2019-2020年山东省中考数学模拟试题及答案
山东省济南市2019-2020学年中考数学一模考试卷含解析
山东省济南市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:①AB CDn n;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()A.1 B.2 C.3 D.42.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-13.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.564.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②BD=7③S平行四边形ABCD=AB•AC④OE=14AD⑤S△APO=3,正确的个数是()A.2 B.3 C.4 D.55.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A.5元,2元B.2元,5元C.4.5元,1.5元D.5.5元,2.5元6.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.13C.14D.347.估计19﹣1的值为()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()A.2 B.3 C.4 D.69.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.1410.下列四个命题,正确的有()个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A.1 B.2 C.3 D.411.如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?()A.13πB.23πC.49πD.59π12.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:﹣22÷(﹣14)=_____.14.不等式组52130xx-≤⎧⎨+>⎩的解集是__________.15.某风扇在网上累计销量约1570000台,请将1570000用科学记数法表示为_____.16.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.17.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).18.若23ab=,则a bb+=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.20.(6分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.21.(6分)旅游公司在景区内配置了50辆观光车共游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?22.(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。
山东省济宁市2019-2020学年中考数学三模考试卷含解析
山东省济宁市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .52.如图,等腰△ABC 的底边BC 与底边上的高AD 相等,高AD 在数轴上,其中点A ,D 分别对应数轴上的实数﹣2,2,则AC 的长度为( )A .2B .4C .25D .453.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h ;④慢车速度为46km/h ; ⑤A 、B 两地相距828km ;⑥快车从A 地出发到B 地用了14小时 A .2个B .3个C .4个D .5个4.学完分式运算后,老师出了一道题“计算:23224x xx x +-++-”. 小明的做法:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的5.若代数式3xx -的值为零,则实数x 的值为( ) A .x =0B .x≠0C .x =3D .x≠36.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为( ) A .1个B .2个C .3个D .4个7.下列函数中,当x >0时,y 值随x 值增大而减小的是( ) A .y =x 2B .y =x ﹣1C .34y x =D .1y x=8.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )A .B .C .D .9.下列计算正确的是( ) A .5﹣2=3 B .4 =±2 C .a 6÷a 2=a 3D .(﹣a 2)3=﹣a 610.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是( ) A .120°B .135°C .150°D .165°11.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图312.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A的坐标(6,0),B的坐标(0,8),点C的坐标(﹣25,4),点M,N分别为四边形OABC边上的动点,动点M从点O开始,以每秒1个单位长度的速度沿O→A→B路线向终点B匀速运动,动点N从O点开始,以每秒2个单位长度的速度沿O→C→B→A路线向终点A匀速运动,点M,N同时从O点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间为t秒(t>0),△OMN的面积为S.则:AB的长是_____,BC的长是_____,当t=3时,S的值是_____.14.如图1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,点E,F分别是线段BC,AC的中点,连结EF.(1)线段BE与AF的位置关系是,AFBE=.(2)如图2,当△CEF绕点C顺时针旋转a时(0°<a<180°),连结AF,BE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.(3)如图3,当△CEF绕点C顺时针旋转a时(0°<a<180°),延长FC交AB于点D,如果AD=6﹣23,求旋转角a的度数.15.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).16.计算:12sin4553183⎛︒--++-⎝17.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.18.如图,在Rt△ABC中,∠ACB=90°,BC=2,AC=6,在AC上取一点D,使AD=4,将线段AD 绕点A按顺时针方向旋转,点D的对应点是点P,连接BP,取BP的中点F,连接CF,当点P旋转至CA的延长线上时,CF的长是_____,在旋转过程中,CF的最大长度是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y=kx+b的图象与二次函数y=﹣x2+c的图象相交于A(﹣1,2),B(2,n)两点.(1)求一次函数和二次函数的解析式;(2)根据图象直接写出使二次函数的值大于一次函数的值的x的取值范围;(3)设二次函数y=﹣x2+c的图象与y轴相交于点C,连接AC,BC,求△ABC的面积.20.(6分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.21.(6分)( 1)计算:9﹣4sin31°+(2115﹣π)1﹣(﹣3)2(2)先化简,再求值:1﹣2222244x y x yx y x xy y--÷+++,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=1.22.(8分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.23.(8分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G,GB=GC.(1)求证:四边形ABCD是矩形;(1)若△GEF的面积为1.①求四边形BCFE的面积;②四边形ABCD的面积为.24.(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x(x>0)元,让利后的购物金额为y元.(1)分别就甲、乙两家商场写出y关于x的函数解析式;(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.25.(10分)如图,在建筑物M的顶端A处测得大楼N顶端B点的仰角α=45°,同时测得大楼底端A点的俯角为β=30°.已知建筑物M的高CD=20米,求楼高AB为多少米?(3≈1.732,结果精确到0.1米)26.(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,甲、乙两人距地面的高度差为50米?27.(12分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=1.故选D.2.C【解析】【分析】根据等腰三角形的性质和勾股定理解答即可.【详解】解:∵点A,D分别对应数轴上的实数﹣2,2,∴AD=4,∵等腰△ABC的底边BC与底边上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故选:C.【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.3.B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答. 【详解】解:①两车在276km 处相遇,此时快车行驶了4个小时,故错误. ②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km ,可求出速度为69km/h ,错误. ④慢车6个小时走了276km ,可求出速度为46km/h ,正确.⑤慢车走了18个小时,速度为46km/h ,可得A,B 距离为828km ,正确. ⑥快车2时出发,14时到达,用了12小时,错误. 故答案选B . 【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键. 4.C 【解析】 试题解析:23224x xx x +-++- =()()32222x x x x x +--++- =3122x x x +-++ =3-12x x ++ =22x x ++ =1.所以正确的应是小芳. 故选C . 5.A 【解析】 【分析】根据分子为零,且分母不为零解答即可. 【详解】 解:∵代数式3xx -的值为零, ∴x =0,此时分母x-3≠0,符合题意. 故选A . 【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.6.C【解析】【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解.【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误;③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确;④经过直线外一点有且只有一条直线与已知直线平行,故④正确,综上所述,正确的有①③④共3个,故选C.【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键.7.D【解析】A、、∵y=x2,∴对称轴x=0,当图象在对称轴右侧,y随着x的增大而增大;而在对称轴左侧,y随着x 的增大而减小,故此选项错误B、k>0,y随x增大而增大,故此选项错误C、B、k>0,y随x增大而增大,故此选项错误D、y=1x(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,故此选项正确8.D【解析】试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.9.D【解析】【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A. 不是同类二次根式,不能合并,故A选项错误;,故B 选项错误; C. a 6÷a 2=a 4≠a 3,故C 选项错误; D. (−a 2)3=−a 6,故D 选项正确. 故选D. 【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键. 10.C 【解析】 【分析】这个扇形的圆心角的度数为n°,根据弧长公式得到20π=24180n π⨯,然后解方程即可. 【详解】解:设这个扇形的圆心角的度数为n°, 根据题意得20π=24180n π⨯, 解得n=150,即这个扇形的圆心角为150°. 故选C . 【点睛】本题考查了弧长公式:L=180n Rπ(n 为扇形的圆心角的度数,R 为扇形所在圆的半径). 11.C 【解析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D 为BC 中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD 是角平分线. 【详解】图1中,根据作图痕迹可知AD 是角平分线;图2中,根据作图痕迹可知作的是BC 的垂直平分线,则D 为BC 边的中点,因此AD 不是角平分线;图3:由作图方法可知AM=AE ,AN=AF ,∠BAC 为公共角,∴△AMN ≌△AEF , ∴∠3=∠4,∵AM=AE ,AN=AF ,∴MF=EN ,又∵∠MDF=∠EDN ,∴△FDM ≌△NDE , ∴DM=DE ,又∵AD 是公共边,∴△ADM ≌△ADE , ∴∠1=∠2,即AD 平分∠BAC ,故选C.【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.12.D【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt △ABC 中,∠ACB=90°,AB=c ,∠A=a ,根据锐角三角函数的定义可得sinα=BC AB , ∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt △DCB 中,∠CDB=90°,∴cos ∠DCB= CD BC, ∴CD=BC•cosα=c•sinα•cosα,故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10, 1, 1【解析】【分析】作CD ⊥x 轴于D ,CE ⊥OB 于E ,由勾股定理得出AB 22OA OB +=10,OC ()22254+1,求出BE =OB ﹣OE =4,得出OE =BE ,由线段垂直平分线的性质得出BC =OC =1;当t =3时,N 到达C 点,M 到达OA 的中点,OM =3,ON =OC =1,由三角形面积公式即可得出△OMN 的面积.【详解】解:作CD ⊥x 轴于D ,CE ⊥OB 于E ,如图所示:由题意得:OA =1,OB =8,∵∠AOB =90°,∴AB=22OA OB+=10;∵点C的坐标(﹣25,4),∴OC=()22254+=1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;当t=3时,N到达C点,M到达OA的中点,OM=3,ON=OC=1,∴△OMN的面积S=12×3×4=1;故答案为:10,1,1.【点睛】本题考查了勾股定理、坐标与图形性质、线段垂直平分线的性质、三角形面积公式等知识;熟练掌握勾股定理是解题的关键.14.(13;(2)结论仍然成立,证明见解析;(3)135°.【解析】【分析】(1)结合已知角度以及利用锐角三角函数关系求出AB的长,进而得出答案;(2)利用已知得出△BEC∽△AFC,进而得出∠1=∠2,即可得出答案;(3)过点D作DH⊥BC于H,则DB=4-(33,进而得出3-1,3,求出CH=BH,得出∠DCA=45°,进而得出答案.【详解】解:(1)如图1,线段BE与AF的位置关系是互相垂直;∵∠ACB=90°,BC=2,∠A=30°,∴3∵点E,F分别是线段BC,AC的中点,∴AEBE3;(2))如图2,∵点E,F分别是线段BC,AC的中点,∴EC=12BC,FC=12AC,∴12 EC FCBC AC==,∵∠BCE=∠ACF=α,∴△BEC∽△AFC,∴1330AF ACBE BC tan===︒,∴∠1=∠2,延长BE交AC于点O,交AF于点M∵∠BOC=∠AOM,∠1=∠2∴∠BCO=∠AMO=90°∴BE⊥AF;(3)如图3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°过点D作DH⊥BC于H∴DB=4-(33-2,∴3,3,又∵CH=2-3-1)3,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.15.1【解析】【分析】由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.【详解】解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案为1.【点睛】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.16.422--【解析】【分析】此题涉及特殊角的三角函数值、零指数幂、二次根式化简,绝对值的性质.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【详解】原式2251322=⨯-+-2432=--422=--.【点睛】此题考查特殊角的三角函数值,实数的运算,零指数幂,绝对值,解题关键在于掌握运算法则.17.2【解析】【分析】设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.【详解】作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在Rt △MNG 中,由勾股定理得:MN 1=MG 1+GN 1,即y 1=21+(10-1x )1.∵0<x <10,∴当10-1x=0,即x=2时,y 1最小值=12,∴y 最小值=2.即MN 的最小值为2;故答案为:2.【点睛】本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.18,+2. 【解析】【分析】当点P 旋转至CA 的延长线上时,CP =20,BC =2,利用勾股定理求出BP ,再根据直角三角形斜边上的中线等于斜边的一半,可得CF 的长;取AB 的中点M ,连接MF 和CM ,根据直角三角形斜边上的中线等于斜边的一半,可得CM 的长,利用三角形中位线定理,可得FM 的长,再根据当且仅当M 、F 、C 三点共线且M 在线段CF 上时CF 最大,即可得到结论.【详解】当点P 旋转至CA 的延长线上时,如图2.∵在直角△BCP 中,∠BCP =90°,CP =AC+AP =6+4=20,BC =2,∴BP =∵BP 的中点是F ,∴CF =12BP . 取AB 的中点M ,连接MF 和CM ,如图2.∵在直角△ABC 中,∠ACB =90°,AC =6,BC =2,∴AB .∵M 为AB 中点,∴CM =12AB , ∵将线段AD 绕点A 按顺时针方向旋转,点D 的对应点是点P ,∴AP =AD =4,∵M 为AB 中点,F 为BP 中点,∴FM =12AP =2. 当且仅当M 、F 、C 三点共线且M 在线段CF 上时CF 最大,此时CF =CM+FM =10+2.故答案为26,10 +2.【点睛】考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了直角三角形斜边上的中线等于斜边的一半以及勾股定理.根据题意正确画出对应图形是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x+1;(2)﹣1<x <2;(3)3;【解析】【分析】(1)根据待定系数法求一次函数和二次函数的解析式即可.(2)根据图象以及点A,B 两点的坐标即可求出使二次函数的值大于一次函数的值的x 的取值范围; (3)连接AC 、BC ,设直线AB 交y 轴于点D ,根据ABC ACD BCD S S S =+△△△即可求出△ABC 的面积.【详解】(1)把A (﹣1,2)代入y=﹣x 2+c 得:﹣1+c=2,解得:c=3,∴y=﹣x 2+3,把B (2,n )代入y=﹣x 2+3得:n=﹣1,∴B (2,﹣1),把A (﹣1,2)、B (2,﹣1)分别代入y=kx+b 得22 1.k b k b -+=⎧⎨+=-⎩解得: 11,k b =-⎧⎨=⎩∴y=﹣x+1;(2)根据图象得:使二次函数的值大于一次函数的值的x 的取值范围是﹣1<x <2;(3)连接AC 、BC ,设直线AB 交y 轴于点D ,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,则11212212322ABC ACD BCDS S S=+=⨯⨯+⨯⨯=+=V V V.【点睛】考查待定系数法求二次函数解析式,三角形的面积公式等,掌握待定系数法是解题的关键.20.(1)作图见解析;(2)3;(3)7 12【解析】【分析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.【详解】解:(1)该班团员人数为:3÷25%=12(人),发了4条赠言的人数为:12−2−2−3−1=4(人),将条形统计图补充完整如下:(2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案为:3;(3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率()m P A n=. 21. (1)-7;(2)y x y -+ ,13-. 【解析】【分析】 (1)原式第一项利用算术平方根定义计算,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果;(2)原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算,约分得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.【详解】(1)原式=3−4×12+1−9=−7; (2)原式=1−2x y x y -+ ⋅()()()22x y x y x y ++-=1−2x y x y ++ =2x y x y x y +--+ =−y x y+; ∵|x−2|+(2x−y−3)2=1,∴2023x x y -=⎧⎨-=⎩, 解得:x=2,y=1,当x=2,y=1时,原式=−13. 故答案为(1)-7;(2)−y x y +;−13. 【点睛】本题考查了实数的运算、非负数的性质与分式的化简求值,解题的关键是熟练的掌握实数的运算、非负数的性质与分式的化简求值的运用.22.(1)见解析;(2)w=2x+9200,方案见解析;(3)0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x ⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小.【解析】【分析】(1)根据题意可得解.(2)w 与x 之间的函数关系式为:w=20(240−x)+25(x−40)+15x+18(300−x);列不等式组解出40≤x≤240,可由w 随x 的增大而增大,得出总运费最小的调运方案.(3)根据题意得出w 与x 之间的函数关系式,然后根据m 的取值范围不同分别分析得出总运费最小的调运方案.【详解】解:(1)填表:依题意得:20(240−x)+25(x−40)=15x+18(300−x).解得:x=200.(2)w与x之间的函数关系为:w=20(240−x)+25(x−40)+15x+18(300−x)=2x+9200.依题意得:24004000 3000xxxx-⎧⎪-⎪⎨⎪⎪-⎩…………∴40⩽x⩽240在w=2x+9200中,∵2>0,∴w随x的增大而增大,故当x=40时,总运费最小,此时调运方案为如表.(3)由题意知w=20(240−x)+25(x−40)+(15-m)x+18(300−x)=(2−m)x+9200∴0<m<2时,(2)中调运方案总运费最小;m=2时,在40⩽x⩽240的前提下调运方案的总运费不变;2<m<15时,x=240总运费最小,其调运方案如表二.【点睛】此题考查一次函数的应用,解题关键在于根据题意列出w 与x 之间的函数关系式,并注意分类讨论思想的应用.23.(1)证明见解析;(1)①16;②14;【解析】【分析】(1)根据平行四边形的性质得到AD ∥BC ,AB=DC ,AB ∥CD 于是得到BE=CF ,根据全等三角形的性质得到∠A=∠D ,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;(1)①根据相似三角形的性质得到219GEF GBC S EF S BC ==V V (),求得△GBC 的面积为18,于是得到四边形BCFE 的面积为16;②根据四边形BCFE 的面积为16,列方程得到BC•AB=14,即可得到结论.【详解】(1)证明:∵GB=GC ,∴∠GBC=∠GCB ,在平行四边形ABCD 中,∵AD ∥BC ,AB=DC ,AB ∥CD ,∴GB-GE=GC-GF ,∴BE=CF ,在△ABE 与△DCF 中, AE DF AEB DFC BE CF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△DCF ,∴∠A=∠D ,∵AB ∥CD ,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四边形ABCD 是矩形;(1)①∵EF ∥BC ,∴△GFE ∽△GBC ,∵EF=13AD , ∴EF=13BC , ∴219GEF GBC S EF S BC ==V V (), ∵△GEF 的面积为1,∴△GBC 的面积为18,∴四边形BCFE 的面积为16,;②∵四边形BCFE 的面积为16, ∴12(EF+BC )•AB=12×43BC•AB=16, ∴BC•AB=14,∴四边形ABCD 的面积为14,故答案为:14.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE ∽△GBC 是解题的关键.24.(1)y 1=0.85x ,y 2=0.75x+50 (x >200),y 2=x (0≤x≤200);(2)x >500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x <500时,到甲商场购物会更省钱.【解析】【分析】(1)根据单价乘以数量,可得函数解析式;(2)分类讨论,根据消费的多少,可得不等式,根据解不等式,可得答案.【详解】(1)甲商场写出y 关于x 的函数解析式y 1=0.85x ,乙商场写出y 关于x 的函数解析式y 2=200+(x ﹣200)×0.75=0.75x+50(x >200),即y 2=x (0≤x≤200);(2)由y 1>y 2,得0.85x >0.75x+50,解得x >500,即当x >500时,到乙商场购物会更省钱;由y 1=y 2得0.85x=0.75x+50,即x=500时,到两家商场去购物花费一样;由y1<y2,得0.85x<0.75x+500,解得x<500,即当x<500时,到甲商场购物会更省钱;综上所述:x>500时,到乙商场购物会更省钱,x=500时,到两家商场去购物花费一样,当x<500时,到甲商场购物会更省钱.【点睛】本题考查了一次函数的应用,分类讨论是解题关键.25.楼高AB为54.6米.【解析】【分析】过点C作CE⊥AB于E,解直角三角形求出CE和CE的长,进而求出AB的长.【详解】解:如图,过点C作CE⊥AB于E,则AE=CD=20,∵CE=AEtanβ=20tan30o33BE3×tan45°33∴3(米),答:楼高AB为54.6米.【点睛】此题主要考查了仰角与俯角的应用,根据已知构造直角三角形利用锐角三角函数关系得出是解题关键.26.(1)10;1;(2)15(02)3030(211)x xyx x⎧=⎨-⎩剟剟;(3)4分钟、9分钟或3分钟.【解析】【分析】(1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;(2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;(3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.【详解】(1)(10-100)÷20=10(米/分钟),b=3÷1×2=1.故答案为:10;1.(2)当0≤x≤2时,y=3x;当x≥2时,y=1+10×3(x-2)=1x-1.当y=1x-1=10时,x=2.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为15(02)3030(211)x xyx x⎧=⎨-⎩剟剟.(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).当10x+100-(1x-1)=50时,解得:x=4;当1x-1-(10x+100)=50时,解得:x=9;当10-(10x+100)=50时,解得:x=3.答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.【点睛】本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.27.(1)60、90°;(2)补全条形图见解析;(3)估计全校学生中对这些交通法规“非常了解”的有320名;(4)甲和乙两名学生同时被选中的概率为16.【解析】【分析】(1)用A的人数以及所占的百分比就可以求出调查的总人数,用C的人数除以调查的总人数后再乘以360度即可得;(2)根据D的百分比求出D的人数,继而求出B的人数,即可补全条形统计图;(3)用“非常了解”所占的比例乘以800即可求得;(4)画树状图得到所有可能的情况,然后找出符合条件的情况用,利用概率公式进行求解即可得.【详解】(1)本次调查的学生总人数为24÷40%=60人,扇形统计图中C 所对应扇形的圆心角度数是360°×1560=90°, 故答案为60、90°; (2)D 类型人数为60×5%=3,则B 类型人数为60﹣(24+15+3)=18, 补全条形图如下:(3)估计全校学生中对这些交通法规“非常了解”的有800×40%=320名; (4)画树状图为:共有12种等可能的结果数,其中甲和乙两名学生同时被选中的结果数为2,所以甲和乙两名学生同时被选中的概率为21126. 【点睛】本题考查了条形统计图、扇形统计图、列表法或树状图法求概率、用样本估计总体等,读懂统计图,从不同的统计图中找到必要的有关联的信息进行解题是关键.。
山东省2019中考数学模拟试卷(含)
山东省 2019-2020 年中考数学模拟试卷温馨提示: 1. 本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 6 页.考试时间120 分钟 , 满分 120 分 .2. 答题前,考生务必认真阅读答题卡中的注意事项,并按要求进行填、涂和答题.第 I 卷(选择题共45分)一、选择题(本大题共15 个小题,每题 3 分,共 45 分.在每题给出的四个选项中,只有一项为哪一项吻合题目要求的.)1.以下实数中是无理数的是A.- 1B.1C.π D . 0 22.一几何体的主视图、左视图与俯视图都是相同的圆,该几何体是以下几何体中的ABCD 3. 以下各式计算正确的选项是A.a22a 33a5B.(a2)3 a 5C.a6 a 2a3 D .a a3 a 44. 未来三年,国家将投入8450 亿元用于缓解公众“看病难、看病贵”的问题.将8450 亿元用科学记数法表示为A.0.845 × 104亿元B.8.45 × 103亿元C.8.45 × 104亿元× 102亿元5.以下标志中,可以看作是轴对称图形的是6.若分式x21的值为零,则 x 的值为x1D.±17.某果园 2011 年水果产量为 100 吨,2013 年水果产量为144 吨,求该果园水果产量的年平均增添率 . 设该果园水果产量的年平均增添率为x ,则依照题意可列方程为A. 144(1x) 2100B. 100(1 x) 2144C. 144(1x) 2100D. 100(1 x) 21448. 实数 a, b, c 在数轴上对应的点以下列图,则以下式子中正确的选项是A.ac >bcB.|a b|=a bC.a< b< cD. a c> b c9. 已知点 M( 1, a)和点 N( 2,b)是一次函数y= 2x+1 象上的两点, a 与 b 的大小关系是A.a >bB.a=b C.a<b D.以上都不10. 若是三角形足一个角是另一个角的 3 倍,那么我称个三角形“智慧三角形”.下列各数据中,能作一个智慧三角形三的一是A.1,1,2B.1,1,2C.1,1,3D.1,2,311.有一箱子装有 3 分示 4、 5、 6 的号牌,已知小武以每次取一且取后不放回的方式,先后取出 2 牌,成一个二位数,取出第 1 牌的号十位数,第 2 牌的号个位数,若先后取出 2 牌成二位数的每一种果生的机遇都相同,成的二位数7 的倍数的概率是A.1B.1C.1D.1 643212.如,分 1 和 2 的两个等三角形,开始它在左重合,大三角形固定不,尔后把小三角形自左向右平移直至移出大三角形外停止.小三角形移的距离x,两个三角形重叠面y, y 关于 x 的函数象是13.如,已知在 Rt△ABC中, AB=AC=2,在△ ABC 内作第一个内接正方形 DEFG;尔后取 GF的中点 P,接 PD、 PE,在△ PDE 内作第二个内接正方形 HIKJ;再取段 KJ 的中点 Q,在△ QHI 内作第三个内接正方形⋯⋯依次行下去,第 n 个内接正方形的AGPF J Q KA.2( 1 )n 1B.22( 1 )n 1B DH IE C 3232C.2(1) n D.22(1)n13 题图323214.如图,在半径为 6cm 的⊙ O 中,点 A 是劣弧 BC 的中点,点 D 是优弧 BC 上一点,且∠ D=30°,以下四个结论:① OA ⊥ BC ;② BC=6 3 cm ;③ sin ∠ AOB= 3;2④四边形 ABOC 是菱形.其中正确结论的序号是A.①②③④ B. ①③ C. ②③④ D. ①③④15. 二次函数 y=ax 2+bx+c (a ≠0)的图象如图,给出以下四个结论:①4ac ﹣ b 2< 0;② 3b+2c < 0; ③ 4a+c < 2b ;④ m ( am+b )+b < a (m ≠﹣ 1),其中错误的结论是A. ①B. ②C. ③D. ④第Ⅱ卷(非选择题共 75分)注意事项:第Ⅱ卷为非选择题,请考生用黑色中性笔在答题卡指定地址处作答.二、填空题 ( 本大题共 6 个小题.每题 3 分,共 18 分. )16.计算: x 34x =_________ .17. 已知一个布袋里装有2 个红球,3 个白球和 a 个黄球, 这些球除颜色外其余都相同. 若从 该布袋里任意摸出 1 个球,是红球的概率为1,则 a 等于.m m 1418. .计算:1 1=2m2m19. 如图,将△ ABC 沿 BC 方向平移 2cm 获取△ DEF ,若△ ABC 的周长为 16cm ,则四边形 ABFD 的周长为 .20. 计算:38 2 sin 60 =.21. 以下列图,直线AB 与 x 轴交于点 A ,与 y 轴交于点 B ,点 A 的坐标为 (3,0) ,点 B 的坐标为 (0 ,4) ,点 P 为双曲线 y = 6(x > 0)x上的一点,过点P 分别作 x 轴、 y 轴的垂线段PE 、 PF ,当 PE 、 PF 分别与线段 AB 交于点 C 、 D 时, AD ·BC 的值为.三、解答题 ( 本大题共7 个小题.共 57 分.解答应写出文字说明、证明过程或演算步骤.)22.(1) ( 本小题满分 3 分) 解不等式:x 6 3x 2(2)( 本小题满分 4 分)x 2 y 5①解方程组:5x 2y 7②23.(1) (本小题满分 3 分)已知:如图,在矩形ABCD中,点 E, F 分别在 AB,CD边上, BE=DF,连接 CE, AF.求证: AF=CE.(2)( 本小题满分 4 分)如图, AB切⊙O 于点 B, OA=2,∠ OAB=30°,弦B C∥OA.求:劣弧BC的长.(结果保留π )24. ( 本小题满分8 分 )甲、乙两名学生练习计算机打字,甲打一篇1000 字的文章与乙打一篇900 字的文章所用的时间相同.已知甲每分钟比乙每分钟多打 5 个字.问:甲、乙两人每分钟各打多少字?25. ( 本小题满分8 分 )在某市睁开的“体育、艺术 2+1”活动中,某校依照本质情况,决定主要开设A:乒乓球, B:篮球, C:跑步, D:跳绳这四种运动项目.为认识学生喜欢哪一种项目,随机抽取了部分学生进行检查,并将检查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答以下问题:( 1)样本中喜欢 B 项目的人数百分比是,其所在扇形统计图中的圆心角的度数是;(2)把条形统计图补充完满;(3)已知该校有 1000 人,依照样本估计全校喜欢乒乓球的人数是多少?26. ( 本小题满分 9 分 )如图,在平面直角坐标系中,一次函数y=kx+b (k ≠0)的图象与反比率函数ym(m 0)x的图象交于 A 、 B 两点,与 x 轴交于 C 点,点 A 的坐标为( n ,6),点 C 的坐标为(﹣ 2,0),且 tan ∠ACO=2.