(完整)高一数学2017-2018学年高中数学必修一必修四测试题含答案,推荐文档

合集下载

高一数学必修四测试卷(含答案)

高一数学必修四测试卷(含答案)

高一数学必修四测试卷一、选择题 :1.若角600°的终边上有一点(﹣4,a ),则a 的值是( )A .B .C .D .【答案】A2.若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】C3.函数的最小正周期是( )A .B .C .2πD .5π【答案】D4.要得到函数y=cos2x 的图象,可以将函数的图象( )A .向右平移个单位得到B .向左平移个单位得到C .向右平移个单位得到D .向左平移个单位得到【答案】B5.函数f (x)sin(2x )4p=-在区间上的最小值是( ) A .﹣1B .C .D . 0【答案】B6.函数y =2cos(2x -π2)是( )A .周期为π的奇函数B .周期为π的偶函数C .周期为2π的奇函数D .周期为2π的偶函数【答案】A7.图是函数y=Asin (ωx+φ)(x ∈R )在区间上的图象,为了得到这个函数的图象,只要将y=sinx (x ∈R )的图象上所有的点( )A .向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B .向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C .向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D .向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A8.函数f (x )=sinx ﹣cosx 的最大值为( )A . 1B .C .D .2【答案】B9.函数()f x sin x cos x 2x 2=+的最小正周期和振幅分别是( ) A .π,1B .π,2C . 2π,1D . 2π,2【答案】A10.已知sin2α=,则cos 2(α+)=( )A .B .C .D .【答案】A11.已知cos (π-2α)sin (α-π4)=-22,则cos α+sin α等于( ) A .-72B.72C.12D .-12【答案】D12.已知向量a =(cos2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π4,π,若a·b =25,则 tan ⎝⎛⎭⎫α+π4的值为( )A.13B.27C.17D.23【答案】C13.已知向量a ,b 满足|a|=1,|b|=3,且|2a +b|=7,则a 与b 的夹角为( )A .150°B .120°C .60°D .30°【答案】B14.已知a,b r r 满足:a =3r ,b =2r ,a+b =4r r ,则a-b r r=( )A .B .C . 3D .【答案】 D15.若| a r |=1,| b r |=2,c=a+b r r ,且c a ⊥r r ,则c b r r与的夹角为( )A . 30°B . 60°C . 120°D . 150°【答案】C16.已知函数2f (x)=2cos 2x+a (a 为常数)的定义域为0,2p ⎡⎤⎢⎥⎣⎦,f (x )的最大值为6,则a 等于( ) A . 3B . 4C . 5D . 6【答案】A .二、解答题 : 17.化简:(1)(2)sin120°•cos330°+sin (﹣690°)cos (﹣660°)+tan675°+cot765°.【答案】(1)原式===﹣1;(2)原式=sin120°cos (360°﹣30°)﹣sin (720°﹣30°)cos (﹣720°+60°)+tan (720°﹣45°)+=×+×﹣1+1=1.18.设函数f (x )=3sin x cos x +cos 2x +a .(Ⅰ)写出函数f (x )的最小正周期及单调递减区间;(Ⅱ)当x ∈[-π6,π3]时,函数f (x )的最大值与最小值的和为32,求f (x )的图象、y 轴的正半轴及x 轴的正半轴三者围成图形的面积.【答案】(Ⅰ)f (x )=32sin2x +1+cos2x 2+a =sin(2x +π6)+a +12, ∴T =π.由π2+2k π≤2x +π6≤3π2+2k π,得π6+k π≤x ≤2π3+k π. 故函数f (x )的单调递减区间是[π6+k π,2π3+k π](k ∈Z ).(Ⅱ)∵-π6≤x ≤π3,∴-π6≤2x +π6≤5π6.∴-12≤sin(2x +π6)≤1.当x ∈⎣⎡⎦⎤-π6,π3时,原函数的最大值与最小值的和(1+a +12)+(-12+a +12)=32,∴a =0. ∴f (x )=sin(2x +π6)+12.f (x )的图象与x 轴正半轴的第一个交点为(π2,0)所以f (x )的图象、y 轴的正半轴及x 轴的正半轴三者围成图形的面积 S =∫π20[sin(2x +π6) +12]d x= [-12cos(2x +π6) +x 2]|π2′0=2 3 + π4.19.设向量a x,sin x)=r ,b (cos x,sin x),x 0,2p ⎡⎤=∈⎢⎥⎣⎦r . (1)若|a ||b |=r r,求x 的值;(2)设函数f (x)a b =∙r r,求f (x )的最大值.【答案】(1)由题意可得 =+sin 2x=4sin 2x ,=cos 2x+sin 2x=1,由,可得 4sin 2x=1,即sin 2x=. ∵x ∈[0,],∴sinx=,即x=.(2)∵函数=(sinx ,sinx )•(cosx ,sinx )=sinxcosx+sin 2x=sin2x+=sin (2x ﹣)+. x ∈[0,],∴2x ﹣∈[﹣,],∴当2x ﹣=,sin (2x ﹣)+取得最大值为 1+=.20.已知函数f (x )=2cos 2x +23sin x cos x .求(Ⅰ)函数f (x )的周期; (Ⅱ)函数f (x )的单调递减区间; (Ⅲ)函数f (x )在区间⎣⎡⎦⎤0,π2上的最值. 【答案】f (x )=cos2x +1+3sin2x =2sin ⎝⎛⎭⎫2x +π6+1. (Ⅰ)最小正周期T =2π2=π.(Ⅱ)当2k π+π2≤2x +π6≤2k π+3π2,即k π+π6≤x ≤k π+2π3,k ∈Z 时,函数f (x )单调递减,所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z . (Ⅲ)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴f (x )max =f ⎝⎛⎭⎫π6=3,f (x )min=f ⎝⎛⎭⎫π2=0.21.已知函数f (x )=sin (π﹣ωx )cos ωx+cos 2ωx (ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)将函数y=f (x )的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数y=g (x )的图象,求函数y=g (x )在区间上的最小值.【答案】(Ⅰ)∵f (x )=sin (π﹣ωx )cosωx+cos 2ωx , ∴f (x )=sinωxcosωx+=sin2ωx+cos2ωx+ =sin (2ωx+)+由于ω>0,依题意得,所以ω=1;(Ⅱ)由(Ⅰ)知f (x )=sin (2x+)+,∴g (x )=f (2x )=sin (4x+)+∵0≤x≤时,≤4x+≤,∴≤sin (4x+)≤1, ∴1≤g (x )≤,g (x )在此区间内的最小值为1.22.已知函数f (x )=23sin(x -π6)cos(x -π6)-1+2cos 2(x -π6)(Ⅰ)求f (x )的最大值及相应的x 的取值集合; (Ⅱ)求f (x )的单调递增区间.【答案】(Ⅰ)f (x )=3sin(2x -π3)+cos(2x -π3)=2sin(2x -π6),当2x -π6=π2+2k π(k ∈z),即x =k π+π3时,f (x )取得最大值2.所以f (x )的最大值为2.相应的x 的取值集合为{x |x =π3+k π,k ∈Z }.(Ⅱ)解不等式2k π-π2≤2x -π6≤2k π+π2,(k ∈Z ),得k π-π6≤x ≤k π+π3(k ∈Z ).所以f (x )的递增区间为[k π-π6,k π+π3](k ∈Z ).23.若点O 为坐标原点,OA →=(2a sin 2x ,a ),OB →=(1,-23sin x cos x +1),f (x )=OA →·OB →+b (a <b ,a ≠0).(Ⅰ)求f (x )的单调递增区间;(Ⅱ)若f (x )的定义域为⎣⎡⎦⎤π2,π,值域为[2,5],求a ,b 的值.【答案】(Ⅰ)f (x )=OA →·OB →+b=2a sin 2x -23a sin x ·cos x +a +b =-2a sin ⎝⎛⎭⎫2x +π6+2a +b . 当a >0时,递增区间为⎣⎡⎦⎤k π+π6,k π+23π,k ∈Z ; 当a <0时,递增区间为⎣⎡⎦⎤k π-π3,k π+π6,k ∈Z . (Ⅱ)f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,x ∈⎣⎡⎦⎤π2,π, ∴2x +π6∈⎣⎡⎦⎤7π6,13π6, ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-1,12. 当a >0时,⎩⎪⎨⎪⎧2a +2a +b =5,-2a ·12+2a +b =2,解得⎩⎪⎨⎪⎧a =1,b =1; (舍去)当a <0时,⎩⎪⎨⎪⎧2a +2a +b =2,-2a ·12+2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =6. ∴a =-1,b =6.三、填空题 :24.函数f (x )=3sin x cos x -33cos 2x +332的图象为C ,给出以下四个结论: ①由y =3sin2x 的图象向右平移π3个单位长度可以得到图象C ;②函数f (x )在区间⎝⎛⎭⎫-π12,5π12内是增函数;③图象C 关于直线x =11π12对称;④图象C 关于点⎝⎛⎭⎫2π3,0对称. 其中正确结论的编号是________.【答案】②③④25.已知向量()2,1,10,2a a b a b =∙=+= b= .【答案】26.tan(2α-β)=12,tan(β-α)=14,tan α=__________. 【答案】6727.tan20°cos10°+3sin10°tan20°+2cos40°=________. 【答案】2。

(完整版)高一数学必修1必修4试卷含答案,推荐文档

(完整版)高一数学必修1必修4试卷含答案,推荐文档
一、选择题(60 分)
3 x 0 x 2 0
1
2
3
4
5
6
7
8
9 10 11 12
A
BDBAACCDCAC
x x
3 2
A x 2 x 3
二、填空题(16 分)
13. 13
14. 1
15.
f
(a
1)
a 2 a 2
6a 2a
5 3
a 1 a 1
16.
(2) A B B x x a a a 3
(2)解不等式 f (x) log a ; 3
(3) g(x 2) 2 2b 有两个不等实根时,求 b 的取值范围.
⑴求 f (0) 的值; ⑵求证: f (x) 为奇函数; ⑶若函数 f (x) 是 R 上的增函数,已知 f (1) 1, 且 f (2a) f (a 1) 2 ,求 a 的取值范围.
(1)求 a, b 的值;
f (a b) f (a) f (b) ,当 x 0 时,有 f (x) 1,其中 f (1) 2 . (1)求 f (0) 、 f (1) 的值; (2)证明 不等式 m 2
(k
2)m
3
f (x)
所以函数的值域为1,
……12 分
(B 类)解:(1) 1 x 0, x 1 0,即x 1x 1 0.
1 x
x 1
1 x 1, f x的定义域为1,1
20 解:设经过 n 天,该同学所服的第一片药在他体内的残留量不超过10mg ……2

(2)证明:
则: 200(1 60%)n 10
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
建议收藏下载本文,以便随时学习! 22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分)

