二叉树应用之二叉树基本算法的实现

合集下载

二叉树的遍历及常用算法

二叉树的遍历及常用算法

⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。

二叉树的各种基本运算的实现实验报告

二叉树的各种基本运算的实现实验报告

软件技术基础实验四--二叉树的各种基本运算的实现班级:电信0901学号:0703090106姓名:蒋玮珂实验四二叉树的各种基本运算的实现(1)实验题目:编写一个程序,实现二叉树的各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)创建二叉树btree(2)求出二叉树btree的树高(3)中序遍历二叉树btree(4)统计二叉树btree的叶结点数(5)输出二叉树btree的所有叶结点(2)实验目的:(1)掌握二叉树的递归操作与运算;(2)加深对二叉树的建立,先序中序遍历方法以及树高的理解与应用(3)调试通过并正确执行给定功能要求的实验代码#include "stdafx.h"#include <fstream.h>struct bitree{char data;bitree *lchild;bitree *rchild;};bitree *createtree(char a[],char b[],int l1,int h1,int l2,int h2) {btree *root;int i,lhigh,rhigh;root=(btree*)malloc(sizeof(btree));root->data=a[l1];if(i=h1,(b[i]!=(root->data)),i++){lhigh=i-h1;rhigh=h2-i;if(lhigh)root->lchild=createtree(a,b,l1+1,l1+lhigh,h1,h1+lhigh-1);elseroot->lchild=NULL;if(rhigh)root->rchild=createtree(a,b,l2-rhigh+1,l2,h2-rhigh+1,h2);elseroot->rchild=NULL;}return root;}int treehigh(bitree *q)if(q==NULL)return 0;else{int lhigh,rhigh;lhigh=treehigh(q->lchild);rhigh=treehigh(q->rchild);if(lhigh>=rhigh)return lhigh+1;elsereturn rhigh+1;}}void inorder(bitree *q){j=0;if(q!=NULL){inorder(q->lchild,str1+(++j));*(str1+j)=q->data;inorder(q->rchild,str1+(++j));}}int countleaf(bitree *q, int count,int flag,char *str2) {k=0;if(q==0)return NULL;else if (q->lchild==NULL &&q->rchild==NULL){count ++;while (flag)*(str2+(k++))=q->data;return count;}else{countleaf(q->lchild ,count,flag,str2+(++k));countleaf(q->rchild ,count,flag,str2+(++k));if(!flag)return count;elsereturn NULL;}}void main()bitree *q;int high,flag,n=0,i=0;char x,y;ifstream infile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\infile.txt");ofstream outfile("e:\\ProgramFiles\\MSDev98\\MyProjects\\jwk\\outfile.txt");char a[20],b[20],str2[20],str1[20];while(infile.get(x)){infile>>x;a[i++]=x;n++;}i=0;while(infile.get(y)){infile>>y;b[i++]=y;}q=createtree(a,b,1,n,1,n);high=treehigh(q);outfile<<"The height of the bitree is:"<<high<<endl;outfile<<"The sequence of the bitree by the way of inorder:"<<endl; inorder(q,str1);i=0;while(str1[i])outfile<<str1[i++];count=0;flag=0;count=countleaf(q,count,flag,str2);cout<<"The number of the leaves is:"<<endl<<count<<endl;flag=1;cout<<"The leaves of the bitree is:"<<endl;i=0;while(str2[i])outfile<<str2[i++];infile.close();outfile.close();}(4)实验结果截图。