( 1)求该反比率函数和一次函数的剖析式; ( 2)求点 B 的坐标;( 3)在 x 轴上求点 E ,使△ ACE 为直角三角形. (直接写出点 E 的坐标)27. ( 本小题满分 9 分 )如图 1 所示,在 Rt △ABC 中,∠ ACB=90°,点 D 为边 BC 上任意一点,以直线AD 为对称轴,作 Rt △ABC 的轴对称图形 Rt △AEF ,点 M 、点 N 、点 P 、点 Q 分别为 AB 、BC 、EF 、EA 的中点.(1) 求证: MN=PQ ;(2) 如图 2,当 BD=1BC 时,判断点 M 、点 N 、点 P 、点 Q 围成的四边形的形状,并说明3原由;(3) 若 BC=6,请你直接写出当○ 1 BD=0;○2 BD=3;○3 BD=2;○4 BD=6时,点 M 、点 N 、点 P 、点 Q 围成的图形的形状.AFAAMMPFDQ N QBNC BDC B CPE27题图 1E27 题图 227 题备用图28. (本小题满分9 分)如图,在平面直角坐标系中,四边形OABC是边长为 2 的正方形,二次函数y=ax 2+bx+c 的图象经过点A,B,与 x 轴分别交于点E,F,且点 E 的坐标为(﹣2,0),以 0C 为直径作半圆,3圆心为 D.(1)求二次函数的剖析式;(2)求证:直线 BE是⊙D 的切线;(3)若直线 BE与抛物线的对称轴交点为 P, M是线段 CB上的一个动点(点 M与点 B, C不重合),过点 M作 MN∥BE 交 x 轴与点 N,连接 PM, PN,设 CM的长为 t ,△ PMN的面积为 S,求 S 与 t 的函数关系式,并写出自变量 t 的取值范围. S 可否存在着最大值?若存在,求出最大值;若不存在,请说明原由.数学试题参照答案与评分标准一、选择题题号123456789101112131415答案C C D B D C D D A D A B B A C 二、填空题16. x(x 2)( x 2)17. 318. 119. 20321.25 20.22三、解答题22. (1)x-6>3x+2解: x-3x>2+6 ,·················································1 分-2x>8 ················································2 分解得: x<-4 ················································3 分x 2y 5①(2)5x 2 y 7②解:① +②得:·················································1 分6x=12 ,x=2,················································2分把x=2 代入①得:y= 3,·········································3分2x2∴方程组的解为:3·······································4 分y223.(1) 证明:∵四边形 ABCD 是矩形,∴DC ∥ AB, DC=AB,∴ CF∥AE , ---------- 1 分∵DF =BE,∴ CF =AE,∴四边形 AFCE 是平行四边形, ---------- 2 分∴AF =CE. ----------------------------------- 3 分(2)解:连接OC,OB ,∵ AB 为圆 O 的切线,∴∠,------------------------------------1分ABO= 90°在 Rt△ ABO 中,OA= 2,∠ OAB= 30°,∴ OB= 1,∠ AOB =60°,----------------------------2 分∴△BOC 为等边三角形,∴∠BOC=60°------------------------------------------------3分∴劣弧长为= π.----------------------------------------4分24.解:设乙每分钟打x 个字,则甲每分钟打( x+5)个字 --------------------------1分由题意得,=, ------------------------------------------------4分解得: x=45,----------------------------------------------------------6分经检验: x=45 是原方程的解. -------------------------------------------7分答:甲每人每分钟打50 个字,乙每分钟打45 个字 --------------------------8分25. 解:( 1) 1﹣44%﹣ 8%﹣ 28%=20%, --------------------------------------------2分所在扇形统计图中的圆心角的度数是: 360×20%=72°----------------------3分( 2)检查的总人数是: 44÷44%=100(人),-------------------------------------1分则喜欢 B 的人数是: 100×20%=20(人), -----------------------------------2分------------------3分( 3)全校喜欢乒乓球的人数是1000×44%=440(人)------------------2分26.解:( 1)过点 A 作 AD⊥x轴于 D,∵C的坐标为(﹣ 2, 0), A 的坐标为( n,6),∴ AD=6, CD=n+2, ---------1分∵tan ∠ACO=2,∴==2,解得: n=1, --------2分故 A(1, 6),∴ m=1×6=6,∴反比率函数表达式为:y 63分, -----------x又∵点 A、 C 在直线 y=kx+b 上,∴,解得:,∴一次函数的表达式为: y=2x+4 ;-------------------4分y6( 2)由题意x-----------------------------------------------------1分y 2x4解得: x=1 或 x=﹣ 3, --------------------------------------------------------2分∵A( 1, 6),∴ B(﹣ 3,﹣ 2); --------------------------------------3分( 3) E (1, 0);E ( 13, 0). ----------------------------------2分1227.(1) 证明:∵△ ABC 与△ AEF 关于直线AD 对称,∴△ ABC≌△ AEF ,∴ AC=AF , -----------------------------------------1分∵点 M、N、 P、 Q 分别是 AB、 BC、 EF、 EA 的中点,∴MN 、 PQ 分别是△ ABC 和△AEF 的中位线,∴MN= 1AC,PQ=1AF,22∴2分1时,点 M、点 N、点 P、点 Q 围成的四边形是矩形 . ···········1 分(2)解:当 BD = BC3连接 BE、 MN、 PQ∵点 M、点 Q 是 AB、AE 的中点,∴ MQ∥BE 且 MQ = 1BE2∵点 N 是 BC 中点,∴ BN= 1BC,2又∵ BD = 1BC,∴ DN =BN﹣ BD =1BC-1BC=1BC,∴DN=12 分3236BD 2∵点 B 与点 E 关于直线 AD 对称,∴ BE⊥ AD ,同理 PN⊥AD ,∴ BE∥ PN,∴△ PDN ∽△ EDB ,∴PN=DN=1,············3 分BE BD2∴ MQ ∥ PN 且 MQ=PN,∴四边形 MQNP 是平行四边形,∵ MN=PQ,∴四边形MQNP 是矩形 .·································4 分(3)当 BD=0 或 3 时,点 M、点 N、点 P、点 Q 围成等腰三角形;··············1 分当 BD =2 或 6 时,点 M、点 N、点 P、点 Q 围成矩形;·····················3分28.解:( 1)由题意,得 A ( 0,2), B( 2, 2), E 的坐标为(2分, 0), -----------------13a9c 2899 x 29 x∴ 2 4a 2b2 解之: b∴该二次函数的剖析式为:y2-3 分 4 a 2b c 04 8 4c 293( 2)如图,过点D 作 DG ⊥ BE 于点 G .由题意,得 ED=2+1= 5 , EC=2+2= 8,BC=2 ,333 3∴ BE=64 410 -----------------------------1 分93∵∠ BEC= ∠ DEG ,∠ EGD= ∠ ECB=90° ,∴△ EGD ∽△ ECB , ∴DGDE∴ DG=1 . -----2 分BCBE∵⊙ D 的半径是 1,且 DG ⊥BE ,∴ BE 是⊙ D 的切线; -----------------------------------------------------------------------------------3 分( 3)由题意,得 E (2, 0), B ( 2, 2).设直线 BE 为 y=kx+h ( k ≠0).则32k h2k3431解得:∴直线 BEx分2 kh 01 为: y=-----------------1h4232∵直线 BE 与抛物线的对称轴交点为 P ,对称轴直线为 x=1,∴点 P 的纵坐标 y=5,即 P ( 1, 5).∵ MN ∥BE ,∴∠ MNC= ∠BEC .∵∠ C= ∠C=90°,44∴△ MNC ∽△ BEC ,∴CNMC ∴ CN4 t ∴ DN= 4t ﹣ 1,EC BC 33 1 5t5 S△MNC = 12 2 .∴ S △PND =DN?PD=8CN?CM=t262 3S 梯形PDCM =1( PD+CM ) ?CD= 51t .282∵ S=S △ PND +S 梯形 PDCM ﹣ S △ MNC =2 t 2 4t( 0 t 2) -----2 分2 t 2 4t(0 t 3 3 2∵抛物线 S=2) 的张口方向向下,∴ S 存在最大值.当 t=1 时, S 最大 = .333--------------------------3 分。
山东省潍坊市2019-2020学年中考数学三模考试卷含解析
山东省潍坊市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD 是边长为1的正方形,动点E 、F 分别从点C ,D 出发,以相同速度分别沿CB ,DC 运动(点E 到达C 时,两点同时停止运动).连接AE ,BF 交于点P ,过点P 分别作PM ∥CD ,PN ∥BC ,则线段MN 的长度的最小值为( )A .52B .512-C .12D .1 2.如图,在矩形ABCD 中AB =2,BC =1,将矩形ABCD 绕顶点B 旋转得到矩形A'BC'D ,点A 恰好落在矩形ABCD 的边CD 上,则AD 扫过的部分(即阴影部分)面积为( )A .8πB .222π- C .23π- D .6π 3.如图是一个几何体的三视图,则这个几何体是( )A .B .C .D .4.已知一元二次方程1–(x –3)(x+2)=0,有两个实数根x 1和x 2(x 1<x 2),则下列判断正确的是( )A.–2<x1<x2<3 B.x1<–2<3<x2C.–2<x1<3<x2D.x1<–2<x2<35.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.6.下列运算正确的是()A.a﹣3a=2a B.(ab2)0=ab2C.8=22±D.3×27=97.下列二次根式,最简二次根式是()A.8B.12C.13D.0.18.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=19.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A.8,9 B.8,8.5 C.16,8.5 D.16,10.510.如图,直角坐标平面内有一点(2,4)P,那么OP与x轴正半轴的夹角α的余切值为()A.2 B.12C5D511.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S9的值为()A.(12)6B.(12)7C.(22)6D.(22)712.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E 在OB的延长线上,当扇形AOB的半径为22时,阴影部分的面积为__________.14.已知方程2390x x m-+=的一个根为1,则m的值为__________.15.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.18.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组21324x x x x ≥⎧⎨≥⎩-①-(-)② 请结合题意填空,完成本题的解答(1)解不等式①,得_______.(2)解不等式②,得_______.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为_______________.20.(6分)如图,在△ABC 中,∠ABC=90°,BD ⊥AC ,垂足为D ,E 为BC 边上一动点(不与B 、C 重合),AE 、BD 交于点F .(1)当AE 平分∠BAC 时,求证:∠BEF=∠BFE ;(2)当E 运动到BC 中点时,若BE=2,BD=2.4,AC=5,求AB 的长.21.(6分)(5分)计算:. 22.(8分)如图,抛物线212y x bx c =-++经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式; (2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.23.(8分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?24.(10分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.25.(10分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.26.(12分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B 型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8240aa+辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.27.(12分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数kyx=的图象上,将这两点分别记为A,B,另一点记为C,(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是x轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,再由勾股定理可得QC的长,再求CP即可.详解:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最小,在Rt△QDC中,=,∴CP=QC-,故选B.点睛:本题主要考查的是圆的相关知识和勾股定理,属于中等难度的题型.解决这个问题的关键是根据圆的知识得出点P的运动轨迹.2.A【解析】【分析】本题首先利用A点恰好落在边CD上,可以求出A´C=BC´=1,又因为A´B△A´BC为等腰直角三角形,即可以得出∠ABA´、∠DBD´的大小,然后将阴影部分利用切割法分为两个部分来求,即面积ADA´和面积DA´D´【详解】先连接BD,首先求得正方形ABCD1,由分析可以求出∠ABA´=∠DBD´=45°,即可以求得扇形ABA´的面积为245118024=ππ⨯⨯,扇形BDD´的面积为2451318028ππ⨯⨯=,面积ADA´=面积ABCD-面积A´BC-扇形面积ABA´11112424ππ⨯⨯--;面积DA´D´=扇形面积BDD´-面积DBA´-面积BA´D´=)3113111182282ππ⨯⨯--=-,阴影部分面积=面积DA´D´+面积ADA´=8π【点睛】熟练掌握面积的切割法和一些基本图形的面积的求法是本题解题的关键.3.B【解析】试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.考点:由三视图判断几何体.设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)根据二次函数的图像性质可知y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1个单位长度,根据图像的开口方向即可得出答案.【详解】设y=-(x﹣3)(x+2),y1=1﹣(x﹣3)(x+2)∵y=0时,x=-2或x=3,∴y=-(x﹣3)(x+2)的图像与x轴的交点为(-2,0)(3,0),∵1﹣(x﹣3)(x+2)=0,∴y1=1﹣(x﹣3)(x+2)的图像可看做y=-(x﹣3)(x+2)的图像向上平移1,与x轴的交点的横坐标为x1、x2,∵-1<0,∴两个抛物线的开口向下,∴x1<﹣2<3<x2,故选B.【点睛】本题考查二次函数图像性质及平移的特点,根据开口方向确定函数的增减性是解题关键.5.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.直接利用合并同类项法则以及二次根式的性质、二次根式乘法、零指数幂的性质分别化简得出答案.【详解】解:A、a﹣3a=﹣2a,故此选项错误;B、(ab2)0=1,故此选项错误;C=故此选项错误;D,正确.故选D.【点睛】此题主要考查了合并同类项以及二次根式的性质、二次根式乘法、零指数幂的性质,正确把握相关性质是解题关键.7.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A==,不是最简二次根式,故本选项不符合题意;B2C=,不是最简二次根式,故本选项不符合题意.D10故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.8.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.9.A【解析】【分析】根据中位数、众数的概念分别求得这组数据的中位数、众数.【详解】解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于20,21两个数的平均数,由中位数的定义可知,这组数据的中位数是9.故选A.【点睛】考查了中位数、众数的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.10.B【解析】【分析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4 tan22APOAα===∴1 cot2α=.故选B.【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.11.A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,由此可得S n=(12)n﹣2.当n=9时,S9=(12)9﹣2=(12)6,故选A.考点:勾股定理.12.A【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.π﹣1【解析】【分析】根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.【详解】连接OC∵在扇形AOB 中∠AOB =90°,正方形CDEF 的顶点C 是弧AB 的中点,∴∠COD =45°,∴OC =2CD =12 ,∴CD =OD =1,∴阴影部分的面积=扇形BOC 的面积﹣三角形ODC 的面积=24522g π() ﹣12×11 =π﹣1.故答案为π﹣1.【点睛】本题考查正方形的性质和扇形面积的计算,解题关键是得到扇形半径的长度.14.1【解析】【分析】欲求m ,可将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出m 值.【详解】设方程的另一根为x 1,又∵x=1,∴1113{•1=3x m x =, 解得m=1.故答案为1.【点睛】本题的考点是一元二次方程的根的分布与系数的关系,主要考查利用韦达定理解题.此题也可将x=1直接代入方程3x 2-9x+m=0中求出m 的值.15.1【解析】【分析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m的图象经过点P(2,3),∴3=4-m,解得m=1,故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.16.1.【解析】试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为=1(尺).故答案为1.考点:平面展开最短路径问题17.1【解析】【分析】先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【详解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.18.2k <且1k ≠【解析】【分析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k <2且k≠1.故答案为k <2且k≠1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.【解析】【分析】分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.【详解】解:(1)x≥-1;(2)x≤1;(3);(4)原不等式组的解集为-1≤x≤1.【点睛】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(1)证明见解析;(1)2【解析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD ,然后根据对顶角相等可得∠BFE=∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可.详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD ⊥AC ,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD .∵∠BFE=∠AFD (对顶角相等),∴∠BEF=∠BFE ;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC -=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.21..【解析】 试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.试题解析:原式==. 考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.22.(1)2142y x x =-++;(2)P (1,72); (3)3或5. 【解析】【分析】(1)将点A 、B 代入抛物线212y x bx c =-++,用待定系数法求出解析式. (2)对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , 由∠PBO=∠BAO ,得tan ∠PBO=tan ∠BAO ,即PG BO BG AO=,可求出P 的坐标. (3)新抛物线的表达式为2142y x x m =-++-,由题意可得DE=2,过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF ,∴2=1DE EO DO FH OF OH ==,∴FH=1.然后分情况讨论点D 在y 轴的正半轴上和在y 轴的负半轴上,可求得m 的值为3或5.【详解】解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴2204b c c --+=⎧⎨=⎩,解得14b c =⎧⎨=⎩, ∴抛物线解析式为2142y x x =-++,(2)()2211941222y x x x =-++=--+, ∴对称轴为直线x=1,过点P 作PG ⊥y 轴,垂足为G , ∵∠PBO=∠BAO ,∴tan ∠PBO=tan ∠BAO ,∴PG BO BG AO=, ∴121BG =, ∴12BG =, 72OG =, ∴P (1,72), (3)设新抛物线的表达式为2142y x x m =-++- 则()0,4D m -,()2,4E m -,DE=2过点F 作FH ⊥y 轴,垂足为H ,∵DE ∥FH ,EO=2OF∴2=1DE EO DO FH OF OH ==, ∴FH=1.点D 在y 轴的正半轴上,则51,2F m ⎛⎫-- ⎪⎝⎭, ∴52OH m =-, ∴42512DO m OH m -==-, ∴m=3,点D 在y 轴的负半轴上,则91,2F m ⎛⎫- ⎪⎝⎭,∴92 OH m=-,∴42912DO mOH m-==-,∴m=5,∴综上所述m的值为3或5.【点睛】本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键. 23.(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【解析】试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B 种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x≥(30-x),解得x≥10,设全部收购该基地生姜的年总收入为y元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y随x的增大而减小,∴当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【点睛】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.24.(1)800,240;(2)补图见解析;(3)9.6万人.【解析】试题分析:(1)由C类别人数及其百分比可得总人数,总人数乘以B类别百分比即可得;(2)根据百分比之和为1求得A类别百分比,再乘以360°和总人数可分别求得;(3)总人数乘以样本中A、B、C三类别百分比之和可得答案.试题解析:(1)本次调查的市民有200÷25%=800(人),∴B类别的人数为800×30%=240(人),故答案为800,240;(2)∵A类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A类对应扇形圆心角α的度数为360°×25%=90°,A类的人数为800×25%=200(人),补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图25.(1)见解析,(2)CF=65cm.【解析】【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于12BD•CE=12BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD5=.又∵BD•CE=BC•DC,∴CE=·125 BC DCBD=.∴BE95 ==.∴EF=BF﹣BE=3﹣96 55 =.∴CF5==cm.【点睛】本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.26.问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】【详解】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,1500a×1000+12008240aa+×1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为1.27.(2)2;(2)y=x+2;(3【解析】【分析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=kx的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有221 m nm n++⎧⎨-+-⎩=,解得11mn⎧⎨⎩==,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值223+5=34【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.。
山东省东营市2019-2020学年中考数学模拟试题(4)含解析
山东省东营市2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折2.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.3.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为()米.A.42.3×104B.4.23×102C.4.23×105D.4.23×1064.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)5.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定6.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A.1 B.2 C.3 D.47.正比例函数y=2kx的图象如图所示,则y=(k-2)x+1-k的图象大致是()A.B.C.D.8.如图,在△ABC中,EF∥BC,AE1EB2=,S四边形BCFE=8,则S△ABC=()A.9 B.10 C.12 D.139.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则BECE的值为()A.3 B3C.333+D3110.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.11.如图,一次函数y=x﹣1的图象与反比例函数2yx=的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为()A.(0,1)B.(0,2)C.50,2⎛⎫⎪⎝⎭D.(0,3)12.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120°B.110°C.100°D.80°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC是⊙O的内接三角形,AD是⊙O的直径,∠ABC=50°,则∠CAD=________ .14.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.15.图,A ,B 是反比例函数y=kx图象上的两点,过点A 作AC ⊥y 轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,△AOD 的面积为3,则k 的值为________.16.矩形纸片ABCD ,AB=9,BC=6,在矩形边上有一点P ,且DP=1.将矩形纸片折叠,使点B 与点P 重合,折痕所在直线交矩形两边于点E ,F ,则EF 长为________.17.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________.18.点A (x 1,y 1)、B (x 1,y 1)在二次函数y=x 1﹣4x ﹣1的图象上,若当1<x 1<1,3<x 1<4时,则y 1与y 1的大小关系是y 1_____y 1.(用“>”、“<”、“=”填空)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,已知二次函数24y x 49=-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C e 的半径为5,P 为C e 上一动点.()1点B ,C 的坐标分别为B(______),C(______);()2是否存在点P ,使得PBC V 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; ()3连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值=______.20.(6分)在平面直角坐标系中,已知点A (2,0),点B (0,3),点O (0,0).△AOB 绕着O 顺时针旋转,得△A′OB′,点A 、B 旋转后的对应点为A′、B′,记旋转角为α. (I )如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P ,求证:AA′⊥BB′; (Ⅲ)若0°<α<360°,求(Ⅱ)中的点P 纵坐标的最小值(直接写出结果即可).21.(6分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图. 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计1根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.22.(8分)化简:()()2a b a 2b a -+-.23.(8分)据城市速递报道,我市一辆高为2.5米的客车,卡在快速路引桥上高为2.55米的限高杆的上端,已知引桥的坡角∠ABC 为14°,请结合示意图,用你学过的知识通过数据说明客车不能通过的原因.(参考数据:sin14°=0.24,cos14°=0.97,tan14°=0.25)24.(10分)如图,直线y 1=﹣x+4,y 2=34x+b 都与双曲线y=kx 交于点A (1,m ),这两条直线分别与x轴交于B ,C 两点.求y 与x 之间的函数关系式;直接写出当x >0时,不等式34x+b >kx 的解集;若点P在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.25.(10分)解方程(1)2430x x --=;(2)()22(1)210x x ---=26.(12分)某一天,水果经营户老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,后再到水果市场去卖,已知猕猴桃和芒果当天的批发价和零售价如表所示: 品名猕猴桃 芒果 批发价(元/千克)2040零售价(元/千克)26 50()1他购进的猕猴桃和芒果各多少千克?()2如果猕猴桃和芒果全部卖完,他能赚多少钱?27.(12分)某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.(1)设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;(2)如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【详解】设可打x 折,则有1200×10x-800≥800×5%, 解得x≥1. 即最多打1折. 故选B . 【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 2.A 【解析】 【分析】根据一次函数y=kx+b 的图象可知k >1,b <1,再根据k ,b 的取值范围确定一次函数y=−bx+k 图象在坐标平面内的位置关系,即可判断. 【详解】解:∵一次函数y=kx+b 的图象可知k >1,b <1, ∴-b >1,∴一次函数y=−bx+k 的图象过一、二、三象限,与y 轴的正半轴相交, 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <1;函数值y 随x 的增大而增大⇔k >1;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >1,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <1,一次函数y=kx+b 图象过原点⇔b=1. 3.C 【解析】423公里=423 000米=4.23×105米.故选C.4.A【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.5.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.6.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.7.B【解析】试题解析:由图象可知,正比函数y=2kx的图象经过二、四象限,∴2k<0,得k<0,∴k−2<0,1−k>0,∴函数y=(k−2)x+1−k图象经过一、二、四象限,故选B.8.A【解析】【分析】由在△ABC中,EF∥BC,即可判定△AEF∽△ABC,然后由相似三角形面积比等于相似比的平方,即可求得答案.【详解】∵AE1 EB2=,∴AE AE11==AB AE+EB1+23=.又∵EF∥BC,∴△AEF∽△ABC.∴2AEFABCS11=S39∆∆⎛⎫= ⎪⎝⎭.∴1S△AEF=S△ABC.又∵S四边形BCFE=8,∴1(S△ABC﹣8)=S△ABC,解得:S △ABC =1. 故选A . 9.C 【解析】 【分析】连接,,CD BD D 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o ,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,则ACD V ≌BFD △,根据全等三角形的性质可得:,CD FD = ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠ 即120,CDF ADB ∠=∠=o ,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x ==3,tan 30DE CE EF x ===o 即可求出BECE的值.