.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是A.40°B.50°C.60°D.140°5.化简4(1)22aa a+÷--的结果是()A.2aa+B.2aa+C.2aa-D.2aa-6.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是A.14B.12C.34D.17.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=98.不等式组2153112xxx-<⎧⎪⎨-+≥⎪⎩,的解集在数轴上表示正确的是A.B.C.D.9.如图是一个几何体的三视图,则这个几何体的侧面积是A.18cm2B.20cm2C.(18+23)cm2D.(18+43)cm210.关于x,y的方程组3,x y mx my n-=⎧⎨+=⎩的解是11xy=⎧⎨=⎩,,则|m-n|的值是A.5B. 3C. 2D. 111.如图,在等腰梯形ABCD中,AD∥BC,对角线AC、BD相交于点O,下列结论不一定正确的是A.AC=BD B.OB=OC C.∠BCD=∠BDC D.∠ABD=∠ACD(第11题图)(第12题图)12.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数1kyx=(x>0)和2kyx=(x>0)的图象于点P和Q,连接OP和OQ.则下列结论正确的是A.∠POQ不可能等于90°B.12kPMQM k=C.这两个函数的图象一定关于x轴对称D.△POQ的面积是121(||||)2k k+13.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为A.1B3C3D.23(第13题图)(第14题图)14.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C 和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为A.B.C.D.第Ⅱ卷(非选择题共78分)二.填空题(本大题共5小题,每小题3分,共15分,把答案填在题中横线上)15.分解因式:369a ab ab-+=.16.计算:1482=.17.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=70°,则∠CAD=°.(第17题图)(第18题图)18.如图,在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=cm.19.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001nn=∑,这里“Σ”是求和符号,通过对以上材料的阅读,计算201211(1)nn n=+∑=.三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(本小题满分6分)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?21.(本小题满分7分)某工厂加工某种产品,机器每小时加工产品的数量比手工每小时加工产品的数量的2倍多9件.若加工1800件这样的产品,机器加工所用的时间是手工加工所用时间的37倍,求手工每小时加工产品的数量.22.(本小题满分7分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,AB=4,BC=3,当AF为何值时,四边形BCEF是菱形.(第22题图)四、认真思考,你一定能成功!(本大题共2小题,共19分)23.(本小题满分9分)如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.(第23题图)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,樱桃价格z(单位:元/千克)与上市时间x(单位:天)的函数关系式如图2所示.(第24题图)(1)观察图象,直接写出日销售量的最大值;(2)求小明家樱桃的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?五、相信自己,加油啊!(本大题共2小题,共24分)25.(本小题满分11分)已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.(第25题图)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.(第26题图)临沂中考数学试题参考答案题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案BCDBABDAADCDCB二、填空题(每小题3分,共15分)15.2(31)a b -或2(13)a b - 16. 0 17. 70 18. 3 19.20122013。
【真题】临沂市中考数学试卷含答案解析
山东省临沂市中考数学试卷(解析版)一、选择题(本大题共14小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(山东省临沂市)在实数﹣3,﹣1,0,1中,最小的数是()A.﹣3 B.﹣1 C.0 D.1【分析】根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数.【解答】解:∵﹣3<﹣1<0<1,∴最小的是﹣3.故选:A.【点评】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.2.(山东省临沂市)自10月提出“精准扶贫”的重要思想以来.各地积极推进精准扶贫,加大帮扶力度.全国脱贫人口数不断增加.仅我国减少的贫困人口就接近1100万人.将1100万人用科学记数法表示为()A.1.1×103人B.1.1×107人C.1.1×108人D.11×106人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1100万=1.1×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(山东省临沂市)如图,AB∥CD,∠D=42°,∠CBA=64°,则∠CBD的度数是()A.42°B.64°C.74°D.106°【分析】利用平行线的性质、三角形的内角和定理计算即可;【解答】解:∵AB∥CD,∴∠ABC=∠C=64°,在△BCD中,∠CBD=180°﹣∠C﹣∠D=180°﹣64°﹣42°=74°,故选:C.【点评】本题考查平行线的性质、三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考基础题.4.(山东省临沂市)一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1 B.(y﹣)2=1 C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.5.(山东省临沂市)不等式组的正整数解的个数是()A.5 B.4 C.3 D.2【分析】先解不等式组得到﹣1<x≤3,再找出此范围内的整数.【解答】解:解不等式1﹣2x<3,得:x>﹣1,解不等式≤2,得:x≤3,则不等式组的解集为﹣1<x≤3,所以不等式组的正整数解有1、2、3这3个,故选:C.【点评】本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.6.(山东省临沂市)如图.利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,测得AB=1.6m.BC=12.4m.则建筑物CD的高是()A.9.3m B.10.5m C.12.4m D.14m【分析】先证明∴△ABE∽△ACD,则利用相似三角形的性质得=,然后利用比例性质求出CD即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴=,即=,∴CD=10.5(米).故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.7.