2017-2018学年高一数学必修1全册同步课时作业含解析【人教A版】

2017-2018学年高一数学必修1全册同步课时作业含解析【人教A版】

2017-2018学年高一数学必修1 全册同步课时作业目录1.1.1-1集合与函数概念1.1.1-2集合的含义与表示1.1.1-3集合的含义与表示1.1.2集合间的包含关系1.1.3-1集合的基本运算(第1课时)1.1.3-2集合的基本运算(第2课时)1.1习题课1.2.1函数及其表示1.2.2-1函数的表示法(第1课时)1.2.2-2函数的表示法(第2课时)1.2.2-3函数的表示法(第3课时)1.2习题课1.3.1-1单调性与最大(小)值(第1课时)1.3.1-2单调性与最大(小)值(第2课时)1.3.1-3单调性与最大(小)值(第3课时)1.3.1-4单调性与最大(小)值(第4课时)1.3.2-1函数的奇偶性(第1课时)1.3.2-2函数的奇偶性(第2课时)函数的值域专题研究第一章单元检测试卷A第一章单元检测试卷B 2.1.1-1基本初等函数(Ⅰ)2.1.1-2指数与指数幂的运算(第2课时)2.1.2-1指数函数及其性质(第1课时)2.1.2-2指数函数及其性质(第2课时)2.1.2-3对数与对数运算(第3课时)2.2.1-1对数与对数运算(第1课时)2.2.1-2对数与对数运算(第2课时)2.2.1-3对数与对数运算(第3课时)2.2.2-1对数函数及其性质(第1课时)2.2.2-2对数函数的图像与性质(第2课时)2.2.2-3对数函数的图像与性质2.3 幂函数图像变换专题研究第二章单元检测试卷A第二章单元检测试卷B3.1.1函数的应用3.1.2用二分法求方程的近似解3.2.1函数模型及其应用3.2.2函数模型的应用实例第三章单元检测试卷A第三章单元检测试卷B全册综合检测试题模块A全册综合检测试题模块B1.1.1-1集合与函数概念课时作业1.下列说法中正确的是()A.联合国所有常任理事国组成一个集合B.衡水中学年龄较小的学生组成一个集合C.{1,2,3}与{2,1,3}是不同的集合D.由1,0,5,1,2,5组成的集合有六个元素答案 A解析根据集合中元素的性质判断.2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( ) A.3.14 B.-2 C.78 D.7答案 D解析 由题意知a 应为无理数,故a 可以为7. 3.设集合M ={(1,2)},则下列关系式成立的是( ) A.1∈M B.2∈M C.(1,2)∈M D.(2,1)∈M 答案 C4.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )A.1B.2C.3D.4 答案 C解析 M ={-1,2,3}.5.若2∈{1,x 2+x},则x 的值为( ) A.-2 B.1 C.1或-2 D.-1或2 答案 C解析 由题意知x 2+x =2,即x 2+x -2=0.解得x =-2或x =1.6.已知集合M ={a ,b ,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 答案 D解析 因集合中的元素全不相同,故三角形的三边各不相同.所以△ABC 不可能是等腰三角形.7.设a ,b ∈R ,集合{1,a}={0,a +b},则b -a =( ) A.1 B.-1 C.2 D.-2 答案 A解析 ∵{1,a}={0,a +b},∴⎩⎪⎨⎪⎧a =0,a +b =1,∴⎩⎪⎨⎪⎧a =0,b =1.∴b -a =1,故选A. 8.下列关系中①-43∈R ;②3∉Q ;③|-20|∉N *;④|-2|∈Q ;⑤-5∉Z ;⑥0∈N .其正确的是________. 答案 ①②⑥ 9.下列说法中①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素. 其中正确的个数是________. 答案 2解析 由数集性质知①③错误,②④正确.10.集合{1,2}与集合{2,1}是否表示同一集合?________;集合{(1,2)}与集合{(2,1)}是否表示同一集合?______.(填“是”或“不是”) 答案 是,不是11.若{a ,0,1}={c ,1b ,-1},则a =______,b =______,c =________.答案 -1 1 0解析 ∵-1∈{a ,0,1},∴a =-1. 又0∈{c ,1b ,-1}且1b ≠0,∴c =0,从而可知1b=1,∴b =1.12.已知集合A 中含有两个元素1和a 2,则a 的取值范围是________. 答案 a ∈R 且a ≠±1解析 由集合元素的互异性,可知a 2≠1,∴a ≠±1,即a ∈R 且a ≠±1. 13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________. 答案 2或414.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∉B ,求实数a 的值. 答案 -4解析 ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,a +3≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2.∴a =-4. ►重点班·选做题15.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.解析 (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a ,即a=±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.下面有五个命题:①集合N (自然数集)中最小的数是1;②{1,2,3}是不大于3的自然数组成的集合;③a ∈N ,b ∈N ,则a +b ≥2;④a ∈N ,b ∈N ,则a·b ∈N ;⑤集合{0}中没有元素. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3答案 B解析 因为0是自然数,所以0∈N .由此可知①②③是错误的,⑤亦错,只有④正确.故选B.1.1.1-2集合的含义与表示含解析课时作业1.用列举法表示集合{x|x 2-2x +1=0}为( ) A.{1,1} B.{1}C.{x =1}D.{x 2-2x +1=0}答案 B2.集合{1,3,5,7,9}用描述法表示应是( ) A.{x|x 是不大于9的非负奇数} B.{x|x ≤9,x ∈N } C.{x|1≤x ≤9,x ∈N } D.{x|0≤x ≤9,x ∈Z }答案 A3.由大于-3且小于11的偶数组成的集合是( ) A.{x|-3<x<11,x ∈Q } B.{x|-3<x<11}C.{x|-3<x<11,x =2k ,x ∈Q }D.{x|-3<x<11,x =2k ,x ∈Z }答案 D4.集合{x ∈N *|x<5}的另一种表示法是( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案 B5.设集合M ={x|x ∈R 且x ≤23},a =26,则( ) A.a ∉M B.a ∈MC.a =MD.{a|a =26}=M答案 A解析 首先元素与集合关系只能用符号“∈”与“∉”表示.集合中元素意义不同的不能用“=”连接,再有a =24>23,a 不是集合M 的元素,故a ∉M.另外{a|a =26}中只有一个元素26与集合M 中元素不相同.故D 错误.6.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1表示成列举法,正确的是( ) A.{2,3} B.{(2,3)} C.{x =2,y =3} D.(2,3)答案 B7.下列集合中,不同于另外三个集合的是( ) A.{x|x =1} B.{x =1} C.{1}D.{y|(y -1)2=0}答案 B解析A,C,D都是数集.8.下列集合表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}答案 C解析A中M是点集,N是点集,是两个不同的点;B中M是点集,N是数集;D中M是数集,N是点集,故选C.9.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6答案 B解析由集合中元素的互异性,可知集合M={5,6,7,8},所以集合M中共有4个元素.10.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0}答案 C解析坐标轴上的点的横、纵坐标至少有一个为0,故选C.11.将集合“奇数的全体”用描述法表示为①{x|x=2n-1,n∈N*}; ②{x|x=2n+1,n∈Z};③{x|x=2n-1,n∈Z};④{x|x=2n+1,n∈R};⑤{x|x=2n+5,n∈Z}.其中正确的是________.答案②③⑤12.已知命题:(1){偶数}={x|x=2k,k∈Z};(2){x||x|≤2,x∈Z}={-2,-1,0,1,2};(3){(x,y)|x+y=3且x-y=1}={1,2}.其中正确的是________.答案(1)(2)13.已知集合A={1,0,-1,3},B={y|y=|x|,x∈A},则B=________.答案{0,1,3}解析 ∵y =|x|,x ∈A ,∴y =1,0,3,∴B ={0,1,3}. 14.用∈或∉填空:(1)若A ={x|x 2=x},则-1________A ; (2)若B ={x|x 2+x -6=0},则3________B ; (3)若C ={x ∈N |1≤x ≤10},则8________C ; (4)若D ={x ∈Z |-2<x<3},则1.5________D. 答案 (1)∉ (2)∉ (3)∈ (4)∉ ►重点班·选做题15.用另一种方法表示下列集合. (1){x||x|≤2,x ∈Z };(2){能被3整除,且小于10的正数}; (3)坐标平面内在第四象限的点组成的集合. (4){(x ,y)|x +y =6,x ,y 均为正整数}; (5){-3,-1,1,3,5}. (6)被3除余2的正整数集合.答案 (1){-2,-1,0,1,2} (2){3,6,9}(3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x>0,y<0 (4){(1,5),(2,4),(3,3),(4,2),(5,1)} (5){x|x =2k -1,-1≤k ≤3,k ∈Z } (6){x|x =3n +2,n ∈N }16.已知集合{x|x 2+ax +b =0}={2,3},求a ,b 的值. 答案 -5 6解析 ∵{x|x 2+ax +b =0}={2,3}, ∴方程x 2+ax +b =0有两实根x 1=2,x 2=3. 由根与系数的关系得a =-(2+3)=-5,b =2×3=6.1.下列集合是有限集的是( ) A.{x|x 是被3整除的数}B.{x ∈R |0<x <2}C.{(x ,y)|2x +y =5,x ∈N ,y ∈N }D.{x|x 是面积为1的菱形}答案 C解析 C 中集合可化为:{(0,5),(1,3),(2,1)}.2.已知集合A ={x|x 2-2x +a>0},且1∉A ,则实数a 的取值范围是( ) A.{a|a ≤1}B.{a|a ≥1}C.{a|a≥0}D.{a|a≤-1}答案 A解析因为1∉A,所以当x=1时,1-2+a≤0,所以a≤1,即a的取值范围是{a|a≤1}.1.1.1-3集合的含义与表示课时作业(三)1.设x ∈N ,且1x ∈N ,则x 的值可能是( )A.0B.1C.-1D.0或1答案 B解析 首先x ≠0,排除A ,D ;又x ∈N ,排除C ,故选B.2.下面四个关系式:π∈{x|x 是正实数},0.3∈Q ,0∈{0},0∈N ,其中正确的个数是( ) A.4 B.3 C.2 D.1 答案 A解析 本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确. 3.集合{x ∈N |-1<x<112}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 答案 C解析 ∵x ∈N ,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C.4.已知集合A ={x ∈N *|-5≤x ≤5},则必有( ) A.-1∈A B.0∈A C.3∈A D.1∈A 答案 D解析 ∵x ∈N *,-5≤x ≤5,∴x =1,2,即A ={1,2},∴1∈A. 5.集合M ={(x ,y)|xy<0,x ∈R ,y ∈R }是( ) A.第一象限内的点集 B.第三象限内的点集 C.第四象限内的点集 D.第二、四象限内的点集 答案 D解析 根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.6.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A.矩形 B.平行四边形 C.菱形D.梯形答案 D解析 由于集合中的元素具有“互异性”,故a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等.7.集合A ={x|x ∈N ,且42-x ∈Z },用列举法可表示为A =________.答案 {0,1,3,4,6}解析 注意到42-x ∈Z ,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x ∈N ,∴x =0,1,3,4,6.8.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素. 答案 1解析 这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 9.点P(1,3)和集合A ={(x ,y)|y =x +2}之间的关系是________. 答案 P ∈A解析 在y =x +2中,当x =1时,y =3,因此点P 是集合A 的元素,故P ∈A. 10.用列举法表示集合A ={(x ,y)|x +y =3,x ∈N ,y ∈N *}为________. 答案 {(0,3),(1,2),(2,1)}解析 集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}.11.若A ={-2,2,3,4},B ={x|x =t 2,t ∈A},用列举法表示集合B =________. 答案 {4,9,16}解析 由题意可知集合B 是由集合A 中元素的平方构成,故B ={4,9,16}.12.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)|⎩⎪⎨⎪⎧x +y =3,x -y =1},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个. 答案 2解析 因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合.13.设A 是满足x<6的所有自然数组成的集合,若a ∈A ,且3a ∈A ,求a 的值. 解析 ∵a ∈A 且3a ∈A ,∴a<6且3a<6,∴a<2. 又∵a 是自然数,∴a =0或1.14.已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解析 本题中已知集合A 中有两个元素且1∈A ,据集合中元素的特点需分a =1和a 2=1两种情况,另外还要注意集合中元素的互异性.若1∈A ,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a ≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a =-1. ►重点班·选做题15.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a ∈A ,b ∈A 且a ≠b ,写出集合B.解析 当⎩⎪⎨⎪⎧a =0,b ≠0或⎩⎪⎨⎪⎧a ≠0,b =0时,x =0; 当⎩⎪⎨⎪⎧a =2,b =5或⎩⎪⎨⎪⎧a =5,b =2时,x =10; 当⎩⎪⎨⎪⎧a =2,b =10或⎩⎪⎨⎪⎧a =10,b =2时,x =20; 当⎩⎪⎨⎪⎧a =5,b =10或⎩⎪⎨⎪⎧a =10,b =5时,x =50. 所以B ={0,10,20,50}.1.已知A ={x|3-3x>0},则有( ) A.3∈A B.1∈A C.0∈A D.-1∉A答案 C解析 因为A ={x|3-3x>0}={x|x<1},所以0∈A.2.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.解析 三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}.3.数集M 满足条件:若a ∈M ,则1+a 1-a ∈M(a ≠±1且a ≠0),已知3∈M ,试把由此确定的集合M 的元素全部求出来.解析 ∵a =3∈M ,∴1+a 1-a =1+31-3=-2∈M ,∴1-21+2=-13∈M.∴1-131+13=12∈M ,∴1+121-12=3∈M.即M =⎩⎨⎧⎭⎬⎫3,-2,-13,12.4.设集合A ={x ,y},B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值. 解析 因为A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.5.集合A ={x|⎩⎪⎨⎪⎧y =x ,y =x 2}可化简为________. 以下是两位同学的答案,你认为哪一个正确?试说明理由.学生甲:由⎩⎪⎨⎪⎧y =x ,y =x 2,得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}. 解析 同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =1,y =1.故同学甲正确.1.1.2集合间的包含关系课时作业(四)1.数0与集合∅的关系是()A.0∈∅B.0=∅C.{0}=∅D.0∉∅答案 D2.集合{1,2,3}的子集的个数是()A.7B.4C.6D.8答案 D3.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}答案 D解析∵A,B,C中分别表示的集合为{0},{x|x>0},{0},∴不是空集;又∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.4.已知集合P={1,2,3,4},Q={y|y=x+1,x∈P},那么集合M={3,4,5}与Q的关系是()A.M QB.M QC.Q MD.Q=M答案 A5.下列六个关系式中正确的个数为()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.A.6B.5C.4D.3个及3个以下答案 C解析其中①②⑤⑥是正确的,对于③应为∅ {∅}或∅∈{∅};对于④应为{0} ∅.6.若集合A={-1,2},B={x|x2+ax+b=0},且A=B,则有()A.a=1,b=-2B.a=2,b=2C.a=-1,b=-2D.a=-1,b=2答案 C解析由A=B知-1与2是方程x2+ax+b=0的两根,∴⎩⎪⎨⎪⎧-1+2=-a ,(-1)×2=b ,∴⎩⎪⎨⎪⎧a =-1,b =-2. 7.集合P ={x|y =x 2},Q ={y|y =x 2},则下列关系中正确的是( ) A.P Q B.P =Q C.P ⊆Q D.P Q答案 D解析 P ,Q 均为数集,P ={x|y =x 2}=R ,Q ={y|y =x 2}={y|y ≥0},∴Q P ,故选D. 8.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 的个数为( ) A.6 B.5 C.4 D.3答案 B解析 A ={1},{3},{1,2},{1,3},{2,3}共5个.9.若A ={(x ,y)|y =x},B ={(x ,y)|yx =1},则A ,B 关系为( )A.A BB.B AC.A =BD.A B答案 B10.已知集合A ={-1,3,m},集合B ={3,4},若B ⊆A ,则实数m =________. 答案 4解析 ∵B ⊆A ,A ={-1,3,m},∴m =4.11.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A ,则5-x ∈A.符合上述要求的集合A 的个数是________. 答案 3解析 由“若x ∈A ,则5-x ∈A ”可知,1和4,2和3成对地出现在A 中,且A ≠∅.故集合A 的个数等于集合{1,2}的非空子集的个数,即3个.12.设集合A ={x ∈R |x 2+x -1=0},B ={x ∈R |x 2-x +1=0},则集合A ,B 之间的关系是________. 答案 B A解析 ∵A ={-1-52,-1+52},B =∅,∴B A.13.已知M ={y|y =x 2-2x -1,x ∈R },N ={x|-2≤x ≤4},则集合M 与N 之间的关系是________. 答案 N M14.设A ={x ∈R |-1<x<3},B ={x ∈R |x>a},若A B ,求a 的取值范围. 答案 a ≤-1解析 数形结合,端点处单独验证.15.设集合A ={1,3,a},B ={1,a 2-a +1},B ⊆A ,求a 的值.解析 因为B ⊆A ,所以B 中元素1,a 2-a +1都是A 中的元素,故分两种情况. (1)a 2-a +1=3,解得a =-1或2,经检验满足条件. (2)a 2-a +1=a ,解得a =1,此时A 中元素重复,舍去. 综上所述,a =-1或a =2. ►重点班·选做题16.a ,b 是实数,集合A ={a ,ba ,1},B ={a 2,a +b ,0},若A =B ,求a 2 015+b 2 016.答案 -1解析 ∵A =B ,∴b =0,A ={a ,0,1},B ={a 2,a ,0}.∴a 2=1,得a =±1.a =1时,A ={1,0,1}不满足互异性,舍去;a =-1时,满足题意.∴a 2015+b 2 016=-1.1.设a ,b ∈R ,集合{1,a +b ,a}={0,ba ,b},则b -a 等于( )A.1B.-1C.2D.-2答案 C解析 ∵a ≠0,∴a +b =0,∴ba =-1.∴b =1,a =-1,∴b -a =2,故选C.2.设集合A ={x|-3≤x ≤2},B ={x|2k -1≤x ≤k +1}且B ⊆A ,求实数k 的取值范围. 解析 ∵B ⊆A ,∴B =∅或B ≠∅.①B =∅时,有2k -1>k +1,解得k>2. ②B ≠∅时,有⎩⎪⎨⎪⎧2k -1≤k +1,2k -1≥-3,k +1≤2,解得-1≤k ≤1.综上,-1≤k ≤1或k>2.1.1.3-1集合的基本运算(第1课时)课时作业(五)1.(2014·广东)已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( ) A.{0,1} B.{-1,0,2} C.{-1,0,1,2} D.{-1,0,1}答案 C解析 M ∪N ={-1,0,1,2}.2.若集合A ={x|-2<x<1},B ={x|0<x<2},则集合A ∩B =( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 答案 D3.设A ={x|1≤x ≤3},B ={x|x<0或x ≥2},则A ∪B 等于( ) A.{x|x<0或x ≥1} B.{x|x<0或x ≥3} C.{x|x<0或x ≥2} D.{x|2≤x ≤3} 答案 A4.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ) A.1 B.3 C.4 D.8答案 C解析 ∵A ={1,2},A ∪B ={1,2,3},∴B ={3}或{1,3}或{2,3}或{1,2,3},故选C.5.设集合M ={m ∈Z |-3<m<2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 答案 B解析 集合M ={-2,-1,0,1},集合N ={-1,0,1,2,3},M ∩N ={-1,0,1}. 6.若A ={x|x2∈Z },B ={y|y +12∈Z },则A ∪B 等于( )A.BB.AC.∅D.Z答案 D解析 A ={x|x =2n ,n ∈Z }为偶数集,B ={y|y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 7.已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}答案 B解析集合B含有整数-1,0,故A∩B={-1,0}.8.如果A={x|x=2n+1,n∈Z},B={x|x=k+3,k∈Z},那么A∩B=()A.∅B.AC.BD.Z答案 B9.满足条件M∪{1}={1,2,3}的集合M的个数是________.答案 2解析M={1,2,3}或M={2,3}.10.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的为________.答案②③④解析①是错误的,a∈(A∪B)时可推出a∈A或a∈B,不一定能推出a∈A.11.已知集合P,Q与全集U,下列命题:①P∩Q=P,②P∪Q=Q,③P∪Q=U,其中与命题P⊆Q等价的命题有______个.答案 2解析①②都等价.12.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是________.答案a≤-113.若集合P满足P∩{4,6}={4},P∩{8,10}={10},且P⊆{4,6,8,10},求集合P. 解析由条件知4∈P,6∉P,10∈P,8∉P,∴P={4,10}.14.已知集合A={x|x+3≤0},B={x|x-a<0}.(1)若A∪B=B,求a的取值范围;(2)若A∩B=B,求a的取值范围.解析(1)∵A∪B=B,∴A⊆B,∴a>-3.(2)∵A∩B=B,∴B⊆A,∴a≤-3.►重点班·选做题15.已知A={x|2a<x≤a+8},B={x|x<-1或x>5},若A∪B=R,求a的取值范围.解析∵B={x|x<-1或x>5},A∪B=R,∴⎩⎪⎨⎪⎧2a<-1,a +8≥5,解得-3≤a<-12.1.若A ={x|x 2-5x +6=0},B ={x|x 2-6x +8=0},则A ∪B =________,A ∩B =________. 答案 A ={2,3},B ={2,4}, ∴A ∪B ={2,3,4},A ∩B ={2}.2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A.∅ B.{x|x<-12}C.{x|x>53}D.{x|-12<x<53}答案 D解析 S ={x|x>-12},T ={x|x<53},在数轴上表示出S 和T ,可知选D.3.设集合A ={x|-5≤x<1},B ={x|x ≤2},则A ∩B 等于( ) A.{x|-5≤x<1} B.{x|-5≤x ≤2} C.{x|x<1} D.{x|x ≤2} 答案 A4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 答案 15.