【详解】 如图:连接,,CD BDD 为弧AB 的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:120,ACB ADB ∠=∠=o,CAD CBD ∠=∠在BC 上截取BF AC =,连接DF,,AC BF CAD FBD AD BD =⎧⎪∠=∠⎨⎪=⎩则ACD V ≌BFD △,,CD FD ∴= ,ADC BDF ∠=∠ ,ADC ADF BDF ADF ∠+∠=∠+∠即120,CDF ADB ∠=∠=o,DE BC ⊥根据等腰三角形的性质可得:,CE EF = 30,DCF DFC ∠=∠=o设,DE x = 则,BF AC x == 3,tan 30DE CE EF x ===o333.3BE BF EF x x CE CE x+++=== 故选C.【点睛】考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.10.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A 、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;B 、由全等三角形的判定定理SAS 证得图中两个小三角形全等,故本选项不符合题意;C 、如图1,∵∠DEC =∠B+∠BDE ,∴x°+∠FEC =x°+∠BDE ,∴∠FEC =∠BDE ,所以其对应边应该是BE 和CF ,而已知给的是BD =FC =3,所以不能判定两个小三角形全等,故本选项符合题意;D 、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.11.B【解析】【分析】根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由1{2y xyx=-=,解得21xy=⎧⎨=⎩或12xy=-⎧⎨=-⎩,∴A(2,1),B(1,0),设C(0,m),∵BC=AC,∴AC2=BC2,即4+(m-1)2=1+m2,∴m=2,故答案为(0,2).【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.【分析】先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.40°【解析】连接CD,则∠ADC=∠ABC=50°,∵AD是⊙O的直径,∴∠ACD=90°,∴∠CAD+∠ADC=90°,∴∠CAD=90°-∠ADC=90°-50°=40°,故答案为: 40°.14.20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.16.62或210.【解析】试题分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=62P在AD上时,如图:先建立相似三角形,过E 作EQ ⊥AB 于Q ,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得2239+10,∵EF 垂直平分PB ,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP ∽△EFQ (两角对应相等,两三角形相似),∴对应线段成比例:EF EQ PB AB=,代入相应数值:69310=,∴10.综上所述:EF 长为2或10. 考点:翻折变换(折叠问题).17.2k <且1k ≠【解析】【分析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.【详解】由题意可得,1−k≠0,△=4+4(1−k)>0,∴k <2且k≠1.故答案为k <2且k≠1.【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.18.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x 1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,∵1<x 1<1,3<x 1<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离,∴y 1<y 1.故答案为<.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)B (1,0),C (0,﹣4);(2)点P 的坐标为:(﹣1,﹣2)或(115,225-)或(5﹣4﹣4);(1【解析】 试题分析:(1)在抛物线解析式中令y=0可求得B 点坐标,令x=0可求得C 点坐标;(2)①当PB 与⊙相切时,△PBC 为直角三角形,如图1,连接BC ,根据勾股定理得到BC=5,BP 2的值,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,根据相似三角形的性质得到2222P F CP P E BP = =2,设OC=P 2E=2x ,CP 2=OE=x ,得到BE=1﹣x ,CF=2x ﹣4,于是得到FP 2,EP 2的值,求得P 2的坐标,过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2),②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP ,由OB=OA ,BE=EP ,推出OE=12AP ,可知当AP 最大时,OE 的值最大. 试题解析:(1)在2449y x =-中,令y=0,则x=±1,令x=0,则y=﹣4,∴B (1,0),C (0,﹣4); 故答案为1,0;0,﹣4;(2)存在点P ,使得△PBC 为直角三角形,分两种情况:①当PB 与⊙相切时,△PBC 为直角三角形,如图(2)a ,连接BC ,∵OB=1.OC=4,∴BC=5,∵CP 2⊥BP 2,CP 2BP 2=P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,则△CP 2F ∽△BP 2E ,四边形OCP 2B 是矩形,∴2222P F CP P E BP ==2,设OC=P 2E=2x ,CP 2=OE=x ,∴BE=1﹣x ,CF=2x ﹣4,∴324BE x CF x -=- =2,∴x=115,2x=225,∴FP 2=115,EP 2=225,∴P 2(115,﹣225),过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2);②当BC ⊥PC 时,△PBC 为直角三角形,过P 4作P 4H ⊥y 轴于H ,则△BOC ∽△CHP 4,∴44P H P C CH OB OC BC ==,∴,P 4,∴P 4﹣4); 同理P 1(﹣5,5﹣4); 综上所述:点P 的坐标为:(﹣1,﹣2)或(115,225-)或(5,﹣5﹣4)或(﹣5,5﹣4); (1)如图(1),连接AP ,∵OB=OA ,BE=EP ,∴OE=12AP ,∴当AP 最大时,OE 的值最大,∵当P在AC 的延长线上时,AP 的值最大,最大值=55+,∴OE 的最大值为552+.故答案为552+.20.(1)B'的坐标为(3,3);(1)见解析 ;(3)3﹣1.【解析】【分析】(1)设A'B'与x 轴交于点H ,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°, 由∠BOB'=α=30°推出BO ∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90︒即可;(3)作AB 的中点M (1,),连接MP ,由∠APB=90°,推出点P 的轨迹为以点M 为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM ⊥x 轴时,点P 纵坐标的最小值为3﹣1. 【详解】(Ⅰ)如图1,设A'B'与x 轴交于点H ,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO ∥A'B',∵OB'=OB=1, ∴OH=OB'=,B'H=3,∴点B'33);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P31.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.21.(1)41(2)15%(3)1 6【解析】【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%, 故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P (丙和乙)=212=16. 22.2b【解析】【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果.【详解】解:原式2222a 2ab b 2ab a b =-++-=.23.客车不能通过限高杆,理由见解析【解析】【分析】根据DE ⊥BC ,DF ⊥AB ,得到∠EDF=∠ABC=14°.在Rt △EDF 中,根据cos ∠EDF=DF DE ,求出DF 的值,即可判断.【详解】∵DE ⊥BC ,DF ⊥AB ,∴∠EDF=∠ABC=14°.在Rt △EDF 中,∠DFE=90°,∵cos ∠EDF=DF DE, ∴DF=DE•cos ∠EDF=2.55×cos14°≈2.55×0.97≈2.1.∵限高杆顶端到桥面的距离DF 为2.1米,小于客车高2.5米,∴客车不能通过限高杆.【点睛】考查解直角三角形,选择合适的锐角三角函数是解题的关键.24.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P (﹣54,0)或(94,0). 点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.(1)12x =,22x =;(2)11x =,23x =-.【解析】【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得.【详解】(1)解:∵1a =,4b =-,3c =-,∴224(4)41(3)280b ac ∆=-=--⨯⨯-=>,∴(4)422212b x a ---±±====±⨯∴12x =,22x =(2)解:原方程化为:2(1)2(1)(1)0x x x --+-=,因式分解得:[](1)(1)2(1)0x x x ---+=,整理得:(1)(3)0x x ---=,∴10x -=或30x --=,∴11x =,23x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.(1)购进猕猴桃20千克,购进芒果30千克;(2)能赚420元钱.【解析】【分析】 ()1设购进猕猴桃x 千克,购进芒果y 千克,由总价=单价⨯数量结合老张用1600元从水果批发市场批发猕猴桃和芒果共50千克,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;()2根据利润=销售收入-成本,即可求出结论.【详解】()1设购进猕猴桃x 千克,购进芒果y 千克,根据题意得:5020401600x y x y +=⎧+=⎨⎩, 解得:{2030x y ==.答:购进猕猴桃20千克,购进芒果30千克. ()2262050301600420(⨯+⨯-=元).答:如果猕猴桃和芒果全部卖完,他能赚420元钱.【点睛】本题考查了二元一次方程组的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2根据数量关系,列式计算.27.(1)0.271000y x x +甲=(>);(2)选择乙印刷厂比较优惠.【解析】【分析】(1)根据题意直接写出两厂印刷厂的收费y 甲(元)关于印刷数量x (份)之间的函数关系式;(2)分别将两厂的印刷费用等于2000元,分别解得两厂印刷的份数即可.【详解】(1)根据题意可知:甲印刷厂的收费y 甲=0.3x×0.9+100=0.27x+100,y 关于x 的函数关系式是y 甲=0.27x+100(x >0);(2)由题意可得:该学校需要印刷艺术节的宣传资料600份,在甲印刷厂需要花费:0.27×600+100=262(元),在乙印刷厂需要花费:100+200×0.3+0.3×0.8×(600﹣200)=256(元).∵256<262,∴如果该学校需要印刷艺术节的宣传资料600份,那么应该选择乙印刷厂比较优惠.【点睛】本题考查了一次函数的实际应用,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义,属于中档题.。
山东省济宁市2019-2020学年中考数学一模考试卷含解析
山东省济宁市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.122.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°3.如图,在矩形ABCD 中,AB=2a,AD=a,矩形边上一动点P 沿A→B→C→D 的路径移动.设点P 经过的路径长为x,PD2=y,则下列能大致反映y 与x 的函数关系的图象是()A.B.C.D.4.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )A .∠BDO =60°B .∠BOC =25° C .OC =4D .BD =46.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 7.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a|﹣|a+b|的值等于( )A .c+bB .b ﹣cC .c ﹣2a+bD .c ﹣2a ﹣b8.如图,在ABC 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .69.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH 的长是( )A .223B .5C .322D 35 10.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x-=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 11.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( ) A .m >3 B .m <3C .m≤3D .m≥312.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.14.如图,已知AB∥CD,若14ABCD=,则OAOC=_____.15.方程15x12x1=-+的解为.16.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.17.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.18.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.20.(6分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=mx的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=mx交于P、Q两点,且PQ=2QD,求点D的坐标.21.(6分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB 交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;(4)若AB=4,AD=43,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.22.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.23.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(10分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为409时,请通过计算说明圆P与直线DC的位置关系.25.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.26.(12分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.27.(12分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d 与中间的数.猜想:十字框中a 、b 、c 、d 的和是中间的数的______; (3)验证:设中间的数为x ,写出a 、b 、c 、d 的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x ,判断M 的值能否等于2020,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据根与系数的关系得到x 1+x 2=2,x 1•x 2=﹣3,再变形x 12+x 22得到(x 1+x 2)2﹣2x 1•x 2,然后利用代入计算即可.解:∵一元二次方程x 2﹣2x ﹣3=0的两根是x 1、x 2,∴x 1+x 2=2,x 1•x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=22﹣2×(﹣3)=1.故选C .2.D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.D【解析】解:(1)当0≤t≤2a 时,∵222PD AD AP =+,AP=x ,∴22y x a =+;(2)当2a <t≤3a 时,CP=2a+a ﹣x=3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t≤5a 时,PD=2a+a+2a ﹣x=5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D .4.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD ∽△ABP′,得到BP′=2PD ,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2, ∵=2,∴△APD ∽△ABP′,∴BP′=2PD ,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB 的最小值为4, 故选D .【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.5.D【解析】【分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.6.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.7.A【解析】【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.8.C【解析】【分析】先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .【详解】解:因为DE 垂直平分BC ,所以8BE CE ==,在Rt BDE 中,30B ∠=︒, 则118422ED BE ==⨯=; 故选:C .【点睛】 本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.9.D【解析】【分析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,最后由直角三角形面积的两种表示法即可求得CH 的长.【详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2,2∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,==∵CH ⊥AF , ∴1122AC CF AF CH ⋅=⋅,12CH =⨯, ∴CH=5. 故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.D【解析】解:设动车速度为每小时x 千米,则可列方程为:45050x -﹣450x =23.故选D . 11.C【解析】【分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围.【详解】 221x m x m ->⎧⎨-<-⎩①② , 由①得:x >2+m ,由②得:x <2m ﹣1,∵不等式组无解,∴2+m≥2m ﹣1,∴m≤3,故选C .【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.12.C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23或﹣23. 【解析】【分析】【详解】试题分析:当点F 在OB 上时,设EF 交CD 于点P ,可求点P 的坐标为(2x ,1). 则AF+AD+DP=3+32x , CP+BC+BF=3﹣32x , 由题意可得:3+32x=2(3﹣32x ), 解得:x=23. 由对称性可求当点F 在OA 上时,x=﹣23, 故满足题意的x 的值为23或﹣23. 故答案是23或﹣23. 【点睛】考点:动点问题.14.14【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD , ∴14OA AB OC CD ==, 故答案为14. 【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.15.x 2=.【解析】试题分析:首先去掉分母,观察可得最简公分母是()()x 12x 2-+,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解: 152x 15x 53x 6x 2x 12x 1=⇒+=-⇒-=-⇒=-+,经检验,x 2=是原方程的根. 16.2【解析】分析:延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.详解:延长AE 交DF 于G ,如图, ∵AB=5,AE=3,BE=4,∴△ABE 是直角三角形,同理可得△DFC 是直角三角形,可得△AGD 是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE ,∴∠GAD=∠EBA ,同理可得:∠ADG=∠BAE .在△AGD 和△BAE 中,∵EAB GDA AD AB ABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△BAE (ASA ),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.17.3【解析】试题分析:根据点D 为AB 的中点可得:CD 为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E 、F 分别为中点可得:EF 为△ABC 的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质18.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)1.【解析】【分析】作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG 从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如图,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四边形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH ==,∴PH =PG ﹣GH =﹣=,∴四边形PEFD 的面积=DF•PH =×=1.【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值20.()1一次函数解析式为22y x =+;反比例函数解析式为4y x =;()()22,0D . 【解析】【分析】(1)根据A (-1,0)代入y=kx+2,即可得到k 的值;(2)把C (1,n )代入y=2x+2,可得C (1,4),代入反比例函数m y x=得到m 的值; (3)先根据D (a,0),PD ∥y 轴,即可得出P (a,2a+2),Q(a ,4a),再根据PQ=2QD ,即可得44222a a a +-=⨯,进而求得D 点的坐标.【详解】(1)把A (﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C (1,n )代入y=2x+2得n=4,∴C (1,4), 把C (1,4)代入y=m x得m=1×4=4, ∴反比例函数解析式为y=4x ; (2)∵PD ∥y 轴,而D (a ,0),∴P (a ,2a+2),Q (a ,4a), ∵PQ=2QD ,∴2a+2﹣4a=2×4a,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.21.(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)16 3【解析】【分析】(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE ,由折叠可得,D'F=DF ,∴BE=D'F ,在△NC'Q 和△NAP 中,∠C'NQ=∠ANP ,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN ,∵∠C'QN=∠BQE ,∠APN=∠D'PF ,∴∠BQE=∠D'PF ,在△BEQ 和△D'FP 中,{BQE DPFBE D F AP C Q∠=∠='=',∴△BEQ ≌△D'FP (AAS ),∴PF=QE ,∵四边形ABCD 是矩形,∴AD=BC ,∴AD ﹣FD=BC ﹣BE ,∴AF=CE ,由折叠可得,C'E=EC ,∴AF=C'E ,∴AP=C'Q ,在△NC'Q 和△NAP 中,{C NQ ANPNC Q NAP AP C Q''∠∠=∠='∠=,∴△NC'P ≌△NAP (AAS ),∴AN=C'N ,在Rt △MC'N 和Rt △MAN 中,{MN MN AN C N==',∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折叠可得,∠C'EF=∠CEF,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=2404161803ππ⨯⨯=.故答案为163π.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.22.(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解析】【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:100501008000x yx y+=⎧⎨+=⎩,解得:4060xy=⎧⎨=⎩,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.23.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】【分析】(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=259,得到PA=AB-PB=209,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=169,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,则四边形AECD是矩形,∴CE=AD=1,AE=CD=3,∵AB=BC,∴BE=AB-1,在Rt△ABE中,∵AB2=AE2+BE2,∴AB2=32+(AB-1)2,解得:AB=5;(2)过P作PF⊥BQ于F,∴BF=12BQ=209,∴△PBF∽△ABE,∴PB BF AB BE=,∴20954 PB=,∴PB=259,∴PA=AB-PB=209,过P作PG⊥CD于G交AE于M,∴GM=AD=1,∵DC⊥BC∴PG∥BC∴△APM∽△ABE,∴AP PM AB BE=,∴20954PM =, ∴PM=169, ∴PG=PM+MG=259=PB , ∴圆P 与直线DC 相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.25.见解析【解析】【分析】根据条件可以得出AD=AB ,∠ABF=∠ADE=90°,从而可以得出△ABF ≌△ADE ,就可以得出∠FAB=∠EAD ,就可以得出结论.【详解】证明:∵四边形ABCD 是正方形,∴AB=AD ,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF 和△DAE 中,AB AD ABF ADE BF DE ⎧⎪∠∠⎨⎪⎩=== ,∴△BAF ≌△DAE (SAS ),∴∠FAB=∠EAD ,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA ⊥AF .26.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得. 【详解】根据题意列表如下:所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P(甲获胜)=516,P(乙获胜)=1﹣516=1116,则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.27.(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】【分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,∴M的值不能等于1.【点睛】本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.。
山东省济南市2019-2020学年中考数学仿真第三次备考试题含解析
山东省济南市2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算中,正确的是()A.a•3a=4a2B.2a+3a=5a2C.(ab)3=a3b3D.7a3÷14a2=2a2.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:(1)4a+b=0;(1)9a+c>﹣3b;(3)7a﹣3b+1c>0;(4)若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1<y3<y1;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<5<x1.其中正确的结论有()A.1个B.3个C.4个D.5个3.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为()A.4 B.3 C.2 D.15.用尺现作图的方法在一个平行四边形内作菱形ABCD,下列作法错误的是()A.B.C.D.6.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=7.如图,BD ∥AC ,BE 平分∠ABD ,交AC 于点E ,若∠A=40°,则∠1的度数为( )A .80°B .70°C .60°D .40°8.如图是二次函数y =ax 2+bx+c 的图象,对于下列说法:①ac >0,②2a+b >0,③4ac <b 2,④a+b+c <0,⑤当x >0时,y 随x 的增大而减小,其中正确的是( )A .①②③B .①②④C .②③④D .③④⑤9.一元二次方程x 2+x ﹣2=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根10.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .12511.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A .3(2)29x x -=+ B .3(2)29x x +=- C .9232x x -+= D .9232x x +-=12.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A .B .C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 318 652 793 1 604 4 005发芽频率0.850 0.795 0.815 0.793 0.802 0.801根据以上数据可以估计,该玉米种子发芽的概率为___________(精确到0.1).14.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.15.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.16.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.17.如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC =,那么矩形ABCD的周长_____________cm.18.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=3,则CE的长为_______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:﹣16+(﹣12)﹣2﹣|3﹣2|+2tan60°20.(6分)“千年古都,大美西安”.某校数学兴趣小组就“最想去的西安旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,(景点对应的名称分别是:A:大雁塔B:兵马俑C:陕西历史博物馆D:秦岭野生动物园E:曲江海洋馆).下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B”的学生人数.21.(6分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.求证:DE是⊙O的切线;若DE=3,CE=2. ①求BCAE的值;②若点G为AE上一点,求OG+12EG最小值.22.(8分)已知如图①Rt△ABC和Rt△EDC中,∠ACB=∠ECD=90°,A,C,D在同一条直线上,点M,N,F 分别为AB,ED,AD的中点,∠B=∠EDC=45°,(1)求证MF=NF(2)当∠B=∠EDC=30°,A,C,D在同一条直线上或不在同一条直线上,如图②,图③这两种情况时,请猜想线段MF,NF之间的数量关系.(不必证明)23.(8分)如图①,AB 是⊙O 的直径,CD 为弦,且AB ⊥CD 于E ,点M 为¼ACB 上一动点(不包括A ,B 两点),射线AM 与射线EC 交于点F .(1)如图②,当F 在EC 的延长线上时,求证:∠AMD =∠FMC . (2)已知,BE =2,CD =1. ①求⊙O 的半径;②若△CMF 为等腰三角形,求AM 的长(结果保留根号).24.(10分)已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.25.(10分)计算:|2﹣1|﹣2sin45°+38﹣21()2- 26.(12分)在平面直角坐标系中,O 为原点,点A (8,0)、点B (0,4),点C 、D 分别是边OA 、AB 的中点.将△ACD 绕点A 顺时针方向旋转,得△AC′D′,记旋转角为α.(I )如图①,连接BD′,当BD′∥OA 时,求点D′的坐标; (II )如图②,当α=60°时,求点C′的坐标;(III )当点B ,D′,C′共线时,求点C′的坐标(直接写出结果即可).27.(12分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上. (1)求A ,B 两点间的距离(结果精确到0.1km ).(2)当运载火箭继续直线上升到D 处,雷达站测得其仰角为56°,求此时雷达站C 和运载火箭D 两点间的距离(结果精确到0.1km ).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据同底数幂的运算法则进行判断即可. 【详解】解:A 、a•3a=3a 2,故原选项计算错误; B 、2a+3a=5a ,故原选项计算错误; C 、(ab )3=a 3b 3,故原选项计算正确; D 、7a 3÷14a 2=12a ,故原选项计算错误; 故选C . 【点睛】本题考点:同底数幂的混合运算. 2.B 【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2ba=1,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(1)正确;因为抛物线与x轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a,可得a+4a+c=0,即c=-5a.