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用

二叉树的储存结构的实现及应用二叉树是一种常见的数据结构,它在计算机科学和算法设计中广泛应用。

二叉树的储存结构有多种实现方式,包括顺序储存结构和链式储存结构。

本文将从这两种储存结构的实现和应用角度进行详细介绍,以便读者更好地理解二叉树的储存结构及其在实际应用中的作用。

一、顺序储存结构的实现及应用顺序储存结构是将二叉树的节点按照从上到下、从左到右的顺序依次存储在一维数组中。

通常采用数组来实现顺序储存结构,数组的下标和节点的位置之间存在一定的对应关系,通过数学计算可以快速找到节点的父节点、左孩子和右孩子。

顺序储存结构的实现相对简单,利用数组的特性可以迅速随机访问节点,适用于完全二叉树。

1.1 实现过程在采用顺序储存结构的实现中,需要首先确定二叉树的深度,然后根据深度确定数组的长度。

通过数学计算可以得到节点间的位置关系,初始化数组并按照规定的顺序将二叉树节点逐一填入数组中。

在访问二叉树节点时,可以通过计算得到节点的父节点和子节点的位置,从而实现随机访问。

1.2 应用场景顺序储存结构适用于完全二叉树的储存和遍历,常见的应用场景包括二叉堆和哈夫曼树。

二叉堆是一种特殊的二叉树,顺序储存结构可以方便地实现它的插入、删除和调整操作,因此在堆排序、优先队列等算法中得到广泛应用。

哈夫曼树则是数据压缩领域的重要应用,通过顺序储存结构可以有效地构建和处理哈夫曼树,实现压缩编码和解码操作。

二、链式储存结构的实现及应用链式储存结构是通过指针将二叉树的节点连接起来,形成一个类似链表的结构。

每个节点包含数据域和指针域,指针域指向节点的左右孩子节点。

链式储存结构的实现相对灵活,适用于任意形态的二叉树,但需要额外的指针空间来存储节点的地址信息。

2.1 实现过程在链式储存结构的实现中,每个节点需要定义为一个包含数据域和指针域的结构体或类。

通过指针来连接各个节点,形成一个二叉树的结构。

在树的遍历和操作中,可以通过指针的操作来实现节点的访问和处理,具有较高的灵活性和可扩展性。

二叉树算法的应用

二叉树算法的应用

二叉树算法的应用二叉树算法在计算机科学中有着广泛的应用,它是一种非常有效的数据结构,可以用于解决许多问题。

下面将介绍二叉树算法的一些应用。

搜索二叉树搜索二叉树是一种特殊的二叉树,其中每个节点的值都大于其左子树中的所有节点的值,且小于其右子树中的所有节点的值。

搜索二叉树的应用非常广泛,例如搜索引擎、数据库索引、哈希表等。

在这些应用中,搜索二叉树可以有效地对数据进行排序和查找,提高数据处理的效率。

二叉堆二叉堆是一种特殊的二叉树,其中每个节点的值都大于或等于其子节点的值。

二叉堆可以用于实现优先队列、堆排序等算法。

在优先队列中,可以使用二叉堆来维护一组元素,并按照元素的优先级进行排序。

在堆排序中,可以使用二叉堆来对一组元素进行排序,其时间复杂度为O(nlogn)。

二叉搜索树二叉搜索树是一种特殊的二叉树,其中每个节点的值都大于其左子树中的所有节点的值,且小于其右子树中的所有节点的值。

二叉搜索树可以用于实现插入排序、查找、删除等算法。

在插入排序中,可以使用二叉搜索树来对一组元素进行排序,其时间复杂度为O(nlogn)。

在查找算法中,可以使用二叉搜索树来快速查找元素。

在删除算法中,可以使用二叉搜索树来删除指定的元素。

平衡二叉树平衡二叉树是一种特殊的二叉树,其中每个节点的左右子树的深度差不超过1。

平衡二叉树可以用于实现AVL树、红黑树等算法。

这些算法可以保证在最坏情况下,插入、删除等操作的时间复杂度为O(logn)。

二叉决策树二叉决策树是一种特殊的二叉树,其中每个节点表示一个决策。

在机器学习中,可以使用二叉决策树来构建分类器或回归器。

例如,决策树算法可以用于构建分类器,根据输入的特征来预测输出类别。

Trie树Trie树是一种特殊的二叉树,其中每个节点表示一个字符。

Trie树可以用于实现字符串匹配、文本压缩等算法。

在字符串匹配中,可以使用Trie树来快速查找字符串中的子串。

在文本压缩中,可以使用Trie树来存储一个字符串的所有前缀,从而减少存储空间的使用。

数据结构之二叉树(BinaryTree)

数据结构之二叉树(BinaryTree)

数据结构之⼆叉树(BinaryTree)⽬录导读 ⼆叉树是⼀种很常见的数据结构,但要注意的是,⼆叉树并不是树的特殊情况,⼆叉树与树是两种不⼀样的数据结构。

⽬录 ⼀、⼆叉树的定义 ⼆、⼆叉树为何不是特殊的树 三、⼆叉树的五种基本形态 四、⼆叉树相关术语 五、⼆叉树的主要性质(6个) 六、⼆叉树的存储结构(2种) 七、⼆叉树的遍历算法(4种) ⼋、⼆叉树的基本应⽤:⼆叉排序树、平衡⼆叉树、赫夫曼树及赫夫曼编码⼀、⼆叉树的定义 如果你知道树的定义(有限个结点组成的具有层次关系的集合),那么就很好理解⼆叉树了。

定义:⼆叉树是n(n≥0)个结点的有限集,⼆叉树是每个结点最多有两个⼦树的树结构,它由⼀个根结点及左⼦树和右⼦树组成。

(这⾥的左⼦树和右⼦树也是⼆叉树)。

值得注意的是,⼆叉树和“度⾄多为2的有序树”⼏乎⼀样,但,⼆叉树不是树的特殊情形。

具体分析如下⼆、⼆叉树为何不是特殊的树 1、⼆叉树与⽆序树不同 ⼆叉树的⼦树有左右之分,不能颠倒。

⽆序树的⼦树⽆左右之分。

2、⼆叉树与有序树也不同(关键) 当有序树有两个⼦树时,确实可以看做⼀颗⼆叉树,但当只有⼀个⼦树时,就没有了左右之分,如图所⽰:三、⼆叉树的五种基本状态四、⼆叉树相关术语是满⼆叉树;⽽国际定义为,不存在度为1的结点,即结点的度要么为2要么为0,这样的⼆叉树就称为满⼆叉树。

这两种概念完全不同,既然在国内,我们就默认第⼀种定义就好)。

完全⼆叉树:如果将⼀颗深度为K的⼆叉树按从上到下、从左到右的顺序进⾏编号,如果各结点的编号与深度为K的满⼆叉树相同位置的编号完全对应,那么这就是⼀颗完全⼆叉树。

如图所⽰:五、⼆叉树的主要性质 ⼆叉树的性质是基于它的结构⽽得来的,这些性质不必死记,使⽤到再查询或者⾃⼰根据⼆叉树结构进⾏推理即可。

性质1:⾮空⼆叉树的叶⼦结点数等于双分⽀结点数加1。

证明:设⼆叉树的叶⼦结点数为X,单分⽀结点数为Y,双分⽀结点数为Z。

数据结构实验三——二叉树基本操作及运算实验报告

数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。

问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。

由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。

处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。

算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。

输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。

对二叉树的一些运算结果以整型输出。

程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。

计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。

对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。

测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。

数据结构实验二叉树

数据结构实验二叉树

实验六:二叉树及其应用一、实验目的树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。

二、问题描述首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。

其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。

如算术表达式:a+b*(c-d)-e/f三、实验要求如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。