已知A ={|a +1|,3,5},B ={2a +1,a 2+2a ,a 2+2a -1},若A ∩B ={2,3},则A ∪B =________.答案 {2,3,5,-5}解析 由|a +1|=2,得a =1或-3,代入求出B ,注意B 中不能有5.6.已知M ={x|x ≤-1},N ={x|x>a -2},若M ∩N ≠∅,则a 的范围是________. 答案 a<1课时作业(六)1.1.3-2集合的基本运算(第2课时)1.已知U={1,3},A={1,3},则∁U A=()A.{1,3}B.{1}C.{3}D.∅答案 D2.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}答案 C3.设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},则(∁U A)∪(∁U B)=()A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}答案 C解析∵∁U A={4,5},∁U B={1,2},故选C.4.若集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}答案 D5.设P={x︱x<4},Q={x︱x2<4},则()A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P答案 B6.已知全集U=Z,集合A={x|x=k3,k∈Z},B={x|x=k6,k∈Z},则()A.∁U A ∁U BB.A BC.A=BD.A与B中无公共元素答案 A解析∵A={x|x=26k,k∈Z},∴∁U A ∁U B,A B.7.设全集U={2,3,5},A={2,|a-5|},∁U A={5},则a的值为()A.2B.8C.2或8D.-2或8答案 C解析∁U A={5}包含两层意义,①5∉A;②U中除5以外的元素都在A中.∴|a-5|=3,解得a=2或8.8.设全集U=Z,A={x∈Z|x<5},B={x∈Z|x≤2},则∁U A与∁U B的关系是()A.∁U A ∁U BB.∁U A ∁U BC.∁U A=∁U BD.∁U A ∁U B答案 A解析∵∁U A={x∈Z|x≥5},∁U B={x∈Z|x>2}.故选A.9.设A={x||x|<2},B={x|x>a},全集U=R,若A⊆∁R B,则有()A.a=0B.a≤2C.a≥2D.a<2答案 C解析A={x|-2<x<2},∁R B={x|x≤a},在数轴上把A,B表示出来.10.已知全集U={1,2,3,4,5},S U,T U,若S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5},则有()A.3∈S∩TB.3∉S但3∈TC.3∈S∩(∁U T)D.3∈(∁U S)∩(∁U T)答案 C11.设全集U=Z,M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},则下列关系式中正确的有________.①M⊆P;②∁U M=∁U P;③∁U M=P;④∁U P=M.答案③④12.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________. 答案∁U A ∁U B解析∵∁U A={x|x<0},∁U B={y|y<1},∴∁U A ∁U B.13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解析 借助韦恩图,如右图所示, ∴U ={1,2,3,4,5,6,7,8,9}. ∵∁U B ={1,4,6,8,9}, ∴B ={2,3,5,7}.14.设集合U ={1,2,3,4},且A ={x ∈U|x 2-5x +m =0},若∁U A ={2,3},求m 的值. 解析 ∵∁U A ={2,3},U ={1,2,3,4}, ∴A ={1,4},即1,4是方程x 2-5x +m =0的两根. ∴m =1×4=4.15.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2}且∁U P ={-1},求实数a. 解析 ∵U ={2,0,3-a 2},P ={2,a 2-a -2},∁U P ={-1},∴⎩⎪⎨⎪⎧3-a 2=-1,a 2-a -2=0,解得a =2.1.如果S ={1,2,3,4,5},A ={1,3,4},B ={2,4,5},那么(∁S A)∩(∁S B)等于( ) A.∅ B.{1,3} C.{4} D.{2,5}答案 A解析 ∵∁S A ={2,5},∁S B ={1,3}, ∴(∁S A)∩(∁S B)=∅.2.设全集U ={1,2,3,4,5,6,7},P ={1,2,3,4,5},Q ={3,4,5,6,7},则P ∩(∁U Q)等于()A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案 A解析 ∵∁U Q ={1,2},∴P ∩(∁U Q)={1,2}.3.设全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,7},B ={3,5},则正确的是( ) A.U =A ∪B B.U =(∁U A)∪B C.U =A ∪(∁U B) D.U =(∁U A)∪(∁U B)答案 C解析 ∵∁U B ={1,2,4,6,7}, ∴A ∪(∁U B)={1,2,3,4,5,6,7}=U.4.已知A ={x|x<3},B ={x|x<a}.若A ⊆B ,问∁R B ⊆∁R A 是否成立? 答案 成立5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.答案126.如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(∁S A)∪(∁S B)=________.答案{0,1,3,4,5}解析∵S={x∈N|x<6}={0,1,2,3,4,5},∴∁S A={0,4,5},∁S B={0,1,3}.∴(∁S A)∪(∁S B)={0,1,3,4,5}.课时作业(七)1.1习题课含解析(第一次作业)1.(2015·广东,理)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=() A.{1,4} B.{-1,-4}C.{0}D.∅答案 D2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为()A.3B.4C.5D.6答案 A3.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是() A.M P B.P MC.M=PD.M P且P M答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1而M中无元素1,P比M多一个元素.4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}答案 B5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}答案 A6.已知方程x2-px+15=0与x2-5x+q=0的解集分别为S与M,且S∩M={3},则p+q 的值是()A.2B.7C.11D.14答案 D解析 由交集定义可知,3既是集合S 中的元素,也是集合M 中的元素.亦即是方程x 2-px +15=0与x 2-5x +q =0的公共解,把3代入两方程,可知p =8,q =6,则p +q 的值为14.7.已知全集R ,集合A ={x|(x -1)(x +2)(x -2)=0},B ={y|y ≥0},则A ∩(∁R B)为( ) A.{1,2,-2} B.{1,2} C.{-2} D.{-1,-2}答案 C解析 A ={1,2,-2},而B 的补集是{y|y<0},故两集合的交集是{-2},选C. 8.集合P ={1,4,9,16,…},若a ∈P ,b ∈P ,则a ⊕b ∈P ,则运算⊕可能是( ) A.除法 B.加法 C.乘法 D.减法答案 C解析 当⊕为除法时,14∉P ,∴排除A ;当⊕为加法时,1+4=5∉P ,∴排除B ;当⊕为乘法时,m 2·n 2=(mn)2∈P ,故选C ; 当⊕为减法时,1-4∉P ,∴排除D.9.设全集U =Z ,集合P ={x|x =2n ,n ∈Z },Q ={x|x =4m ,m ∈Z },则U 等于( ) A.P ∪Q B.(∁U P)∪Q C.P ∪(∁U Q) D.(∁U P)∪(∁U Q)答案 C10.设S ,P 为两个非空集合,且S P ,P S ,令M =S ∩P ,给出下列4个集合:①S ;②P ;③∅;④S ∪P.其中与S ∪M 能够相等的集合的序号是( ) A.① B.①② C.②③ D.④答案 A11.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是( ) A.1 B.2 C.3 D.4答案 D解析 A 的配集有{3},{1,3},{2,3},{1,2,3}共4个. 12.已知集合A ,B 与集合A@B 的对应关系如下表:________.答案 {2 012,2 013}13.已知A ={2,3},B ={-4,2},且A ∩M ≠∅,B ∩M =∅,则2________M ,3________M. 答案 ∉ ∈解析 ∵B ∩M =∅,∴-4∉M ,2∉M. 又A ∩M ≠∅且2∉M ,∴3∈M.14.若集合A ={1,3,x},B ={1,x 2},且A ∪B ={1,3,x},则x =________. 答案 ±3或0解析 由A ∪B ={1,3,x},B A , ∴x 2∈A.∴x 2=3或x 2=x. ∴x =±3或x =0,x =1(舍).15.已知S ={a ,b},A ⊆S ,则A 与∁S A 的所有有序组对共有________组. 答案 4解析 S 有4个子集,分别为∅,{a},{b},{a ,b}注意有序性.⎩⎪⎨⎪⎧A ={a},∁S A ={b}和⎩⎪⎨⎪⎧A ={b},∁S A ={a}是不同的.16.已知A ⊆M ={x|x 2-px +15=0,x ∈R },B ⊆N ={x|x 2-ax -b =0,x ∈R },又A ∪B ={2,3,5},A ∩B ={3},求p ,a 和b 的值.解析 由A ∩B ={3},知3∈M ,得p =8.由此得M ={3,5},从而N ={3,2},由此得a =5,b =-6.(第二次作业)1.(2014·北京,理)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}答案 C解析解x2-2x=0,得x=0或x=2,故A={0,2},所以A∩B={0,2},故选C.2.(高考真题·全国Ⅰ)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析由题意得P=M∩N={1,3},∴P的子集为∅,{1},{3},{1,3},共4个,故选B.3.设集合A={x∈Z|0≤x≤5},B={x|x=k2,k∈A},则集合A∩B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,3}D.B答案 A4.设M={1,2,m2-3m-1},P={1,3},且M∩P={1,3},则m的值为()A.4B.-1C.-4或1D.-1或4答案 D5.已知集合M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于()A.∅B.NC.MD.R答案 B解析∵M=R,N={y|y≥-1},∴M∩N=N.6.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅答案 C7.设集合A={x|x∈Z且-15≤x≤-2},B={x|x∈Z且|x|<5},则A∪B中的元素个数是() A.10 B.11C.20D.21答案 C解析 ∵A ∪B ={x|x ∈Z 且-15≤x<5}={-15,-14,-13,…,1,2,3,4},∴A ∪B 中共20个元素.8.已知全集U ={0,1,2}且∁U A ={2},则集合A 的真子集的个数为( ) A.3 B.4 C.5 D.6答案 A解析 ∵A ={0,1},∴真子集的个数为22-1=3.9.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},那么(∁U A)∩(∁U B)等于()A.{1,2}B.{3,4}C.{5,6}D.{7,8}答案 D解析 ∵∁U A ={5,6,7,8},∁U B ={1,2,7,8},∴(∁U A)∩(∁U B)={7,8}. 10.已知集合P ={x|-1≤x ≤1},M ={-a ,a},若P ∪M =P ,则a 的取值范围是( ) A.{a|-1≤a ≤1} B.{a|-1<a<1}C.{a|-1<a<1,且a ≠0}D.{a|-1≤a ≤1,且a ≠0}答案 D解析 由P ∪M =P ,得M ⊆P.所以⎩⎪⎨⎪⎧-1≤a ≤1,-1≤-a ≤1,即-1≤a ≤1.又由集合元素的互异性知-a ≠a ,即a ≠0, 所以a 的取值范围是{a|-1≤a ≤1,且a ≠0}.11.若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有( ) A.A ⊆C B.C ⊆A C.A ≠C D.A =∅答案 A12.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________. 答案 313.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 有________个元素. 答案 15解析 由A ∩B 含有3个元素知,仅有3个元素相同,根据集合元素的互异性,集合的元素个数为10+8-3=15,或直接利用韦恩图得出结果.14.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.思路首先根据题意判断出A与B的关系,再对m分类讨论化简集合B,根据A,B的关系求出m的范围.解析∵A∪B=B,∴A⊆B.①当m>0时,由mx+1>0,得x>-1m,此时B={x|x>-1m},由题意知-1m<-1,∴0<m<1.②当m=0时,B=R,此时A⊆B.③当m<0时,得B={x|x<-1m},由题意知-1m>2,∴-12<m<0.综上:-12<m<1.点评在解有关集合交、并集运算时,常会遇到A∩B=A,A∪B=B等这类问题.解答时应充分利用交集、并集的有关性质,准确转化条件,有时也借助数轴分析处理,另外还要注意“空集”这一隐含条件.已知全集U={a,1,3,b,x2-2=0},集合A={a,b},则∁U A=________.答案{1,3,x2-2=0}解析在全集U中除去A中的元素后所组成的集合即为∁U A,故∁U A={1,3,x2-2=0}.1.(2015·新课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案 D2.(2015·天津,理)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A3.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D解析∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1},故选D.5.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B ={1,2},则A∩(∁U B)=()A.{3}B.{4}C.{3,4}D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B ={3,4},故A∩(∁U B)={3}.6.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案 A7.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5D.9答案 C解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x -y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.8.(2013·天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2]C.[-2,2]D.[-2,1]答案 D解析解不等式|x|≤2,得-2≤x≤2,所以A=[-2,2],所以A∩B=[-2,1].9.(2012·福建)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}答案 D解析A项,M={1,2,3,4},N={-2,2},M与N显然无包含关系,故A错.B项同A项,故B项错.C项,M∩N={2},故C错,D对.10.(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4答案 D解析A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.11.(2012·山东)已知集合U={0,1,2,3,4},集合A={1,2,3,4},B={2,4},则(∁U A)∪B 为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析由题意知∁U A={0},又B={2,4},∴(∁U A)∪B={0,2,4},故选C.12.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,∁U A∩B=________.9},则()答案{7,9}解析由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁U A={4,6,7,9,10},(∁U A)∩B ={7,9}.1.(2014·大纲全国理改编)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩(∁R N)=() A.(0,4] B.[0,4)C.[-1,0)D.(-1,0)答案 D解析∵M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},∴∁R N={x|x<0或x>5}.∴M∩(∁R N)={x|-1<x<0}.2.(2014·江西,文)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=() A.(-3,0) B.(-3,-1)C.(-3,-1]D.(-3,3)答案 C解析由题意知,A={x|x2-9<0}={x|-3<x<3},∵B={x|-1<x≤5},∴∁R B={x|x≤-1或x>5}.∴A ∩(∁R B)={x|-3<x<3}∩{x|x ≤-1或x>5}={x|-3<x ≤-1}.3.(2010·北京)集合P ={x ∈Z |0≤x<3},M ={x ∈R |x 2≤9},则P ∩M =( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x ≤3}答案 B4.(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞) 答案 B解析 由于Q ={x|x ≤-2或x ≥2},∁R Q ={x|-2<x<2},故得P ∪(∁R Q)={x|-2<x ≤3}.选B.5.(2014·四川,文)已知集合A ={x|(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( ) A.{-1,0} B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2} 答案 D解析 由二次函数y =(x +1)(x -2)的图像可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.6.(2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A.(-∞,-1) B.(-1,-23)C.(-23,3)D.(3,+∞)答案 D解析 A ={x|x>-23},B ={x|x>3或x<-1},则A ∩B ={x|x>3},故选D.课时作业(八) 1.2.1函数及其表示含解析1.下列集合A 到集合B 的对应f 是函数的是( ) A.A ={-1,0,1},B ={0,1},f :A 中的数平方 B.A ={0,1},B ={-1,0,1},f :A 中的数开方 C.A =Z ,B =Q ,f :A 中的数取倒数D.A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},下图所示4个图形中能表示集合M 到集合N 的函数关系的个数是( )A.0B.1C.2D.3答案 B3.函数f(x)=1+x +x1-x的定义域( ) A.[-1,+∞) B.(-∞,-1] C.R D.[-1,1)∪(1,+∞)答案 D解析 由⎩⎪⎨⎪⎧1+x ≥0,1-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1.故定义域为[-1,1)∪(1,+∞),故选D. 4.设函数f(x)=3x 2-1,则f(a)-f(-a)的值是( ) A.0 B.3a 2-1 C.6a 2-2 D.6a 2答案 A解析 f(a)-f(-a)=3a 2-1-[3(-a)2-1]=0.5.四个函数:①y=x+1;②y=x3;③y=x2-1;④y=1x.其中定义域相同的函数有()A.①②和③B.①和②C.②和③D.②③和④答案 A6.函数f(x)=11+x2(x∈R)的值域是()A.[0,1]B.[0,1)C.(0,1]D.(0,1) 答案 C7.已知f(x)=π(x∈R),则f(π2)等于()A.π2B.πC.πD.不确定答案 B解析因为π2∈R,所以f(π2)=π.8.函数y=21-1-x的定义域为()A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.[1,+∞)答案 B9.将下列集合用区间表示出来.(1){x|x≥1}=________;(2){x|2≤x≤8}=________;(3){y|y=1x}=________.答案(1)[1,+∞)(2)[2,8] (3)(-∞,0)∪(0,+∞)10.若f(x)=5xx2+1,且f(a)=2,则a=________.答案12或211.已知f(x)=x2+x-1,x∈{0,1,2,3},则f(x)的值域为________.答案{-1,1,5,11}12.设函数f(n)=k(n∈N*),k是π的小数点后的第n位数字,π=3.141 592 653 5…,则f(3)=________.答案 113.若函数y =1x -2的定义域为A ,函数y =2x +6的值域是B ,则A ∩B =________. 答案 [0,2)∪(2,+∞)解析 由题意知A ={x|x ≠2},B ={y|y ≥0},则A ∩B =[0,2)∪(2,+∞). 14.已知函数f(x)=x +3+1x +2.(1)求函数的定义域; (2)求f(-3),f(23)的值;(3)当a>0时,求f(a),f(a -1)的值.解析 (1)使根式x +3有意义的实数x 的集合是{x|x ≥-3},使分式1x +2有意义的实数x 的集合是{x|x ≠-2},所以这个函数的定义域是{x|x ≥-3}∩{x|x ≠-2}={x|x ≥-3,且x ≠-2}. (2)f(-3)=-3+3+1-3+2=-1; f(23)=23+3+123+2=113+38=38+333. (3)因为a>0,故f(a),f(a -1)有意义. f(a)=a +3+1a +2;f(a -1)=a -1+3+1(a -1)+2=a +2+1a +1.15.已知f(x)=13-x 的定义域为A ,g(x)=1a -x的定义域是B. (1)若B A ,求a 的取值范围; (2)若A B ,求a 的取值范围. 解析 A ={x|x<3},B ={x|x<a}.(1)若B A ,则a<3,∴a 的取值范围是{a|a<3}; (2)若A B ,则a>3,∴a 的取值范围是{a|a>3}.1.下列函数f(x)和g(x)中,表示同一函数的是( ) A.y =f(x)与y =f(x +1) B.y =f(x),x ∈R 与y =f(t),t ∈R C.f(x)=x 2,g(x)=x 3xD.f(x)=2x +1与g(x)=4x 2+4x +1答案 B2.下列式子中不能表示函数y =f(x)的是( ) A.x =2yB.3x +2y =1C.x =2y 2+1D.x =y答案 C3.已知函数f(x)=2x -1,则f(x +1)等于( ) A.2x -1 B.x +1 C.2x +1 D.1答案 C4.若f(x)=x 2-1x ,则f(x)的定义域为________.答案 {x|x ≤-1或x ≥1}5.下列每对函数是否表示相同函数? (1)f(x)=(x -1)0,g(x)=1; (2)f(x)=x ,g(x)=x 2; (3)f(t)=t 2t ,g(x)=|x|x .答案 (1)不是 (2)不是 (3)是6.已知A =B =R ,x ∈A ,y ∈B 对任意x ∈A ,x →y =ax +b 是从A 到B 的函数,若输出值1和8分别对应的输入值为3和10,求输入值5对应的输出值.解析 由题意可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1,b =-2,所以对应关系f :x →y =x -2,故输入值5对应的输出值为3.7.已知f(x)=11+x ,求[f(2)+f(3)+…+f(2 016)]+[f(12)+f(13)+…+f(12 016)].答案 2 015解析 f(x)+f(1x )=11+x+11+1x=11+x +x1+x =1,则原式=⎣⎡⎦⎤f (2)+f (12)+⎣⎡⎦⎤f (3)+f (13)+…+⎣⎡⎦⎤f (2 016)+f (12 016)=2 015.8.已知函数g(x)=x +2x -6,(1)点(3,14)在函数的图像上吗? (2)当x =4时,求g(x)的值; (3)当g(x)=2时,求x 的值.答案(1)不在(2)-3(3)14课时作业(九)1.2.2-1函数的表示法(第1课时)1.下列结论正确的是( )A.任意一个函数都可以用解析式表示B.函数y =x ,x ∈{1,2,3,4}的图像是一条直线C.表格可以表示y 是x 的函数D.图像可表示函数y =f(x)的图像答案 C2.某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A.成绩y 不是考试次数x 的函数B.成绩y 是考试次数x 的函数C.考试次数x 是成绩y 的函数D.成绩y 不一定是考试次数x 的函数答案 B3.函数f(x)=x +|x|x的图像是下图中的( )答案 C4.从甲城市到乙城市t min 的电话费由函数g(t)=1.06×(0.75[t]+1)给出,其中t>0,[t]为t 的整数部分,则从甲城市到乙城市5.5 min 的电话费为( ) A.5.04元 B.5.56元 C.5.84元 D.5.38元答案 A解析 g(5.5)=1.06(0.75×5+1)=5.035≈5.04.。