(山东省临沂市)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2B.(12+π)cm2C.6πcm2D.8πcm2【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.【点评】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.(山东省临沂市)某市初中学业水平实验操作考试.要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有的可能,进而利用概率公式取出答案.【解答】解:如图所示:,一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.45000 18000 10000 5500 5000 3400 3300 1000月收入/元人数 1 1 1 3 6 1 11 1能够反映该公司全体员工月收入水平的统计量是()A.平均数和众数B.平均数和中位数C.中位数和众数D.平均数和方差【分析】求出数据的众数和中位数,再与25名员工的收入进行比较即可.【解答】解:该公司员工月收入的众数为3300元,在25名员工中有13人这此数据之上,所以众数能够反映该公司全体员工月收入水平;因为公司共有员工1+1+1+3+6+1+11+1=25人,所以该公司员工月收入的中位数为5000元;由于在25名员工中在此数据及以上的有12人,所以中位数也能够反映该公司全体员工月收入水平;故选:C.【点评】此题考查了众数、中位数,用到的知识点是众数、中位数的定义,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数,众数即出现次数最多的数据.10.(山东省临沂市)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?设今年1﹣5月份每辆车的销售价格为x万元.根据题意,列方程正确的是()A.= B.=C.= D.=【分析】设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据“销售数量与去年一整年的相同”可列方程.【解答】解:设今年1﹣5月份每辆车的销售价格为x万元,则去年的销售价格为(x+1)万元/辆,根据题意,得:=,故选:A.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,确定相等关系.11.(山东省临沂市)如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE的长是()A.B.2 C.2D.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.12.(山东省临沂市)如图,正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.当y1<y2时,x的取值范围是()A.x<﹣1或x>1 B.﹣1<x<0或x>1C.﹣1<x<0或0<x<1 D.x<﹣1或0<x<l【分析】直接利用正比例函数的性质得出B点横坐标,再利用函数图象得出x的取值范围.【解答】解:∵正比例函y1=k1x与反比例函数y2=的图象相交于A、B两点,其中点A的横坐标为1.∴B点的横坐标为:﹣1,故当y1<y2时,x的取值范围是:x<﹣1或0<x<l.故选:D.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出B点横坐标是解题关键.13.(山东省临沂市)如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,【解答】解:因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形,故④选项正确,故选:A.【点评】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC⊥BD时,中点四边形是正方形.14.(山东省临沂市)一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是()A.原数与对应新数的差不可能等于零B.原数与对应新数的差,随着原数的增大而增大C.当原数与对应新数的差等于21时,原数等于30D.当原数取50时,原数与对应新数的差最大【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【解答】解:设原数为a,则新数为,设新数与原数的差为y则y=a﹣=﹣易得,当a=0时,y=0,则A错误∵﹣∴当a=﹣时,y有最大值.B错误,A正确.当y=21时,﹣=21解得a1=30,a2=70,则C错误.故选:D.【点评】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.二、填空题(本大题共5小题,每小题3分,共15分)15.(山东省临沂市)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:|﹣|=﹣1.故答案为:﹣1.【点评】本题考查了实数的性质,是基础题,主要利用了绝对值的性质.16.(山东省临沂市)已知m+n=mn,则(m﹣1)(n﹣1)=1.【分析】先根据多项式乘以多项式的运算法则去掉括号,然后整体代值计算.【解答】解:(m﹣1)(n﹣1)=mn﹣(m+n)+1,∵m+n=mn,∴(m﹣1)(n﹣1)=mn﹣(m+n)+1=1,故答案为1.【点评】本题主要考查了整式的化简求值的知识,解答本题的关键是掌握多项式乘以多项式的运算法则,此题难度不大.17.(山东省临沂市)如图,在▱ABCD中,AB=10,AD=6,AC⊥BC.则BD=4.【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,OB=D,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【点评】此题考查了平行四边形的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.18.(山东省临沂市)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.【分析】根据题意作出合适的辅助线,然后根据圆的相关知识即可求得△ABC外接圆的直径,本题得以解决.【解答】解:设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆,∵在△ABC中,∠A=60°,BC=5cm,∴∠BOC=120°,作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=,∠OBD=30°,∴OB=,得OB=,∴2OB=,即△ABC外接圆的直径是cm,故答案为:.【点评】本题考查三角形的外接圆和外心,解答本题的关键是明确题意,作出合适的辅助线,利用数形结合的思想解答.19.(山东省临沂市)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数0.为例进行说明:设0.=x,由0.=0.7777…可知,l0x=7.7777…,所以l0x﹣x=7,解方程,得x=,于是.得0.=.将0.写成分数的形式是.【分析】设0.=x,则36.=100x,二者做差后可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设0.=x,则36.=100x,∴100x﹣x=36,解得:x=.故答案为:.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题(本大题共7小题,共63分)20.(山东省临沂市)计算:(﹣).【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【解答】解:原式=[﹣]•=•=•=.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.21.