求二叉树的深度。

十进制的四则运算的计算器可以接收用户来自键盘的输入。

由输入的表达式字符串动态生成算术表达式所对应的二叉树。

自动完成求值运算和输出结果。

四、实验环境PC微机DOS操作系统或Windows 操作系统Turbo C 程序集成环境或Visual C++ 程序集成环境五、实验步骤1、根据二叉树的各种存储结构建立二叉树;2、设计求叶子结点个数算法和树的深度算法;3、根据表达式建立相应的二叉树,生成表达式树的模块;4、根据表达式树,求出表达式值,生成求值模块;5、程序运行效果,测试数据分析算法。

六、测试数据1、输入数据:2.2*(3.1+1.20)-7.5/3正确结果:6.962、输入数据:(1+2)*3+(5+6*7);正确输出:56七、表达式求值由于表达式求值算法较为复杂,所以单独列出来加以分析:1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。

例如有如下的中缀表达式:a+b-c转换成后缀表达式为:ab+c-然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。

如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告

二叉树的基本操作与实现实验报告二叉树是一种重要的数据结构,在计算机科学领域中被广泛应用。

本实验将介绍二叉树的基本操作与实现,并给出相应的实验报告。

一、引言二叉树是一种特殊的树状结构,每个节点至多有两个子节点。

二叉树有许多重要的特性,如平衡二叉树、二叉树等,应用广泛。

在本实验中,我们将介绍二叉树的基本操作和实现。

二、实验目的1.掌握二叉树的基本概念和特性;2.熟悉二叉树的基本操作,包括创建、插入、删除、遍历等;3.学会使用编程语言实现二叉树的基本操作。

三、实验内容本实验主要包括以下内容:1.二叉树的定义和基本概念;2.二叉树的基本操作,包括创建、插入、删除、遍历等;3.使用编程语言实现二叉树的基本操作;4.测试和验证二叉树的基本操作的正确性。

四、实验步骤1.二叉树的定义和基本概念二叉树是一种树状结构,每个节点至多有两个子节点。

二叉树的每个节点包含一个数据项和指向左子树和右子树的指针。

二叉树的特性有很多,如完全二叉树、平衡二叉树、二叉树等。

2.二叉树的基本操作(1)创建二叉树:可以通过手动输入节点数据来创建二叉树,也可以通过读取文件中的数据来创建二叉树。

(2)插入节点:在指定位置插入一个新节点。

(3)删除节点:删除指定位置的节点。

(4)遍历二叉树:有前序遍历、中序遍历和后序遍历三种遍历方式。

3.使用编程语言实现二叉树的基本操作实现二叉树的基本操作可以使用编程语言来完成。

我们可以定义一个二叉树的结构体,包含节点数据和指向左右子树的指针。

然后根据具体的需求,实现相应的操作函数。

4.测试和验证二叉树的基本操作的正确性在完成二叉树的基本操作后,我们可以编写测试代码来验证操作的正确性。

通过创建二叉树,并进行插入、删除和遍历操作,观察输出结果是否符合预期。

五、实验结果与分析在完成二叉树的基本操作后,我们可以进行测试和验证。

通过输出二叉树的遍历结果,比对预期结果来判断操作是否正确。

同时,我们还可以观察二叉树的结构和特性,如是否满足平衡二叉树或二叉树的条件。

二叉树

二叉树

6-2-2 二叉树的基本操作与存储实现
1、二叉树的基本操作 Initiate(bt)
Create(x, lbt, rbt)
InsertL(bt, x, parent) InsertR(bt, x, parent) DeleteL(bt,parent) DeleteR(bt,parent)
Search(bt,x)
BiTree DeleteL(BiTree bt, BiTree parent){ BiTree p; if(parent==NULL||parent->lchild==NULL){ cout<<“删除出错”<<endl; return NULL; } p=parent->lchild; parent->lchild =NULL; delete p; return bt ; }
a b c e 0 1 2 3 4 5 a b c d e ^ 6 7 8 9 10 ^ ^ ^ f g
d
f
g
特点:结点间关系蕴含在其存储位置中。浪费空间, 适于存满二叉树和完全二叉树。
二、链式存储结构 1、二叉链表存储法
A
B C E G D B A ^
lchild data rchild
F
^ C ^ typedef struct BiTNode { DataType data; struct BiTNode *lchild, *rchild; }BiTNode, *BiTree; ^ E
二叉树的五种基本形态