(完整)高一数学2017-2018学年高中数学必修一必修四测试题含答案,推荐文档

(完整)高一数学2017-2018学年高中数学必修一必修四测试题含答案,推荐文档

31高中数学必修1与必修四综合检测题 1 •下列函数中•既是偶函数,又在 ,0上为减函数的是 A. y 2x B. y , x C. y x 2 D. y Ig x12 、 一 cos A —,则这个三角形的形状为 ___________________________________25 10•设f(x)是定义在 R 上的奇函数,且f(x 3) f (x) 1 , f ( 1) 2,则f (2008) (3a 1)x 4a, (x 1) 11.已知函数f(x) 满足:对任意实数X 1,X 2,当X 1X 2时,总有lOg a x, (X 1)f(xj f(X 2) 0,那么实数a 的取值范围是112•已知函数f(x)为奇函数,且当 x>0时,f(x) = x 2 + ■,贝U f( — 1)=6.若 3sin cos 7•函数 y Asi n( 2si n(2x x 2性 3) &已知 f(x) 2 )在一个周期内的图象如下,此函数的解析式为( 2si n(2x ) 3 2sin(2x 3) u L o S ■12" 1 x 2 2x 0 ,g(x) 0f (x) m有3个零点, 则实数m 取值范围是,若 sin A 9. A 为三角形 ABC 的一个内角1 d~22•已知幕函数的图象过点 —亠 ,则log 4(f (2))的值为 ________________2 23 .函数 y xsinx cosx 的图像大致为(5•若一圆弧长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数为1 0,则一2 --------------- 的值为 ________ cos sin 2)31x13.方程2sin(x -) a 1 0在0, 上有两个不等的实根,则实数a的取值范围是。