(山东省临沂市)某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【分析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:(1)补充表格如下:气温分组划记频数12≤x<17 317≤x<22 1022≤x<27 527≤x<32 2(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有9天.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(山东省临沂市)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1m的圆形门?【分析】过B作BD⊥AC于D,解直角三角形求出AD=xm,CD=BD=xm,得出方程,求出方程的解即可.【解答】解:工人师傅搬运此钢架能通过一个直径为2.1m的圆形门,理由是:过B作BD⊥AC于D,∵AB>BD,BC>BD,AC>AB,∴求出DB长和2.1m比较即可,设BD=xm,∵∠A=30°,∠C=45°,∴DC=BD=xm,AD=BD=xm,∵AC=2(+1)m,∴x+x=2(+1),∴x=2,即BD=2m<2.1m,∴工人师傅搬运此钢架能通过一个直径为2.1m的圆形门.【点评】本题考查了解直角三角形,解一元一次方程等知识点,能正确求出BD的长是解此题的关键.23.(山东省临沂市)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D,OB与⊙O相交于点E.(1)求证:AC是⊙O的切线;(2)若BD=,BE=1.求阴影部分的面积.【分析】(1)连接OD,作OF⊥AC于F,如图,利用等腰三角形的性质得AO⊥BC,AO平分∠BAC,再根据切线的性质得OD⊥AB,然后利用角平分线的性质得到OF=OD,从而根据切线的判定定理得到结论;(2)设⊙O的半径为r,则OD=OE=r,利用勾股定理得到r2+()2=(r+1)2,解得r=1,则OD=1,OB=2,利用含30度的直角三角三边的关系得到∠B=30°,∠BOD=60°,则∠AOD=30°,于是可计算出AD=OD=,然后根据扇形的面积公式,利用阴影部分的面积=2S△AOD﹣S扇形DOF进行计算.【解答】(1)证明:连接OD,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)解:在Rt△BOD中,设⊙O的半径为r,则OD=OE=r,∴r2+()2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°,在Rt△AOD中,AD=OD=,∴阴影部分的面积=2S△AOD﹣S扇形DOF=2××1×﹣=﹣.【点评】本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了等腰三角形的性质.24.(山东省临沂市)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发x h后,两人相距y km,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.根据图中信息,求:(1)点Q的坐标,并说明它的实际意义;(2)甲、乙两人的速度.【分析】(1)两人相向而行,当相遇时y=0本题可解;(2)分析图象,可知两人从出发到相遇用1小时,甲由相遇点到B用小时,乙走这段路程用1小时,依此可列方程.【解答】解:(1)设PQ解析式为y=kx+b把已知点P(0,10),(,)代入得解得:∴y=﹣10x+10当y=0时,x=1∴点Q的坐标为(1,0)点Q的意义是:甲、乙两人分别从A,B两地同时出发后,经过1个小时两人相遇.(2)设甲的速度为akm/h,乙的速度为bkm/h由已知第小时时,甲到B地,则乙走1小时路程,甲走﹣1=小时∴∴∴甲、乙的速度分别为6km/h、4km/h【点评】本题考查一次函数图象性质,解答问题时要注意函数意义.同时,要分析出各个阶段的路程关系,并列出方程.25.(山东省临沂市)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【分析】(1)先运用SAS判定△AEG≌Rt△FDG,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠GDE=90°=∠AEB+∠DEG,∴∠EDG=∠DEG,∴DG=EG,∴FG=AG,又∵∠DGF=∠EGA,∴△AEG≌Rt△FDG(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.26.(1山东省临沂市)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M 的坐标;若不存在,请说明理由.【分析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=﹣2x+2,根据PD⊥x轴,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.【解答】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式为:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),易得AB的解析式为:y=﹣2x+2,设P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),∵PE=DE,∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),x=1(舍)或﹣1,∴P(﹣1,6);②∵M在直线PD上,且P(﹣1,6),设M(﹣1,y),∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45,解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y﹣6)2,y=﹣1,∴M(﹣1,﹣1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2,y=,∴M(﹣1,);综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【点评】此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度及勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.。
2010年临沂市中考数学试题(含答案)
第7题第10题2011年临沂市初中学业考试初中数学试题一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.计算2)1(-的值等于 ( )A .﹣1B .1C .﹣2D .2 2.如果∠ α = 60°,那么∠ α的余角的度数是( ) A .30° B .60° C .90° D .120° 3.下列各式计算正确的是 A .632x x x =⋅B .2532x x x =+C .632)(x x =D .623x x x ÷=4.已知两圆的半径分别是2cm 和4cm ,圆心距是6cm ,那么这两圆的位置关系是( ) A .外离 B .外切 C .相交 D .内切 5.如图,下面几何体的俯视图是()6.今年我国西南地区发生的严重干旱灾害,牵动着全国人民的心.某学校掀起了“献爱心,捐矿泉水”的活动,其中该校九年级(4)班7个小组所捐矿泉水的数量(单位:箱)分别为6,3,6,5,5,6,9,则这组数据的中位数和众数分别是( ) A .5,5 B .6,5 C .6,6 D .5,67.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,AB = 4,则OE 的长是( )A .2 B .2 C .1 D .218.不等式组⎩⎨⎧≥+<-01,123x x 的解集在数轴上表示正确的是( )A B C D9.