A
A
A B
A
B 空二叉树
B
C 左、右子树 均非空
只有根结点 的二叉树
右子树为空
左子树为空

二叉树基本运算算法的实现

二叉树基本运算算法的实现

二叉树基本运算算法的实现
二叉树是一种常见的数据结构,基本运算算法包括二叉树的遍历、查找、插入、删除等操作。

下面是这些算法的实现:
1. 二叉树遍历:二叉树遍历有三种方式,分别是前序遍历、中序遍历和后序遍历。

其中,前序遍历先访问根节点,再访问左子树和右子树;中序遍历先访问左子树,再访问根节点和右子树;后序遍历先访问左子树,再访问右子树和根节点。

遍历可以使用递归算法或栈实现。

2. 二叉树查找:二叉树查找可以使用递归算法或循环算法实现。

递归算法通过比较节点值实现查找,如果查找值小于当前节点值,则在左子树中查找,否则在右子树中查找。

循环算法使用二叉树的特性,比较查找值和当前节点值的大小,根据大小关系不断移动到左子树或右子树中进行查找,直到找到目标节点或遍历到叶子节点为止。

3. 二叉树插入:二叉树插入需要先查找到插入位置,然后在该位置插入一个新节点。

插入操作可以使用递归算法或循环算法实现。

4. 二叉树删除:二叉树删除分为三种情况:删除叶子节点、删除只有一个孩子的节点和删除有两个孩子的节点。

删除叶子节点很简单,只需要将其父节点的指针设为NULL即可。

删除只有一个孩子的节点需要将父节点的指针指向该节点的
孩子节点。

删除有两个孩子的节点需要找到该节点的后继节点(或前驱节点),将后继节点的值复制到该节点中,然后删除后继节点。

上述算法的实现需要根据具体的编程语言进行调整和实现。

二叉树实现及应用实验报告

二叉树实现及应用实验报告

二叉树实现及应用实验报告实验名称:二叉树实现及应用实验目的:1. 实现二叉树的创建、插入和删除操作。

2. 学习二叉树的遍历方法,并能够应用于实际问题。

3. 掌握二叉树在数据结构和算法中的一些常用应用。

实验内容:1. 实现二叉树的创建、插入和删除操作,包括二叉树的构造函数、插入函数和删除函数。

2. 学习二叉树的三种遍历方法:前序遍历、中序遍历和后序遍历,并应用于实际问题。

3. 掌握二叉树的一些常用应用,如二叉搜索树、平衡二叉树和哈夫曼树等。

实验步骤:1. 创建二叉树的结构体,包括树节点和树的根节点。

2. 实现二叉树的构造函数,用于创建二叉树的根节点。

3. 实现二叉树的插入函数,用于将元素插入到二叉树中的合适位置。

4. 实现二叉树的删除函数,用于删除二叉树中的指定元素。

5. 学习并实现二叉树的前序遍历、中序遍历和后序遍历函数。

6. 运用二叉树的遍历方法解决实际问题,如查找二叉树中的最大值和最小值。

7. 学习并应用二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构。

实验结果:1. 成功创建、插入和删除二叉树中的元素,实现了二叉树的基本操作。

2. 正确实现了二叉树的前序遍历、中序遍历和后序遍历,并能够正确输出遍历结果。

3. 通过二叉树的遍历方法成功解决了实际问题,如查找二叉树中的最大值和最小值。

4. 学习并熟练应用了二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构,丰富了对二叉树的理解。

实验分析:1. 二叉树是一种重要的数据结构,具有较好的数据存储和查找性能,广泛应用于计算机科学和算法领域。

2. 通过实验,我们深入了解了二叉树的创建、插入和删除操作,以及前序遍历、中序遍历和后序遍历的原理和应用。

3. 实际问题往往可以转化为二叉树的遍历问题进行求解,通过实验,我们成功应用了二叉树的遍历方法解决了实际问题。

4. 熟练掌握二叉搜索树、平衡二叉树和哈夫曼树的原理和应用,对于提高我们在数据结构和算法方面的设计能力具有重要意义。

实现二叉树的各种基本运算的算法代码

实现二叉树的各种基本运算的算法代码

实现二叉树的各种基本运算的算法代码(一)创建二叉树1. 二叉树的链表存储结构://定义二叉树的链表存储结构typedef struct BiTNode{char data;struct BiTNode *lchild, *rchild;} BiTNode, *BiTree;2.利用二叉树的链表存储结构,创建一棵二叉树//根据二叉树的链表存储结构,创建一棵二叉树BiTree CreateBiTree(BiTree T){char c;scanf(&c);if(c=='#')T=NULL;else{T=(BiTree)malloc(sizeof(BiTNode)); // 产生根节点 T->data=c; // 生成根结点T->lchild = CreateBiTree(T->lchild); // 构造左子树 T->rchild = CreateBiTree(T->rchild); // 构造右子树 }return T;}(二)二叉树的遍历1.先序遍历// 先序遍历:根左右void PreOrderTraverse(BiTree T){if(T==NULL)return;printf('%c',T->data); // 访问根结点PreOrderTraverse(T->lchild); // 遍历左子树PreOrderTraverse(T->rchild); // 遍历右子树}2.中序遍历// 中序遍历:左根右void InOrderTraverse(BiTree T){if(T==NULL)return;InOrderTraverse(T->lchild); // 遍历左子树 printf('%c',T->data); // 访问根结点InOrderTraverse(T->rchild); // 遍历右子树 }3.后序遍历// 后序遍历:左右根void PostOrderTraverse(BiTree T){if(T==NULL)return;PostOrderTraverse(T->lchild); // 遍历左子树 PostOrderTraverse(T->rchild); // 遍历右子树 printf('%c',T->data); // 访问根结点}(三)二叉树的其他基本运算1.计算二叉树的结点数// 计算二叉树的结点数int CountTreeNode(BiTree T){if(T==NULL)return 0; // 二叉树T为空时,结点数为0elsereturnCountTreeNode(T->lchild)+CountTreeNode(T->rchild)+1; }2.计算二叉树的深度// 计算二叉树的深度int TreeDepth(BiTree T){int depL, depR;if(T==NULL)return 0; // 二叉树T为空时,深度为0else{depL = TreeDepth(T->lchild); // 左子树深度depR = TreeDepth(T->rchild); // 右子树深度if(depL > depR)return depL+1;elsereturn depR+1;}}。