2018年新高考高一数学(必修1和必修4)期末复习试题1-2套含答案

2018年新高考高一数学(必修1和必修4)期末复习试题1-2套含答案

2018年新高考高一数学期末复习试题1(必修1和必修4)一、选择题:本大题共12小题,每小题60分.1.设集合(){}211P x x =-<,{}11Q x x =-<<,则P Q =IA .()1,2-B .()1,0-C .()1,2D .()0,1 2. 下列函数中,在区间(0,)+∞内单调递减的是( )A . 1y x x=- B .2y x x =- C .ln y x =D .x y e =3.函数lg(1)()1x f x x +=-的定义域是( ) A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞U D .[1,1)(1,)-+∞U4.设12log 3=a ,0.21()3b = ,132c =,则a b c 、、的大小顺序为( )A. b a c <<B.c b a <<C.c a b <<D.a b c <<5.已知函数22,0(),0x x f x x x ≥⎧=⎨<⎩,则=-)]2([f f ( )A.8B.-8C.16D.8或-8 6.要得到⎪⎭⎫⎝⎛+=32sin πx y 的图像,只需将x y 2sin =的图像 ( ) A.向左平移6π个单位 B.向右平移6π个单位 C.向左平移3π个单位 D.向右平移3π个单位7.得( )A .6B .2xC .6或-2xD .-2x 或6或28.计算22log sinlog cos1212ππ+的值为( )A .-4B .4C .2D .-29.若1||||==,b a ⊥且b a 32+与b a k 4-也互相垂直,则实数k 的值为( ) (A)6- (B)6 (C)3- (D)3 10.函数2()ln f x x x=-的零点所在的大致区间是( ) A .(,2)1 B .(2,3) C .(3,4) D .(),e +∞11.已知)sin 2,1(x +=,)cos ,2(x =,)2,1(-=,//)(-,则锐角x 等于( ) (A) 15° (B) 30° (C) 45° (D) 60°12.函数()f x 定义域为R ,且对任意x y R ∈、,()()()f x y f x f y +=+恒成立.则下列选项中不.恒成立...的是( ) A .(0)0f = B .(2)2(1)f f = C .11()(1)22f f = D .()()0f x f x -<二、填空题:本大题共4小题,每小题5分.13.已知角α的终边过点(2,1)P -,则sin α的值为14. 若函数1()2x f x a -=+(其中01>≠a a 且)的图象经过定点(,)P m n , 则+=m n 15.设定义在R 上的函数()f x 同时满足以下条件:①()+()=0f x f x -;②()(2)f x f x =+;③当01x ≤≤时,()21x f x =-,则135(1)(2)222f f f f f ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 16.若对n 个向量1a ,2a ,……,n a 存在n 个不全为零的实数1k ,2k ,……,n k ,使得02211=+++n n a k a k a k Λ成立,则称向量1a ,2a ,……,n a 为“线性相关”,依此规定,能说明)0,1(1=a ,)1,1(2-=a ,)2,2(3=a “线性相关”的实数1k ,2k ,3k 依次可以取 __(写出一组数值即可,不必考虑所有情况)三、解答题 (本小题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本题满分10分)设集合={|25}A x x -≤≤,{|+121}B x m x m =≤≤-. (1)当3m =且x ∈Z 时,求A B I ;(2)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.18.(本题满分12分)已知向量))3(,5(),3,6(),4,3(m m OC OB OA +--=-=-=.①若点A 、B 、C 不能构成三角形,求实数m 应满足的条件; ②若△ABC 为直角三角形,求实数m 的值.19. (本题满分12分)已知函数()2sin 2,4π⎛⎫=+∈ ⎪⎝⎭f x x x R . (1)求38f π⎛⎫⎪⎝⎭的值;(2)若,282f αππαπ⎛⎫⎡⎤-=∈ ⎪⎢⎥⎝⎭⎣⎦,3[0,],cos ,sin()25πββαβ∈=+求的值.20(本题满分12分)已知函数()xf x a =)10(≠>a a 且. (1)若2)(0=x f ,求)3(0x f ;(2)若)(x f 的图像过点)4,2(,记)(x g 是)(x f 的反函数,求)(x g 在区间]2,21[上的值域.22.(本题满分12分)已知函数2()2||+3f x x x =-+ (1)作出函数()f x 的图象;(2)根据图象写出()f x 的单调增区间;(3)方程()f x a =恰有四个不同的实数根,写出实数a 的取值范围.22.(本题满分12分)某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+ (万元).当年产量不小于80千件时,10000()51 1 450C x x x=+- (万元).每件..商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润()L x (万元)关于年产量x (千件..)的函数解析式; (2)年产量为多少千件..时,该厂在这一商品的生产中所获利润最大?(说明:经研究发现函数()0ay x a x=+>在(上单调递减,在)+∞上单调递增)2018年新高考高一数学期末复习试题2(必修1和必修4)一、选择题:本大题共12小题,每小题60分.1已知集合M {}20x x x =-=,N ={}20y y y +=,则M N =U ( )A .∅B .{}0C .{}11-,D .{}101-,, 2、.把函数 y = cos2x 的图象按向量a r平移,得到y = sin2x 的图象,则 ( )A 、 (,0)2a π=rB 、 (,0)2a π=-rC 、(,0)4a π=rD 、(,0)4a π=-r3、若ABCD 为正方形,E 是CD 的中点,且AB=a ,,则BE 等于 A 、b+21a B 、b -21a C 、a+21b D 、a -21b4.已知tan α=,2παπ<<,则sin cos αα-=( )A B C D5. 已知x R ∈,用()A x 表示不小于x 的最小整数,如2A =,( 1.2)1A -=-,若(21)3A x +=,则x 的取值范围是( )A .31,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎤ ⎥⎝⎦C .1,12⎡⎫⎪⎢⎣⎭D .1,12⎛⎤⎥⎝⎦[来6.已知ABC ∆的边BC 上有一点D 满足4BD DC =u u u r u u u r ,则AD u u u r可表示为A .1344AD AB AC =+u u u r u u u r u u u rB .3144AD AB AC =+u u u r u u u r u u u rC .4155AD AB AC =+u u u r u u u r u u u rD .1455AD AB AC =+u u u r u u u r u u u r7.已知偶函数()f x 在[0,)+∞单调递减,则使得1(2)()2x f f >-成立的x 的取值范围是( )A (1,1)-B (,1)(1,)-∞-+∞UC (,1)-∞-D (1,)+∞8.由12sin(6)6y x π=-的图象向左平移3π个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后, 所得图象对应的函数解析式为A .12sin(3)6y x π=-B .12sin(3)6y x π=+C .12sin(3)12y x π=-D .12sin(12)6y x π=-9.若01a b <<<,则错误的是( )A 32a b <B 23a b <C 23log log a b <D log 2log 3a b <10.将函数()2sin 2f x x x =-的图象向右平移θ个单位后得到的图象关于直线6x π=对称,则θ的最小正值为( )A12πB6πC4πD3π11、函数x x f ωsin 2)(=在[0,4π]上递增,且在这个区间上最大值是3,那么ω等于A 、34 B 、38 C 、32D 、2 12、O 是平面上一定点,A 、B 、C 是该平面上不共线的三个点,一动点P 满足:()OP OA AB AC λ=++u u u r u u u r u u u r u u u r,λ∈(0,∞),则直线AP 一定通过△ABC 的 A 、外心 B 、内心 C 、重心 D 、垂心二、填空题:本大题共4小题,每小题5分. 13.已知132a =,则()2log 2a = . 14.设θ为第二象限角,若1tan 42πθ⎛⎫+= ⎪⎝⎭,则cos θ = . 15.已知(1,1)OA =u u u r ,(1,2)OB =-u u u r,以、为边作平行四边形OACB ,则与的夹角余弦值为__________ 16.已知函数()sin(2)3f x x π=+,x ∈R ,那么函数()y f x =的图象与函数lg y x =的图象的交点共有 个.三、解答题 (本小题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17. (本小题满分10分)设集合{}42<=x x A ,⎭⎬⎫⎩⎨⎧>+=134x x B .(1)求集合B A I ;(2)若不等式022<++b ax x 的解集为B ,求a ,b 的值.18.(本小题满分10分)已知cos 2πααπ=<<. (1)求sin 2α的值; (2)求3cos()cos()42ππαα+⋅-的值.19.(本小题满分12分) 已知函数R x x x x y ∈++=,21cos sin 3cos 2 (1)确定这个函数的周期; (2)若),6[+∞-∈πx ,求此时函数的最大值,并求出y 取最大值时x 的集合;(3)该函数的图像可由x y sin =,)(R x ∈的图像经过怎样的平移和伸缩变换得到。

高中数学人教版必修一至四测试题及答案

高中数学人教版必修一至四测试题及答案

云龙一中2016---2017学年(下)高一年级月考数学试卷第1卷 选择题一、单项选择 (每题5分 共12小题 60分)1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N ð等于 (A )A.{0,4}B.{3,4}C.{1,2}D. ∅2、计算:9823log log ⋅= ( D )A 12B 10C 8D 6 3、函数2(01)xy a a a =+>≠且图象一定过点 (B )A (0,1)B (0,3)C (1,0)D (3,0) 4、把函数xy 1-=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( c )A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 5、设x x e1e )x (g 1x 1x lg )x (f +=-+=,,则 ( B )A f(x)与g(x)都是奇函数B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数 6、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( C ) A (0,1) B (1,2) C (2,3) D (3,4) 7、若0.52a=,πlog 3b =,2log 0.5c =,则( A )A a b c >>B b a c >>C c a b >>D b c a >>8.如果sin(π+A )=-12,那么cos(32π-A )的值是( A )A .-12B.12 C .-32D.329.若tan α=2,则 2sin α-cos αsin α+2cos α值 为 ( B )A .0 B. 34 C .1 D. 5410. 在下列关于直线m l ,与平面βα,的命题中真命题是 (A ) (A )若β⊥l 且βα//,则α⊥l (B )若β⊆l 且βα⊥,则α⊥l (C )若β⊥l 且βα⊥,则α//l (D )若m =βα 且m l //,则α//l 二、填空题:(每题5分 共4小题 20分) 第11卷11.函数f (x )= 2(1)x x x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -= ---2-------12、函数122x )x (f x-+=的定义域是____:(,2]-∞ _13.圆0222=-+x y x 和圆0422=++y y x 的位置关系是的相交.14.以点(1,2)为圆心,与直线03534=-+y x 相切的圆的方程是25)2()1(22=-+-y x . 15.球与其内接正方体的体积比是2:3π.16.已知直线l 经过点(43)P --,,且被圆22(1)(2)25x y +++=截得的弦长为8,则直线l 的方程是 .43250x y ++=或4x =- 三、解答题(一共70分)17.18. 计算 5log 3333322log 2log log 859-+- 5log 3333332log 2log 329)log 25-+-解:原试=(-log =33332log 2log 23)3log 23-+-(5-2log =333log 23log 23-+-+2=-119.已知sin θ=45,π2<θ<π.(1)求tan θ;(2)求sin 2θ+2sin θcos θ3sin 2θ+cos 2θ的值. [解析] (1)∵sin 2θ+cos 2θ=1, ∴cos 2θ=1-sin 2θ=925.又π2<θ<π, ∴cos θ=-35.∴tan θ=sin θcos θ=-43.20.已知集合{}{}19123|,73|<-<=≤≤=x x B x x A ,求: (1)求B A ⋃ (2)求B A C R ⋂)((2)sin 2θ+2sin θcos θ3sin 2θ+cos 2θ=tan 2θ+2tan θ3tan 2θ+1=-857.21.如图所示,在正方体1111ABCD A B C D -中,E 是棱BC 的中点. (1)求证:1BD ∥平面1C DE ;(2)试在棱1CC 上求一点P ,使得平面11A B P ⊥平面1C DE .(1)证明:如图1,连结1CD ,交1C D 于点O , E ∵是BC 的中点,O 是1CD 的中点, 1BD OE ∴∥,由线面平行的判定定理知1BD ∥平面1C DE ;(2)解:如图2,过1B 作11B P C E ⊥,交1CC 于点P ,交 1C E 于点1O ,11A B ⊥∵平面11BCC B , 111A B C E ⊥∴,又11C E B P ⊥∵,1111A B B P B =, 1C E ⊥∴平面11A B P . 1C E ⊂∵平面1C DE ,∴平面11A B P ⊥平面1C DE ,图2这时由图3可知,1111B C O CEC ∠=∠, 1111C B O CC E ∠=∠∴,且111B C C C =, 从而111B C P C CE Rt Rt △≌△, 1C P CE =∴,即P 为1C C 的中点.22.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=. (1)求证:无论 m 为何值,直线l 恒过定点(31),;(2)当m 为何值时,直线被圆截得的弦最短,最短的弦长是多少? 解:(1)将点(31),的坐标代入直线方程的左边有(21)3(1)1740m m m +⨯++⨯--=, 即点(31),的坐标轴令直线的方程恒成立. 故点(31),是直线l 上的一点,即直线l 恒过定点(31),. (2)容易知道点(31)D ,在圆内,当直线l 垂直于CD 时被截得的弦长最短, 由圆的方程可得圆以C 的坐标为(12),,则直线CD 的斜率121312CD k -==--. 所以当直线l 被截得的弦长最短时直线l 斜率为2. 由直线l 的方程可得1211m k m +=-+. 于是有2121l m k m +=-=+,解得34m =-. 则直线l 的方程为250x y --=.又CD所以最短的弦长为故直线l 被圆C 截得的弦最短时m 的值是34-,最短长度是22.已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12f =, 如果对于0x y <<,都有()()f x f y >,图3(1)求(1)f ; (2)解不等式2)3()(-≥-+-x f x f 。

完整word版,高一数学必修1、4测试题(分单元测试,含详细答案,强烈推荐,共90页)【适合14523顺序】

完整word版,高一数学必修1、4测试题(分单元测试,含详细答案,强烈推荐,共90页)【适合14523顺序】

迄今为止最全,最适用的高一数学试题(必修1、4)(特别适合按14523顺序的省份)必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈ A B. (a+b) ∈B C.(a+b) ∈ C D. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A Y ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 5MNAMNBNMCMND9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )A.B. B A IC. B C A C U U ID. B C A C U U Y11.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z I 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A I ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 函数的性质一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+ 1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A I ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t ) =f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1) C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围 ( ) A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则 ( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( )A .(10)(13)(15)f f f <<B .(13)(10)(15)f f f <<C .(15)(10)(13)f f f <<D .(15)(13)(10)f f f <<.二、填空题:13.函数y =(x -1)-2的减区间是___ _.14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

(完整word版)2017-2018高一数学上学期期末考试试题及答案,推荐文档

(完整word版)2017-2018高一数学上学期期末考试试题及答案,推荐文档
是符合题目要求的.
1.已知全集 U {0,1,2,3}, A {1,3} ,则集合 CU A ( )
A. 0 B . 1,2 C . 0,2 D . 0,1,2
2.空间中,垂直于同一直线的两条直线
()
A.平行 B .相交 C .异面 D .以上均有可能
2
3.已知幂函数 f x x 的图象经过点 2, 2 ,则 f 4 的值等于
18.(本小题满分 10 分)
已知函数 f (x) log a (1 x) log a( x 3) (0 a 1) . (Ⅰ)求函数 f ( x) 的零点; (Ⅱ)若函数 f ( x) 的最小值为 4 ,求 a 的值 .
3
19. (本小题满分 12 分) 已知圆 C:x2+ y2- 8y+ 12= 0,直线 l : ax+y+ 2a=0. ( Ⅰ ) 当 a 为何值时,直线 l 与圆 C相切; ( Ⅱ ) 当直线 l 与圆 C相交于 A,B两点,且 AB= 2 2时,求直线 l 的方程.
()
A.若 m∥n,m∥α,则 n∥α
B.若 α⊥ β,m∥α ,则 m⊥ β
C.若 α⊥ β,m⊥β ,则 m∥ α
D.若 m⊥n,m⊥α, n ⊥β ,则 α⊥β
7.设 f x 是定义在 R 上的奇函数,当 x 0 时, f x 2x 2 x,则 f 1 等于 (

A.- 3
B
.- 1
C
.1
D
.3
∵ 3 < x <1 ∴ 0 < -( x
2
1)
4
4
L L L L L L L 7分
∵0 < a <1∴ log a (x 1)2 4 log a 4
5

人教版高中数学必修1与必修4综合试题及答案(K12教育文档)

人教版高中数学必修1与必修4综合试题及答案(K12教育文档)

(完整)人教版高中数学必修1与必修4综合试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)人教版高中数学必修1与必修4综合试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)人教版高中数学必修1与必修4综合试题及答案(word版可编辑修改)的全部内容。