“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全.小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是( )A .81B .83C .85D .8710.菱形OABC 在平面直角坐标系中的位置如图所示,若OA = 2,∠AOC =45°,则B 点的坐标是( ) A .(2 +2,2) B .(2﹣2,2) C .(﹣2 +2,2) D .(﹣2﹣2,2)C 第5题图A B D 1-11.已知反比例函数xy 7-=图象上三个点的坐标分别是A (﹣2,1y )、B (﹣1,2y )、C (2,3y ),能正确反映1y、2y 、3y 的大小关系的是( ) A .321y y y >>B .231y y y >>C .312y y y >>D .231y y y >>12.若12-=-y x ,2=xy ,则代数式(x ﹣1)(y + 1)的值等于 A .222+B .222-C .22D .213.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为( )A .3B .32C .33D .3414.如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积是( ) A .6π B .5π C .4π D .3π二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.2010年5月1日世界博览会在我国上海举行,世博会开园一周以来,入园人数累计约为1050000人,该数字用科学记数法表示为 人.16.方程x x 211=-的解是 .17.如图,∠1=∠2,添加一个条件使得△ADE ∽△ACB .18.正方形ABCD 边长为a ,点E 、F 分别是对角线BD 上的两点,过点E 、F 分别作AD 、AB 的平行线,如图所示,则图中阴影部分的面积之和等于 .19.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a + 2b ,2b + c ,2c + 3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 . 三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20.(本小题满分6分)先化简,再求值:21)121(2+-÷-+a a a ,其中a = 2. 21.(本小题满分7分)为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计.结果如图1所示.(1)在这次调查中,一共抽查了 名学生;(2)求出扇形统计图(图2)中参加“音乐活动”项目所对扇形的圆心角的度数; (3)若该校有2400名学生,请估计该校参加“美术活动项目的人数.第13题B '第14题第17题第18题22.(本小题满分7分)为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元 (1)求该学校为新增电脑投资的年平均增长率;(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?四、认真思考,你一定能成功!(本大题共2小题,共19分)23.(本小题满分9分)如图,AB 是半圆的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA =∠PBD (1)判断直线PD 是否为⊙O 的切线,并说明理由; (2)如果∠BDE = 60°,PD=3,求PA 的长.24.(本小题满分10分)某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为y 1、y 2千米,y 1、y 2与x 的函数关系图象如图所示.根据图象解答下列问题:(1)直接写出,y 1、y 2与x 的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米? (3)甲、乙两班首次相距4千米时所用时间是多少小时?第23题图音乐 体育 美术 书法 其他人图体 育音乐 美书其图O 2 2.5 x /小时y 1 y 2 1y /千米第24题图五、相信自己,加油啊!(本大题共2小题,共24分) 25.(本小题满分11分)如图1,已知矩形ABED ,点C 是边DE 的中点,且AB = 2AD . (1)判断△ABC 的形状,并说明理由;(2)保持图1中ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中(当垂线段AD 、BE 在直线MN 的同侧),试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3)保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明.26.(本小题满分13分)如图:二次函数y =﹣x 2 + ax + b 的图象与x 轴交于A (-21,0),B (2,0)两点,且与y 轴交于点C . (1)求该抛物线的解析式,并判断△ABC 的形状;(2)在x 轴上方的抛物线上有一点D ,且A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标;(3)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由.图1 图2图3第25题图AC B第26题图初中学生学业考试数学试题参考答案一、选择题:1. B,2. A,3. C,4. B,5. D,6. C,7. A,8. D,9. B, 10. D, 11. C, 12. B, 13. D, 14. A, 二、填空题:15. 1.05⨯106; 16. x =2; 17. ∠D =∠C 或∠E =∠B 或AC AD =ABAE(本小题答案不唯一,填出一个即得满分) 18.21a 2; 19. 6,4,1,7; 三、开动脑筋,你一定能做对!20. [解] (21+a -1)÷212+-a a =(21+a -22++a a )÷2)1)(1(+-+a a a =221+--a a ÷2)1)(1(+-+a a a= -21++a a ⨯)1)(1(2-++a a a = -11-a (或a -11);当a =2时,原式= -121-= -1。
临沂市中考数学试题解析版
2010年临沂中考数学分析2010年临沂市中考试题数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I卷1至4页,第Ⅱ卷 5至12页,满分120分,考试时间120分钟注意事项:1.答卷前,考生务势必自己的姓名,准考据号考试科目用铅笔涂写在答题卡上。
2.每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需变动,用橡皮擦洁净后,再选涂其余答案标号,不可以答在试卷上。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共14小题,每题3分,满分42分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
)1.(2010山东临沂1,3分)计算12的值等于(A)-1(B)1(C)-2(D)2【剖析】原式=(-1)×(-1)=1.【答案】B【波及知识点】有理数的乘法,负整数指数幂【评论】此题属于基础题,能够将乘方转变为乘法运算,也能够直接利用-1的偶数次幂等于它自己来获得结果,此题注意符号问题。
【介绍指数】★2.(2010山东临沂2,3分)假如60,那么的余角的度数是(A)30°(B)60°(C)90°(D)120°【剖析】依据互余的定义,互余的两个角的和是90°,则另一个是90°-60°=30°.【答案】C【波及知识点】互余【评论】此题是基础题,互余互补是几何中的基本观点,波及到的计算常常特别简单,依据观点作简单的计算即可。
【介绍指数】★只需3.(2010山东临沂3,3分)以下各式计算正确的选项是(A)x2x3x6(B)2x3x5x2(C)(x2)3x6(D)x6x2x3【剖析】同底数幂相乘,底数不变指数相加,所以A应为x5,B是归并同类项,结果为5x,x4.同底数幂相除,底数不变指数相减,所以D运算结果应为【答案】C【波及知识点】同底数幂相乘,归并同类项,幂的乘方,同底数幂相除。