二叉树基本操作--实验报告

二叉树基本操作--实验报告

宁波工程学院电信学院计算机教研室实验报告一、实验目的1、熟悉二叉树树的基本操作。

2、掌握二叉树的实现以及实际应用。

3、加深二叉树的理解,逐步培养解决实际问题的编程能力。

二、实验环境1台WINDOWS环境的PC机,装有Visual C++ 6.0。

三、实验内容【问题描述】现需要编写一套二叉树的操作函数,以便用户能够方便的利用这些函数来实现自己的应用。

其中操作函数包括:1>创建二叉树CreateBTNode(*b,*str):根据二叉树括号表示法的字符串*str生成对应的链式存储结构。

2>输出二叉树DispBTNode(*b):以括号表示法输出一棵二叉树。

3>查找结点FindNode(*b,x):在二叉树b中寻找data域值为x的结点,并返回指向该结点的指针。

4>求高度BTNodeDepth(*b):求二叉树b的高度。

若二叉树为空,则其高度为0;否则,其高度等于左子树与右子树中的最大高度加l。

5>求二叉树的结点个数NodesCount(BTNode *b)6>先序遍历的递归算法:void PreOrder(BTNode *b)7>中序遍历的递归算法:void InOrder(BTNode *b)8>后序遍历递归算法:void PostOrder(BTNode *b)9>层次遍历算法void LevelOrder(BTNode *b)【基本要求】实现以上9个函数。

主函数中实现以下功能:创建下图中的树b输出二叉树b找到’H’节点,输出其左右孩子值输出b的高度输出b的节点个数输出b的四种遍历顺序上图转化为二叉树括号表示法为A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))程序:#include <stdio.h>#include <malloc.h>#define MaxSize 100typedef char ElemType;typedef struct node{ElemType data; /*数据元素*/struct node *lchild; /*指向左孩子*/struct node *rchild; /*指向右孩子*/} BTNode;void CreateBTNode(BTNode *&b,char *str);//创建BTNode *FindNode(BTNode *b,ElemType x);//查找节点int BTNodeHeight(BTNode *b);//求高度void DispBTNode(BTNode *b);//输出int NodesCount(BTNode *b);//二叉树的结点个数void PreOrder(BTNode *b);//先序遍历递归void InOrder(BTNode *b);//中序遍历递归void PostOrder(BTNode *b);//后序遍历递归void LevelOrder(BTNode *b);//层次遍历//创建void CreateBTNode(BTNode *&b,char *str){BTNode *St[MaxSize],*p=NULL;int top=-1,k,j=0;char ch;b=NULL;ch=str[j];while(ch!='\0'){switch(ch){case '(':top++;St[top]=p;k=1;break;case ')':top--;break;case ',':k=2;break;default:p=(BTNode *)malloc(sizeof(BTNode));p->data=ch;p->lchild=p->rchild=NULL;if(b==NULL)b=p;else{switch(k){case 1:St[top]->lchild=p;break;case 2:St[top]->rchild=p;break;}}}j++;ch=str[j];}}//输出void DispBTNode(BTNode *b){if(b!=NULL){printf("%c",b->data);if(b->lchild!=NULL||b->rchild!=NULL){printf("(");DispBTNode(b->lchild);if(b->rchild!=NULL)printf(",");DispBTNode(b->rchild);printf(")");}}}//查找节点BTNode *FindNode(BTNode *b,ElemType x){BTNode *p;if(b==NULL)return b;else if(b->data==x)return b;else{p=FindNode(b->lchild,x);if(p!=NULL)return p;elsereturn FindNode(b->rchild,x);}}//求高度int BTNodeHeight(BTNode *b){int lchildh,rchildh;if(b==NULL)return (0);else{lchildh=BTNodeHeight(b->lchild);rchildh=BTNodeHeight(b->rchild);return(lchildh>rchildh)?(lchildh+1):(rchildh+1);}}//二叉树的结点个数int NodesCount(BTNode *b){if(b==NULL)return 0;elsereturn NodesCount(b->lchild)+NodesCount(b->rchild)+1;}//先序遍历递归void PreOrder(BTNode *b){if(b!=NULL){printf("%c",b->data);PreOrder(b->lchild);PreOrder(b->rchild);}}//中序遍历递归void InOrder(BTNode *b){if(b!=NULL){InOrder(b->lchild);printf("%c",b->data);InOrder(b->rchild);}}//后序遍历递归void PostOrder(BTNode *b){if(b!=NULL){PostOrder(b->lchild);PostOrder(b->rchild);printf("%c",b->data);}}//层次遍历void LevelOrder(BTNode *b){BTNode *p;BTNode *qu[MaxSize];int front,rear;front=rear=-1;rear++;qu[rear]=b;while(front!=rear){front=(front+1)%MaxSize;p=qu[front];printf("%c",p->data);if(p->lchild!=NULL){rear=(rear+1)%MaxSize;qu[rear]=p->lchild;}if(p->rchild!=NULL){rear=(rear+1)%MaxSize;qu[rear]=p->rchild;}}}void main(){BTNode *b,*p,*lp,*rp;char str[]="A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))";//根据树形图改写成的//二叉树括号表示法的字符串*str//char str[100];scanf("%s",&str);//自行输入括号表示的二叉树CreateBTNode(b,str); //创建树bprintf("\n");printf("输出二叉树:");//输出二叉树bDispBTNode(b);printf("\n");printf("'H'结点:");//找到'H'节点,输出其左右孩子值p=FindNode(b,'H');printf("\n");if (p!=NULL){printf("左孩子节点的值");printf("%c",p->lchild->data);printf("\n");printf("右孩子节点的值");printf("%c",p->rchild->data);printf("\n");//此处输出p的左右孩子节点的值}printf("\n");printf("二叉树b的深度:%d\n",BTNodeHeight(b));//输出b的高度printf("二叉树b的结点个数:%d\n",NodesCount(b));//输出b的节点个数printf("\n");printf(" 先序遍历序列:\n");//输出b的四种遍历顺序printf(" 算法:");PreOrder(b);printf("\n");printf(" 中序遍历序列:\n");printf(" 算法:");InOrder(b);printf("\n");printf(" 后序遍历序列:\n");printf(" 算法:");PostOrder(b);printf("\n");printf(" 层次遍历序列:\n");printf(" 算法:");LevelOrder(b); printf("\n");}四、实验心得与小结通过实验,我熟悉二叉树树的基本操作,掌握二叉树的实现以及实际应用。