2016—2017学年上学期期末考试数学模拟试卷(A)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关系正确的是( ).A.0∈N B.1⊆R C.{}π⊆Q D.3-∉Z2.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是().3.若sin α<0且tan α>0,则α是( ).A.第一象限角C.第三象限角D.第四象限角4.在四边形ABCD中,若错误!=错误!+错误!,则四边形ABCD一定是().A.矩形B.菱形C.正方形D.平行四边形5.设a∈错误!,则使函数y=x a的定义域为R且为奇函数的所有a值为().A.1,3 B.-1,1C.-1,3 D.-1,1,36.若2()24()f x x mx m-+∈R=在[2,)+∞单调递增,则m的取值范围为().A.m=2 B.m<2 C.m≤2 D.m≥27.同时满足两个条件:(1)定义域内是减函数;(2)定义域内是奇函数的函数是().A.()f x x x-= B.1 ()f x xx+=C.()tanf x x= D.ln ()x f xx=8.函数xy=的定义域是().A .[0,2)B .[0,1)∪(1,2)C .(1,2)D .[0,1)9.设函数f (x )=133,1log ,1x x x x -⎧⎨->⎩≤1则满足f (x )≤3的x 的取值范围是( ).A .[0,+∞)B .[19,3] C .[0,3]D .[19,+∞)10.若向量(2cos )a αα=,(2cos ,2sin )b ββ=且5626αβπππ≤<<≤,若a b a -⊥()则βα-的值为( ).A .344ππ或B .4πC .34πD .744ππ或11.已知函数()sin()f x x ωϕ=+ (其中0ω>,2ϕπ<)图象相邻对称轴的距离为2π,一个对称中心为(,0)6π-,为了得到()cos g x x ω=的图象,则只要将()f x 的图象( ).A .向右平移错误!个单位B .向右平移错误!个单位C .向左平移错误!个单位D .向左平移错误!个单位12.偶函数()f x 满足(1)(1)f x f x -=+,且在[0,1]x ∈时, 2()f x x = , ()ln g x x = ,则函数()f x 与()g x 图象交点的个数是( ). A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知θ的终边过点(12,5)P -,则cos θ= . 14.2lg ,2(),2x x x f x e x -<⎧⎨⎩=≥,则[(2)]f f = .15.在ABC △中,M 是BC 的中点,3AM =,点P 在AM 上,且满足2AP PM =,则()PA PB PC ⋅+的值为 .16.已知21,2()3,21x x f x x x ⎧-<⎪=⎨⎪-⎩≥,若()0f x a =-有三个不同的实数根,则实数a 的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.计算下列式子的值:(1)错误!;(2)252525sin cos tan() 634πππ++-.18.已知集合A={x|2≤x≤8},B={x|1〈x〈6},C={x|x>a},U=R.(1)求A∪B,(C U A)∩B;(2)若A∩C≠∅,求a的取值范围.19.已知平面上三点A,B,C,错误!=(2-k,3),错误!=(2,4).(1)若三点A,B,C不能构成三角形,求实数k应满足的条件;(2)若△ABC中角A为直角,求k的值.20.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤ 20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(1)求y(万元)与x(件)的函数关系式,并写出自变量x的取值范围;(2)该工厂的年产量为多少件时,所得年利润最大?(年利润=年销售总收入-年总投资).21.函数sin()(0,0,0)y A x A ωϕωϕπ=+>><<在一个周期内的图象如下,求此函数的解析式。

人教版高一数学必修四测试题含详细答案

人教版高一数学必修四测试题含详细答案

高一数学试题(必修4)(特别适合按14523顺序的省份) 必修4 第一章 三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( ) A .B=A∩C B .B∪C=C C .A C D .A=B=C202120sin 等于 ( )A 23±B 23C 23-D 21 3.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为( )A .-2B .2C .2316 D .-23164.下列函数中,最小正周期为π的偶函数是 ( )A.y=sin2xB.y=cos 2xC .sin2x+cos2x D. y=xx 22tan 1tan 1+-5 若角0600的终边上有一点()a ,4-,则a 的值是 ( )A 34B 34-C 34± D36. 要得到函数y=cos(42π-x )的图象,只需将y=sin 2x的图象 ( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将 整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数y=21sinx 的图象则y=f(x)是 ( )A .y=1)22sin(21++πx B.y=1)22sin(21+-πxC.y=1)42sin(21++πxD. 1)42sin(21+-πx8. 函数y=sin(2x+25π)的图像的一条对轴方程是 ( ) A.x=-2π B. x=-4π C .x=8πD.x=45π9.若21cos sin =⋅θθ,则下列结论中一定成立的是 ( )A.22sin =θ B .22sin -=θC .1cos sin =+θθD .0cos sin =-θθ10.函数)32sin(2π+=x y 的图象( )A .关于原点对称B .关于点(-6π,0)对称C .关于y 轴对称D .关于直线x=6π对称 11.函数sin(),2y x x R π=+∈是 ( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数12.函数y =的定义域是 ( ) A .2,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦ B .2,2()66k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦C .22,2()33k k k Z ππππ++∈⎡⎤⎢⎥⎣⎦D .222,2()33k k k Z ππππ-+∈⎡⎤⎢⎥⎣⎦二、填空题:13. 函数])32,6[)(8cos(πππ∈-=x x y 的最小值是 . 14 与02002-终边相同的最小正角是_______________15. 已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos . 16 若集合|,3A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭,{}|22B x x =-≤≤, 则B A I =_______________________________________三、解答题:17.已知51cos sin =+x x ,且π<<x 0. a) 求sinx 、cosx 、tanx 的值. b) 求sin 3x – cos 3x 的值.18 已知2tan =x ,(1)求x x 22cos 41sin 32+的值 (2)求x x x x 22cos cos sin sin 2+-的值19. 已知α是第三角限的角,化简ααααsin 1sin 1sin 1sin 1+---+20.已知曲线上最高点为(2,2),由此最高点到相邻的最低点间曲线与x 轴交于一点(6,0),求函数解析式,并求函数取最小值x 的值及单调区间必修4 第一章 三角函数(2)一、选择题:1.已知0tan ,0sin ><θθ,则θ2sin 1-化简的结果为 ( )A .θcos B. θcos - C .θcos ± D. 以上都不对 2.若角α的终边过点(-3,-2),则 ( )A .sin α tan α>0B .cos α tan α>0C .sin α cos α>0D .sin α cot α>0 3 已知3tan =α,23παπ<<,那么ααsin cos -的值是 ( ) A 231+-B 231+- C 231- D 231+4.函数)22cos(π+=x y 的图象的一条对称轴方程是 ( )A .2π-=x B. 4π-=x C. 8π=x D. π=x5.已知)0,2(π-∈x ,53sin -=x ,则tan2x= ( )A .247 B. 247- C. 724 D. 724-6.已知31)4tan(,21)tan(-=-=+παβα,则)4tan(πβ+的值为 ( )A .2 B. 1 C. 22D. 2 7.函数xx xx x f sin cos sin cos )(-+=的最小正周期为 ( )A .1 B. 2πC. π2D. π8.函数)32cos(π--=x y 的单调递增区间是 ( )A .)(322,342Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ B. )(324,344Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππC .)(382,322Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D. )(384,324Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ 9.函数x x y cos sin 3+=,]2,2[ππ-∈x 的最大值为 ( )A .1 B. 2 C. 3 D.23 10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移8π个单位 D .向右平移8π个单位11.已知sin(4π+α)=23,则sin(43π-α)值为 ( )A.21 B. —21C. 23D. —2312.若).(),sin(32cos 3sin 3ππφφ-∈-=-x x x ,则=φ ( )A. 6π-B.6π C. 65π D. 65π-二、填空题13.函数y =的定义域是14.)32sin(3π+-=x y 的振幅为 初相为15.求值:00cos20sin202cos10-=_______________16.把函数)32sin(π+=x y 先向右平移2π个单位,然后向下平移2个单位后所得的函数解析式为_____________2)322sin(--=πx y ___________________三、解答题17 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值18.已知函数x x y 21cos 321sin+=,求: (1)函数y 的最大值,最小值及最小正周期;(2)函数y 的单调递增区间19. 已知βαtan tan 、是方程04332=++x x 的两根,且)2,2(ππβα-∈、,求βα+的值20.如下图为函数)0,0,0()sin(>>>++=ϕωϕωA c x A y 图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线2=x 对称的函数解析式必修4 第三章 三角恒等变换(1)一、选择题:1.cos 24cos36cos66cos54︒︒︒︒-的值为 ( )A 0 B12 C 2 D 12-2.3cos 5α=-,,2παπ⎛⎫∈ ⎪⎝⎭,12sin 13β=-,β是第三象限角,则=-)cos(αβ( )A 3365-B 6365C 5665D 1665- 3.设1tan 2,1tan x x +=-则sin 2x 的值是 ( )A 35B 34-C 34D 1- 4. 已知()()tan 3,tan 5αβαβ+=-=,则()tan 2α的值为 ( )A 47-B 47C 18D 18-5.βα,都是锐角,且5sin 13α=,()4cos 5αβ+=-,则βsin 的值是 ( )A 3365B 1665C 5665D 63656. )4,43(ππ-∈x 且3cos 45x π⎛⎫-=- ⎪⎝⎭则cos2x 的值是 ( )A 725-B 2425-C 2425D 7257.cos 23x x a +=-中,a 的取值域范围是 ( )A2521≤≤a B 21≤a C 25>a D 2125-≤≤-a 8. 已知等腰三角形顶角的余弦值等于54,则这个三角形底角的正弦值为 ( )A 1010B 1010-C 10103D 10103-9.要得到函数2sin 2y x =的图像,只需将x x y 2cos 2sin 3-=的图像 ( )A 、向右平移6π个单位 B 、向右平移12π个单位 C 、向左平移6π个单位 D 、向左平移12π个单位10. 函数sin 22x xy =+的图像的一条对称轴方程是 ( )A 、x =113πB 、x =53πC 、53x π=-D 、3x π=-11.若x 是一个三角形的最小内角,则函数sin cos y x x =-的值域是 ( )A [B 1(1,]2- C 1[1,]2- D 1(1,)2-12.在ABC ∆中,tan tan tan A B A B ++=,则C 等于 ( )A3π B 23π C 6π D 4π二、填空题:13.若βαtan ,tan 是方程04332=++x x 的两根,且),2,2(,ππβα-∈则βα+等于14. .在ABC ∆中,已知tanA ,tanB 是方程23720x x -+=的两个实根,则tan C = 15. 已知tan 2x =,则3sin 22cos 2cos 23sin 2x xx x+-的值为16. 关于函数()cos2cos f x x x x =-,下列命题: ①若存在1x ,2x 有12x x π-=时,()()12f x f x =成立; ②()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上是单调递增; ③函数()f x 的图像关于点,012π⎛⎫⎪⎝⎭成中心对称图像;④将函数()f x 的图像向左平移512π个单位后将与2sin 2y x =的图像重合. 其中正确的命题序号 (注:把你认为正确的序号都填上)三、解答题:17. 化简000020cos 1)]10tan 31(10sin 50sin 2[+++18. 求)212cos 4(12sin 312tan 30200--的值.19. 已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.20.已知函数22sin sin 23cos y x x x =++,求 (1)函数的最小值及此时的x 的集合。

必修1、必修4数学试卷(含答案)

必修1、必修4数学试卷(含答案)

D高一数学清北班入学选拔考试(必修1、4)试卷时量40分钟满分100分姓名得分一、选择题(每小题6分,共48分)1.若集合{}A=|1x x x R≤∈,,{}2B=|y y x x R=∈,,则A B= ()A.{}|11x x-≤≤ B. {}|0x x≥ C.{}|01x x≤≤ D.∅2.给定函数①12y x=,②12log(1)y x=+,③|1|y x=-,④12xy+=,期中在区间(0,1)上单调递减的函数序号是()A. ①②B.②③C.③④D.①④3.若x是方程式lg2x x+=的解,则x属于区间()A.(0,1)B.(1,1.25)C.(1.25,1.75)D.(1.75,2)4.函数x xx xe eye e--+=-的图像大致为()5.设}21sin|{<=xxA,{|cosB x x=>,则()A. BA⊂ B. BA= C. BA⊃ D. BA⊆6.已知函数tany xω=在(2π-,2π)内是减函数,则()A.01ω<≤B.10ω-≤<C.1ω≥D.1ω≤-7.若函数()y f x=的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移2π个单位,沿y轴向下平移1个单位,得到函数1sin2y x=的图象则()y f x=是()A.1sin(2)122y xπ=++ B.1sin(2)122y xπ=-+ C.1sin(2)124y xπ=++ D.1sin(2)124y xπ=-+ 8.设点M是线段BC的中点,点A在直线BC外,216,BC AB AC AB AC=∣+∣=∣-∣,则AM∣∣=()A. 8B. 4C. 2D. 1二、填空题(每小题6分,共42分) 9.设25abm ==,且112a b+=,则m = . 10.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .11.设函数)()()(R x ae e x x f xx ∈+=是偶函数,则实数=a _______________. 12.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是___ _.13.已知α为第二象限的角,则2α所在的象限是 . 14.函数xxxx y tan tan cos cos +=的值域为 . 15.点P 在平面上作匀速直线运动,速度向量(4,3)v =-(即点P 的运动方向与v 相同,且每秒移动的距离为v 个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 . 三、解答题(10分)16.如图,已知点G 是△ABO 的重心.⑵若PQ 过△ABO 的重心G ,且,,b OB a OA ==OP ma =,OQ nb =.求证:113m n+=.高一数学清北班入学考试(必修1、4)试卷答案一、选择题(每小题6分,共48分) 1.C 2.B3.D4. A5.C6.B7.B8.C二、填空题(每小题6分,共42分)10.1411.1- 12.)12,1(-- 13.一、三14.}{2.2,0-15.(10,-5)三、解答题(10分) 16.解:显然OM ).(21b a += 因为G 是ABC ∆的重心, 所以=OG 321()3OM a b =⋅+由P 、G 、Q 三点共线,有GQ PG ,共线,所以,有且只有一个实数λ, .GQ PG λ=而OP OG PG -=,31)31()(31b a m a m b a +-=-+=GQ =OQ -OG =b n a b a b n )31(31)(31-+-=+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,所以113311()33m n λλ⎧-=-⎪⎪⎨⎪=-⎪⎩,消去λ,整理得3mn =n m +,故311=+nm .65分以上进清北班。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特别适合按14523顺序的省份)必修4 第一章三角函数(1)一、选择题:1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.AC D.A=B=C2 等于()A B C D3.已知的值为()A.-2 B.2 C.D.-4.下列函数中,最小正周期为π的偶函数是()A.y=sin2xB.y=cos C .sin2x+cos2x D. y=5 若角的终边上有一点,则的值是()A B C D6.要得到函数y=cos()的图象,只需将y=sin的图象()A.向左平移个单位 B.同右平移个单位C.向左平移个单位 D.向右平移个单位7.若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数y=sinx的图象则y=f(x)是()A.y= B.y=C.y=D.8. 函数y=sin(2x+)的图像的一条对轴方程是()A.x=-B. x=- C .x=D.x=9.若,则下列结论中一定成立的是()A. B. C. D.10.函数的图象()A.关于原点对称 B.关于点(-,0)对称 C.关于y轴对称 D.关于直线x=对称11.函数是()A.上是增函数 B.上是减函数C.上是减函数D.上是减函数12.函数的定义域是()A.B.C. D.二、填空题:13. 函数的最小值是 .14 与终边相同的最小正角是_______________15. 已知则 .16 若集合,,则=_______________________________________三、解答题:17.已知,且.a)求sinx、cosx、tanx的值.b)求sin3x – cos3x的值.18 已知,(1)求的值(2)求的值19. 已知α是第三角限的角,化简20.已知曲线上最高点为(2,),由此最高点到相邻的最低点间曲线与x轴交于一点(6,0),求函数解析式,并求函数取最小值x的值及单调区间必修4 第一章三角函数(2)一、选择题:1.已知,则化简的结果为()A. B. C. D. 以上都不对2.若角的终边过点(-3,-2),则( )A.sin tan>0 B.cos tan>0C.sin cos>0 D.sin cot>03 已知,,那么的值是()A B C D4.函数的图象的一条对称轴方程是()A. B. C. D.5.已知,,则tan2x= ( ) A. B. C. D.6.已知,则的值为()A. B. 1 C. D. 2 7.函数的最小正周期为()A.1 B. C. D.8.函数的单调递增区间是()A. B.C. D.9.函数,的最大值为()A.1 B. 2 C. D.10.要得到的图象只需将y=3sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位 D.向右平移个单位11.已知sin(+α)=,则sin(-α)值为()A. B. — C. D. —12.若,则()A. B. C. D.二、填空题13.函数的定义域是14.的振幅为初相为15.求值:=_______________16.把函数先向右平移个单位,然后向下平移2个单位后所得的函数解析式为________________________________三、解答题17 已知是关于的方程的两个实根,且,求的值18.已知函数,求:(1)函数y的最大值,最小值及最小正周期;(2)函数y的单调递增区间19.已知是方程的两根,且,求的值20.如下图为函数图像的一部分(1)求此函数的周期及最大值和最小值(2)求与这个函数图像关于直线对称的函数解析式必修4 第三章三角恒等变换(1)一、选择题:1.的值为 ( )A 0BC D2.,,,是第三象限角,则()A B C D3.设则的值是( )A B C D4. 已知,则的值为()A B C D5.都是锐角,且,,则的值是()A B C D6. 且则cos2x的值是()A B C D7.在中,的取值域范围是 ( )A B C D8. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()A B C D9.要得到函数的图像,只需将的图像()A、向右平移个单位B、向右平移个单位C、向左平移个单位D、向左平移个单位10. 函数的图像的一条对称轴方程是()A、 B、 C、 D、11.若是一个三角形的最小内角,则函数的值域是( )A B C D12.在中,,则等于 ( )A B C D二、填空题:13.若是方程的两根,且则等于14. .在中,已知tanA ,tanB是方程的两个实根,则15. 已知,则的值为16. 关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图像关于点成中心对称图像;④将函数的图像向左平移个单位后将与的图像重合.其中正确的命题序号(注:把你认为正确的序号都填上)三、解答题:17. 化简18. 求的值.19. 已知α为第二象限角,且sinα=求的值.20.已知函数,求(1)函数的最小值及此时的的集合。