【评论】相关幂的运算是中考取的热门,几乎每份试卷中都有这种的题目,熟记幂的运算公式是计算的要点。
山东省临沂市2010届九年级数学学业考试样卷试题
2010年某某市初中学生学业考试样卷数学一、选择题(本题共14小题,每小题3分,共42分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.下列说法中,正确的是( ).(A )-1是最大的负数. (B )0是最小的整数. (C )在有理数中,0的绝对值最小. (D )1是绝对值最小的正数.2.若每人每天浪费水0.32升,那么100万人每天浪费的水,用科学记数法表示为( ). (A )3.2×104升.(B )3.2×105升.(C )3.2×106升.(D )3.2×107升.3.小马虎在下面的计算中只做对了一道题,他做对的题目是( ). (A )(a -b )2=a 2-b 2.(B )(-2a 3)2=4a 6. (C )a 3+a 2=2a 5 . (D )-(a -1)=-a -1. 4.下列图形中,由AB ∥CD ,能得到∠1=∠2的是( ).(A ) (B ) (C ) (D )12718123--的结果是( ).(A )1. (B )-1. (C )32-. (D )23-⊙O 1⊙O 2相切,⊙O 1的直径为9cm ,⊙O 2的直径为4cm. 则O 1 O 2的长是( ).(A )5cm 或13cm. (B )cm. (C ). (D )或7.如图,在等腰梯形ABCD 中,AB =2,BC =4,∠B =45°,则该梯形的面积是(). (A )22 1.-(B )4 2.-(C )824-. (D )422-. 8.下列说法正确的是(). (A )随机事件发生的可能性是50%.(B )一组数据2,3,3,6,8,5的众数与中位数都是3.(C )“打开电视机,正在播放关于奥运火炬传递的新闻”是必然事件.(D )若甲组数据的方差S 2甲=0.31,乙组数据的方差S 2乙=0.02,则乙组数据比甲组数据稳定.9.如图是一个包装盒的三视图,则这个包装盒的体积是(). (A )1000πcm 3.(B )1500πcm 3. (C )2000πcm 3.(D )4000πcm 3.(第7题图)10.若x >y ,则下列式子错误的是( ).(A )x-3>y-3. (B )3-x >3-y . (C )x+3>y+2. (D )33x y . 11.如图,AB 是⊙O 的直径,弦CD 垂直平分OB ,则∠BDC 的度数为( ). (A )15°.(B )20°. (C )30°. (D )45°. 12.如图,直线y=kx (k >0)与双曲线y=2x交于A 、B 两点,若A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1y 2+ x 2y 1的值为( ).(A )-4. (B )4. (C )-8. (D )0.13.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为(). (A )12.(B )36π. (C )39π. (D )33π.(第12题图) (第13题图) (第14题图)14.矩形ABCD 中,AD=8cm ,AB=6cm. 动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止. 如图可得到矩形CFHE ,设运动时间为x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单位:cm 2),则y 与x 之间的函数关系用图象表示大致是下图中的( ).(A ) (B ) (C ) (D )二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上.15.分解因式:2a 2-4a=.(第9题图) (第11题图)<16.已知x 、y 满足方程组{25,24x y x y +=+=,则x-y 的值为.17. 如图,在菱形ABCD 中,∠ADC=72°, AD 的垂直平分线交对角线BD 于点P ,垂足为E ,连结CP ,则∠CPB = 度.(第17题图) (第18题图)18. 有如图所示的两种广告牌,其中图1是由两个等腰直角三角形构成的,图2是一个矩形,从图形上确定这两个广告牌面积的大小关系,并将这种大小关系用含字母a 、b 的不等式表示为 .19. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数. 例如,6的不包括自身的所有因数为1、2、3,而且6=1+2+3,所以6是完全数. 大约2200多年前,欧几里德提出:如果2n-1是质数,那么2n -1·(2n-1)是一个完全数. 请你根据这个结论写出6之后的下一个完全数是. 三、解答题(共63分).20.(本小题满分6分) 解不等式组3(21)2,102(1)3(1)x x x ---⎧⎨-+- -⎩,≥并把解集在数轴上表示出来.21. (本小题满分7分)为了了解全校1800名学生对学校设置的体操、球类、跑步、踢毽子等课外体育活动项目的喜爱情况,在全校X 围内随机抽取了若干名学生. 对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生? (2)补全频数分布直方图;(3)估计该校1800名学生中有多少人最喜爱球类活动?22.(本小题满分8分)如图, ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=12CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求ABCD的面积.23.(本小题满分8分)在某道路拓宽改造工程中,一工程队承担了24千米的任务. 为了减少施工带来的影响,在确保工程质量的前提下,实际施工速度是原计划,结果提前20天完成了任务,求原计划平均每天改造道路多少千米?24.(本小题满分10分)在全市中学运动会800m比赛中,甲乙两名运动员同时起跑,刚跑出200m后,甲不慎摔倒,他又迅速地爬起来继续投入比赛,并取得了优异的成绩. 图中分别表示甲、乙两名运动员所跑的路程y(m)与比赛时间x(s)之间的关系,根据图象解答下列问题:(第22题图)(1)甲摔倒前,的速度快(填甲或乙);(2)甲再次投入比赛后,在距离终点多远处追上乙?(第24题图)25.(本小题满分11分)数学课上,X老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF = 90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB的中点M,连结ME,则AM = EC ,易证△AME ≌△ECF ,所以AE = EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE = EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE = EF”仍然成立. 你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.(第25题图)26.(本小题满分13分)如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式;(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.(第26题图)2010年某某市初中学生学业考试样卷数学参考答案审核人:陈亮校对:X浩一、选择题(每小题3分,共42分)题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答案 C B B B C D D D C B C A C A 二、填空题(每小题3分,共15分)15.2a(a - 2) 16. 1 17. 72 18. 12a2 +12b2三、解答题(共63分)20. 