代入可得7a﹣3b+1c=7a+11a-5a=14a,由函数的图像开口向下,可知a<0,因此7a﹣3b+1c<0,故(3)不正确;根据图像可知当x<1时,y随x增大而增大,当x>1时,y随x增大而减小,可知若点A(﹣3,y1)、点B(﹣12,y1)、点C(7,y3)在该函数图象上,则y1=y3<y1,故(4)不正确;根据函数的对称性可知函数与x轴的另一交点坐标为(5,0),所以若方程a(x+1)(x﹣5)=﹣3的两根为x1和x1,且x1<x1,则x1<﹣1<x1,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax1+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b1﹣4ac>0时,抛物线与x轴有1个交点;△=b1﹣4ac=0时,抛物线与x轴有1个交点;△=b1﹣4ac<0时,抛物线与x轴没有交点.3.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4.A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4, 故选A .点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数. 5.A 【解析】 【分析】根据菱形的判定方法一一判定即可 【详解】作的是角平分线,只能说明四边形ABCD 是平行四边形,故A 符合题意B 、作的是连接AC ,分别做两个角与已知角∠CAD 、∠ACB 相等的角,即∠BAC=∠DAC ,∠ACB=∠ACD ,能得到AB=BC,AD=CD,又AB ∥CD ,所以四边形ABCD 为菱形,B 不符合题意 C 、由辅助线可知AD=AB=BC ,又AD ∥BC ,所以四边形ABCD 为菱形,C 不符合题意D 、作的是BD 垂直平分线,由平行四边形中心对称性质可知AC 与BD 互相平分且垂直,得到四边形ABCD 是菱形,D 不符合题意 故选A 【点睛】本题考查平行四边形的判定,能理解每个图的作法是本题解题关键 6.D 【解析】 【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论. 【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D . 【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质. 7.B 【解析】 【分析】根据平行线的性质得到°140ABD ∠=,根据BE 平分∠ABD ,即可求出∠1的度数.【详解】 解:∵BD ∥AC , ∴°180ABD A ∠+∠=, °140ABD ∠=, ∵BE 平分∠ABD , ∴°°1111407022ABD ∠=∠=⨯= 故选B . 【点睛】本题考查角平分线的性质和平行线的性质,熟记它们的性质是解题的关键. 8.C 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由图象可知:a >0,c <0, ∴ac <0,故①错误; ②由于对称轴可知:b2a-<1, ∴2a+b >0,故②正确;③由于抛物线与x 轴有两个交点, ∴△=b 2﹣4ac >0,故③正确;④由图象可知:x =1时,y =a+b+c <0, 故④正确; ⑤当x >b2a-时,y 随着x 的增大而增大,故⑤错误; 故选:C . 【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型. 9.A 【解析】∵∆=12-4×1×(-2)=9>0, ∴方程有两个不相等的实数根. 故选A.点睛:本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2﹣4ac :当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.10.B【解析】【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.11.A【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x-2)=2x+1.故选:A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.12.B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.2【解析】【分析】仔细观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,从而得到结论.【详解】∵观察表格,发现大量重复试验发芽的频率逐渐稳定在1.2左右,∴该玉米种子发芽的概率为1.2,故答案为1.2.【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.﹣1<x<2【解析】【分析】根据图象得出取值范围即可.【详解】解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,所以当y1>y2时,﹣1<x<2,故答案为﹣1<x<2【点睛】此题考查二次函数与不等式,关键是根据图象得出取值范围.15.8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等16.1【解析】解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=12BD=12×14=1.故答案为1.点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.17.36.【解析】试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC =8x.∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.18.33【解析】分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,132OB BD==,由勾股定理得出2233OC OA AB OB=-=,,即可得出答案.详解:∵四边形ABCD 是菱形,∴AB=AD=6,AC ⊥BD ,OB=OD ,OA=OC ,∵60BAD ∠=︒,∴△ABD 是等边三角形,∴BD=AB=6, ∴132OB BD ==,∴OC OA ===∴2AC OA ==∵点E 在AC 上,OE =∴当E 在点O 左边时CE OC =+=当点E 在点O 右边时CE OC =-=∴CE =故答案为.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.【解析】【分析】先根据乘方、负指数幂、绝对值、特殊角的三角函数值分别进行计算,然后根据实数的运算法则求得计算结果.【详解】﹣16+(﹣12)﹣2﹣﹣2|+2tan60°=﹣1+4﹣(2,=﹣1+4﹣【点睛】本题主要考查了实数的综合运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点的运算法则.20.(1)40;(2)想去D 景点的人数是8,圆心角度数是72°;(3)280.【解析】【分析】(1)用最想去A 景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D 景点的人数,再补全条形统计图,然后用360°乘以最想去D 景点的人数所占的百分比即可得到扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去B 景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“醉美旅游景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=280, 所以估计“醉美旅游景点B“的学生人数为280人.【点睛】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.21.(1)证明见解析(2)①23 ②3 【解析】【分析】(1)作辅助线,连接OE .根据切线的判定定理,只需证DE ⊥OE 即可;(2)①连接BE .根据BC 、DE 两切线的性质证明△ADE ∽△BEC ;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE ∽△AFD ,所以23BC CE AE DE ==; ②连接OF ,交AD 于H ,由①得∠FOE=∠FOA=60°,连接EF ,则△AOF 、△EOF 都是等边三角形,故四边形AOEF 是菱形,由对称性可知GO=GF,过点G 作GM ⊥OE 于M ,则GM=12EG ,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM =3.故OG+12EG最小值是3.【详解】(1)连接OE∵OA=OE,∴∠AEO=∠EAO∵∠FAE=∠EAO,∴∠FAE=∠AEO ∴OE∥AF∵DE⊥AF,∴OE⊥DE∴DE是⊙O的切线(2)①解:连接BE∵直径AB ∴∠AEB=90°∵圆O与BC相切∴∠ABC=90°∵∠EAB+∠EBA=∠EBA+∠CBE=90°∴∠EAB=∠CBE∴∠DAE=∠CBE∵∠ADE=∠BEC=90°∴△ADE∽△BEC∴23 BC CEAE DE==②连接OF,交AE于G,由①,设BC=2x,则AE=3x∵△BEC∽△ABC ∴BC CE AC BC=∴22 322xx x=+解得:x1=2,21 2x=-(不合题意,舍去)∴AE=3x=6,BC=2x=4,AC=AE+CE=8∴AB=43,∠BAC=30°∴∠AEO=∠EAO=∠EAF=30°,∴∠FOE=2∠FAE=60°∴∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=12EG,OG+12EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+12EG=GF+GM=FM最小,此时FM=FOsin60o=3.故OG+12EG最小值是3.【点睛】本题考查了切线的性质、相似三角形的判定与性质.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.22.(1)见解析;(2)MF=3NF.【解析】【分析】(1)连接AE,BD,先证明△ACE和△BCD全等,然后得到AE=BD,然后再通过三角形中位线证明即可. (2)根据图(2)(3)进行合理猜想即可.【详解】解:(1)连接AE,BD在△ACE和△BCD中AC BCACE BCDCE CD=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCD∴AE=BD又∵点M,N,F分别为AB,ED,AD的中点∴MF=12BD,NF=12AE∴MF=NF(2) MF=3NF.方法同上.【点睛】本题考查了三角形全等的判定和性质以及三角形中位线的知识,做出辅助线和合理猜想是解答本题的关键.23.(1)详见解析;(2)2;②1或50105【解析】【分析】(1)想办法证明∠AMD=∠ADC,∠FMC=∠ADC即可解决问题;(2)①在Rt△OCE中,利用勾股定理构建方程即可解决问题;②分两种情形讨论求解即可.【详解】解:(1)证明:如图②中,连接AC、AD.∵AB⊥CD,∴CE=ED,∴AC=AD,∴∠ACD=∠ADC,∵∠AMD=∠ACD,∴∠AMD=∠ADC,∵∠FMC+∠AMC=110°,∠AMC+∠ADC=110°,∴∠FMC=∠ADC,∴∠FMC=∠ADC,∴∠FMC=∠AMD.(2)解:①如图②﹣1中,连接OC.设⊙O的半径为r.在Rt△OCE中,∵OC2=OE2+EC2,∴r2=(r﹣2)2+42,∴r=2.②∵∠FMC=∠ACD>∠F,∴只有两种情形:MF=FC,FM=MC.如图③中,当FM=FC时,易证明CM∥AD,∴·¶=,AM CD∴AM=CD=1.如图④中,当MC=MF时,连接MO,延长MO交AD于H.∵∠MFC=∠MCF=∠MAD,∠FMC=∠AMD,∴∠ADM=∠MAD,∴MA=MD,∴··=,AM MD∴MH⊥AD,AH=DH,在Rt△AED中,AD22+=4845∴AH=∵tan ∠DAE =OH DE 1AH AE 2==, ∴OH∴MH =在Rt △AMH 中,AM=【点睛】本题考查了圆的综合题:熟练掌握与圆有关的性质、圆的内接正方形的性质和旋转的性质;灵活利用全等三角形的性质;会利用面积的和差计算不规则几何图形的面积.24.见详解【解析】【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中, AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.25.﹣1【解析】【分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案.【详解】原式=(2﹣1)﹣2×22+2﹣4=2﹣1﹣2+2﹣4=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.26.(I)(10,4)或(6,4)(II)C′(6,23)(III)①C′(8,4)②C′(245,﹣125)【解析】【分析】(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=23,∴OK=6,∴C′(6,23).(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,∴OF=FC′,设OF=FC′=x ,在Rt △ABC′中,BC′=22AB AC -'=8, 在RT △BOF 中,OB=4,OF=x ,BF=8﹣x ,∴(8﹣x )2=42+x 2,解得x=3,∴OF=FC′=3,BF=5,作C′K ⊥OA 于K ,∵OB ∥KC′,∴KC OB '=FK OF =FC BF', ∴4KC '=3FK =35, ∴KC′=125,KF=95, ∴OK=245, ∴C′(245,﹣125). 【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.27.(1)1.7km ;(2)8.9km ;【解析】【分析】(1)根据锐角三角函数可以表示出OA 和OB 的长,从而可以求得AB 的长;(2)根据锐角三角函数可以表示出CD ,从而可以求得此时雷达站C 和运载火箭D 两点间的距离.【详解】解:(1)由题意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km ,∴AO=OC•tan34°,BO=OC•tan45°,∴AB=OB ﹣OA=OC•tan45°﹣OC•tan34°=OC (tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km ,即A ,B 两点间的距离是1.7km ;(2)由已知可得,∠DOC=90°,OC=5km ,∠DCO=56°,∴cos ∠DCO=,OC CD即5cos56,CD =o ∵sin34°=cos56°, ∴50.56CD=, 解得,CD≈8.9答:此时雷达站C 和运载火箭D 两点间的距离是8.9km .【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.。
山东省济宁市2019-2020学年第三次中考模拟考试数学试卷含解析
山东省济宁市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.(a2)3=a5B.(a-b)2=a2-b2C.355=3 D.3-27=-32.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A.22B.2C.3D.23.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题4.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.5.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A .a =﹣2,b =1B .a =3,b =﹣2C .a =0,b =1D .a =2,b =16.已知1122()()A x y B x y ,,,两点都在反比例函数k y x =图象上,当12x 0x <<时,12y y < ,则k 的取值范围是( )A .k>0B .k<0C .k 0≥D .k 0≤7.设0<k <2,关于x 的一次函数y=(k-2)x+2,当1≤x≤2时,y 的最小值是( )A .2k-2B .k-1C .kD .k+18.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )A .13B .3C .-13D .-39.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是( )A .三亚﹣﹣永兴岛B .永兴岛﹣﹣黄岩岛C .黄岩岛﹣﹣弹丸礁D .渚碧礁﹣﹣曾母暗山10.已知二次函数y =﹣(x ﹣h)2+1(为常数),在自变量x 的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h 的值为( )A .36或6B .36或6C .6或16D .16或611.下列运算正确的是( )A .a 2+a 2=a 4B .(a+b )2=a 2+b 2C .a 6÷a 2=a 3D .(﹣2a 3)2=4a 6 12.下列关于x 的方程一定有实数解的是( )A .2x mx 10--=B .ax 3=C x 64x 0--=D .1x x 1x 1=-- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°14.完全相同的3个小球上面分别标有数-2、-1、1,将其放入一个不透明的盒子中后摇匀,再从中随机摸球两次(第一次摸出球后放回摇匀),两次摸到的球上数之和是负数的概率是________.15.如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.16.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S 阴影=_____.17.观察下列各等式:231-+=56784--++=1011121314159---+++=171819202122232416----++++=……根据以上规律可知第11行左起第一个数是__.18.观察以下一列数:3,54,79,916,1125,…则第20个数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我国沪深股市交易中,如果买、卖一次股票均需付交易金额的0.5%作费用.张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?(精确到0.01元)20.(6分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).21.(6分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH ⊥AC 于点H ,且DH 是⊙O 的切线,连接DE 交AB 于点F .(1)求证:DC=DE ;(2)若AE=1,23EF FD =,求⊙O 的半径.22.(8分)计算:22b a b -÷(a a b-﹣1) 23.(8分)如图,已知一次函数y 1=kx+b (k≠0)的图象与反比例函数的图象交于A 、B 两点,与坐标轴交于M 、N 两点.且点A 的横坐标和点B 的纵坐标都是﹣1.求一次函数的解析式;求△AOB 的面积;观察图象,直接写出y 1>y 1时x 的取值范围.24.(10分)如图,在矩形纸片ABCD 中,AB=6,BC=1.把△BCD 沿对角线BD 折叠,使点C 落在C′处,BC′交AD 于点G ;E 、F 分别是C′D 和BD 上的点,线段EF 交AD 于点H ,把△FDE 沿EF 折叠,使点D 落在D′处,点D′恰好与点A 重合.(1)求证:△ABG ≌△C′DG ;(2)求tan ∠ABG 的值;(3)求EF 的长.25.(10分)在平面直角坐标系中,已知直线y =﹣x+4和点M(3,2)(1)判断点M 是否在直线y =﹣x+4上,并说明理由;(2)将直线y =﹣x+4沿y 轴平移,当它经过M 关于坐标轴的对称点时,求平移的距离;(3)另一条直线y=kx+b经过点M且与直线y=﹣x+4交点的横坐标为n,当y=kx+b随x的增大而增大时,则n取值范围是_____.26.(12分)“机动车行驶到斑马线要礼让行人”等交通法规实施后,某校数学课外实践小组就对这些交通法规的了解情况在全校随机调查了部分学生,调查结果分为四种:A.非常了解,B.比较了解,C.基本了解,D.不太了解,实践小组把此次调查结果整理并绘制成下面不完整的条形统计图和扇形统计图.请结合图中所给信息解答下列问题:(1)本次共调查名学生;扇形统计图中C所对应扇形的圆心角度数是;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对这些交通法规“非常了解”的有多少名?(4)通过此次调查,数学课外实践小组的学生对交通法规有了更多的认识,学校准备从组内的甲、乙、丙、丁四位学生中随机抽取两名学生参加市区交通法规竞赛,请用列表或画树状图的方法求甲和乙两名学生同时被选中的概率.27.(12分)如图,▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE、BE,求∠AEB的度数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D、原式=﹣3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.2.B【解析】【分析】首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x 的交点坐标,再求得交点与D之间的距离即可.【详解】AB的中点D的坐标是(4,-2),∵C(a,-a)在一次函数y=-x上,∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1.根据题意得:6 {y xy x--==,解得:3{3 xy==-,则交点的坐标是(3,-3)..故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x 上,是关键.3.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.考点:(1)命题与定理;(2)新定义型4.B【解析】【分析】△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【详解】解:当P点由A运动到B点时,即0≤x≤2时,y=12×2x=x,当P点由B运动到C点时,即2<x<4时,y=12×2×2=2,符合题意的函数关系的图象是B;故选B.【点睛】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.5.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.6.B根据反比例函数的性质判断即可.【详解】解:∵当x1<x2<0时,y1<y2,∴在每个象限y随x的增大而增大,∴k<0,故选:B.【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.7.A【解析】【分析】先根据0<k<1判断出k-1的符号,进而判断出函数的增减性,根据1≤x≤1即可得出结论.【详解】∵0<k<1,∴k-1<0,∴此函数是减函数,∵1≤x≤1,∴当x=1时,y最小=1(k-1)+1=1k-1.故选A.【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0)中,当k<0,b>0时函数图象经过一、二、四象限是解答此题的关键.8.A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.9.A【解析】【分析】根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.【详解】由图可得,两个点之间距离最短的是三亚-永兴岛.本题考查的知识点是两点之间直线距离最短,解题的关键是熟练的掌握两点之间直线距离最短.10.C【解析】【详解】∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最大值-5,可得:-(1-h)2+1=-5,解得:或(舍);②若1≤x≤3<h,当x=3时,y取得最大值-5,可得:-(3-h)2+1=-5,解得:或(舍).综上,h的值为或,故选C.点睛:本题主要考查二次函数的性质和最值,根据二次函数的增减性和最值分两种情况讨论是解题的关键.11.D【解析】【分析】根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D.【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.12.A【解析】【分析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.【详解】A.x2-mx-1=0中△=m2+4>0,一定有两个不相等的实数根,符合题意;B.ax=3中当a=0时,方程无解,不符合题意;C.由6040xx-≥⎧⎨-≥⎩可解得不等式组无解,不符合题意;D.111xx x=--有增根x=1,此方程无解,不符合题意;故选A.【点睛】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.14.2 3【解析】【分析】画树状图列出所有等可能结果,从中找到能两次摸到的球上数之和是负数的结果,根据概率公式计算可得.【详解】解:画树状图如下:由树状图可知共有9种等可能结果,其中两次摸到的球上数之和是负数的有6种结果,所以两次摸到的球上数之和是负数的概率为62 93 =,故答案为:23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.13-1.【解析】【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,取CF 的中点G ,连接EF 、EG ,由AB=AC=23、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE 可得出△CEG 为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC 的长度以及证明全等找出DE=FE ,设EC=x ,则BD=CF=2x ,DE=FE=6-1x ,在Rt △CEF 中利用勾股定理可得出FE=3x ,利用FE=6-1x=3x 可求出x 以及FE 的值,此题得解.【详解】将△ABD 绕点A 逆时针旋转120°得到△ACF ,取CF 的中点G ,连接EF 、EG ,如图所示.∵3,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE ,∴CG=CE ,∴△CEG 为等边三角形,∴EG=CG=FG ,∴∠EFG=∠FEG=12∠CGE=10°, ∴△CEF 为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE 和△AFE 中,60AD AF DAE FAE AE AE ⎧⎪∠∠︒⎨⎪⎩====,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF=22=3x,CF EC∴6-1x=3x,x=1-3,∴DE=3x=13-1.故答案为:13-1.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.16.【解析】【分析】根据垂径定理求得然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.【详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴又∵∴∴∴S阴影=S扇形ODB−S△DOE+S△BEC故答案为:.【点睛】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.17.-1.【解析】【分析】观察规律即可解题.【详解】解:第一行=12=1,第二行=22=4,第三行=32=9...∴第n 行=n 2,第11行=112=121,又∵左起第一个数比右侧的数大一,∴第11行左起第一个数是-1.【点睛】本题是一道规律题,属于简单题,认真审题找到规律是解题关键.18.41400【解析】【分析】观察已知数列得到一般性规律,写出第20个数即可.【详解】解:观察数列得:第n 个数为221n n ,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.至少涨到每股6.1元时才能卖出.【解析】【分析】根据关系式:总售价-两次交易费≥总成本+1000列出不等式求解即可.【详解】解:设涨到每股x 元时卖出,根据题意得1000x-(5000+1000x )×0.5%≥5000+1000,解这个不等式得x≥1205199, 即x≥6.1. 答:至少涨到每股6.1元时才能卖出.【点睛】本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价-两次交易费≥总成本+1000”列出不等关系式.20.(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】【分析】(1)若设甲服装的成本为x 元,则乙服装的成本为(500-x )元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a 元时0.9a-266.2>0解得:a >2662295.89≈故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题21.(1)见解析;(2)3 2 .【解析】【分析】(1)连接OD,由DH⊥AC,DH是⊙O的切线,然后由平行线的判定与性质可证∠C=∠ODB,由圆周角定理可得∠OBD=∠DEC,进而∠C=∠DEC,可证结论成立;(2)证明△OFD∽△AFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接OD,由题意得:DH⊥AC,由且DH是⊙O的切线,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半径为.【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.22.1a b + 【解析】 【分析】根据分式的混合运算法则把原式进行化简即可.【详解】原式=()()b a b a b +-÷(a a b -﹣a b a b--) =()()b a b a b +-÷a a b a b-+- =()()b a b a b +-•a b b - =1a b+. 【点睛】本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.23.(1)y 1=﹣x+1,(1)6;(3)x <﹣1或0<x <4【解析】试题分析:(1)先根据反比例函数解析式求得两个交点坐标,再根据待定系数法求得一次函数解析式; (1)将两条坐标轴作为△AOB 的分割线,求得△AOB 的面积;(3)根据两个函数图象交点的坐标,写出一次函数图象在反比例函数图象上方时所有点的横坐标的集合即可.试题解析:(1)设点A 坐标为(﹣1,m ),点B 坐标为(n ,﹣1)∵一次函数y 1=kx+b (k≠0)的图象与反比例函数y 1=﹣的图象交于A 、B 两点∴将A (﹣1,m )B (n ,﹣1)代入反比例函数y 1=﹣可得,m=4,n=4∴将A(﹣1,4)、B(4,﹣1)代入一次函数y1=kx+b,可得,解得∴一次函数的解析式为y1=﹣x+1;,(1)在一次函数y1=﹣x+1中,当x=0时,y=1,即N(0,1);当y=0时,x=1,即M(1,0)∴=×1×1+×1×1+×1×1=1+1+1=6;(3)根据图象可得,当y1>y1时,x的取值范围为:x<﹣1或0<x<4考点:1、一次函数,1、反比例函数,3、三角形的面积24.(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:∵△BDC′由△BDC翻折而成,∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
2019-2020学年潍坊市中考数学模拟试卷(有标准答案)(Word版)
山东省潍坊市中考数学试卷(解析版)一、选择题(共12小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4 D.(a2)2=a4【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据整式运算法则即可求出答案.【解答】解:(A)原式=a5,故A错误;(B)原式=a2,故B错误;(C)原式=2a2,故C错误;故选(D)2.如图所示的几何体,其俯视图是()A.B. C.D.【考点】U1:简单几何体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,內圆是虚线,故选:D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1000亿用科学记数法表示为:1×1011.故选:C.4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)【考点】P6:坐标与图形变化﹣对称;D3:坐标确定位置.【分析】首先确定x轴、y轴的位置,然后根据轴对称图形的定义判断.【解答】解:棋盘中心方子的位置用(﹣1,0)表示,则这点所在的横线是x轴,右下角方子的位置用(0,﹣1),则这点所在的纵线是y轴,则当放的位置是(﹣1,1)时构成轴对称图形.故选B.5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B【考点】25:计算器—数的开方;29:实数与数轴.【分析】此题实际是求﹣的值.【解答】解:在计算器上依次按键转化为算式为﹣=;计算可得结果介于﹣2与﹣1之间.故选A.6.如图,∠BCD=90°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠α D.∠α+∠β=90°【考点】JA:平行线的性质.【分析】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解答】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=90°,∴∠1+∠2=∠α+180°﹣∠β=90°,∴∠β﹣∠α=90°,故选B.7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选()甲乙平均数 9 8方差 1 1A.甲B.乙C.丙D.丁【考点】W7:方差;VD:折线统计图;W2:加权平均数.【分析】求出丙的平均数、方差,乙的平均数,即可判断.【解答】解:丙的平均数==9,丙的方差= [1+1+1=1]=0.4,乙的平均数==8.2,由题意可知,丙的成绩最好,故选C.8.一次函数y=ax+b与反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a﹣b确定符号,确定双曲线的位置.【解答】解:A、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项不正确;B、由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a﹣b<0,∴反比例函数y=的图象过二、四象限,所以此选项不正确;C、由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a﹣b>0,∴反比例函数y=的图象过一、三象限,所以此选项正确;D、由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>2【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的范围;【解答】解:由题意可知:∴解得:x≥2故选(B)10.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°【考点】M6:圆内接四边形的性质.【分析】根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.【解答】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EA D=80°.故选C.11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为()#N.A.0或B.0或2 C.1或D.或﹣【考点】A8:解一元二次方程﹣因式分解法;2A:实数大小比较;E6:函数的图象.【分析】根据新定义和函数图象讨论:当1≤x≤2时,则x2=1;当﹣1≤x≤0时,则x2=0,当﹣2≤x<﹣1时,则x2=﹣1,然后分别解关于x的一元二次方程即可.【解答】解:当1≤x≤2时, x2=1,解得x1=,x2=﹣;当﹣1≤x≤0时, x2=0,解得x1=x2=0;当﹣2≤x<﹣1时, x2=﹣1,方程没有实数解;所以方程[x]= x2的解为0或.12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或2【考点】M4:圆心角、弧、弦的关系;L8:菱形的性质.【分析】过B作直径,连接AC交AO于E,①如图①,根据已知条件得到BD=×2×3=2,如图②,BD=×2×3=4,求得OD=1,OE=2,DE=1,连接OD,根据勾股定理得到结论,【解答】解:过B作直径,连接AC交AO于E,∵点B为的中点,∴BD⊥AC,①如图①,∵点D恰在该圆直径的三等分点上,∴BD=×2×3=2,∴OD=OB﹣BD=1,∵四边形ABCD是菱形,∴DE=BD=1,∴OE=2,连接OD,∵CE==,∴边CD==;如图②,BD=×2×3=4,同理可得,OD=1,OE=1,DE=2,连接OD,∵CE===2,∴边CD===2,故选D.二、填空题(共6小题,每小题3分,满分18分。