高一数学必修一至必修四各章单元测试和期中期末测试题(有答案)

高一数学必修一至必修四各章单元测试和期中期末测试题(有答案)

高一数学必修一至必修四各章单元测试和期中期末测试题(有答案)高一数学必修一第一章集合单元测试题答案(时间:120分钟满分:150分命题人:周蓉)一、选择题(本大题共 12小题,每小题 5分,共 60分.在每小题给出的四个选项中,只有一项符合题目要求)1.(2017·北京卷)已知全集 U=R,集合 A={x|x<-2或 x>2},则∁UA=( )A.(-2,2) B.(-∞,-2)∪(2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:A={x|x<-2或 x>2},U=R,∁UA={x|-2≤x≤2},即∁UA=[-2,2].故选 C.答案:C2.已知函数 y=f(x)的对应关系如下表,函数 y=g(x)的图象是如下图的曲线ABC,其中A(1,3),B(2,1),C(3,2),则f(g(2))的值为( )A.3 B.2 C.1 D.0解析:由图象可知 g(2)=1,由表格可知 f(1)=2,所以 f(g(2))=2.答案:B3.设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C=( )x 1 2 3f(x) 2 3 0A.{2} B.{1,2,4}C.{1,2,4,6} D.{1,2,3,4,6}解析:因为A∪B={1,2,6}∪{2,4}={1,2,4,6},所以(A∪B)∩C={1,2,4,6}∩{1,2,3,4}={1,2,4}.答案:B4.已知函数 f(x)的定义域为(-1,0),则函数 f(2x+1)的定义域为( )A.(-1,1) B.-1,-12C.(-1,0) D.12,1解析:对于f(2x+1),-1<2x+1<0,解得-1<x<-12,即函数f(2x+1)的定义域为-1,-12 .答案:B5.已知 f(x)=2x,x>0,f(x+1),x≤0.则 f43 +f-43 的值等于( )A.-2 B.4 C.2 D.-4解析:∵43>0,∴f43 =2×43=83,∵-43<0,∴f-43 =f-43+1=f-13 =f-13+1=f23 =43,∴f43 +f-43 =123=4.答案:B6.(2017·山东卷)设集合M={x|| x-1|<1},N={ x | x<2},则M∩N=( )A.(-1,1) B.(-1,2)C.(0,2) D.(1,2)解析:因为M={ x |0<x<2},N={ x | x<2},所以M∩N={ x |0<x<2}∩{ x | x<2}={ x |0<x<2}.答案:C7.函数 f(x)= 2x+1+x的值域是( )A.[0,+∞) B.(-∞,0]C.-12,+∞D.[1,+∞)解析:令 2x+1=t(t≥0),则 x=t2-12,所以 f(x)=f(t)=t2-12+t=12(t2+2t-1),当t∈(-1,+∞)时,f(t)为增函数,又因为t≥0,所以当 t=0时,f(t)有最小值-12,所以函数的值域为-12,+∞.答案:C8.函数 f(x)= 3-x2x的图象关于( )A.x轴对称 B.原点对称C.y轴对称 D.直线 y=x对称解析:由题意知 f(x)= 3-x2x的定义域为[- 3,0)∪(0, 3],关于原点对称.又 f(-x)= 3-x2-x=-f(x),所以 f(x)是奇函数,其图象关于原点对称.答案:B9.已知函数 f(x)=ax3-bx-4,其中 a,b为常数.若 f(-2)=2,则 f(2)的值为( )A.-2 B.-4 C.-6 D.-10解析:因为 f(-2)=a(-2)3+b·(-2)-4=2,所以 8a+2b=-6,所以 f(2)=8a+2b-4=-10.答案:D10.已知函数 f(x)=x2+1,x≥2,f(x+3),x<2,则 f(1)-f(3)=( )A.-2 B.7C.27 D.-7解析:f(1)=f (1+3)=f (4)=42+1=17,f (3)=32+1=10,所以 f (1)-f (3)=7.答案:B11.在整数集中,被 5 除所得余数为的所有整数组成一个'类',记为[ ],即[ ]={5n+|n∈ },=0,1,2,3,4,给出如下四个结论:①2 016∈[1];②-3∈[3];③若整数 a,b属于同一'类',则a-b∈[0];④若 a-b∈[0],则整数 a,b属于同一'类'.其中,正确结论的个数是( )A.1 B.2C.3 D.4解析:由于[ ]={5n+|n∈ },对于①,2 016除以 5等于 403余1,所以2 016∈[1],所以①正确;对于②,-3=-5+2,被 5除余2,所以②错误;对于③,因为 a,b是同一'类',可设 a=5n1+,b=5n2+,则 a-b=5(n1-n2)能被 5整除,所以 a-b∈[0],所以③正确;对于④,若a-b=[0],则可设a-b=5n,n∈ ,即a=5n+b,n∈ ,不妨令 b=5m+,m∈ ,=0,1,2,3,4,则 a=5n +5m+=5(m+n)+,m∈ ,n∈ ,所以 a,b属于同一'类',所以④正确.则正确的有①③④.答案:C12.设数集M同时满足以下条件:①M中不含元素-1,0,1;②若a∈M,则1+a1-a∈M.则下列结论正确的是( )A.集合M中至多有 2个元素B.集合M中至多有 3个元素C.集合M中有且仅有 4个元素D.集合M中有无穷多个元素解析:因为a∈M,1+a1-a∈M,所以1+1+a1-a1-1+a1-a=-1a∈M,所以1+ 1-a1- 1-a=a-1a+1∈M,又因为1+a-1a+11-a-1a+1=a,所以,集合M中有且仅有 4 个元素:a,-1a,1+a1-a,a-1a+1.答案:C二、填空题(本大题共 4小题,每小题 5分,共 20分.把答案填在题中横线上)13.用列举法表示集合M= m|10m+1∈Z,m∈Z=________.解析:由10m+1∈ ,且m∈ ,知 m+1是 10的约数,故|m+1|=1,2,5,10,从而m的值为-11,-6,-3,-2,0,1,4,9.答案:{-11,-6,-3,-2,0,1,4,9}14.函数 y=ax+1(a>0)在区间[1,3]上的最大值为 4,则 a=________.解析:因为 a>0,所以函数 y=ax+1在区间[1,3]上是增函数,所以 ymax=3a+1=4,解得 a=1.答案:115.已知全集U={2,4,a2-a+1},A={a+4,4},∁UA={7},则 a=________.解析:a2-a+1=7,a2-a-6=0,解得a=-2,a=3,检验知a=-2.答案:-216.若函数 f(x)满足 f(x)+2f1x =3x(x≠0),则 f(x)=________.解析:因为 f(x)+2f1x =3x,①所以以1x代替 x,得 f1x +2f(x)=3x.②由①②,得 f(x)=2x-x(x≠0).答案:2x-x(x≠0)三、解答题(本大题共 6小题,共 70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分 10分)集合 U=R,集合 A={x|x2+mx+2=0},B={x|x2-5x+n=0},A∩B≠∅,且(∁UA)∩B={2},求集合 A. 解:因为(∁UA)∩B={2},所以2∈B,2∉A,所以 2是方程 x2-5x+n=0的根,即 22-5×2+n=0,所以 n=6,所以 B={x|x2-5x+6=0}={2,3}.由A∩B≠∅知3∈A,即 3是方程 x2+mx+2=0的根,所以 9+3m+2=0,所以 m=-113.所以 A= x|x2-113x+2=0=23,3.18.(本小题满分 12分)已知集合 A={x|2a≤x≤a+3},B={x|x< -1或 x>5}.若A∩B=∅,求 a的取值范围.解:若 A=∅,则A∩B=∅,此时 2a>a+3,解得 a>3.若A≠∅,由A∩B=∅,得2a≥-1,a+3≤5,2a≤a+3,解得-12≤a≤2.综上所述,a的取值范围是a|-12≤a≤2或 a>3.19.(本小题满分 12分)设函数 f(x)对任意实数 x,y都有 f(x+y) =f(x)+f(y),且 x>0时,f(x)<0,f(1)=-2.(1)求证 f(x)是奇函数;(2)求 f(x)在区间[-3,3]上的最大值和最小值.(1)证明:令 x=y=0,则 f(0)=0.再令 y=-x,则 f(0)=f(x)+f(-x)=0,所以 f(-x)=-f(x).故 f(x)为奇函数.(2)解:任取 x1<x2,则 x2-x1>0,所以f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1)<0,所以 f(x)为减函数.又 f(3)=f(2+1)=f(2)+f(1)=3f(1)=-6,所以 f(-3)=-f(3)=6.故 f(x)max=f(-3)=6,f(x)min=f(3)=-6.20.(本小题满分 12分)已知函数 f(x+1)=2x+1x+2.(1)求 f(2),f(x);(2)证明:函数 f(x)在[1,17]上为增函数;(3)试求函数 f(x)在[1,17]上的最大值和最小值.解:(1)令 x=1,则 f(2)=f(1+1)=1.令 t=x+1,则 x=t-1,所以 f(t)=2t-1t+1,即 f(x)=2x-1x+1.(2)证明:任取1≤x1≤x2≤17,因为 f(x1)-f(x2)=2x1-1x1+1-2x2-1x2+1=3(x1-x2)(x1+1)(x2+1).又1≤x1<x2,所以 x1-x2<0,(x1+1)(x2+1)>0,所以3(x1-x2)(x1+1)(x2+1)<0,即 f(x1)<f(x2),所以函数 f(x)在[1,17]上为增函数.(3)由(2)可知函数 f(x)在[1,17]上为增函数,所以当 x=1时,f(x)有最小值12;当 x=17时,f(x)有最大值116.21.(本小题满分12分)某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x(元)与日销售量y(件)之间有如下表所示的关系:x 30 40 45 50y 60 30 15 0(1)在所给的坐标图纸中,根据表中提供的数据,描出实数对(x,y)的对应点,并确定 y与 x的一个函数关系式;(2)设经营此商品的日销售利润为 P元,根据上述关系,写出 P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润?解:(1)由题表作出(30,60),(40,30),(45,15),(50,0)的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y= x+b,则50k+b=0,45k+b=15,k=-3,b=150.所以 y=-3x+150(0≤x≤50,且x∈N ),经检验(30,60),(40,30)也在此直线上.所以所求函数解析式为 y=-3x+150(0≤x≤50且x∈N).(2)依题意 P=y(x-30)=(-3x+150)(x-30)=-3(x-40)2+300.所以当 x=40时,P 有最大值 300,故销售单价为 40元时,才能获得最大日销售利润.22.(本小题满分 12分)已知函数 f(x)=x+mx,且 f(1)=2.(1)判断函数 f(x)的奇偶性;(2)判断函数 f(x)在(1,+∞)上的单调性,并用定义证明你的结论;(3)若 f(a)>2,求实数 a的取值范围.解:由 f(1)=2,得 1+m=2,m=1.所以 f(x)=x+1x.(1)f(x)=x+1x的定义域为(-∞,0)∪(0,+∞),f(-x)=-x+ 1-x=-x+1x =-f(x).所以 f(x)为奇函数.(2)f(x)=x+1x在(1,+∞)上是增函数.证明:设任意的 x1,x2∈(1,+∞),且 x1<x2,则f(x1)-f(x2)=(x1-x2)-x1-x2x1x2=(x1-x2)x1x2-1x1x2,因为 1<x1<x2,所以 x1-x2<0,x1x2>1,x1x2-1>0,所以 f(x1)-f(x2)<0,即 f(x1)<f(x2),所以 f(x)在(1,+∞)上是增函数.(3)设任意的 x1,x2∈(0,1),且 x1<x2,由(2)知 f(x1)-f(x2)=(x1-x2)(x1x2-1)x1x2,由于 x1-x2<0,0<x1x2<1,所以 f(x1)-f(x2)>0,即 f(x1)>f(x2).所以 f(x)在(0,1)上是减函数.由 f(x)在(1,+∞)上是增函数,在(0,1)上是减函数,且 f(1)=2 知,当a∈(0,1)时,f(a)>2=f(1)成立;当a∈(1,+∞)时,f(a)>2=f(1)成立;而当 a<0时,f(a)<0,不满足题设.综上可知,实数 a的取值范围为(0,1)∪(1,+∞).•高一数学必修一第一章集合单元测试题答案。