解:解不等式3-(2x-1)≥-2,得x≤3. …………………………………………(2分)解不等式 -10+2(1-x)<3(x - 1),得x>-1. …………………………(4分)所以原不等式组的解集为 -1< x ≤3.………………………………………(5分)把解集在数轴上表示出来为:………………………………………(6分):(1)10÷12.5%=80(人),一共抽查了80人. …………………………………………………………(2分)(2)80×25%=20(人),图形补充正确. ………………………………………………………………(4分)(3)1800×3680=810(人),估计全校有810人最喜欢球类活动.…………………………………………(7分)22.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB∥CD.∴∠ABF=∠CEB.∴△ABF∽△CEB . ………………………………………………………………(2分)(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AB CD.∴△DEF∽△CEB,△DEF∽△ABF . …………………………………………(3分)∵DE=12 CD,∴219DEFCEBS DES EC⎛⎫==⎪⎝⎭,21.4DEFABFS DES AB⎛⎫==⎪⎝⎭…………………………(4分)∵S△DEF=2,∴S△CEB=18,S△ABF=8.…………………………………………………………(6分)∴S四边形BCDF=S△BCE-S△DEF=16.∴S ABCD=S四边形BCDF+S△ABF=16+8=24.…………………………………………(8分)23.解:设原计划平均每天改造道路x千米,根据题意,得……………………………(1分)242420.1.2x x-=…………………………………………………………………(5分)解这个方程,得x=0.2.…………………………………………………………(7分)经检验,x=0.2是原方程的解.答:原计划平均每天改造道路0.2千米.………………………………………………(8分) 24.解:(1)甲. ……………………………………………………………………………(3分) (2)设线段OD 的解析式为y=k 1x , 把(125,800)代入y=k 1x ,得k 1 = 325. ∴线段OD 的解析式为y=325x (0≤x ≤125). …………………………(5分) 设线段BC 的解析式为y=k 2 x + b ,把(40,200),(120,800)分别代入y=k 2x+b ,得2220040,800120.k b k b =+⎧⎨=+⎩ 解得 215,2100.k b ⎧=⎪⎨⎪=-⎩∴线段BC 的解析式为y=151002x -(40≤x ≤120). ……………………(7分) 解方程组325100.y x y x ⎧=⎪⎪⎨⎪-⎪⎩,15=2得 1000116400.11x y ⎧=⎪⎪⎨⎪=⎪⎩,…………………………(9分)800-640024001111=. 答:甲再次投入比赛后,在距离终点2400m 11处追上了乙. ……………(10分)25.解:(1)正确. …………………………………………(1分) 证明:在AB 上取一点M ,使AM=EC ,连结ME , …………………………………………(2分)∴BM=BE. ∴∠BME=45°. ∴∠AME=135°.∵CF 是外角平分线, ∴∠DCF=45°. ∴∠ECF=135°. ∴∠AME=∠ECF .∵∠AEB +∠BAE=90°,∠AEB + ∠CEF=90°, ∴∠BAE=∠CEF.∴△AME ≌△ECF (ASA). …………………………………………………(5分) ∴AE=EF. ……………………………………………………………………(6分) (2)正确. …………………………………………………………………………(7分) 证明:在BA 的延长线上取一点N ,使AN=CE ,连接NE. ……………………(8分) ∴BN=BE.∴∠N=∠FCE=45°. ∵四边形ABCD 是正方形, ∴AD ∥BE . ∴∠DAE=∠BEA . ∴∠NAE=∠CEF .∴△ANE ≌△ECF (ASA). …………………………………………………(10分) ∴AE=EF. ……………………………………………………………………(11分)26.解:(1)∵该抛物线过点C (0,-2),∴可设该抛物线的解析式为y=ax 2+bx-2.将A (4,0),B (1,0)代入,得16420,20.a b a b +-=⎧⎨+-=⎩ 解得1,25.2a b ⎧=-⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为2152.22y x x =-+-……………………………(3分) (2)存在. …………………………………………………………………………(4分) 如图,设P 点的横坐标为m , 则P 点的纵坐标为2152.22m m -+- 当1<m <4时,AM=4-m,PM=2152.22m m -+- 又∵∠COA = ∠PMA = 90°,∴①当21AM AO PM OC ==时, △APM ∽△ACO , 即4 - m = 2(215222m m -+-), 解得m 1=2,m 2=4(舍去). ∴P (2,1). ……………………………(6分) ②当12AM OC PM OA ==时,△APM ∽△CAO ,即2(4 - m )=215222m m -+-, 解得m 1=4,m 2=5(均不合题意,舍去).∴当1<m <4时,P (2,1). ………………………………………………(7分) 类似地可求出当m >4时,P (5,-2). …………………………………(8分) 当m <1时,P (-3,-14).综上所述,符合条件的点P 为(2,1)或(5,-2)或(-3,-14).……………………………………………………………………(9分)(3)如图,设D 点的横坐标为t(0<t <4),则D 点的纵坐标为2152.22t t -+- 过D 作y 轴的平行线交AC 于E.(第26题图)由题意可求得直线AC的解析式为y=12x-2.………………………(10分)∴E点的坐标为(t,12t - 2).∴DE =-12t2 +52t - 2 -(12t-2)=-12t2 + 2t. ………………………(11分)∴S△DAC=12×(-12t2+2t)×4 = - t2 +4t =-(t-2)2+4.∴当t=2时,△DAC面积最大.∴D(2,1). …………………………………………………………(13分)。
2010年临沂市初中学生学业考试试题
2010年临沂市初中学生学业考试试题数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至12页,满分120分,考试用时120分钟第Ⅰ卷(选择题共42分)注意事项:1答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上2每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试卷上3考试结束,将本试卷和答题卡一并收回一、选择题(本大题共14小题,每小题3分,满分42分)在每小题所给的四个选项中,只有一项是符合题目要求的1计算2)1(-的值等于A﹣1 B1 C﹣2 D22如果∠α = 60°,那么∠α的余角的度数是A30°B60°C90°D120°3下列各式计算正确的是A632xxx=⋅B2532xxx=+C632)(xx=D623x x x÷=4已知两圆的半径分别是2cm和4cm,圆心距是6cm,那么这两圆的位置关系是A外离B外切C相交D内切5如图,下面几何体的俯视图是6今年我国西南地区发生的严重干旱灾害,牵动着全国人民的心某学校掀起了“献爱心,捐矿泉水”的活动,其中该校九年级(4)班7个小组所捐矿泉水的数量(单位:箱)分别为6,3,6,5,5,6,9,则这组数据的中位数和众数分别是A5,5 B6,5 C6,6 D5,67如图,在□ABCD中,AC与BD相交于点O,点E是边BC的中点,AB = 4,则OE的长是A2第5题图A BC DC 1D 21 8不等式组⎩⎨⎧≥+<-01,123x x 的解集在数轴上表示正确的是A BC