2019-2020年山东中考数学试卷(含答案)
2019-2020年山东中考数学试卷(含答案) 2019-2020年山东中考数学试卷一.选择题1.3的值为A。
3B.-3C。
1D.-12.下列各图是选自历届世博会徽中的图案,其中是中心对称图形的是ABCD3.在电子显微镜下测得一个圆球体细胞的直径是5×10^-5 cm,2×10^3个这样的细胞排成的细胞链的长是A.10cmB.10cm^-2C.10cm^-3D.10cm^-44.将右图所示的直角梯形绕直线l旋转一周,得到的立体图形是ABCD5.自上海世博会开幕以来,中国馆以其独特的造型吸引了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是A.1.49×10^6B。
149×10^8C.14.9×10^7D.1.49×10^76.下列运算正确的是A.a×a=aB.(ab)^2=abC.(a^-1)=aD.a÷a^2=a^-17.如图,将一副三角板按图中的方式叠放,则角α等于A.75B.60C.45D.308.如果a-3b=-3,那么代数式5-a+3b的值是A.-2B.2C.5D.89.计算(-3)^2的结果是A.3B.-3C.9D.-910.右图是由五个完全相同的小正方体组合成的一个立体图形,则它的俯视图是11.不等式组{3x+2>2x;-(x-4)≥1}的解集在数轴上表示正确的是12.方程x(x-5)=x的解是A.x=0B.x=1或x=5C.x=6D.x=0或x=613.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是A.2/3cmB.3cmC.√3cmD.1cm14.从1-9这九个自然数中任取一个,是2的倍数的概率是A.2/9B.4/9C.5/9D.6/915.已知反比例函数y=k/x,则下列点中在这个反比例函数图象的上的是A.(-2,1)B.(-1,-2)C.(1,-2)D.(2,1)16.要使四边形ABCD成为矩形,需要添加的条件是AD=BC。
山东省青岛市2019-2020学年第三次中考模拟考试数学试卷含解析
山东省青岛市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算3()a a •- 的结果是( )A .a 2B .-a 2C .a 4D .-a 42.一次函数y=ax+b 与反比例函数y=c x 在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D . 3.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差4.在-3,12,0,-2这四个数中,最小的数是( ) A .3 B .12 C .0 D .-25.如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a )(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是( )A .4B .32C .2D .33+62x +x 的取值范围是( )向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于()A.5B.C.D.79.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是()A.17B.27C.37D.4710.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()A.B.C.D.①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.12.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.14.对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.1]=1,[3]=3,[﹣2.2]=﹣3,若[43x]=5,则x的取值范围是_____.15.用48米长的竹篱笆在空地上,围成一个绿化场地,现有两种设计方案,一种是围成正方形的场地;另一种是围成圆形场地.现请你选择,围成________(圆形、正方形两者选一)场在面积较大.16.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD 所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.17.按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为21℃±4℃.概率是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(1)求证:△DOE≌△BOF;(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.20.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y 轴交于点C(0,3).(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.21.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:求参与问卷调查的22.(8分)如图,在平行四边形ABCD中,E、F为AD上两点,AE=EF=FD,连接BE、CF并延长,交于点G,GB=GC.(1)求证:四边形ABCD是矩形;(1)若△GEF的面积为1.①求四边形BCFE的面积;②四边形ABCD的面积为.23.(8分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.(1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.(2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?24.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.25.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?26.(12分)如图,在平面直角坐标系中,直线l :()0y kx k k =+≠与x 轴,y 轴分别交于A ,B 两点,且点()0,2B ,点P 在y 轴正半轴上运动,过点P 作平行于x 轴的直线y t =.(1)求k 的值和点A 的坐标;(2)当4t =时,直线y t =与直线l 交于点M ,反比例函数()0n y n x=≠的图象经过点M ,求反比例函数的解析式;(3)当4t <时,若直线y t =与直线l 和(2)反比例函数的图象分别交于点C ,D ,当CD 间距离大于等于2时,求t 的取值范围.27.(12分)如图,在△ABC 中,BD 平分∠ABC ,AE ⊥BD 于点O ,交BC 于点E ,AD ∥BC ,连接CD . (1)求证:AO =EO ;(2)若AE 是△ABC 的中线,则四边形AECD 是什么特殊四边形?证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.2.B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.3.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D .【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 4.D根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可. 【详解】在﹣3,12,0,﹣1这四个数中,﹣1<﹣3<0<12,故最小的数为:﹣1.故选D.【点睛】本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.5.B【解析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=12AB=12×22,在Rt△PBE中,PB=3,∴223-22=1(),∴22,∴2.6.B【解析】【分析】x+≥,再解不等式即可.根据二次根式有意义的条件可得20【详解】x+≥,解:由题意得:20x≥-,解得:2故选:B.【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.7.A【解析】【分析】【详解】60°+20°=80°.由北偏西20°转向北偏东60°,需要向右转.故选A.8.A【解析】【分析】连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,,再证明Rt△ABE∽Rt△ADC,得到,即2R==.【详解】解:如图,连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB;∴AD=,∴在Rt△ABE与Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴,即2R==;∴⊙O的直径等于.故答案选:A.【点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法. 9.B【解析】试题解析:由图可知可以瞄准的点有2个..∴B球一次反弹后击中A球的概率是2 7 .故选B.10.B【解析】【分析】俯视图是从上面看几何体得到的图形,据此进行判断即可.【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,故选B.【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.11.D【解析】【详解】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=12CG,CM=32CG,∴S四边形CMGN=1S△CMG=1×12×12CG×32CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.12.D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.20000【解析】试题分析:1000÷10200=20000(条).考点:用样本估计总体.14.11≤x<1【解析】【分析】根据对于实数x我们规定[x]不大于x最大整数,可得答案.【详解】由[43x+]=5,得:453463x x +⎧≥⎪⎪⎨+⎪<⎪⎩,解得11≤x<1,故答案是:11≤x<1.【点睛】考查了解一元一次不等式组,利用[x]不大于x最大整数得出不等式组是解题关键.15.圆形【解析】【分析】根据竹篱笆的长度可知所围成的正方形的边长,进而可计算出所围成的正方形的面积;根据圆的周长公式,可知所围成的圆的半径,进而将圆的面积计算出来,两者进行比较.【详解】围成的圆形场地的面积较大.理由如下:设正方形的边长为a,圆的半径为R,∵竹篱笆的长度为48米,∴4a=48,则a=1.即所围成的正方形的边长为1;2π×R=48,∴R=24π,即所围成的圆的半径为24π,∴正方形的面积S1=a2=144,圆的面积S2=π×(24π)2=576π,∵144<576π,∴围成的圆形场地的面积较大.故答案为:圆形.【点睛】此题主要考查实数的大小的比较在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.16.3﹣3或1【解析】【分析】分两种情况:情况一:如图一所示,当∠A'DE=90°时;情况二:如图二所示,当∠A'ED=90°时.【详解】解:如图,当∠A'DE=90°时,△A'ED为直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等边三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,设AD=A'D=x,则DE=1﹣x,∵Rt△A'DE中,A'D=3DE,∴x=3(1﹣x),解得x=3﹣3,即AD的长为3﹣3;如图,当∠A'ED=90°时,△A'ED为直角三角形,此时∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=12BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,设AD=A'D=x,则Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的长为1;综上所述,即AD的长为331.故答案为331.【点睛】本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键.17.17℃.【解析】【分析】根据返回舱的温度为21℃±4℃,可知最高温度为21℃+4℃;最低温度为21℃-4℃. 【详解】解:返回舱的最高温度为:21+4=25℃;返回舱的最低温度为:21-4=17℃;故答案为:17℃.【点睛】本题考查正数和负数的意义.±4℃指的是比21℃高于4℃或低于4℃. 18.35【解析】【分析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种, ∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:35. 故答案为35. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(2)证明见解析;(2)四边形EBFD 是矩形.理由见解析.【解析】分析:(1)根据SAS 即可证明;(2)首先证明四边形EBFD 是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;【解答】(1)证明:∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,∵AE=CF ,∴OE=OF ,在△DEO 和△BOF 中,OD OB DOE BOF OE OF ⎧⎪∠∠⎨⎪⎩===,∴△DOE≌△BOF.(2)结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】【分析】(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b 的值,可得抛物线L的表达式;(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC 内(包括△OBC的边界)时h的取值范围.(3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,通过证明△BNP≌△PMQ求解即可.【详解】(1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,9303b cc-++=⎧⎨=⎩解得:23 bc=⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D,∵点B(3,0),点C(0,3).易得BC的解析式为:y=﹣x+3,当x=1时,y=2,如图1,当抛物线的顶点D (1,2),此时点D 在线段BC 上,抛物线的解析式为:y=﹣(x ﹣1)2+2=﹣x 2+2x+1,h=3﹣1=2,当抛物线的顶点D (1,0),此时点D 在x 轴上,抛物线的解析式为:y=﹣(x ﹣1)2+0=﹣x 2+2x ﹣1, h=3+1=4,∴h 的取值范围是2≤h≤4;(3)设P (m ,﹣m 2+2m+3),如图2,△PQB 是等腰直角三角形,且PQ=PB ,过P 作MN ∥x 轴,交直线x=﹣3于M ,过B 作BN ⊥MN ,易得△BNP ≌△PMQ ,∴BN=PM ,即﹣m 2+2m+3=m+3,解得:m 1=0(图3)或m 2=1,∴P (1,4)或(0,3).【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC 上和落在OB 上求出h 的值,解(3)的关键是证明△BNP ≌△PMQ.21.(1)参与问卷调查的总人数为500人;(2)补全条形统计图见解析;(3)这些人中最喜欢微信支付方式的人数约为2800人.【解析】【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论; (2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例-15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【详解】(1)()1208040%500+÷=(人).答:参与问卷调查的总人数为500人.(2)50015%1560⨯-=(人).补全条形统计图,如图所示.(3)()8000140%10%15%2800⨯---=(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.22.(1)证明见解析;(1)①16;②14;【解析】【分析】(1)根据平行四边形的性质得到AD ∥BC ,AB=DC ,AB ∥CD 于是得到BE=CF ,根据全等三角形的性质得到∠A=∠D ,根据平行线的性质得到∠A+∠D=180°,由矩形的判定定理即可得到结论;(1)①根据相似三角形的性质得到219GEF GBC S EF S BC ==V V (),求得△GBC 的面积为18,于是得到四边形BCFE 的面积为16;②根据四边形BCFE 的面积为16,列方程得到BC•AB=14,即可得到结论.【详解】(1)证明:∵GB=GC ,∴∠GBC=∠GCB ,在平行四边形ABCD 中,∵AD ∥BC ,AB=DC ,AB ∥CD ,∴GB-GE=GC-GF ,∴BE=CF ,在△ABE 与△DCF 中,AE DF AEB DFC BE CF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△DCF ,∴∠A=∠D ,∵AB ∥CD ,∴∠A+∠D=180°,∴∠A=∠D=90°,∴四边形ABCD 是矩形;(1)①∵EF ∥BC ,∴△GFE ∽△GBC ,∵EF=13AD , ∴EF=13BC , ∴219GEF GBC S EF S BC ==V V (), ∵△GEF 的面积为1,∴△GBC 的面积为18,∴四边形BCFE 的面积为16,;②∵四边形BCFE 的面积为16, ∴12(EF+BC )•AB=12×43BC•AB=16, ∴BC•AB=14,∴四边形ABCD 的面积为14,故答案为:14.【点睛】本题考查了相似三角形的判定和性质,矩形的判定和性质,图形面积的计算,全等三角形的判定和性质,证得△GFE ∽△GBC 是解题的关键.23.(1)鸡场垂直于墙的一边AB 的长为2米;(1)鸡场垂直于墙的一边AB 的长为10米时,围成养鸡场面积最大,最大值100米1.【解析】试题分析:(1)首先设鸡场垂直于墙的一边AB 的长为x 米,然后根据题意可得方程x (40-1x )=168,即可求得x 的值,又由墙长15m ,可得x=2,则问题得解;(1)设围成养鸡场面积为S ,由题意可得S 与x 的函数关系式,由二次函数最大值的求解方法即可求得答案;解:(1)设鸡场垂直于墙的一边AB的长为x米,则x(40﹣1x)=168,整理得:x1﹣10x+84=0,解得:x1=2,x1=6,∵墙长15m,∴0≤BC≤15,即0≤40﹣1x≤15,解得:7.5≤x≤10,∴x=2.答:鸡场垂直于墙的一边AB的长为2米.(1)围成养鸡场面积为S米1,则S=x(40﹣1x)=﹣1x1+40x=﹣1(x1﹣10x)=﹣1(x1﹣10x+101)+1×101=﹣1(x﹣10)1+100,∵﹣1(x﹣10)1≤0,∴当x=10时,S有最大值100.即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.24.(1) 反比例函数的解析式为y=6x,一次函数的解析式为y=﹣12x+1.(2)2.【解析】【分析】(1)根据反比例函数y2=mx的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;(2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.【详解】(1)∵反比例函数y2=mx的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=6x,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:2361k bk b+=⎧⎨+=⎩,解得:124kb⎧=-⎪⎨⎪=⎩,∴一次函数的解析式为y=﹣12x+1. (2)如图,设直线y=﹣12x+1与x 轴交于C ,则C (2,0). S △AOB =S △AOC ﹣S △BOC =12×2×3﹣12×2×1=12﹣1=2.【点睛】本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B 点坐标以及得出S △AOB =S △AOC ﹣S △BOC 是解题的关键.25.(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.26.(1)2k =,()1,0A -;(2)4y x =;t 的取值范围是:02t <≤. 【解析】【分析】(1)把()0,2代入得出k 的值,进而得出A 点坐标;(2)当4t =时,将4y =代入22y x =+,进而得出x 的值,求出M 点坐标得出反比例函数的解析式;(3)可得2CD =,当y t =向下运动但是不超过x 轴时,符合要求,进而得出t 的取值范围.【详解】解:(1)∵直线l :y kx k =+ 经过点()0,2B ,∴2k =,∴22y x =+,∴()1,0A -;(2)当4t =时,将4y =代入22y x =+,得,1x =,∴()1,4M 代入n y x=得,4n =,∴4y x=; (3)当2t =时,()0,2B 即()0,2C ,而()2,2D ,如图,2CD =,当y t =向下运动但是不超过x 轴时,符合要求,∴t 的取值范围是:02t <≤.【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.27.(1)详见解析;(2)平行四边形.【解析】【分析】(1)由“三线合一”定理即可得到结论;(2)由AD ∥BC ,BD 平分∠ABC ,得到∠ADB=∠ABD ,由等腰三角形的判定得到AD=AB ,根据垂直平分线的性质有AB=BE ,于是AD=BE ,进而得到AD=EC ,根据平行四边形的判定即可得到结论.【详解】证明:(1)∵BD 平分∠ABC ,AE ⊥BD ,∴AO=EO ;(2)平行四边形,证明:∵AD ∥BC ,∴∠ADB=∠ABD ,∴AD=AB ,∵OA=OE ,OB ⊥AE ,∴AB=BE ,∴AD=BE ,∵BE=CE ,∴AD=EC ,∴四边形AECD 是平行四边形.【点睛】考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.。
山东省潍坊市2019-2020学年第三次中考模拟考试数学试卷含解析
山东省潍坊市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC 相似,则点F 应是G ,H ,M ,N 四点中的( )A .H 或NB .G 或HC .M 或ND .G 或M2.下列等式从左到右的变形,属于因式分解的是 A .8a 2b=2a·4ab B .-ab 3-2ab 2-ab=-ab(b 2+2b)C .4x 2+8x-4=4x 12-x x ⎛⎫+ ⎪⎝⎭D .4my-2=2(2my-1)3.以x 为自变量的二次函数y=x 2﹣2(b ﹣2)x+b 2﹣1的图象不经过第三象限,则实数b 的取值范围是( ) A .b≥1.25B .b≥1或b≤﹣1C .b≥2D .1≤b≤24.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD ∆的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .5.分式方程()22111x x x -++=1的解为( ) A .x=1 B .x=0C .x=﹣23D .x=﹣16.在12,0,-1,12-这四个数中,最小的数是( )A.12B.0 C.12-D.-17.如图,已知菱形ABCD的对角线AC.BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.53cm B.25cm C.48cm5D.24cm58.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2 cm B.5.4 cm C.3.6 cm D.0.6 cm9.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a210.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×10811.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()A.800sinα米B.800ta nα米C.800sinα米D.800tanα米12.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣3 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只.某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放回袋中,不断重复.下表是活动中的一组数据,则摸到白球的概率约是_____. 摸球的次数n 100 150 200 500 800 1000 摸到白球的次数m 58 96 116 295 484 601 摸到白球的频率m/n0.580.640.580.590.6050.60114.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为_____.15.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.16.如图,反比例函数y=k x(x >0)的图象与矩形AOBC 的两边AC ,BC 边相交于E ,F ,已知OA=3,OB=4,△ECF 的面积为83,则k 的值为_____.17.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.18.如图,在平行四边形ABCD 中,点E 在边BC 上,将ABE △沿AE 折叠得到AFE △,点F 落在对角线AC 上.若AB AC ⊥,3AB =,5AD =,则CEF △的周长为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).20.(6分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.21.(6分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.22.(8分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,CE=2,求线段AE的长.23.(8分)(1)|﹣2|+327•tan30°+(2018﹣π)0-(15)-1(2)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x的值从不等式组23241xx-≤⎧⎨-⎩<的整数解中选取.24.(10分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:x/cm 0 1 2 3 4 5y/cm 6.0 4.8 4.5 6.0 7.4(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.25.(10分)如图,抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3).(1)求该抛物线的解析式;(2)在抛物线的对称轴上是否存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形?若存在,试求出点Q的坐标;若不存在,请说明理由.26.(12分)如图所示,一艘轮船位于灯塔P的北偏东60︒方向与灯塔Р的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45︒方向上的B处.求此时轮船所在的B处与灯塔Р的距离.(结果保留根号)27.(12分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、13、10,只能F是M或N时,其各边是6、213,210.与△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键2.D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.3.A【解析】∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,解得b≥.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,∴此种情况不存在.∴b≥.4.C【解析】【分析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.5.C【解析】【分析】首先找出分式的最简公分母,进而去分母,再解分式方程即可.【详解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-23,检验:当x=-23时,(x+1)2≠0,故x=-23是原方程的根.故选C.【点睛】此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.6.D【解析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在12,0,-1,12这四个数中,最小的数是-1,故选D.考点:正负数的大小比较.7.D 【解析】 【分析】根据菱形的性质得出BO 、CO 的长,在RT △BOC 中求出BC ,利用菱形面积等于对角线乘积的一半,也等于BC×AE ,可得出AE 的长度. 【详解】∵四边形ABCD 是菱形, ∴CO=12AC=3,BO=12BD=,AO ⊥BO ,∴BC 5==. ∴ABCD 11S BD AC 682422=⋅=⨯⨯=菱形. 又∵ABCD S BC AE =⋅菱形, ∴BC·AE=24, 即()24AE cm 5=. 故选D .点睛:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分. 8.B 【解析】【分析】由已知可证△ABO ∽CDO,故CD OC AB OA = ,即1.813AB =. 【详解】由已知可得,△ABO ∽CDO,所以,CD OCAB OA = , 所以,1.813AB =, 所以,AB=5.4 故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质. 9.D 【解析】 【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题. 【详解】故选项A错误,故选项B错误,故选项C错误,故选项D正确,故选:D.【点睛】考查整式的除法,完全平方公式,同底数幂相乘以及合并同类项,比较基础,难度不大.10.C【解析】【分析】依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.11.D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=ACAB,即可解决问题.【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=AC AB,∴AB=800 tan tanACαα=,故选D.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.12.A【解析】【分析】方程变形后,配方得到结果,即可做出判断.【详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .【点睛】本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.0.1【解析】【分析】根据表格中的数据,随着实验次数的增大,频率逐渐稳定在0.1左右,即为摸出白球的概率.【详解】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.1左右,则P 白球=0.1.故答案为0.1.【点睛】本题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.14.1【解析】【详解】解:连接OC ,∵AB 为⊙O 的直径,AB ⊥CD ,∴CE=DE=12CD=12×6=3, 设⊙O 的半径为xcm ,则OC=xcm ,OE=OB ﹣BE=x ﹣1,在Rt △OCE 中,OC 2=OE 2+CE 2,∴x 2=32+(x ﹣1)2,解得:x=1,∴⊙O 的半径为1,故答案为1.【点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.15.x<﹣2或0<x<2【解析】【分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y2>y2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x的取值范围即可.【详解】解:如图,结合图象可得:①当x<﹣2时,y2>y2;②当﹣2<x<0时,y2<y2;③当0<x<2时,y2>y2;④当x>2时,y2<y2.综上所述:若y2>y2,则x的取值范围是x<﹣2或0<x<2.故答案为x<﹣2或0<x<2.【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.16.1【解析】【分析】设E(k3,3),F(1,k4),由题意12(1-k3)(3-k4)=83,求出k即可;【详解】∵四边形OACB是矩形,∴OA=BC=3,AC=OB=1,设E(k3,3),F(1,k4),由题意12(1-k 3)(3-k 4)=83, 整理得:k 2-21k+80=0,解得k=1或20,k=20时,F 点坐标(1,5),不符合题意,∴k=1故答案为1.【点睛】本题考查了反比例函数系数k 的几何意义,解题的关键是会利用参数构建方程解决问题.17.85【解析】【分析】根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.【详解】解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,中位数为中间两数84和86的平均数,∴这六位同学成绩的中位数是85.【点睛】本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.18.6.【解析】【分析】先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE ,从而可求出CEF △的周长.【详解】解:∵四边形ABCD 是平行四边形,∴BC=AD=5,∵AB AC ⊥,∴∵ABE △沿AE 折叠得到AFE △,∴AF=AB=3,EF=BE ,∴CEF △的周长=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案为6.【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6+23)米【解析】【分析】根据已知的边和角,设CQ=x,BC=3QC=3x,PC=3BC=3x,根据PQ=BQ列出方程求解即可.【详解】解:延长PQ交地面与点C,由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC 中,33,∴在Rt△PBC中3,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3,解得33-3∴PQ=PC-CQ=3x-x=2x=6+23则电线杆PQ高为(6+3米.【点睛】此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.20.灯杆AB的长度为2.3米.【解析】【分析】过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.设AF=x知EF=AF=x、DF=AFtan ADF∠=6x,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【详解】过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.由题意得:∠ADE=α,∠E=45°.设AF=x .∵∠E=45°,∴EF=AF=x .