2017-2018学年高中数学北师大必修1:阶段质量检测四

2017-2018学年高中数学北师大必修1:阶段质量检测四

阶段质量检测(四)(时间:90分钟 满分:120分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在区间(0,1)上有零点的一个函数为( )A .f (x )=x 2+1B .f (x )=x 3-2x +3C .f (x )=x 3+2x -2D .f (x )=x 2+2x -32.函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)3.方程log 12x =2x -1的实数根的个数为( ) A .0 B .1C .2D .不确定4.用二分法求函数f (x )=x 3-⎝⎛⎭⎫12x -2的零点时,初始区间大致可选为( )A .(0,2)B .(1,2)C .(2,3)D .(2,4)5.某水果市场规定,批发水果不少于100千克时,批发价为每千克2.5元,小王携带现金3 000元到市场采购苹果,并以批发价买进,如果购买的苹果为x 千克,小王付款后剩余现金y 元,则y 与x 之间的函数关系为( )A .y =3 000-2.5x (100≤x ≤1 200)B .y =3 000-2.5x (100<x <1 200)C .y =3 000-100x (100<x <1 200)D .y =3 000-100x (100≤x ≤1 200)6.函数y =⎝⎛⎭⎫12x 与函数y =lg x 的图像的交点的横坐标(精确到0.1)约是( )A .1.3B .1.4C .1.5D .1.67.若函数f (x )=3ax +1-2a 在(-1,1)上存在零点,则a 的取值范围是( )A .-1<a <15B .a >15C .a <-1D .a <-1或a >158.若函数f (x )是偶函数,定义域为{x ∈R |x ≠0}且f (x )在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .唯一一个B .两个C .至少两个D .无法判断9.若x 0是方程⎝⎛⎭⎫12x =x 13的解,则x 0属于区间( )A.⎝⎛⎭⎫23,1B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫0,13 10.一个体户有一批货,如果月初售出可获利100元,再将本利都存入银行,已知银行月息为2.4%.如果月末售出,可获利120元,但要付保管费5元.这位个体户为获利最大,则这批货( )A .月初售出好B .月末售出好C .月初或月末售出一样D .由成本费的大小确定二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)11.函数y =x 2-ax -b 的零点为2和3,则函数f (x )=bx 2-ax -1的零点是________.12.用二分法求方程x 3+4=6x 2的一个近似解时,已经将一根锁定在区间(0,1)内,则下一步可断定该根所在的区间为________.13.已知关于x 的方程x 2+2(m +3)x +2m +14=0的两实根一个比3小,一个比3大,则m 的取值范围是________. 14.某批发商批发某种商品的单价P (单位:元/千克)与数量Q (单位:千克)之间的函数关系如图所示,现此零售商仅有现金2 700元,他最多可购买这种商品________千克.三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)画出函数f (x )=x 2-x -1的图像,并利用二分法说明方程x 2-x -1=0在[0,2]内根的情况.16.(本小题满分12分)已知关于x 的函数y =(m +6)x 2+2(m -1)x +m +1恒有零点.(1)求m 的取值范围;(2)若函数有两个不同零点,且其倒数之和为-4,求m 的值.17.(本小题满分12分)定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2 012x +log 2 012x ,试确定f (x )在R 上的零点个数.18.(本小题满分14分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?答案1.解析:选C ∵f (0)·f (1)<0验证知只有C 符合此条件.2.解析:选B 逐个验证知:f (-1)=12-3=-52<0, f (0)=20+0=1>0,∴f (-1)·f (0)<0.3.解析:选B 令y 1=log 12x ,y 2=2x -1,作出图像,由图像可知,两函数的图像只有一个公共点,所以方程log 12x =2x -1有一个实数根. 4.解析:选B ∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0,f (3)>0,f (4)>0,则有f (1)·f (2)<0.5.解析:选A y =3000-2.5x ,由⎩⎪⎨⎪⎧x ≥100,y ≥0,得100≤x ≤1 200. 6.解析:选D 设f (x )=lg x -⎝⎛⎭⎫12x ,经计算f (1)=-12<0,f (2)=lg 2-14>0,所以方程lg x -⎝⎛⎭⎫12x =0在[1,2]内有解.应用二分法逐步缩小方程实数解所在的区间,可知D 符合要求. 7.解析:选D 由题意知:f (-1)·f (1)<0,而(1-5a )(a +1)<0,∴⎩⎪⎨⎪⎧ 1-5a <0a +1>0或⎩⎪⎨⎪⎧1-5a >0a +1<0得a <-1或a >15. 8.解析:选B 由已知条件,得f (-2)=0,画出函数f (x )的大致图像如下图所示,可知f (x )有两个零点.9.解析:选C 令f (x )=⎝⎛⎭⎫12x -x 13,f (1)=12-1=-12<0,f ⎝⎛⎭⎫12=⎝⎛⎭⎫1212-⎝⎛⎭⎫1213<0,f ⎝⎛⎭⎫13=⎝⎛⎭⎫1213-⎝⎛⎭⎫1313>0,f ⎝⎛⎭⎫23=⎝⎛⎭⎫1223-⎝⎛⎭⎫2313=⎝⎛⎭⎫1413-⎝⎛⎭⎫2313<0, ∴f (x )在⎝⎛⎭⎫13,12内有零点.10.解析:选D 设这批货物成本费为x 元,若月初售出时,到月末共获利为100+(x +100)×2.4%;若月末售出时,可获利为120-5=115(元);比较100+(x +100)×2.4%-115=2.4%×(x -525).∴当成本费大于525元时,月初售出好;当成本费小于525元时,月末售出好;当成本费等于525元时,月初或月末售出均可.11.解析:由2+3=a,2×3=-b 得a =5,b =-6,∴f (x )=-6x 2-5x -1,令f (x )=0,得6x 2+5x +1=0,x 1=-13,x 2=-12. 答案:-13、-1212.解析:设f (x )=x 3-6x 2+4,显然f (0)>0,f (1)<0,又f ⎝⎛⎭⎫12=⎝⎛⎭⎫123-6x ⎝⎛⎭⎫122+4>0, ∴下一步可断定方程的根所在区间为⎝⎛⎭⎫12,1.答案:⎝⎛⎭⎫12,113.解析:设f (x )=x 2+2(m +3)x +2m +14,则所求转化为f (x )与x 轴的交点分别在点(3,0)的两侧时m 的取值范围.借助f (x )的图像可知,只需f (3)<0即可,由f (3)=9+6(m +3)+2m +14<0,解得m 的取值范围是m <-418. 答案:⎝⎛⎭⎫-∞,-418 14.解析:由题意可得批发这种商品所需费用y (元)与数量Q (千克)之间的函数关系式为y=⎩⎪⎨⎪⎧ 37Q ,0<Q ≤10,32Q ,10<Q ≤50,30Q ,50<Q ≤100,27Q ,100<Q ≤150,25Q ,Q >150,从而易得30×50<2 700<30×100,故该零售商购买这种商品的数量应在50与100之间,故所购商品的数量最多为2 70030=90千克.答案:9015.解:图像如图所示.因为f (0)=-1<0,f (2)=1>0,所以方程x 2-x -1=0在(0,2)内有根x 0;取(0,2)的中点1,因为f (1)=-1<0,所以f (1)·f (2)<0,根x 0在区间(1,2)内;再取(1,2)的中点1.5,f (1.5)=-0.25<0,所以f (1.5)·f (2)<0,根x 0在区间(1.5,2)内;取(1.5,2)的中点1.75,f (1.75)=0.312 5>0,所以f (1.5)·f (1.75)<0,根在区间(1.5,1.75)内,这样继续下去,可以得到满足一定精确度的方程的近似根.16.解:(1)当m +6=0即m =-6时,函数为y =-14x -5显然成立. 当m +6≠0时,由Δ=4(m -1)2-4(m +6)(m +1)=-36m -20≥0,得m ≤-59, ∴当m ≤-59且m ≠-6时,二次函数有零点. 综上所述,m ≤-59. (2)设x 1,x 2是函数的两个零点,则有x 1+x 2=-2(m -1)m +6,x 1x 2=m +1m +6∵1x 1+1x 2=x 1+x 2x 1x 2=-4,∴-2(m -1)m +1=-4. 解得m =-3,且当m =-3时,m +6≠0,Δ>0,符合题意. ∴m 的值为-3.17.解:∵函数f (x )是定义在R 上的奇函数,∴f (0)=0. ∵log 2 01212 0122=-2,2 01212 0122≈1, log 2 01212 012=-1,2 01212 012>1, ∴f ⎝⎛⎭⎫12 0122<0,f ⎝⎛⎭⎫12 012>0, ∴f (x )=2 012x +log 2 012x 在区间⎝⎛⎭⎫12 0122,12 012内存在零点.易知f (x )在(0,+∞)上是单调增函数,∴f (x )在(0,+∞)内有且只有一个零点,根据奇函数的对称性可知,函数f (x )在(-∞,0)内有且只有一个零点.综上可知函数在R 上的零点个数为3.18.解:(1)设投资债券收益与投资额的函数关系为f (x )=k 1x ,投资股票的收益与投资额的函数关系为g (x )=k 2x ,由图像得f (1)=18=k 1,g (1)=k 2=12, f (x )=18x (x ≥0),g (x )=12x (x ≥0). (2)设投资债券类产品x 万元,则股票类投资为20-x 万元.y =f (x )+g (20-x )=x 8+1220-x (0≤x ≤20). 令t =20-x ,则y =20-t 28+12t =-18(t 2-4t -20) =-18(t -2)2+3. 所以当t =2,即x =16时,收益最大,y max =3万元.。

人教版高一数学必修四测试题(含详细答案)

人教版高一数学必修四测试题(含详细答案)

高一数学试题(必修4)(特殊适合按14523依次的省份)必修4第一章三角函数(1)一、选择题:l已知A={第一象限角}'B={锐角}'C={小千90°的角},那么A、B、C关系是()A. B=Anc2.✓sin2120° 等千忒i A土——- B. B U C=CC. A宝D. A=B=C()五2B五2c1_2n i sin a —2cosa3已知=-5, 那么tana的值为3 sin a + 5 c os aA.—2B. 2C .23164. 下列函数中,最小正周期为兀的偶函数是A.y =sin 2xXB y =c s—2A , 4✓3B -4✓3C .s in 2x+c s 2x 5, 若角600°的终边上有一点(-4,a),则a的值是()23 D.16( )1-tan 2 xD. y =1 + tan2 x()c .土4✓3D✓3X冗X6. 要得到函数y=co s (—-—)的图象,只需将y=sin —的图象( )2 4 2冗冗A. 向左平移—个单位B 同右平移—个单位22冗冗C. 向左平移—个单位D. 向右平移—个单位4 47. 若函数y=f (x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将冗l整个图象沿x轴向左平移—个单位,沿y轴向下平移l个单位,得到函数y =-sin x 的图象22测y=f (x)是()l 兀A. y=—sin(2x+—) +12 2 l 兀C.y =—sin(2x+—) +1 2 4l 兀B.y =—sin(2x -—) +12 2 l 冗D. —sin(2x -—) +12 45兀8. 函数y=sin (2x+—-)的图像的一条对方程是2冗A.x=-— 冗B. x =-— 冗_8__ xc 19. 若sin0·cos0=—,则下列结论中肯定成立的是A .si n 0 = ✓22B. 五sin 0 = -—C. si n 0+cos0 = 1(三4(_ x D))冗10 函数y = 2si n (2x+—)的图象3冗A. 关千原点对称B.关千(——,0)对称c.6 冗11 函数y =s n (x+—)X E R 是2 兀冗A . [-—,—]上是增函数2 2C. [-冗OJ 上是减函数12函数y =✓2c o sx l的定义域是A . [2k三三}k EZ)C. [2k冗十f,2k冗+气}k EZ)D. si n 0—cos0=0()冗关千y 对称D .关千直线x =—对称6( )B. [O五上是减函数D. [-冗冗上是减函数()B. [2k 二,2k 兀三}k E Z ) 6 6D. [2k 兀一气,2k兀+气}k E Z ) 二、填空题:冗冗213. 函数y = cos (x -—) (x E [—,—兀)的最小值是8 6 314。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x
,
高中数学必修 1 与必修四综合检测题
1. 下列函数中.既是偶函数,又在
(-,0)上为减函数的是
A. y = 2x
B. y =
C. y = -x 2
D. y = lg x
2. 已知幂函数的图象过点
⎛ 1 2 ⎫ ,则log 4 ( f (2)) 的值为
⎝ 2 2 ⎭
3. 函数 y = x sin x + cos x 的图像大致为(

A.
B. C.
D.
4.如果cos(+) = - 1
5
,那么 sin( - ) 等 于
3 2
5. 若一圆弧长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数为
6. 若3sin
+ c os = 0,则
1
的值为
cos 2
+ sin 2
7. 函数 y = A sin(x +
) 在一个周期内的图象如下,此函数的解析式为( )
2 A. y = 2 s in(2x + ) 3
B. y = 2 sin(2x + )
3
C. y = 2 s in( x - )
D. y = 2 sin(2x - ) 2 3 3
8. 已知 f (x ) =
⎪2 x - 1
x > 0 , g (x ) = f (x ) - m 有 3 个零点,则实数 m 取值范围是
⎪⎩
- x 2 - 2x x ≤ 0
9. A 为三角形 ABC 的一个内角,若sin A + cos A =
12
,则这个三角形的形状为
25
10.设 f (x ) 是定义在 R 上的奇函数,且 f (x + 3) ⋅ f (x ) = -1, f (-1) = 2 ,则 f (2008) =
⎧(3a -1)x + 4a , (x < 1)
11.已知函数 f (x ) = ⎨log x , (x ≥ 1)
满足:对任意实数 x 1 , x 2 ,当 x 1 < x 2 时,总有 ⎩ a
f (x 1) - f (x 2 ) > 0 ,那么实数 a 的取值范围是
1
12.已知函数 f(x)为奇函数,且当 x>0 时,f(x)=x 2+x ,则 f(-1)=____
13.方程2 sin(x +) +a -1 = 0 在[0,]上有两个不等的实根,则实数a 的取值范围是3
“”
“”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

相关文档
最新文档