D9“红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是A 81B 83C 85D 8710菱形OABC 在平面直角坐标系中的位置如图所示,若OA = 2,∠AOC = 45°,则B 点的坐标是 A (2 +2,2) B (2﹣2,2) C (﹣2 +2,2) D (﹣2﹣2,2)11已知反比例函数x y 7-=图象上三个点的坐标分别是A (﹣2,1y )、B (﹣1,2y )、C (2,3y ),能正确反映1y 、2y 、3y 的大小关系的是 A 321y y y >> B 231y y y >> C 312y y y >>D 231y y y >>12若12-=-y x ,2=xy ,则代数式(x ﹣1)(y + 1)的值等于 A 222+B 222-C 22D 213如图,△ABC 和△DCE 都是边长为4的等边三角形,点B 、C 、E 在同一条直线上,连接BD ,则BD 的长为 A3第10题图C33D3414如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B',则图中阴影部分的面积是A6πB5πC4πD3π第Ⅱ卷(非选择题共78分)注意事项:1第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上2答卷前将密封线内的项目及座号填写清楚二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上152010年5月1日世界博览会在我国上海举行,世博会开园一周以来,入园人数累计约为1050000人,该数字用科学记数法表示为人16方程xx211=-的解是17如图,∠1=∠2,添加一个条件使得△ADE∽△ACB18正方形ABCD边长为a,点E、F分别是对角线BD上的两点,过点E、F分别作AD、AB的平行线,如图所示,则图中阴影部分的面积之和等于19为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a + 2b,2b + c,2c + 3d,4d例如,明文1,2,3,4对应密文5,7,18,16当接收方收到密文14,9,23,28时,则解密得到的明文为三、开动脑筋,你一定能做对!(本大题共3小题,共20分)20(本小题满分6分)先化简,再求值:21)121(2+-÷-+aaa,其中a = 221(本小题满分7分)为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况并将所得数据进行了统计结果如图1所示(1)在这次调查中,一共抽查了名学生;(2)求出扇形统计图(图2)中参加“音乐活动”项目所对扇形的圆心角的度数;B'第14题图第17题图第18题图(3)若该校有2400名学生,请估计该校参加“美术活动项目的人数22(本小题满分7分)为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资1859万元 (1)求该学校为新增电脑投资的年平均增长率;(2)从2009年到2011年,该中学三年为新增电脑共投资多少万元?四、认真思考,你一定能成功!(本大题共2小题,共19分)23(本小题满分9分)如图,AB 是半圆的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA =∠PBD (1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BDE = 60°,PD =3,求PA 的长24(本小题满分10分)某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地两班同时出发,相向而行设步行时间为x 小时,甲、乙两班离A 地的距离分别为y 1、y 2千米,y 1、y 2与x 的函数关系图象如图所示根据图象解答下列问题:(1)直接写出,y 1、y 2与x 的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时?第23题图音乐 体育 美术 书法 其他 项目 人数 图1 体 育音乐美术 书法 其他 图2 第21题图y 1y 2 10 y /千米五、相信自己,加油啊!(本大题共2小题,共24分) 25(本小题满分11分)如图1,已知矩形ABED ,点C 是边DE 的中点,且AB = 2AD (1)判断△ABC 的形状,并说明理由;(2)保持图1中ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中(当垂线段AD 、BE 在直线MN 的同侧),试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3)保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧)试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明26(本小题满分13分)如图:二次函数y =﹣x 2 + ax + b 的图象与x 轴交于A (-21,0),B (2,0)两点,且与y 轴交于点C (1)求该抛物线的解析式,并判断△ABC 的形状;(2)在x 轴上方的抛物线上有一点D ,且A 、C 、D 、B 四点为顶点的四边形是等腰梯形,请直接写出D 点的坐标;(3)在此抛物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由图1 图2图3第25题图AC B第26题图。
山东临沂中考《数学》试题.doc
2013山东临沂中考《数学》试题-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年山东临沂市初中学生学业考试试题数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,考试用时120分钟。
第Ⅰ卷 (选择题 共42分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干 净后,再选涂其它答案,不能答在试卷上。
3. 考试结束,将本试卷和答题卡一并收回。
一、选择题 (本大题共14小题,每小题3分,满分42分) 在每小题所给的四个选项中,只有 一项是符合题目要求的。
1. 计算(-1)2的值等于 (A) -1 (B) 1 (C) -2 (D) 2 。
2. 如果∠α =60︒,那么∠α 的余角的度数是 (A) 30︒ (B) 60︒ (C) 90︒ (D) 120︒ 。
3. 下列各式计算正确的是 (A) x 2‧x 3=x 6 (B) 2x +3x =5x 2 (C) (x 2)3=x 6 (D) x 6÷x 2=x 3 。
4. 已知两圆的半径分别是2cm 和4cm ,圆心距是6cm ,那么这两圆的位置关系是 (A) 外离 (B) 外切 (C) 相交 (D) 内切。
5. 如图,右面几何体的俯视图是6. 今年我国西南地区发生的严重干旱灾害,牵动着全国人民的心。
某学校掀起了“献爱心,捐 矿泉水”的活动,其中该校九年级(4)班7个小组所捐矿泉水的数量(单位:箱)分别为6,3,6,5,5,6,9,则这组资料的中位数和众数分别是 (A) 5,5 (B) 6,5 (C) 6,6 (D) 5,6 。
7. 如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中 点,AB =4,则OE 的长是 (A) 2 (B) 2(C) 1 (D)21 。
8. 不等式组⎩⎨⎧≥+<-01123x x 的解集在数轴上表示正确的是9. “红灯停,绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人 安全。
小刚每天从家骑自行车上学都经过三个路口,且每个路口只安装了红灯和绿灯,假如 每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率 是 (A)81 (B)83 (C)85 (D)87。
10. 菱形OABC 在平面直角坐标系中的位置如图所示,若OA =2, ∠AOC =45︒,则B 点的坐标是 (A) (2+2,2)(B) (2-2,2) (C) (-2+2,2) (D) (-2-2,2)。