在Rt △ADF 中,∵tan ∠ADF=AF DF ,∴DF=AF tan ADF ∠=6x . ∵DE=13.3,∴x+6x =13.3,∴x=11.4,∴AG=AF ﹣GF=11.4﹣2=1.4. ∵∠ABC=120°,∴∠ABG=∠ABC ﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:灯杆AB 的长度为2.3米.【点睛】本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.21.(1)证明见解析;(2)BC=165,AD=457. 【解析】分析:(1)连接OE ,由OB=OE 知∠OBE=∠OEB 、由BE 平分∠ABC 知∠OBE=∠CBE ,据此得∠OEB=∠CBE ,从而得出OE ∥BC ,进一步即可得证;(2)证△BDE ∽△BEC 得BD BE BE BC =,据此可求得BC 的长度,再证△AOE ∽△ABC 得AO OE AB BC=,据此可得AD 的长.详解:(1)如图,连接OE ,∵OB=OE ,∴∠OBE=∠OEB ,∵BE 平分∠ABC ,∴∠OBE=∠CBE ,∴∠OEB=∠CBE ,∴OE ∥BC ,又∵∠C=90°,∴∠AEO=90°,即OE ⊥AC ,∴AC 为⊙O 的切线;(2)∵ED ⊥BE ,∴∠BED=∠C=90°,又∵∠DBE=∠EBC ,∴△BDE ∽△BEC , ∴BD BE BE BC =,即54=4BC, ∴BC=165; ∵∠AEO=∠C=90°,∠A=∠A ,∴△AOE ∽△ABC , ∴AO OE AB BC =,即 2.5 2.51655AD AD +=+, 解得:AD=457. 点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.22.(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论;(3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得,Rt △ACH 中,,即可得到.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴EH=DH=CH=2,Rt △ACH 中,AH=22252()()+=32,∴AE=AH+EH=42.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.23.(13-1(1)-1【解析】【分析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把22121x x x -++的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】 (1)原式=1+3×3﹣5 3+1﹣531;(1)原式=()()()()()2211111x x x x x x x x x x ⎡⎤+-+-÷⎢⎥+++⎢⎥⎣⎦=()2111x x x x x --÷++ =111x x x x -++-n =﹣1x x -,解不等式组23241x x -≤⎧⎨-<⎩得:-1≤x 52< 则不等式组的整数解为﹣1、0、1、1,∵x (x+1)≠0且x ﹣1≠0,∴x≠0且x≠±1,∴x=1,则原式=﹣221-=﹣1. 【点睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.24.(1)2.1;(2)见解析;(3)x =2时,函数有最小值y =4.2【解析】【分析】(1)通过作辅助线,应用三角函数可求得HM+HN 的值即为x=2时,y 的值;(2)可在网格图中直接画出函数图象;(3)由函数图象可知函数的最小值.【详解】(1)当点P 运动到点H 时,AH=3,作HN ⊥AB 于点N .∵在正方形ABCD 中,AB=4cm ,AC 为对角线,AC 上有一动点P ,M 是AB 边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3232⨯=,∴HM 22()HN AN AM =+-,HB 22()HN AB AN =+-,∴HM+HN=222232323232()(2)()(4)2222+-++-=136225122-+-≈4.5168.032+≈2.122+2.834≈2.1.故答案为:2.1;(2)(3)根据函数图象可知,当x=2时,函数有最小值y=4.2.故答案为:4.2.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(1) y=﹣x2+2x+3;(2)见解析.【解析】【分析】(1)将B(3,0),C(0,3)代入抛物线y=ax2+2x+c,可以求得抛物线的解析式;(2) 抛物线的对称轴为直线x=1,设点Q的坐标为(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC为斜边,AQ为斜边,CQ时斜边三种情况求解即可.【详解】解:(1)∵抛物线y=ax2+2x+c与x轴交于A、B(3,0)两点,与y轴交于点C(0,3),∴,得,∴该抛物线的解析式为y=﹣x2+2x+3;(2)在抛物线的对称轴上存在一点Q,使得以A、C、Q为顶点的三角形为直角三角形,理由:∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,点B(3,0),点C(0,3),∴抛物线的对称轴为直线x=1,∴点A的坐标为(﹣1,0),设点Q的坐标为(1,t),则AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,当AC为斜边时,10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴点Q的坐标为(1,1)或(1,2),当AQ为斜边时,4+t2=10+t2﹣6t+10,解得,t=,∴点Q的坐标为(1,),当CQ时斜边时,t2﹣6t+10=4+t2+10,解得,t=,∴点Q的坐标为(1,﹣),由上可得,当点Q的坐标是(1,1)、(1,2)、(1,)或(1,﹣)时,使得以A、C、Q为顶点的三角形为直角三角形.【点睛】本题考查了待定系数法求函数解析式,二次函数的图像与性质,勾股定理及分类讨论的数学思想,熟练掌握待定系数法是解(1)的关键,分三种情况讨论是解(2)的关键.26.406【解析】【分析】⊥,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB.过点P作PC AB【详解】⊥,垂足为点C.解:如图,过点P作PC AB∴30APC ︒∠=,45BPC ︒∠=,80AP =海里.在Rt APC ∆中,cos PC APC AP ∠=, ∴3cos 80403PC AP APC =⋅∠≡⨯=(海里). 在Rt PCB ∆中,cos PC BPC PB∠=, ∴403406cos PC PB BPC ===∠(海里). ∴此时轮船所在的B 处与灯塔P 的距离是406海里.【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F 作FG ⊥AB 于G ,交CE 于H ,利用相似三角形的判定得出△AGF ∽△EHF ,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x .过F 作FG ⊥AB 于G ,交CE 于H (如图).所以△AGF ∽△EHF .因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x ﹣1.1.由△AGF ∽△EHF ,得AG GF EH HF=,即1.530 23x-=,所以x﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF∽△EHF是解题关键.。
山东省济南市2019-2020学年中考第四次模拟数学试题含解析
山东省济南市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .2.如图,∠ACB=90°,D 为AB 的中点,连接DC 并延长到E ,使CE=13CD ,过点B 作BF ∥DE ,与AE 的延长线交于点F ,若AB=6,则BF 的长为( )A .6B .7C .8D .103.当函数y=(x-1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是( ) A .x 0>B .x 1<C .x 1>D .x 为任意实数4.如图,在▱ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若BG=42,则△CEF 的面积是( )A .22B .2C .32D .425.下列各式中的变形,错误的是(( ) A .B .C .D .6.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .1787.已知关于x 的一元二次方程x 2+mx+n =0的两个实数根分别为x 1=2,x 2=4,则m+n 的值是( ) A .﹣10B .10C .﹣6D .28.﹣22×3的结果是( ) A .﹣5B .﹣12C .﹣6D .129.已知一次函数y =(k ﹣2)x+k 不经过第三象限,则k 的取值范围是( ) A .k≠2B .k >2C .0<k <2D .0≤k <210.如图,在Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转90°后得到△AB′C′(点B 的对应点是点B′,点C 的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B 的大小是( )A .32°B .64°C .77°D .87°11.如图,在ABC ∆中,90, 4ACB AC BC ∠=︒== ,将ABC ∆折叠,使点A 落在BC 边上的点D 处, EF 为折痕,若3AE =,则sin CED ∠的值为( )A .13B .223C .24D .3512.在0,-2,5,14,-0.3中,负数的个数是( ). A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A 、C 分别在x 轴、y 轴的正半轴上,点Q 在对角线OB 上,若OQ=OC ,则点Q 的坐标为_______.14.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (20,53-),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么k 的值是_______15.如图,ABC ∆中,∠BAC 75=︒,7BC =,ABC ∆的面积为14,D 为BC 边上一动点(不与B ,C 重合),将ABD ∆和ACD ∆分别沿直线AB ,AC 翻折得到ABE ∆和ACF ∆,那么△AEF 的面积的最小值为____.16.抛物线 y =3x 2﹣6x+a 与 x 轴只有一个公共点,则 a 的值为_____.17.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F 的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.18.如图,在Rt △ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=3cm ,则EF=________cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,把两个边长相等的等边△ABC 和△ACD 拼成菱形ABCD ,点E 、F 分别是CB 、DC 延长上的动点,且始终保持BE=CF ,连结AE 、AF 、EF .求证:AEF 是等边三角形.20.(6分)某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况: 销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(6分)解不等式组:21512x xxx+>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.22.(8分)如图,已知在Rt ABCV中,90C∠=︒,AD是BAC∠的平分线.(1)作一个Oe使它经过A D、两点,且圆心O在AB边上;(不写作法,保留作图痕迹)(2)判断直线BC与Oe的位置关系,并说明理由.23.(8分)已知关于x的分式方程11mx+-=2①和一元二次方程mx2﹣3mx+m﹣1=0②中,m为常数,方程①的根为非负数.(1)求m的取值范围;(2)若方程②有两个整数根x1、x2,且m为整数,求方程②的整数根.24.(10分)解分式方程:- =25.(10分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯=⋯⋯2222211111(1)(1)(1)(1)(1)2345n-----=L L______(用含n的代数式表示,n 是正整数,且n ≥ 2)26.(12分)如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.27.(12分)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.2.C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.3.B【解析】分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.详解:对称轴是:x=1,且开口向上,如图所示,∴当x<1时,函数值y随着x的增大而减小;故选B.点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.4.A【解析】【分析】【详解】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,∵BG⊥AE,垂足为G,∴AE=2AG.在Rt△ABG中,∵∠AGB=90°,AB=6,BG=42∴AG=22AB BG-=2,∴AE=2AG=4;∴S△ABE=12AE•BG=1442822⨯⨯=.∵BE=6,BC=AD=9,∴CE=BC﹣BE=9﹣6=3,∴BE:CE=6:3=2:1,∵AB∥FC,∴△ABE∽△FCE,∴S△ABE:S△CEF=(BE:CE)2=4:1,则S△CEF=14S△ABE=22.故选A.【点睛】本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.5.D【解析】【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变,可得答案.【详解】A、,故A正确;B、分子、分母同时乘以﹣1,分式的值不发生变化,故B正确;C、分子、分母同时乘以3,分式的值不发生变化,故C正确;D、≠,故D错误;故选:D.【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(整式),分式的值不变.6.B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.7.D【解析】【分析】根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.【详解】解:根据题意得:x1+x2=﹣m=2+4,解得:m=﹣6,x1•x2=n=2×4,解得:n=8,m+n=﹣6+8=2,故选D.【点睛】本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.8.B【解析】【分析】先算乘方,再算乘法即可.【详解】解:﹣22×3=﹣4×3=﹣1.故选:B.【点睛】本题主要考查了有理数的混合运算,熟练掌握法则是解答本题的关键.有理数的混合运算,先乘方,再乘除,后加减,有括号的先算括号内的.9.D【解析】【详解】直线不经过第三象限,则经过第二、四象限或第一、二、四象限,当经过第二、四象限时,函数为正比例函数,k=0当经过第一、二、四象限时,200k k -<⎧⎨≥⎩,解得0<k<2, 综上所述,0≤k<2。
山东省齐河九年级数学中考模拟试题及答案(3)
2019-2020学年度数学中考模拟试题第I卷(选择题)一、单选题1.(4分)﹣8的相反数是()A.8 B.18C.18-D.-82.(4分)下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )A.B.C.D.3.(4分)据统计国庆黄金周全国大约有7.82亿人出游,用科学计数法表示7.82亿人是()人.A.7.82 B.97.8210⨯C.778.210⨯D.87.8210⨯4.(4分)下列运算,结果正确的是()A.2ab-2ba=0 B.2a2+3a2=6a2C.3xy-4xy=-1 D.2x3+3x3=5x6 5.(4分)某一公司共有51名员工(包括经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A.平均数和中位数不变B.平均数增加,中位数不变C.平均数不变,中位数增加D.平均数和中位数都增大6.(4分)如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是()A.40°B.50°C.80°D.90°7.(4分)如图,是某几何体的三视图及相关数据,则该几何体的表面积是( )A.39πB.29πC.24πD.19π8.(4分)如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于32,则sin ∠CAB =( )A .2B .35C .5D .3109.(4分)甲、乙两地相距600km ,乘高铁列车从甲地到乙地比乘特快列车少用4h ,已知高铁列车的平均行驶速度是特快列车的3倍,设特快列车的平均行驶速度为xkm/h ,根据题意可列方程为( )A .600x 6003x+=4 B .6003x 600x -=4 C .600x 6003x -=4 D .600x 6003x -=4×2 10.(4分)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =﹣bx ﹣4ac +b 2与反比例函数a b c y x-+=在同一坐标系内的图象大致为( )A .B .C .D .11.(4分)在数学课上,老师提出如下问题:老师说:“小华的作法正确”请回答:小华第二步作图中①的作法和第二步作图依据的定理或性质是②.()A.①作PQ垂直平分AB②垂线段最短B.①作PQ平分∠APB②等腰三角形三线合一C.①作PQ垂直平分AB②中垂线性质D.①作PQ平分AB②等腰三角形三线合一12.(4分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④ CD·AE=EF·CG;一定正确的结论有A.1个B.2个C.3个D.4个第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.(4分)计算:20190=_____.14.(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB的延长线于点E,若AB=3,BC=4,则ACAE的值为___________________.15.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF2为_____.16.(4分)在实数范围内定义一种运算“※”,其规则为a※b=a2﹣b,根据这个规则,方程(x+2)※9=0的解为_____.17.(4分)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.18.(4分)在直角坐标系中,直线l1:y x=x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1,作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A1B2平行于x轴,交直线l于点B3,以A2B3,为边长作等边△A3A2B3…,则等边△A2019A2018B2019的边长是______.三、解答题19.(10分)先化简再求值.222142444a a a a a a a ⎛⎫+-+-÷ ⎪---+⎝⎭ ,其中a 为满足不等式组102251a a a -<⎧⎨-<+⎩的整数解 20.(10分)周老师为了了解学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半年的跟踪调查,并将调查结果分成四类A :优;B :良;C :中;D :差.依据调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,周老师一共调查了______名学生;(2)将统计图补充完整;(3)为了共同进步,周老师想从被调查的A 类和D 类学生中分别选取一位同学进行“一对一”帮扶,请用列表法或画树形图的方法求所选的两位同学恰好是两位女同学的概率.21.(10分)如图,在大楼AB 的正前方有一斜坡CD ,CD=13米,坡比DE:EC=1:125,高为DE ,在斜坡下的点C 处测得楼顶B 的仰角为64°,在斜坡上的点D 处测得楼顶B 的仰角为45°,其中A 、C 、E 在同一直线上.(1)求斜坡CD 的高度DE ;(2)求大楼AB 的高度;(参考数据:sin64°≈0.9,tan64°≈2).22.(10分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.23.(12分)据市场调查,天猫超市在销售一种进价为每件40元的护眼台灯中发现:每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.(1)当销售单价定为50元时,求每月的销售件数;(2)设每月获得利润为w(元),求每月获得利润w(元)关于销售单价x(元)的函数解析式;(3)由于市场竞争激烈,这种护眼灯的销售单价不得高于75元,如果要每月获得的利润不低于8000元,那么每月的成本最少需要多少元?(成本=进价×销售量).24.(12分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,连接BC(1)如图1,连接AC,作OP⊥AC,垂足为P,求△AOC的面积和线段OP的长;(2)如图2,点M是线段OC的中点,点N是线段OB上的动点(不与点O重合),求△CMN周长的最小值.25.(14分)如图1,在平面直角坐标系中,O 为坐标原点.直线y kx b =+与抛物线2194y mx x n =-+同时经过(0,3)(4,0)A B 、.(1)求,m n 的值.(2)点M 是二次函数图象上一点,(点M 在AB 下方),过M 作MN ⊥x 轴,与AB 交于点N ,与x 轴交于点Q .求MN 的最大值.(3)在(2)的条件下,是否存在点N ,使AOB ∆和NOQ ∆相似?若存在,求出N 点坐标,不存在,说明理由.参考答案1.A【解析】【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【详解】-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.D【解析】【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可.【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故答案选D.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键.3.D【解析】【分析】用科学记数法表示较大的数时,注意a×10n中a的范围是1≤a<10,n是正整数,n为原数的整数部分的位数-1.【详解】解:7.82亿=782000000=7.82×108.故选:D .【点睛】本题考查用科学记数法表示绝对值大于1的数. 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,能正确确定a 和n 是解决此题的关键.4.A【解析】试题分析:根据合并同类项的法则对各选项进行逐一分析即可.解:A 、2ab ﹣2ba=0,故本选项正确;B 、2a 2+3a 2=5a 2≠6a 2,故本选项错误;C 、3xy ﹣4xy=﹣xy≠﹣1,故本选项错误;D 、2x 3+3x 3=5x 3≠5x 6,故本选项错误.故选A .考点:合并同类项.5.B【解析】【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.【详解】解:设这家公司除经理外50名员工的工资和为a 元,则这家公司所有员工去年工资的平均数是20000051a +元,今年工资的平均数是22500051a +元,显然 2000002250005151a a ++<; 由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变. 故选B .【点睛】本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.6.C【解析】【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【详解】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=140°,∴∠BAD=40°,∴∠BOD=80°,故选:C.【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.7.C【解析】试题解析:根据三视图得到该几何体为圆锥,其中圆锥的高为4,母线长为5,圆锥底面圆的直径为6,所以圆锥的底面圆的面积=π×(62)2=9π,圆锥的侧面积=12×5×π×6=15π,所以圆锥的全面积=9π+15π=24π.故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了三视图.8.B【解析】过C作CD⊥AB,根据勾股定理得:,S△ABC=4-1212⨯⨯-1212⨯⨯-1112⨯⨯=32,即12CD•AB=32,所以12CD =32,解得:,则sin∠CAB=CDAC=35,故选B.9.C【解析】分析:由路程÷速度=时间,利用“乘高铁列车从甲地到乙地比乘特快列车少用4h,高铁列车的平均行驶速度是特快列车的3倍”得出等量关系即可建立方程求得答案即可.详解:设特快列车的平均行驶速度为xkm/h,由题意得600 x6003x-=4,故选:C.点睛:此题考查分式方程的实际运用,掌握路程、时间、速度三者之间的关系是解决问题的关键.10.A【解析】【分析】根据二次函数图象确定-b、b2-4ac、a-b+c的符号,由它的符号判定一次函数图象与反比例函数图象所经过的象限即可.【详解】如图,抛物线y=ax2+bx+c的开口方向向下,则a<0.对称轴在y轴的右侧,则a、b异号,所以b>0,故﹣b<0.又因为抛物线与x轴有2个交点,所以b2﹣4ac>0,所以直线y=﹣bx+b2﹣4ac经过第一、二、四象限.当x=﹣1时,y<0,即a﹣b+c<0,所以双曲线y=a b cx-+在经过第二、四象限.综上所述,符合条件的图象是B选项.故选:A.11.B【解析】【分析】根据角平分线作法和等腰三角形的性质即可得到结论.【详解】由作法可知第一步作图是作PQ平分∠APB.小华第二步作图的依据是等腰三角形三线合一,故选:B.【点睛】本题考查了作图-基本作图:五种基本作图一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,逐步操作.12.D【解析】【详解】①∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即:∠BAD=∠CAE,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AE=AD,∴△BAD≌△CAE(SAS),∴CE=BD,∴故①正确;②∵四边形ACDE是平行四边形,∴∠EAD=∠ADC=90°,AE=CD,∵△ADE都是等腰直角三角形,∴AE=AD,∴AD=CD,∴△ADC是等腰直角三角形,∴②正确;③∵△ADC是等腰直角三角形,∴∠CAD=45°,∴∠BAD=90°+45°=135°,∵∠EAD=∠BAC=90°,∠CAD=45°,∴∠BAE=360°-90°-90°-45°=135°,又AB=AB,AD=AE,∴△BAE≌△BAD(SAS),∴∠ADB=∠AEB;故③正确;④∵△BAD≌△CAE,△BAE≌△BAD,∴△CAE≌△BAE,∴∠BEA=∠AEC=∠BDA,∵∠AEF+∠AFE=90°,∴∠AFE+∠BEA=90°,∵∠GFD=∠AFE,∴∠GDF+GFD=90°,∴∠CGD=90°,∵∠FAE=90°,∠GCD=∠AEF,∴△CGD∽△EAF,∴CD CG EF AE,∴CD•AE=EF•CG.故④正确,故正确的有4个.故选D.13.0【解析】【分析】首先计算乘方,然后计算乘法、减法,求出算式的值是多少即可.【详解】解:20190tan30°==1−1=0.故答案为:0.【点睛】此题主要考查了实数的混合运算,在进行实数运算时,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.本题的关键是记得特殊角的三角函数.14.7 24【解析】作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴OA=OC=OB,∠ABC=90°,在Rt△ABC中,,∴AO=OB=52, ∵12BH•AC=12AB•BC , ∴BH=3412=55⨯, 在Rt △OBH 中,710, ∵EA ⊥CA ,∴BH ∥AE ,∴△OBH ∽△OEA , ∴BH OH AE OA=, ∴771012245OA OH AE BH ===, 故答案为:724. 15.4π. 【解析】【分析】若两个阴影部分的面积相等,那么△ABC 和扇形ADF 的面积就相等,可分别表示出两者的面积,然后列出方程即可求出AF 的长度.【详解】解:∵图中两个阴影部分的面积相等,∴S 扇形ADF =S △ABC ,即:245π1,3602AF AC BC ⋅=⋅ 又∵AC =BC =1,∴AF 2=4π. 故答案为4π.【点睛】此题主要考查了扇形面积的计算方法及等腰直角三角形的性质,能够根据题意得到△ABC 和扇形ADF的面积相等,是解决此题的关键,难度一般.16.x1=1,x2=﹣5.【解析】【分析】先阅读题目,根据新运算得出(x+2)2﹣9=0,移项后开方,即可求出方程的解.【详解】解:(x+2)※9=0,(x+2)2﹣9=0,(x+2)2=9,x+2=±3,x1=1,x2=﹣5,故答案为x1=1,x2=﹣5.【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意列方程.17.2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y >2,∴y min =2,18.22018【解析】【分析】由直线l :y x =,得△OA 1B 1的边长为1,直线y x =与x 轴的夹角为30°,根据直角三角形的性质,得△A 2B 3A 3的边长是2,以此类推,可得△A n +1A n B n +1边长是2n ,进而即可求解.【详解】∵直线l :y x =与x 轴交于点B 1, ∴B 1(1,0),OB 1=1,△OA 1B 1的边长为1,∵直线y 33x =-与x 轴的夹角为30°,∠A 1B 1O =60°, ∴∠A 1B 1B 2=90°.∵A 1B 2∥x 轴,∴∠A 1B 2B 1=30°,∴A 1B 2=2A 1B 1=2,△A 2B 3A 3的边长是2,同理可得:A 2B 3=4,△A 2B 3A 3的边长是22,以此类推:△A n +1A n B n +1边长是2n ,∴△A 2019A 2018B 2019的边长是22018.故答案为:22018.【点睛】本题主要考查一次函数图象和三角形的综合,掌握一次函数的图象和性质以及含30°角直角三角形的性质,是解题的关键.19.11248,()()a a --+ 【解析】【分析】先算括号内的减法(通分后化成同分母的分式,再按同分母的分式相加减法则计算),同时把除法变成乘法,再根据分式的乘法法则进行计算,求出不等式组的整数解,取使分式有意义的数代入求出即可.【详解】 解:原式=21122(2)4a a a a a ⎡⎤---⋅⎢⎥--+⎣⎦ =212(2)4a a a --⋅-+ =1(2)(4)a a --+, 解不等式组得﹣1<a <1,则a =0, 所以原式=11248-=-⨯. 【点睛】本题考查了分式的加减、乘除法则和不等式组的整数解、分式有意义的条件等知识点,解此题的关键是把分式进行化简和确定字母的值,题目比较好.20.(1)40;(2)如图所示:见解析;(3)所选的两位同学恰好是两位女同学的概率为29. 【解析】【分析】(1)依据B 类的学生人数以及百分比即可得到调查的学生人数;(2)C 类的学生人数为40×35%=14(人),其中男生有14−8=6(人);D 类学生人数为40×7.5%=3(人),其中女生有3−1=2(人);A 类学生人数所占的百分比为3÷40=7.5%;据此可将统计图补充完整;(3)根据树状图可得,共有9种等可能的结果,其中所选的两位同学恰好是两位女同学的情况有2种,即可得到所选的两位同学恰好是两位女同学的概率.【详解】(1)20÷50%=40(人)故答案为:40;(2)C类的学生人数为40×35%=14(人),其中男生有14-8=6(人);D类学生人数为40×7.5%=3(人),其中女生有3-1=2(人);A类学生人数所占的百分比为3÷40=7.5%;如图所示:(3)画树状图如下:共有9种等可能的结果,其中所选的两位同学恰好是两位女同学的情况有2种,∴所选的两位同学恰好是两位女同学的概率为29.【点睛】本题考查的是条形统计图以及扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据,从扇形图上可以清楚地看出各部分数量和总数量之间的关系.21.(1)斜坡CD的高度DE是5米;(2)大楼AB的高度是34米.【解析】试题分析:(1)根据在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,高为DE,可以求得DE的高度;(2)根据锐角三角函数和题目中的数据可以求得大楼AB的高度.试题解析:(1)∵在大楼AB的正前方有一斜坡CD,CD=13米,坡度为1:125,∴1512125DEEC==,设DE=5x米,则EC=12x米,∴(5x)2+(12x)2=132,解得:x=1,∴5x=5,12x=12,即DE=5米,EC=12米,故斜坡CD的高度DE是5米;(2)过点D作AB的垂线,垂足为H,设DH的长为x,由题意可知∠BDH=45°,∴BH=DH=x,DE=5,在直角三角形CDE中,根据勾股定理可求CE=12,AB=x+5,AC=x-12,∵tan64°=AB AC,∴2=AB AC,解得,x=29,AB=x+5=34,即大楼AB的高度是34米.22.(1)见解析;(2)15.【解析】【分析】(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.(2)连接CD.∵∠ADE=∠A,∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC==12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC==15.【点睛】本题考查切线的性质,圆周角定理,关键是熟练掌握切线的性质,圆周角定理。
山东省济南市2019-2020学年中考数学三模试卷含解析