实验五 二叉树基本操作的编程实现

实验五 二叉树基本操作的编程实现

实验五二叉树基本操作的编程实现【实验目的】内容:二叉树基本操作的编程实现要求:二叉树基本操作的编程实现(2学时,验证型),掌握二叉树的建立、遍历、插入、删除等基本操作的编程实现,也可以进一步编程实现查找等操作,存储结构主要采用顺序或链接结构。

也鼓励学生利用基本操作进行一些应用的程序设计。

【实验性质】验证性实验(学时数:2H)【实验内容】以下的选题都可以作为本次实验的推荐题目1.建立二叉树,并以前序遍历的方式将结点内容输出。

2.将一个表示二叉树的数组结构转换成链表结构。

3.将表达式二叉树方式存入数组,以递归方式建立表达式之二叉树状结构,再分别输出前序、中序及后序遍历结果,并计算出表达式之结果。

【思考问题】1.二叉树是树吗?它的定义为什么是递归的?2.三种根序遍历主要思路是什么?3.如果不用遍历算法一般启用什么数据结构实现后序遍历?4.举出二叉树的应用范例?【参考代码】(一)建立二叉树,并以前序遍历的方式将结点内容输出*//*===============================================*//*程序构思:*//*输入元素值后建立二叉树,以递归的方式做前序遍历,*//*其顺序为:结点-左子-右子树,并将二叉树结点内容输出。

*/#include<stdlib.h>#include<stdio.h>struct tree /*声明树的结构*/{struct tree *left; /*存放左子树的指针*/int data; /*存放结点数据内容*/struct tree *right; /*存放右子树的指针*/};typedef struct tree treenode; /*声明新类型树结构*/typedef treenode *b_tree; /*声明二叉树的链表*//*===============================================*//*插入二叉树结点*//*===============================================*/b_tree insert_node (b_tree root, int node){b_tree newnode; /*声明树根指针*/b_tree currentnode; /*声明目前结点指针*/b_tree parentnode; /*声明父结点指针*//*建立新结点的内存空间*/newnode=(b_tree )malloc (sizeof(treenode));newnode->data=node; /*存入结点内容*/ newnode->right=NULL; /*设置右指针初值*/ newnode->left=NULL; /*设置左指针初值*/if (root==NULL)return newnode; /*返回新结点的位置*/ else{currentnode=root; /*存储目前结点指针*/while (currentnode!=NULL){parentnode=currentnode; /*存储父结点指针*/if (currentnode->data>node) /*比较结点的数值大小*/currentnode=currentnode->left; /*左子树*/elsecurrentnode=currentnode->right; /*右子树*/ }if (parentnode->data>node) /*将父结点和子结点做连结*/ parentnode->left=newnode; /*子结点为父结点之左子树*/ elseparentnode->right=newnode; /*子结点为父结点之右子树*/ }return root; /*返回根结点之指针*/ }/*===============================================*//*建立二叉树*//*===============================================*/b_tree create_btree (int *data, int len){b_tree root=NULL; /*根结点指针*/ int i;for (i=0; i<len; i++) /*建立树状结构*/ root=insert_node(root, );return root;}/*===============================================*//*二叉树前序遍历*//*===============================================*/void preorder (b_tree point){if (point!=NULL) /*遍历的终止条件*/ {printf ("%2d", point->data); /*处理打印结点内容*/preorder (point->left); /*处理左子树*//*处理右子树*/}}/*==================================================*//*主程序:建立二叉树,并以前序遍历输出二叉树结点内容*//*==================================================*/void main(){b_tree root=NULL; /*树根指针*/int i, index;int value; /*读入输入值所使用的暂存变量*/ int nodelist[20]; /*声明存储输入数据之数组*/printf ("\n Please input the elements of binary tree(Exit for 0): \n");index=0;/*------------------读取数值存到数组中------------------*/scanf ("%d", &value); /*读取输入值存到变量value*/while (value!=0){nodelist[index]=value;;scanf ("%d", &value);}/*----------------------建立二叉树----------------------*/root=create_btree(nodelist, index);/*--------------------前序遍历二叉树--------------------*/printf ("\n The preorder traversal result is (");preorder( );printf (") \n");}/*希望的结果*/ /*Please input the elements of binary tree(Exit for 0): *//*6 3 1 9 5 7 4 8 0 *//* */ /*The preorder traversal result is (6 3 1 5 4 9 7 8) */(二)将一个表示二叉树的数组结构转换成链表结构/*===============================================*//*程序构思:*//*给定一个二叉树数组结构,使用递归方式建立一棵二叉树,*//*并中序遍历的方式输出二叉树结点内容。