11. 已知反比例函数y= -x 7图像上三个点的坐标分别是A (-2,y 1)、(A)(B) (C) (D) A BCD EO-1 1 0 -1 1 0 -1 1 0 -1 1 0 (A) (B) (C) (D) ABCOyxB (-1,y 2)、C (2,y 3),能正确反映y 1、y 2、y 3的大小关系的是 (A) y 1>y 2>y 3 (B) y 1>y 3>y 2 (C) y 2>y 1>y 3 (D) y 2>y 3>y 1 。
12. 若x -y =2-1,xy=2,则代数式(x -1)(y +1)的值等于 (A) 22+2 (B) 22-2 (C) 22 (D) 2 。
13. 如图,△ABC 和△DCE 都是边长为4的等边三角形, 点B 、C 、E 在同一条直线上,连接BD ,则BD 的长 为 (A) 3 (B) 23 (C) 33 (D) 43 。
14. 如图,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B’,则图中阴影部分的面 积是 (A) 6π (B) 5π (C) 4π (D) 3π 。
第Ⅱ卷 (非选择题 共78分)注意事项:1. 用钢笔或圆珠笔直接答在试卷上。
2. 答卷前将密封线内的项目及座号填写清楚。
二、填空题 (本大题共5小题,每小题3分,共15分)把答案填在题中横线上。
15. 2010年5月1日世界博览会在我国上海举行,世博园开园一周以来,入园人数累计约为1050000人,该数字用科学记数法表示为 人。
16. 方程11-x =x2的解是 。
17. 如图,∠1=∠2,添加一个条件使得△ADE ∽△ACB , 。
18. 正方形ABCD 的边长为a ,点E 、F 分别是对角线BD 上的两点,过 点E 、F 分别作AD 、AB 的平行线,如图所示,则图中阴影部分的面 积之和等于 。
19. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接 收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密 文a +2b ,2b +c ,2c +3d ,4d 。
例如,明文1,2,3,4对应密文5,7, 18,16。
当接收方收到密文14,9,23,28时,则解密得到的明文为 。
三、开动脑筋,你一定能做对! (本大题共3小题,共20分) 20. (本小题满分6分)先化简,再求值:(21+a -1)÷212+-a a,其中a =2。
21. (本小题满分7分)为了解某学校学生的个 性特长发展情况,在全校范围内随机抽 查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况, 并将所得数据进行了统计。
结果如图1所示。
(1) 在这次调查中,一共抽查了 名E C BA D AB B ’AB CDE12C DEF BA音 体 美 书 其 项目乐 育 术 法 他人数 1614 12108 642 0美术 书法其他音乐体育学生;(2) 求出扇形统计图(图2)中参加“音乐活 动”项目所对扇形的圆心角的度数;(3) 若该校有2400名学生,请估计该校参加“美术活动”项目的人数。
22. (本小题满分7分)为落实素质教育要求,促进学生全面发展,我市某中学2009年投资11万 元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
(1) 求该学校为新增电脑投资的每年平均增长率;(2) 从2009年到2011年,该中学三年为新增电脑共投资多少万元?四、认真思考,你一定能成功! (本大题共2小题,共19分)23. (本小题满分9分) 如图,AB 是半圆的直径,O 为圆心,AD 、BD是半圆的弦,且∠PDA =∠PBD 。
(1) 判断直线PD 是否为⊙O 的切线,并说明理由; (2) 如果∠BDE =60︒,PD =3,求PA 的长。
24. (本小题满分10分)某中学九年级甲、乙两班商定举行一次远足活 动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地。
两班同时出发,相向而行。
设 步行时间为x 小时,甲、乙两班离A 地的距离分别为y 1千米、y 2千米,y 1、y 2与x 的函数关系图像如图所示,根据图像解答下列问 题:(1) 直接写出,y 1、y 2与x 的函数关系式;(2) 求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米? (3) 甲、乙两班首次相距4千米时所用时间是多少小时?五、相信自己,加油啊!(本大题共2小题,共24分)25. (本小题满分11分) 如图1,已知矩形ABED ,点C 是边DE 的中点,且AB=2AD 。
(1) 判断△ABC 的形状,并说明理由;(2) 保持图1中ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线段 AD 、BE 在直线MN 的同侧)。
试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证 明;(3) 保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当 垂线段AD 、BE 在直线MN 的异侧)。
试探究线段AD 、BE 、DE 长度之间有什么关系? 并给予证明。
A B OD PE y 1O10 y /千米x /小时 2 2.5 y 2 A B C DE 图1 M N A B C DE 图2 A B C D EMN 图326. (本小题满分13分)如图,二次函数y = -x 2+ax +b 的图像与x 轴交于A (-21,0)、B (2,0)两点,且与y 轴交于点C ;(1) 求该拋物线的解析式,并判断△ABC 的形状;(2) 在x 轴上方的拋物线上有一点D ,且以A 、C 、D 、B 四 点为顶点的四边形是等腰梯形,请直接写出D 点的坐标; (3) 在此拋物线上是否存在点P ,使得以A 、C 、B 、P 四点为顶点的四边形是直角梯形?若存在,求出P 点的坐标;若不存在,说明理由。
2010年临沂市初中学生学业考试数学试题参考答案一、选择题:1. B,2. A,3. C,4. B,5. D,6. C,7. A,8. D,9. B, 10. D, 11. C, 12. B, 13. D, 14. A, 二、填空题:15. 1.05⨯106; 16. x =2; 17. ∠D =∠C 或∠E =∠B 或ACAD =ABAE (本小题答案不唯一,填出一个即得满分) 18.21a 2; 19. 6,4,1,7;三、开动脑筋,你一定能做对! 20. [解] (21+a -1)÷212+-a a=(21+a -22++a a )÷2)1)(1(+-+a a a =221+--a a ÷2)1)(1(+-+a a a= -21++a a ⨯)1)(1(2-++a a a = -11-a (或a-11);当a =2时,原式= -121-= -1。
21. [解] (1) 48;(2) 由条形图可求出参加“音乐活动”项目的人数所占抽查总人数的百分比为4812⨯100%=25%,所以参加“音乐活动”项目所对扇形的圆心角的角度为360︒⨯25%=90︒; (3) 2400⨯486=300(人)。
答:该校参加“美术活动”项目的人数约为300人。
22. [解] (1) 设该学校为新增电脑投资的年平均增长率为x ,根据题意,得一元二次方程 11(1+x )2=18.59,解这个方程,得x 1=0.3,x 2= -2.3(不合题意,舍去); 答:该学校为新增电脑投资的年平均增长率为30%。
(2) 11+11⨯(1+0.3)+18.59=43.89(万元);答:从2009年到2011年,该中学三年为新增电脑共投资43.89万元。
四、认真思考,你一定能成功!23. [解] (1) PD 是⊙O 的切线,连接OD ,∵OB =OD ,∴∠2=∠PBD , 又∵∠PDA =∠PBD ,∴∠PDA =∠2,又∵AB 是半圆的直 径,∴∠ADB =90︒,即∠1+∠2=90︒,∴∠1+∠PDA =90︒, 即OD ⊥PD ,∴PD 是⊙O 的切线。