山东省济南市2019-2020学年中考数学三模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在正方形网格中建立平面直角坐标系,若,,则点C 的坐标为( )A .B .C .D .2.下列四个实数中是无理数的是( ) A .2.5 B . C .π D .1.4143.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( ) A .686×104 B .68.6×105 C .6.86×106 D .6.86×105 4.在平面直角坐标系中,点(-1,-2)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =24°,则∠BDC 的度数为( )A .42°B .66°C .69°D .77°6.如图,BC ∥DE ,若∠A=35°,∠E=60°,则∠C 等于( )A .60°B .35°C .25°D .20°7.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( ) A .24d h πB .22d h πC .2d h πD .24d h π8.某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )成绩(分)30 29 28 26 18人数(人)32 4 2 1 1A.该班共有40名学生B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分9.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个10.等腰三角形两边长分别是2 cm和5 cm,则这个三角形周长是()A.9 cm B.12 cm C.9 cm或12 cm D.14 cm11.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±212.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:÷(﹣1)=_____.14.三人中有两人性别相同的概率是_____________.15.将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣3,点B表示的数为2x+1,点C表示的数为﹣4,若将△ABC向右滚动,则x的值等于_____,数字2012对应的点将与△ABC 的顶点_____重合.16.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.17.已知,则=_____.18.已知点(﹣1,m)、(2,n )在二次函数y=ax2﹣2ax﹣1的图象上,如果m>n,那么a____0(用“>”或“<”连接).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知圆O的半径长为2,点A、B、C为圆O上三点,弦BC=AO,点D为BC的中点,(1)如图,连接AC、OD,设∠OAC=α,请用α表示∠AOD;(2)如图,当点B为AC n的中点时,求点A、D之间的距离:(3)如果AD的延长线与圆O交于点E,以O为圆心,AD为半径的圆与以BC为直径的圆相切,求弦AE 的长.20.(6分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);(2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).21.(6分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D 作DE⊥MN于E.求证:DE是⊙O的切线;若DE=6cm,AE=3cm,求⊙O的半径.22.(8分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.23.(8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:时间(分钟)里程数(公里)车费(元)小明8 8 12小刚12 10 16(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?24.(10分)如图,AD是△ABC的中线,CF⊥AD于点F,BE⊥AD,交AD的延长线于点E,求证:AF+AE=2AD.25.(10分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.26.(12分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.27.(12分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE 与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据A点坐标即可建立平面直角坐标.【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,∴C(2,-1)故选:C.【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.2.C【解析】本题主要考查了无理数的定义.根据无理数的定义:无限不循环小数是无理数即可求解.解:A、2.5是有理数,故选项错误;B、是有理数,故选项错误;C、π是无理数,故选项正确;D、1.414是有理数,故选项错误.故选C.3.D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=6.86×105,故选:D.4.C【解析】:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限,故选C5.C 【解析】在△ABC 中,∠ACB=90°,∠A=24°, ∴∠B=90°-∠A=66°. 由折叠的性质可得:∠BCD=12∠ACB=45°, ∴∠BDC=180°-∠BCD-∠B=69°. 故选C. 6.C 【解析】 【分析】先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C 的度数即可. 【详解】 ∵BC ∥DE , ∴∠CBE=∠E=60°,∵∠A=35°,∠C+∠A=∠CBE , ∴∠C=∠CBE ﹣∠C=60°﹣35°=25°, 故选C . 【点睛】本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键. 7.A 【解析】圆柱体的底面积为:π×(2d)2, ∴矿石的体积为:π×(2d )2h= 2π4d h .故答案为2π4d h .8.D 【解析】A.∵32+4+2+1+1=40(人),故A 正确;B. ∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B 正确;C. ∵成绩是30分的人有32人,最多,故C 正确;D. 该班学生这次考试成绩的中位数为30分,故D 错误; 9.B 【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.10.B【解析】当腰长是2 cm时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm时,因为5+5>2,符合三角形三边关系,此时周长是12 cm.故选B.11.C【解析】由题意可知:24020xx=⎧-⎨+≠⎩,解得:x=2,故选C.12.C【解析】根据旋转的性质得,∠ABD=∠CBE=60°, ∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.﹣.【解析】【分析】直接利用分式的混合运算法则即可得出.【详解】原式.故答案为:.【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.14.1【解析】分析:由题意和生活实际可知:“三个人中,至少有两个人的性别是相同的”即可得到所求概率为1.详解:∵三人的性别存在以下可能:(1)三人都是“男性”;(2)三人都是“女性”;(3)三人的性别是“2男1女”;(4)三人的性别是“2女1男”,∴三人中至少有两个人的性别是相同的,∴P(三人中有二人性别相同)=1.点睛:列出本题中所有的等可能结果是解题的关键.15.﹣1 C.【解析】∵将数轴按如图所示从某一点开始折出一个等边三角形ABC,设点A表示的数为x﹣1,点B表示的数为2x+1,点C表示的数为﹣4,∴﹣4﹣(2x+1)=2x+1﹣(x﹣1);∴﹣1x=9,x=﹣1.故A表示的数为:x﹣1=﹣1﹣1=﹣6,点B表示的数为:2x+1=2×(﹣1)+1=﹣5,即等边三角形ABC边长为1,数字2012对应的点与﹣4的距离为:2012+4=2016,∵2016÷1=672,C从出发到2012点滚动672周,∴数字2012对应的点将与△ABC的顶点C重合.故答案为﹣1,C.点睛:此题主要考查了等边三角形的性质,实数与数轴,一元一次方程等知识,本题将数与式的考查有机地融入“图形与几何”中,渗透“数形结合思想”、“方程思想”等,也是一道较优秀的操作活动型问题.16.3【解析】【分析】根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△A n B n C n的面积是,从而求出第8个正△A8B8C8的面积.【详解】正△A1B1C1的面积是3,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是3×14;因而正△A3B3C3与正△A2B2C2的面积的比也是14,面积是3×(14)2;依此类推△A n B n C n与△A n-1B n-1C n-1的面积的比是14,第n个三角形的面积是34(14)n-1.所以第8个正△A8B8C8的面积是34×(14)7=834.故答案为3.【点睛】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.17.【解析】【分析】由可知值,再将化为的形式进行求解即可.【详解】解:∵, ∴,∴原式=.【点睛】本题考查了分式的化简求值.18.>;【解析】【详解】∵2y ax 2ax 1=--=a(x-1)2-a-1,∴抛物线对称轴为:x=1,由抛物线的对称性,点(-1,m )、(2,n )在二次函数2y ax 2ax 1=--的图像上,∵|−1−1|>|2−1|,且m >n ,∴a>0.故答案为>三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)1502AOD α∠=︒-;(2)7AD =(3331331+- 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB 、OC 、OD.由(1)可得:△OBC 是等边三角形,∠BOD=1302BOC ∠=︒ ∵OB=2,∴OD=OB∙cos 30︒=3 ∵B 为AC u u u r 的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD +=(3)①如图3.圆O 与圆D 相内切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF 2+=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+ 解得:331x 4-= ∴AE=3312AF 2-=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.20. (1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm【解析】试题分析:(1)根据题意作辅助线OC ⊥AB 于点C ,根据OA=OB=10cm ,∠OCB=90°,∠AOB=18°,可以求得∠BOC 的度数,从而可以求得AB 的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB ,然后作出相应的辅助线,画出图形,从而可以求得BE 的长,本题得以解决.试题解析:(1)作OC ⊥AB 于点C ,如右图2所示,由题意可得,OA=OB=10cm ,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm ,即所作圆的半径约为3.13cm ;(2)作AD ⊥OB 于点D ,作AE=AB ,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB 末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE ,∵∠AOB=18°,OA=OB ,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm ,即铅笔芯折断部分的长度是0.98cm .考点:解直角三角形的应用;探究型.21.解:(1)证明见解析;(2)⊙O的半径是7.5cm.【解析】【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O 的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【详解】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴2235+=AD DE AE连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴AD AC AE AD=.=则AC=15(cm).∴⊙O的半径是7.5cm.考点:切线的判定;平行线的判定与性质;圆周角定理;相似三角形的判定与性质.22.第二、三季度的平均增长率为20%.【解析】【分析】设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)2=14.4万元建立方程求出其解即可.【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)2=14.4,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第二、三季度的平均增长率为20%.【点睛】本题考查了增长率问题的数量关系的运用,一元二次方程的解法的运用,解答时根据第三季度投资额为10(1+x)2=14.4建立方程是关键.23.(1)x=1,y=12;(2)小华的打车总费用为18元.【解析】试题分析:(1)根据表格内容列出关于x、y的方程组,并解方程组.(2)根据里程数和时间来计算总费用.试题解析:(1)由题意得8812 101216 x yx y+=⎧⎨+=⎩,解得112x y =⎧⎪⎨=⎪⎩; (2)小华的里程数是11km ,时间为14min .则总费用是:11x+14y=11+7=18(元).答:总费用是18元.24.证明见解析.【解析】【分析】由题意易用角角边证明△BDE ≌△CDF ,得到DF=DE ,再用等量代换的思想用含有AE 和AF 的等式表示AD 的长.【详解】证明:∵CF ⊥AD 于,BE ⊥AD ,∴BE ∥CF ,∠EBD=∠FCD ,又∵AD 是△ABC 的中线,∴BD=CD ,∴在△BED 与△CFD 中,EBD FCD BED CFD BD CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△△BED ≌△CFD (AAS )∴ED=FD ,又∵AD=AF+DF ①,AD=AE-DE ②,由①+②得:AF+AE=2AD.【点睛】该题考察了三角形全等的证明,利用全等三角形的性质进行对应边的转化.25.(1)y=2x 2﹣3x ;(2)C (1,﹣1);(3)(4564,316)或(﹣316,4564). 【解析】【分析】(1)由直线解析式可求得B 点坐标,由A 、B 坐标,利用待定系数法可求得抛物线的表达式;(2)过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,可设出C 点坐标,利用C 点坐标可表示出CD 的长,从而可表示出△BOC 的面积,由条件可得到关于C 点坐标的方程,可求得C 点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得OMOP的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由OM MG OGOP PH OH==的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.【详解】(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得:4229342a ba b+=⎧⎪⎨+=⎪⎩,解得:23ab=⎧⎨=-⎩,∴抛物线解析式为223y x x=-;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=12CD•OE+12CD•BF=12(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB 和△NOB 中,∵∠AOB=∠NOB ,OB=OB ,∠ABO=∠NBO ,∴△AOB ≌△NOB (ASA ),∴ON=OA=32, ∴N (0,32), ∴可设直线BN 解析式为y=kx+32,把B 点坐标代入可得2=2k+32,解得k=14, ∴直线BN 的解析式为1342y x =+,联立直线BN 和抛物线解析式可得:2134223y x y x x ⎧=+⎪⎨⎪=-⎩,解得:22x y =⎧⎨=⎩或384532x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴M (38-,4532), ∵C (1,﹣1),∴∠COA=∠AOB=45°,且B (2,2),∴OB=,∵△POC ∽△MOB , ∴2OM OB OP OC==,∠POC=∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,如图3∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO ,∴△MOG ∽△POH , ∴2OM MG OG OP PH OH=== ∵M (38-,4532), ∴MG=38,OG=4532, ∴PH=12MG=316,OH=12OG=4564, ∴P (4564,316); 当点P 在第三象限时,如图4,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,同理可求得PH=12MG=316,OH=12OG=4564,∴P(﹣316,4564);综上可知:存在满足条件的点P,其坐标为(4564,316)或(﹣316,4564).【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.26.(1)证明见解析;(1)【解析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.试题解析:(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(1)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE•BA.∵AE:EB=1:1,设AE=x,则BE=1x,BA=3x.∵BC=6,∴61=1x•3x,解得:x=,即AE=,∴AB=,∴AC==,∴⊙O的半径=.点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.27.见解析【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.【详解】解:如图,点E即为所求作的点.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.。
山东省东营市2019-2020学年中考数学模拟试题(2)含解析
山东省东营市2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列方程中是一元二次方程的是( ) A .20ax bx c ++= B .2211x x+= C .(1)(2)1x x -+=D .223250x xy y --=2.以下各图中,能确定12∠=∠的是( )A .B .C .D .3.如图,▱ABCD 对角线AC 与BD 交于点O ,且AD =3,AB =5,在AB 延长线上取一点E ,使BE =25AB ,连接OE 交BC 于F ,则BF 的长为( )A .23B .34C .56D .14.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >45.不等式组325521x x +>⎧⎨-≥⎩的解在数轴上表示为( )A .B .C .D .6.a 、b 是实数,点A (2,a )、B (3,b )在反比例函数y=﹣2x的图象上,则( ) A .a <b <0B .b <a <0C .a <0<bD .b <0<a7.如图,矩形ABCD 中,E 为DC 的中点,AD :AB =3:2,CP :BP =1:2,连接EP 并延长,交AB 的延长线于点F ,AP 、BE 相交于点O .下列结论:①EP 平分∠CEB ;②2BF =PB•EF ;③PF•EF =22AD ;④EF•EP =4AO•PO .其中正确的是( )A .①②③B .①②④C .①③④D .③④8.如图,//AB CD ,CE 交AB 于点E ,EF 平分BEC ∠,交CD 于F . 若50ECF ∠=o ,则CFE ∠ 的度数为( )A .35oB .45oC .55oD .65o9.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D .10.下面计算中,正确的是( ) A .(a+b )2=a 2+b 2 B .3a+4a=7a 2 C .(ab )3=ab 3 D .a 2•a 5=a 711.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米12.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.极差是3 B.众数是4 C.中位数40 D.平均数是20.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一条直线经过点(1,1),则这条直线的解析式可以是(写出一个即可)______.14.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.15.计算:2(2+)=_____.216.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为_____千米.17.分解因式2x2﹣4x+2的最终结果是_____.18.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?20.(6分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若B、C都在抛物线上,求m的值;②若点C在第四象限,当AC2的值最小时,求m的值.21.(6分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量m(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲0.1100m-+50乙()0.21200200m m-+<<60()600050200400mm+≤≤(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润y(元)与乙种T恤的进货量x(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?22.(8分)如图,在四边形ABCD中,BD为一条对角线,AD BC∥,2AD BC=,90ABD∠=︒.E 为AD的中点,连结BE.(1)求证:四边形BCDE为菱形;(2)连结AC,若AC平分BAD∠,1BC=,求AC的长.23.(8分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE ,求证:AB=DE .24.(10分)解方程: (1)x 2﹣7x ﹣18=0 (2)3x (x ﹣1)=2﹣2x25.(10分)已知:如图,在△ABC 中,∠ACB=90°,以BC 为直径的⊙O 交AB 于点D ,E 为»BD的中点.求证:∠ACD=∠DEC ;(2)延长DE 、CB 交于点P ,若PB=BO ,DE=2,求PE的长26.(12分)如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b .请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b 的图象经过一、二、四象限的概率.27.(12分)如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成53︒的夹角.树杆AB 旁有一座与地面垂直的铁塔DE ,测得6BE =米,塔高9DE =米.在某一时刻的太阳照射下,未折断树杆AB 落在地面的影子FB 长为4米,且点F 、B 、C 、E 在同一条直线上,点F 、A 、D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可. 【详解】解:A 、当a=0时,20ax bx c ++=不是一元二次方程,故本选项错误; B 、2211x x+=是分式方程,故本选项错误; C 、(1)(2)1x x -+=化简得:230x x +-=是一元二次方程,故本选项正确; D 、223250x xy y --=是二元二次方程,故本选项错误; 故选:C . 【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键. 2.C 【解析】 【分析】逐一对选项进行分析即可得出答案. 【详解】A 中,利用三角形外角的性质可知12∠>∠,故该选项错误;B 中,不能确定12∠∠,的大小关系,故该选项错误;C中,因为同弧所对的圆周角相等,所以12∠=∠,故该选项正确;D中,两直线不平行,所以12∠≠∠,故该选项错误.故选:C.【点睛】本题主要考查平行线的性质及圆周角定理的推论,掌握圆周角定理的推论是解题的关键.3.A【解析】【分析】首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.【详解】取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=12AD=12×3=32,∴△EFB∽△EOM,∴BF BE OM EM=,∵AB=5,BE=25 AB,∴BE=2,BM=52,∴EM=52+2=92,∴2 39 22 BF=,∴BF=23,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.4.C【解析】【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,故选C.【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.5.C【解析】【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【点睛】考核知识点:解不等式组.6.A【解析】解:∵2yx=-,∴反比例函数2yx=-的图象位于第二、四象限,在每个象限内,y随x的增大而增大,∵点A(2,a)、B(3,b)在反比例函数2yx=-的图象上,∴a<b<0,故选A.7.B【解析】【分析】由条件设,AB=2x,就可以表示出,x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【详解】解:设x,AB=2x∵四边形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴,CD=2x∵CP:BP=1:2∴,BP=3x∵E为DC的中点,∴CE=12CD=x,∴tan∠CEP=PCECtan∠EBC=ECBC∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴BE BP EF BF∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴2BF=PB·EF,故②正确∵∠F=30°,∴x,过点E作EG⊥AF于G,∴∠EGF=90°,∴3∴PF·43x·322AD2=2×3)2=6x2,∴PF·EF≠2AD2,故③错误. 在Rt△ECP中,∵∠CEP=30°,∴23x∵tan∠PAB=PBAB=33∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,3,3∴4AO·PO=4×3x·33x=4x2又EF·3x·33x=4x2∴EF·EP=4AO·PO.故④正确.故选,B【点睛】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.8.D【解析】分析:根据平行线的性质求得∠BEC 的度数,再由角平分线的性质即可求得∠CFE 的度数.详解:50,//180130ECF AB CDECF BEC BEC ∠=∴∠+∠=∴∠=o o oQ又∵EF 平分∠BEC ,1652CEF BEF BEC o ∴∠=∠=∠=. 故选D. 点睛:本题主要考查了平行线的性质和角平分线的定义,熟知平行线的性质和角平分线的定义是解题的关键.9.C【解析】【分析】根据轴对称图形和中心对称图形的概念,对各个选项进行判断,即可得到答案.【详解】解:A 、是轴对称图形,不是中心对称图形,故A 错误;B 、是轴对称图形,不是中心对称图形,故B 错误;C 、既是轴对称图形,也是中心对称图形,故C 正确;D 、既不是轴对称图形,也不是中心对称图形,故D 错误;故选:C.【点睛】本题考查了轴对称图形和中心对称图形的概念,解题的关键是熟练掌握概念进行分析判断.10.D【解析】【分析】直接利用完全平方公式以及合并同类项法则、积的乘方运算法则分别化简得出答案.【详解】A. (a+b)2=a 2+b 2+2ab ,故此选项错误;B. 3a+4a=7a ,故此选项错误;C. (ab)3=a 3b 3,故此选项错误;D. a 2⋅a 5=a 7,正确。
山东省济南市2019-2020学年中考数学一模试卷含解析
山东省济南市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p ,而在另一个瓶子中是1:q ,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是( )A .2P q +B .2P q Pq +C .2+2p q P q Pq +++D .2+2p q pq P q +++ 2.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .123.如图,AD 为△ABC 的中线,点E 为AC 边的中点,连接DE ,则下列结论中不一定成立的是( )A .DC=DEB .AB=2DEC .S △CDE =14S △ABC D .DE ∥AB 4.如图,一张半径为1的圆形纸片在边长为4的正方形内任意移动,则在该正方形内,这张圆形纸片“能接触到的部分”的面积是( )A .4π-B .πC .12π+D .π154+ 5.点M(a ,2a)在反比例函数y =8x 的图象上,那么a 的值是( ) A .4 B .﹣4 C .2 D .±26.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )A .﹣2.5B .﹣0.6C .+0.7D .+57.如图,在,//ABC DE BC ∆中,,D E 分别在边,AB AC 边上,已知13AD DB =,则DE BC 的值为( )A .13B .14C .15D .258.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°9.已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( )A .﹣3B .0C .6D .910.点A (-2,5)关于原点对称的点的坐标是 ( )A .(2,5)B .(2,-5)C .(-2,-5)D .(-5,-2)11.根据物理学家波义耳1662年的研究结果:在温度不变的情况下,气球内气体的压强p (p a )与它的体积v (m 3)的乘积是一个常数k ,即pv=k (k 为常数,k >0),下列图象能正确反映p 与v 之间函数关系的是( )A .B .C .D . 12.下列计算正确的是( )A .(﹣2a )2=2a 2B .a 6÷a 3=a 2C .﹣2(a ﹣1)=2﹣2aD .a•a 2=a 2二、填空题:(本大题共6个小题,每小题4分,共24分.)1312-3的结果是______.14.如图,在平面直角坐标系中,已知点A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),点P 在以D (4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a 的最大值是______.15.若圆锥的地面半径为5cm ,侧面积为265cm π,则圆锥的母线是__________cm .16.方程x-1=1x -的解为:______.17.在平面直角坐标系内,一次函数2y x b =-与21y x =-的图像之间的距离为3,则b 的值为__________.18.如图,已知CD 是Rt △ABC 的斜边上的高,其中AD=9cm ,BD=4cm ,那么CD 等于_______cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线2y a(x 1)4=-+与x 轴交于点A ,B ,与轴交于点C ,过点C 作CD ∥x 轴,交抛物线的对称轴于点D ,连结BD ,已知点A 坐标为(-1,0).求该抛物线的解析式;求梯形COBD 的面积.20.(6分)如图,AB 为⊙O 的直径,点E 在⊙O ,C 为弧BE 的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC .试判断直线CD 与⊙O 的位置关系,并说明理由若AD=2,AC=6,求⊙O 的半径.21.(6分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a 元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A 点的左边为(2,10),请你结合表格和图象,回答问题:购买量x (千克) 1 1.5 2 2.5 3付款金额y(元) a 7.5 10 12 b(1)由表格得:a= ;b= ;(2)求y关于x的函数解析式;(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?22.(8分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.23.(8分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.若苗圃园的面积为72平方米,求x;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;24.(10分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x 台.(1)求y关于x的函数解析式;(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?25.(10分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°,求此时BQ 的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m ,AE=400m ,ED=285m ,CD=340m ,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长,若不存在,请说明理由.26.(12分)如图,AB 是O e 的直径,C 是圆上一点,弦CD AB ⊥于点E ,且DC AD =.过点A 作O e 的切线,过点C 作DA 的平行线,两直线交于点F ,FC 的延长线交AB 的延长线于点G .(1)求证:FG 与O e 相切;(2)连接EF ,求tan EFC ∠的值.27.(12分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D 表示).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案.【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +, 水之和为:1p p ++1q q +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++, 故选C .【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.2.C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a , k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9,∴k=245,故选:C【点睛】考核知识点:反比例函数系数k的几何意义. 结合图形,分析图形面积关系是关键. 3.A【解析】【分析】根据三角形中位线定理判断即可.【详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=14S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.4.C【解析】【分析】这张圆形纸片减去“不能接触到的部分”的面积是就是这张圆形纸片“能接触到的部分”的面积.【详解】解:如图:∵正方形的面积是:4×4=16;扇形BAO的面积是:22901 3603604n rπππ⨯⨯==,∴则这张圆形纸片“不能接触到的部分”的面积是4×1-4×4π=4-π,∴这张圆形纸片“能接触到的部分”的面积是16-(4-π)=12+π,故选C .【点睛】本题主要考查了正方形和扇形的面积的计算公式,正确记忆公式是解题的关键.5.D【解析】【分析】根据点M(a ,2a)在反比例函数y =8x 的图象上,可得:228a =,然后解方程即可求解. 【详解】因为点M(a ,2a)在反比例函数y =8x的图象上,可得: 228a =,24a =,解得: 2a =±,故选D.【点睛】本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征. 6.B【解析】【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B .【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.7.B【解析】【分析】根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.【详解】解:∵13 ADDB=,∴14 ADAB=,∵DE∥BC,∴△ADE∽△ABC,∴14 DE ADBC AB==,故选:B.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.8.B【解析】【分析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.9.A【解析】【详解】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选A.10.B【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2, −5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).11.C【解析】【分析】根据题意有:pv=k(k为常数,k>0),故p与v之间的函数图象为反比例函数,且根据实际意义p、v都大于0,由此即可得.【详解】∵pv=k(k为常数,k>0)∴p=kv(p>0,v>0,k>0),故选C.