二叉树

二叉树

7.1.2
二叉树的五种基本形态
Ф
左子树
(a) (b) (c)
右子树
(d)
左子树
(e)
右子树
7.1.3
两种特殊形态的二叉树
结点拥有的子树数称为该结点的度(degree)。度为零的结点称 为叶子(leaf),其余结点称为分支结点(branch)。树中结点的最大的 度称为树的度。显然,二叉树结点的度可能为0、1或2。 根结点的层次(level)为1,其余结点的层次等于该结点的双亲结 点的层次加1。树中结点的最大层次称为该树的高度或深度。 1.满二叉树 2.完全二叉树
7.6
本章小结
本章讨论了二叉树数据类型的定义以及实现方法。二叉树是 以两个分支关系定义的层次结构,结构中的数据元素之间存在着一 对多的关系,因此它为计算机应用中出现的具有层次关系或分支关 系的数据,提供了一种自然的表示方法。 二叉树是有明确的左子树和右子树的树形结构,因此当用二 叉树来描述层次关系时,其左孩子表示下属关系,而右孩子表示的 是同一层次的关系。 二叉树的遍历算法是实现各种操作的基础。遍历的实质是按 某种规则将二叉树中的数据元素排列成一个线性序列,二叉树的线 索链表便可看成是二叉树的一种线性存储结构,在线索链表上可对 二叉树进行线性化的遍历,即不需要递归,而是从第一个元素起, 逐个访问后继元素直至后继为空止。因此,线索链表是通过遍历生 成的,即在遍历过程中保存结点之间的前驱和后继的关系。
7.1.4
二叉树的几个特性
由二叉树的定义、形态,我们很容易的得出下面二叉树的 一些特性。 性质1 在二叉树的第i 层上至多有 2i-1 个结点(i≥1)。 性质2 深度为k的二叉树中至多含有2k-1 个结点(k≥1)。 性质3 对任何一棵二叉树 T,如果其终端结点数为,度为 2的结点数为,则。 性质4 具有n个结点的完全二叉树的深度为 log2n+1。 性质5 如果对一棵有 n 个结点的完全二叉树(其深度为 log2n+1)的结点按层序(从第1层到第 log2n+1 层,每层从左到 右)从1起开始编号。

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

二叉排序树与平衡二叉排序树基本操作的实现 文本文档

10 设计说明书(论文)质量 30 综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。
11 创新 10 对前人工作有改进或突破,或有独特见解。
成绩
指导教师评语
指导教师签名: 年 月 日
摘要及关键字
本程序中的数据采用“树形结构”作为其数据结构。具体采用的是“二叉排序树”。
1.2.5 平衡二叉树( AVL树 )
①平衡二叉树(Balanced Binary Tree)是指树中任一结点的左右子树的高度大致相同。 ②任一结点的左右子树的高度均相同(如满二叉树),则二叉树是完全平衡的。通常,只要二叉树的高度为O(1gn),就可看作是平衡的。 ③平衡的二叉排序树指满足BST性质的平衡二叉树。 ④AVL树中任一结点的左、右子树的高度之差的绝对值不超过1。在最坏情况下,n个结点的AVL树的高度约为1.44lgn。而完全平衡的二叉树高度约为lgn,AVL树是最接近最优的。
1.2.4平均查找长度…………………………………………………………… 6
1.2.5平均二叉树(AVL树)…………………………………………………… 6
1.2.6平衡因子………………………………………………………………… 7
1.2.7平衡二叉树的调整方法…………………………………………………… 7
攀枝花学院本科学生课程设计任务书
题 目 二叉排序树与平衡二叉树的实现
1、课程设计的目的
使学生进一步理解和掌握课堂上所学各种基本抽象数据类型的逻辑结构、存储结构和操作实现算法,以及它们在程序中的使用方法。
使学生掌握软件设计的基本内容和设计方法,并培养学生进行规范化软件设计的能力。
3) 使学生掌握使用各种计算机资料和有关参考资料,提高学生进行程序设计的基本能力。

数据结构课程设计-二叉树的基本操作

数据结构课程设计-二叉树的基本操作

二叉树的基本操作摘要:本次课程设计通过对二叉树的一系列操作主要练习了二叉树的建立、四种遍历方式:先序遍历、中序遍历、后序遍历和层序遍历以及节点数和深度的统计等算法。