【点睛】本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.12.C【解析】【详解】解:选项A,原式=24a;选项B,原式=a3;选项C,原式=-2a+2=2-2a;选项D,原式=3a故选C二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】1232333==【点睛】考点:二次根式的加减法.14.1【解析】【分析】首先证明AB=AC=a ,根据条件可知PA=AB=AC=a ,求出⊙D 上到点A 的最大距离即可解决问题.【详解】∵A (1,0),B (1﹣a ,0),C (1+a ,0)(a >0),∴AB=1﹣(1﹣a )=a ,CA=a+1﹣1=a ,∴AB=AC ,∵∠BPC=90°,∴PA=AB=AC=a ,如图延长AD 交⊙D 于P′,此时AP′最大,∵A (1,0),D (4,4),∴AD=5,∴AP′=5+1=1,∴a 的最大值为1.故答案为1.【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径. 15.13【解析】试题解析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.设母线长为R ,则:65ππ5R =⨯,解得:13.R cm =故答案为13.16.1x =【解析】【分析】两边平方解答即可.【详解】原方程可化为:(x-1)2=1-x,解得:x1=0,x2=1,经检验,x=0不是原方程的解,x=1是原方程的解故答案为1x=.【点睛】此题考查无理方程的解法,关键是把两边平方解答,要注意解答后一定要检验.17.1-35或1+35【解析】【分析】设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.【详解】解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.∵直线y=2x-1与x轴交点为C,与y轴交点为A,∴点A(0,-1),点C(12,0),∴OA=1,OC=12,22OA OC+5,∴cos∠ACO=OCAC5∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,∴∠BAD=∠ACO.∵AD=3,cos ∠BAD=AD AB ,∴ ∵直线y=2x-b 与y 轴的交点为B (0,-b ),∴AB=|-b-(-1)解得:故答案为.【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b 的方程是解题关键.18.1【解析】【分析】利用△ACD ∽△CBD ,对应线段成比例就可以求出.【详解】∵CD ⊥AB ,∠ACB=90°,∴△ACD ∽△CBD , ∴CD BD AD CD=, ∴49CD CD =, ∴CD=1.【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定方法是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2y (x 1)4=--+(2)()OCDA 133S 62+⨯==梯形 【解析】【分析】(1)将A 坐标代入抛物线解析式,求出a 的值,即可确定出解析式.(2)抛物线解析式令x=0求出y 的值,求出OC 的长,根据对称轴求出CD 的长,令y=0求出x 的值,确定出OB 的长,根据梯形面积公式即可求出梯形COBD 的面积.【详解】(1)将A (―1,0)代入2y a(x 1)4=-+中,得:0=4a+4,解得:a=-1.∴该抛物线解析式为2y (x 1)4=--+.(2)对于抛物线解析式,令x=0,得到y=2,即OC=2,∵抛物线2y (x 1)4=--+的对称轴为直线x=1,∴CD=1.∵A (-1,0),∴B (2,0),即OB=2.∴()OCDA 133S 62+⨯==梯形. 20.(1)直线CD 与⊙O 相切;(2)⊙O 的半径为1.1.【解析】【详解】(1)相切,连接OC ,∵C 为»BE的中点,∴∠1=∠2,∵OA=OC ,∴∠1=∠ACO ,∴∠2=∠ACO ,∴AD ∥OC ,∵CD ⊥AD ,∴OC ⊥CD ,∴直线CD 与⊙O 相切;(2)连接CE ,∵AD=2,AC=6,∵∠ADC=90°,∴CD=22AC AD -=2,∵CD 是⊙O 的切线,∴2CD =AD•DE ,∴DE=1,∴CE=22CD DE +=3,∵C 为»BE的中点,∴BC=CE=3,∵AB 为⊙O 的直径,∴∠ACB=90°,∴AB=22AC BC +=2.∴半径为1.121.(1)5,1 (2)当0<x≤2时,y=5x ,当x >2时,y 关于x 的函数解析式为y=4x+2 (3)1.6元.【解析】【分析】(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a 值,结合超过2千克部分的种子价格打8折可得出b 值;(2)分段函数,当0≤x≤2时,设线段OA 的解析式为y =kx ;当x >2时,设关系式为y =k1x +b ,然后将(2,10),且x =3时,y =1,代入关系式即可求出k ,b 的值,从而确定关系式;(3)代入(2)的解析式即可解答.【详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x ,∵10÷2=5,∴a =5,b =2×5+5×0.8=1.故答案为a =5,b =1.(2)当0≤x≤2时,设线段OA 的解析式为y =kx ,∵y =kx 的图象经过(2,10),∴2k =10,解得k =5,∴y =5x ;当x >2时,设y 与x 的函数关系式为:y =1k x +b∵y =kx+b 的图象经过点(2,10),且x =3时,y =1,11210314k b k b +⎧⎨+⎩== ,解得142k b =⎧⎨=⎩, ∴当x >2时,y 与x 的函数关系式为:y =4x +2.∴y 关于x 的函数解析式为:()50242(2)x x y x x ⎧≤≤=⎨+>⎩ ;(3)甲农户将8元钱全部用于购买该玉米种子,即5x =8,解得x =1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y =4×5.6+2=24.4元. (8+4×4+2)−24.4=1.6(元).答:如果他们两人合起来购买,可以比分开购买节约1.6元.【点睛】本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x ,y 的值就可以;而求一次函数y =kx +b ,则需要两组x ,y 的值.22.甲、乙获胜的机会不相同.【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.∴∴甲、乙获胜的机会不相同.考点:可能性大小的判断 点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.23.(1)2(2)当x=4时,y 最小=88平方米【解析】(1)根据题意得方程解即可;(2)设苗圃园的面积为y,根据题意得到二次函数的解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可.解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依题意,得8≤31-2x≤3.解得6≤x≤4.面积S=x(31-2x)=-2(x-152)2+2252(6≤x≤4).①当x=152时,S有最大值,S最大=2252;②当x=4时,S有最小值,S最小=4×(31-22)=88“点睛”此题考查了二次函数、一元二次不等式的实际应用问题,解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.24.(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.【解析】【分析】(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;(2)解不等式求出x的范围,根据一次函数的性质计算即可.【详解】解:(1)由题意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由题意得,35﹣x≤2x,解得,x≥353,则x的最小整数为12,∵k=0.2>0,∴y随x的增大而增大,∴当x=12时,y有最小值16.4,答:该公司至少需要投入资金16.4万元.【点睛】本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.25.(1)1;(1);(4)(【解析】【分析】(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长.【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴227.43∴BP′=27.③点A为圆心,AD为半径画弧,交BC于点P″,如图①,则AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=7.综上所述:在等腰三角形△ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-7;若AP=AD,则BP=7.(1)∵E、F分别为边AB、AC的中点,∴EF∥BC,EF=12 BC.∵BC=11,∴EF=4.以EF为直径作⊙O,过点O作OQ⊥BC,垂足为Q,连接EQ、FQ,如图②.∵AD⊥BC,AD=4,∴EF与BC之间的距离为4.∴OQ=4∴OQ=OE=4.∴⊙O与BC相切,切点为Q.∵EF为⊙O的直径,∴∠EQF=90°.过点E作EG⊥BC,垂足为G,如图②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四边形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴3∴BQ=GQ+BG=4+3.∴当∠EQF=90°时,BQ的长为4+3.(4)在线段CD上存在点M,使∠AMB=40°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O,过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=12 AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等边三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP•tan40°=145×33∴3∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③.∴∠AMB=∠AGB=40°,3.∵OH⊥CD,OH=6,3∴∵AE=200,∴.若点M 在点H 的左边,则.∵>420,∴DM >CD .∴点M 不在线段CD 上,应舍去.若点M 在点H 的右边,则.∵420,∴DM <CD .∴点M 在线段CD 上.综上所述:在线段CD 上存在唯一的点M ,使∠AMB=40°,此时DM 的长为()米.【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键.26.(1)见解析;(2【解析】【分析】(1)连接OC ,AC ,易证ACD ∆为等边三角形,可得60CDA DCA DAC ∠=∠=∠=o ,由等腰三角形的性质及角的和差关系可得∠1=30°,由于FG DA P 可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得FG 与O e 相切;(2)作EH FG ⊥于点H .设CE a =,则DE a =,2AD a =.根据两组对边互相平行可证明四边形AFCD 为平行四边形,由DC AD =可证四边形AFCD 为菱形,由(1)得60DCG ∠=o ,从而可求出EH 、CH 的值,从而可知FH 的长度,利用锐角三角函数的定义即可求出tan EFC ∠的值.【详解】(1)连接OC ,AC .∵AB 是O e 的直径,弦CD AB ⊥于点E ,∴CE DE =,AD AC =.∵DC AD =, ∴DC AD AC ==. ∴ACD ∆为等边三角形.∴60CDA DCA DAC ∠=∠=∠=o ,∠DAE=∠EAC=30°, ∵OA=OC ,∴∠OAC=∠OCA=30°, ∴∠1=∠DCA-∠OCA=30°, ∵FG DA P ,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°, ∴FG OC ⊥. ∴FG 与O e 相切.(2)连接EF ,作EH FG ⊥于点H . 设CE a =,则DE a =,2AD a =. ∵AF 与O e 相切, ∴AF AG ⊥. 又∵DC AG ⊥, ∴//AF DC . 又∵FG DA P ,∴四边形AFCD 为平行四边形. ∵DC AD =,∴四边形AFCD 为菱形.∴2AF FC AD a ===,60AFC CDA ∠=∠=o . 由(1)得60DCG ∠=o , ∴3sin 60EH CE =⋅=o ,1cos602CH CE a =⋅=o.∴52 FH CH CF a=+=.∵在Rt EFH∆中,90EHF∠=o,∴332tan552aEHEFCFH a∠===.【点睛】本题考查圆的综合问题,涉及切线的判定与性质,菱形的判定与性质,等边三角形的性质及锐角三角函数,考查学生综合运用知识的能力,熟练掌握相关性质是解题关键.27.(1)34.(2)公平.【解析】【详解】试题分析:(1)首先根据题意结合概率公式可得答案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是34;(2)列表得:A B C DA (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,∴P(两张都是轴对称图形)=12,因此这个游戏公平.考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.。
山东省济南市2019-2020学年中考数学三模考试卷含解析
山东省济南市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,点P 是∠AOB 内任意一点,OP=5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ).A .25︒B .30︒C .35︒D .40︒2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( ) A .2×1000(26﹣x )=800x B .1000(13﹣x )=800x C .1000(26﹣x )=2×800xD .1000(26﹣x )=800x3.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A .14B .12C .34D .564.已知二次函数 2y ax bx c =++图象上部分点的坐标对应值列表如下: x … -3 -2 -1 0 1 2 … y…2-1-2-127…则该函数图象的对称轴是( ) A .x=-3B .x=-2C .x=-1D .x=05.如图数轴的A 、B 、C 三点所表示的数分别为a 、b 、c .若|a ﹣b|=3,|b ﹣c|=5,且原点O 与A 、B 的距离分别为4、1,则关于O 的位置,下列叙述何者正确?( )A .在A 的左边B .介于A 、B 之间C .介于B 、C 之间D .在C 的右边6.在平面直角坐标系中,点A 的坐标是(﹣1,0),点B 的坐标是(3,0),在y 轴的正半轴上取一点C ,使A 、B 、C 三点确定一个圆,且使AB 为圆的直径,则点C 的坐标是( ) A .(03B .30)C .(0,2)D .(2,0)7.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( ) A .110B .19C .16D .158.3点40分,时钟的时针与分针的夹角为( ) A .140°B .130°C .120°D .110°9.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是( )A .掷一枚正六面体的骰子,出现1点的概率B .抛一枚硬币,出现正面的概率C .从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率D .任意写一个整数,它能被2整除的概率10.一个几何体的三视图如图所示,这个几何体是( )A .棱柱B .正方形C .圆柱D .圆锥11.对于任意实数k ,关于x 的方程()22x 2k 1x k 2k 10-+-+-=的根的情况为A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定12.如图,在半径为5的⊙O 中,弦AB=6,点C 是优弧»AB 上一点(不与A ,B 重合),则cosC 的值为( )A .43B .34C .35D .45二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC 其中正确的是_____(填序号)14.规定一种新运算“*”:a*b=13a-14b,则方程x*2=1*x的解为________.15.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.16.若一个多边形的内角和是900º,则这个多边形是边形.17.当x为_____时,分式3621xx-+的值为1.18.如图,在平面直角坐标系中,抛物线y=﹣x2+4x与x轴交于点A,点M是x轴上方抛物线上一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的最大值为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.20.(6分)如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.21.(6分)如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .求证:四边形OCED 是矩形;若CE=1,DE=2,ABCD的面积是 .22.(8分)先化简,再求值:(1x ﹣21x -)÷2212x xx x +-+,其中x 的值从不等式组11022(1)x x x⎧+⎪⎨⎪-≤⎩>的整数解中选取.23.(8分)如图,在平行四边形ABCD 中,E 、F 分别在AD 、BC 边上,且AE =CF .求证:四边形BFDE 是平行四边形.24.(10分)先化简,再求值:先化简22211x x x -+-÷(11x x -+﹣x+1),然后从﹣2<x <5的范围内选取一个合适的整数作为x 的值代入求值.25.(10分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F .(1)求反比例函数的解析式; (2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.26.(12分)如图,已知AB是圆O的直径,弦CD⊥AB,垂足H在半径OB上,AH=5,CD=45,点E在弧AD上,射线AE与CD的延长线交于点F.(1)求圆O的半径;(2)如果AE=6,求EF的长.27.(12分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题分析:作点P关于OA对称的点P3,作点P关于OB对称的点P3,连接P3P3,与OA交于点M,与OB交于点N,此时△PMN的周长最小.由线段垂直平分线性质可得出△PMN的周长就是P3P3的长,∵OP=3,∴OP3=OP3=OP=3.又∵P3P3=3,,∴OP3=OP3=P3P3,∴△OP3P3是等边三角形, ∴∠P3OP3=60°,即3(∠AOP+∠BOP)=60°,∠AOP+∠BOP=30°,即∠AOB=30°,故选B.考点:3.线段垂直平分线性质;3.轴对称作图.2.C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.3.C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164=,故选C.【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.4.C【解析】【分析】由当x=-2和x=0时,y的值相等,利用二次函数图象的对称性即可求出对称轴.【详解】解:∵x=-2和x=0时,y的值相等,∴二次函数的对称轴为2012x-+==-,故答案为:C.【点睛】本题考查了二次函数的性质,利用二次函数图象的对称性找出对称轴是解题的关键.5.C【解析】分析:由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为1、1,即可得出a=±1、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴点O介于B、C点之间.故选C.点睛:本题考查了数值以及绝对值,解题的关键是确定a、b、c的值.本题属于基础题,难度不大,解决该题型题目时,根据数轴上点的位置关系分别找出各点代表的数是关键.6.A【解析】【分析】直接根据△AOC∽△COB得出OC2=OA•OB,即可求出OC的长,即可得出C点坐标.【详解】如图,连结AC,CB.依△AOC∽△COB的结论可得:OC2=OA OB,即OC2=1×3=3,解得:3或3(负数舍去),故C点的坐标为(0, 3).故答案选:A.【点睛】本题考查了坐标与图形性质,解题的关键是熟练的掌握坐标与图形的性质.7.A【解析】∵密码的末位数字共有10种可能(0、1、2、3、4、5、6、7、8、9、0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是110. 故选A. 8.B 【解析】 【分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 【详解】解:3点40分时针与分针相距4+2060=133份, 30°×133=130, 故选B . 【点睛】本题考查了钟面角,确定时针与分针相距的份数是解题关键. 9.C 【解析】解:A .掷一枚正六面体的骰子,出现1点的概率为16,故此选项错误; B .掷一枚硬币,出现正面朝上的概率为12,故此选项错误; C .从一装有2个白球和1个红球的袋子中任取一球,取到红球的概率是:11123=+≈0.33;故此选项正确;D .任意写出一个整数,能被2整除的概率为12,故此选项错误. 故选C . 10.C【解析】试题解析:根据主视图和左视图为矩形可判断出该几何体是柱体, 根据俯视图是圆可判断出该几何体为圆柱. 故选C. 11.C 【解析】判断一元二次方程的根的情况,只要看根的判别式2b 4ac ∆=-的值的符号即可: ∵a=1,b=()2k 1-+,c=2k 2k 1-+-,∴()()2222b 4ac 2k 141k 2k 188k 0⎡⎤∆=-=-+-⨯⨯-+-=+>⎣⎦.∴此方程有两个不相等的实数根.故选C.12.D【解析】解:作直径AD,连结BD,如图.∵AD为直径,∴∠ABD=90°.在Rt△ABD中,∵AD=10,AB=6,∴BD=22106=8,∴cosD=BDAD=810=45.∵∠C=∠D,∴cosC=45.故选D.点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②④【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PH•PC,故④正确;故答案是:①②④.【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.14.10 7【解析】【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:13x-14×2=13×1-1x4,7 12x=56,解得:x=10 7,故答案为x=10 7.【点睛】此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.15.2【解析】试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.∴C△EBF==C△HAE=2.考点:1折叠问题;2勾股定理;1相似三角形.。
山东省20192020中考数学模拟试卷(含)
山东省 2019-2020 年中考数学模拟试卷(考试时间120 分钟满分 120 分)一、选择题 : 本大题共12 小题,每题 3 分,共 36 分。
在每个小题的四个选项中只有一个是正确的,请把正确的选项填在答题栏中。
题号123456789101112答案1.81的平方根是 ()A.3 B . 3C.9 D . 92.如右图,点O在直线AB 上,若140,则 2的度数是()12A O BA.50B.60C.140 D .1503.据统计,我国 2013 年全年完成造林面积约6090000 公顷.6090000 用科学记数法可表示为().A. 6.09 106B.104C. 609104D.1054.当 x=1 时,代数式ax 3﹣ 3bx+4 的值是7,则当 x= ﹣ 1 时,这个代数式的值是()A. 7 B .3C.1D.﹣7 5.以下运算正确的选项是()A.x 3x2x5B.( x3)3x6C.x5x5x10 D .x6x3x36.以下列图是一个由多个相同小正方体积聚而成的几何体的俯视图,图中所示数字为该地址小正方体的个数,则这个几何体的左视图是()21231 A .B.C.D.17.以下标志中不是中心对称图形的是()8.如右图,菱形 ABCD 的边长为 4,过点 A 、C 作对角线AC 的垂线,分别交 CB 和 AD 的延伸线于点 E、F,AE=3 ,则四边形AECF 的周长为()A .22B . 18C .14D .11 9.对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18 人数 456672则这些学生年龄的众数和中位数分别是()A . 17,B . 17, 16C .15,D .16,1610.如右图, AB 为半圆的直径,且 AB=4 ,半圆绕点 B 顺时针旋转 45°,点 A 旋转到 A ′的地址,则图中阴影部分的面积为( )A . πB . 2πC .D . 4πyO'B11.如右图,直线y3x 2 与 x 轴, y 轴分别交于 A, B 两点,3Ax把 AOB 沿着直线 AB 翻折后获取OAO B ,则点 O 的坐标是A . ( 3,3)B .( 3, 3)C . (2,2 3)D . (23,4)12.已知二次函数2y=ax +bx+c ( a ≠0)的图象如图,则以下说法: ① c=0;②该抛物线的对称轴是直线 x= ﹣1;③当 x=1 时, y=2a ;④2)am +bm+a > 0( m ≠﹣ 1).其中正确的个数是( A .1 B .2 C .3 D . 4二、填空题:本大题共 6 个小题,每题填对最后结果得 4 分,满分 24分 .2 )﹣ 16a= .13.分解因式: 8(a +1 14.在函数中,自变量 x 的取值范围是.15.如右图,在 ?ABCD 中, BC=10 , sinB= , AC=BC ,则 ?ABCD 的面积是 .16.如图,将边长为 12 的正方形 ABCD 是沿其对角线AC 剪开,再把ABC 沿着 AD 方向平移,获取 A B C ,当两个三角形重叠的面积为 32 时,它搬动的距离AA 等于 ________.AD AAyDB CB’C’C17.如 , OAC 和 BAD 都是等腰直角三角形,ACO ADB 90 ,反比率函数yk在第一象限的 象 点B ,若 OA 2AB 212 , k 的 ________.x18. 在平面直角坐 系xOy 中,点 A 1 , A 2 ,yy=kx+bA 3 ,⋯和B 1 , B 2 , B 3 ,⋯分 在直 y kx bA 2A 3和 x 上.△ OA 1B 1,△ B 1 A 2B 2,△ B 2A 3B 3,⋯A 1B3x都是等腰直角三角形,若是A 1( 1, 1),OB 1B 273(第 18 )A 2(2 , ),那么点 A n 的 坐 是 _ _____.2三、解答 :本大 共 7 个小 , 分60 分 .解答 写出必要的演推 程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020山东省中考数学模拟试题本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分) 1、比-2013小1的数是( )A 、-2012B 、2012C 、-2014D 、2014 2、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3=( ) A 、70° B 、65° C 、60° D 、55°3、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a的小正方体, 得到一个如图所示的零件,则这个零件的左视图是( ) A 、 B 、 C 、 D 、 4、某红外线遥控器发出的红外线波长为0.000 00094m ,用科学计数法表示这个数是( )A 、9.4×10-7mB 、9.4×107mC 、9.4×10-8mD 、9.4×108m 5、下列计算正确的是( )A 、(2a -1)2=4a 2-1B 、3a 6÷3a 3=a 2C 、(-ab 2) 4=-a 4b 6D 、-2a +(2a -1)=-1 6、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( )A 、240x +4=160x -10B 、240x -4=160x -10C 、240x -10 +4=160xD 、240x -10 -4=160x二、填空题(本大题共8小题,每小题3分,共24分) 7、因式分解:xy 2-x = 。
8、已知x =1是关于x 的方程x 2+x +2k =0的一个根,则它的另一个根是 。
9、已知2x 3y =13 ,则分式x -2y x +2y的值为 。
10、如图,正五边形ABCDE ,AF ∥CD 交BD 的延长线于点F ,则∠DF A = 度。
11、已知x = 5 -12 ,y = 5 +12 ,则x 2+xy +y 212、分式方程3-x x -4 +14-x=1的解为 。
13、现有一张圆心角为108°,半径为40cm 小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠), 则剪去的扇形纸片的圆心角θ为 。
14、如图,正方形ABCD 与正方形AEFG 起始时互相重合, 现将正方形AEFG 绕点A 逆时针旋转,设旋转角∠BAE =α (0°<α<360°),则当α= 时,正方形的 顶点F 会落在正方形的对角线AC 或BD 所在直线上。
3 12l 1l 2B D AC E FGF CB GD E 正面三、(本大题共4小题,每小题6分,共24分)15、解不等式组⎩⎪⎨⎪⎧-2x +1≤-1 (1)1+2x 3>x -1……(2) ,并把它的解集在数轴上表示出来。
16、某公园内有一矩形门洞(如图1)和一圆弧形门洞(如图2),在图1中矩形ABCD 的边AB ,DC 上分别有E 、F 两点,且BE =CF ;在图2中上部分是一圆弧,下部分中AB ∥CD ,AB =CD ,AB ⊥BC 。
请仅用无刻度的直尺........分别画出图1,2的一条对称轴l 。
17、如图,在平面直角坐标系xOy 中,点A 的坐标为(a ,0),点B 的坐标为(0,b ),其中a >0,b >0,以线段AB 为一边在第一象限内作菱形ABCD ,使其一对角线AC ∥y 轴。
(1)请求出点C 与点D 的坐标; (2)若一反比例函数图象经过点C ,则它是否一定会经过点D ?请说明理由。
18、某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样。
规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回)。
某顾客刚好消费200元。
(1)写出此情境下的一个必然事件;(2)请你用画树形图或列表格的方法,列出该顾客所获得购物券的金额的所有结果; (3)请你求出该顾客所获得购物券的金额不低于30元的概率。
四、(本大题共3小题,每小题8分,共24分)19、如图,这是学校在学生中征集的生物园一侧围栏纹饰部分的设计图案。
其中每个圆的半径均为15cm ,圆心在同一直线上,且每增加一个圆形图案,纹饰长度就增加b cm ,围栏左右两边留有等距离空隙a cm (0≤a <15)(1)若b =25,则纹饰需要201个圆形图案,求纹饰的长度y ; (2)若b =24,则最多需要多少个这样的圆形图案?图2 ·F E ·A B CD 图120、如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD 和BC 表示两根较粗的钢管,EG 表示座板平面,EG 和BC 相交于点F ,MN 表示地面所在的直线,EG ∥MN ,EG 距MN 的高度为42cm ,AB =43cm ,CF =42cm ,∠DBA =60°,∠DAB =80°。
求两根较粗钢管AD 和BC 的长。
(结果精确到0.1cm 。
参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)21、某校团委举办了一次“中国梦,我的梦”演讲比赛,满分10分,学生得分均为整数,成绩达6分以上(含6分)为合格,达到9分以上(含9分)为优秀。
这次竞赛中甲、乙两组学生成绩分布的条形统计图如下。
(1)补充完成下列的成绩统计分析表:组别 平均分 中位数 方差 合格率 优秀率甲 6.7 3.41 90% 20% 乙7.580%10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组。
但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组。
请你给出两条支持乙组同学观点的理由。
五、(本大题共2小题,每小题9分,共18分)22、如图1,在在Rt △ACB 中,∠ACB =90°,AC =3,BC =4,有一过点C 的动圆⊙O 与斜边AB 相切于动点P ,连接CP 。
(1)当⊙O 与直角边AC 相切时,如图2所示,求此时⊙O 的半径r 的长。
(2)随着切点P 的位置不同,弦CP 的长也会发生变化,试求出弦CP 的长的取值范围。
(3)当切点P 在何处时,⊙O 的半径r 有最大值?试求出这个最大值。
· A OP ·A B O PC 图1 60° 80° F A B CD EM G N 图1图2 1 3 51 2 3 4 5 6 7 8 9 10 成绩/分 5 2 46学生人数/人 甲组 乙组23、(121的坐标为 ,点的坐标为 。
(2)将设抛物线m 1沿x 轴翻折,得到抛物线m 2:y 2=a 2x 2+b 2x +c 2,则当x =-3时, y 2= 。
(3)在(1)的条件下,将抛物线m 1沿水平方向平移,得到抛物线m 3。
设抛物线m 1与x 轴交于A ,B 两点(点A 在点B 的左侧),抛物线m 3与x 轴交于M ,N 两点(点M 在点N 的左侧)。
过点C 作平行于x 轴的直线,交抛物线m 3于点K 。
问:是否存在以A ,C ,K ,M 为顶点的四边形是菱形的情形?若存在,请求出点K 的坐标;若不存在,请说明理由。
六、(本大题共1小题,共12分)24、数学复习课上,张老师出示了下框中的问题:问题思考(1)经过独立思考,同学们想出了多种正确的证明思想,其中有位同学的思路如下:如图1,过点B 作BE ∥AC 交CD 的延长线于点E 。
请你根据这位同学的思路提示证明上述框中的问题。
方法迁移(2)如图2,在Rt △ACB 中,∠ACB =90°,点D 为AB 的中点,点E 是线段AC 上一动点,连接DE ,线段DF 始终与DE 垂直且交BC 于点F 。
试猜想线段AE ,EF ,BF 之间的数量关系,并加以证明。
拓展延伸(3)如图3,在Rt △ACB 中,∠ACB =90°,点D 为AB 的中点,点E 是线段AC 延长线上一动点,连接DE ,线段DF 始终与DE 垂直且交CB 延长线于点F 。
试问第(2)小题中线段AE ,EF ,BF 之间的数量关系会发生改变吗?若会,请写出关系式;若不会,请说明理由。
E B C A DC A DF EC A ED B 图1 图2 图3答案一、选择题1、C2、B3、C4、A5、D6、A 二、填空题7、x (y +1)(y -1); 8、-2 9、-35 10、36 11、4 12、x =313、18° 14、60°或180°或300°(每填对一个给1分,答错不给分)三、15、解集为1≤x <4。
……4分 数轴表示6分 16、如图,直线l 为所求直线。
画对图1中的对称轴给3分,画对图2中的给3分17、(1)点C 坐标为(a ,22a , (2)必经过点D ,理由略。
…………6分18、(1)答案不唯一,叙述合理即可。
如顾客在此活动中一定能获得购物券。
……2分 (2)树形图或列表略。
可能出现的结果共有12种。
分别是10元、20元、30元、10元、30元、40元、20元、30元、50元、30元、40元、50元。
…………5分 (3)P(所获购物券金额不低于30元)=812 =23。
…………6分四、19、(1)y =15×2+(201-1)b =30+200×25=5030(cm) …………3分(2)设需要x 个这样的圆形图案,则⎩⎨⎧30+(x -1)×24≥503030+(x -1)×24<5030+30解得:20916 ≤x <210712。
所以最多需要210个这样的圆形图案。
…………8分(其他解法只要合理同样给分) 20、如图,过F 作FT ⊥MN 于T 。
BF =FT sin60°≈420.87 ≈48.28(cm )∴BC =BF +FC ≈48.28+42≈90.3(cm )……3分 过D 作DP ⊥AB 于P ,则 AP =DP tan80° ,PB =DPtan60°,·F E · ABCDl 或60°80°F ABCDEMGNT P∴DP tan80° +DPtan60°=AP +PB =43,求得DP ≈57.0cm则AD =DPsin80°≈58.2cm 。