增加了对二叉树这一数据结构的理解,掌握了使用c语言对二叉树进行一些基本的操作。

关键字:递归、二叉树、层序遍历、子树交换一、程序简介本程序名为“二叉树基本操作的实现”,其主要为练习二叉树的基本操作而开发,其中包含了建立、遍历、统计叶子结点和深度等一系列操作。

其中定义二叉链表来表示二叉树,用一个字符类型的数据来表示每一个节点中存储的数据。

由于没有进行图形界面的设计,用户可以通过程序中的遍历二叉树一功能来查看操作的二叉树。

二、功能模块2.1功能模块图2.2功能模块详解2.2.1建立二叉树输入要建立的二叉树的扩展二叉树的先序遍历序列,来建立二叉树,建立成功会给出提示。

2.2.2遍历二叉树执行操作之后会有四个选项可供选择:先序遍历、中序遍历、后序遍历、层序遍历。

输入对应的序号即可调动相关函数输出相应的遍历序列。

2.2.3统计叶子节点树执行之后输出叶子结点的个数。

2.2.4求二叉树深度执行之后输出二叉树的深度。

2.2.5子树交换交换成功则会给出提示,用户可通过遍历二叉树来观察子树交换之后的二叉树。

三、数据结构和算法设计3.1二叉链表的设计1.typedef struct BiNode {2.char data;3.struct BiNode* lchild; //左孩子4.struct BiNode* rchild; //右孩子5.}BiTree;用一个字符型保存节点数据,分别定义两个struct BiNode类型的指针来指向左孩子和右孩子。

在BiTree.h中实现相关的功能。

3.2队列的实现1.typedef struct {2. ElemType* data;3.int head;//队头指针4.int tail;//队尾指针5.} SqQueue;队列主要用于二叉树遍历过程中的层序遍历,从根节点开始分别将左右孩子放入队列,然后从对头开始输出。

c语言实现二叉树各种基本运算的算法

c语言实现二叉树各种基本运算的算法

c语言实现二叉树各种基本运算的算法二叉树是一种常见的数据结构,可以应用于许多算法和问题中。

在C语言中,我们可以使用指针和结构体来实现二叉树的各种基本运算。

本文将详细介绍二叉树的创建、插入、删除、查找以及遍历等基本操作的算法。

1.创建二叉树创建二叉树可以通过递归的方式来实现。

首先定义一个表示二叉树节点的结构体,包含一个值和左右子节点指针。

然后,通过递归地创建左右子树来构建整个二叉树。

```ctypedef struct TreeNode {int data;struct TreeNode* left;struct TreeNode* right;} TreeNode;//创建二叉树TreeNode* createBinaryTree() {int data;scanf("%d", &data);if (data == -1) { // -1表示空节点return NULL;}TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode)); node->data = data;node->left = createBinaryTree();node->right = createBinaryTree();return node;}```2.插入节点在二叉树中插入节点可以按照二叉搜索树的性质进行。

如果要插入的值小于当前节点的值,则将其插入到左子树中,否则插入到右子树中。

如果子树为空,则直接创建一个新节点作为子树。

```c//插入节点TreeNode* insertNode(TreeNode* root, int data) {if (root == NULL) {TreeNode* newNode = (TreeNode*)malloc(sizeof(TreeNode));newNode->data = data;newNode->left = NULL;newNode->right = NULL;return newNode;}if (data < root->data) {root->left = insertNode(root->left, data);} else {root->right = insertNode(root->right, data);}return root;}```3.删除节点删除二叉树中的节点可以分为三种情况:删除叶子节点、删除只有一个子节点的节点、删除有两个子节点的节点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二叉树应用——二叉树基本算法的实现【功能要求】实现Create方法,要求键盘输入二叉树结点序列,创建一棵二叉树(提示:前序递归)实现SwapTree方法,以根结点为参数,交换每个结点的左子树和右子树(提示:前序递归)增加InorderTree方法,采用非递归方法实现二叉树的中序遍历你可以选择:对BinaryTree模板进行功能扩充;自己定义并实现二叉树类要求键盘输入二叉树结点序列结点序列可以是前序,也可以是层次空结点以#表示【代码实现】// 二叉树01.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>using namespace std;template<class T>class BinaryTreeNode;template<class T>class BinaryTree{public:BinaryTree(){root=0;}BinaryTree(const BinaryTree<T> &Tree ){copy(Tree.root,root);}~BinaryTree(){};bool IsEmpty()const{return ((root)?false:true);}void Creat();bool Root (T&x)const;void MakeTree(const T&element,BinaryTree<T>&left,BinaryTree<T>&right); void BreakTree( T&element,BinaryTree<T>&left,BinaryTree<T>&right); void PreOrder(void (*Visit)(BinaryTreeNode<T>*u)){PreOrder(Visit,root);}void InOrder(void (*Visit)(BinaryTreeNode<T>*u)){InOrder(Visit,root);}void PostOrder(void (*Visit)(BinaryTreeNode<T>*u)){PostOrder(Visit,root);}void LevelOrder(void(*Visit)(BinaryTreeNode<T>*u));void PreOutput(){PreOrder(Output,root);cout<<endl;}void InOutput(){InOrder(Output,root);cout<<endl;}void Postput(){PostOrder(Output,root);cout<<endl;}void LevelOutPut(){LevelOrder(Output);cout<<endl;}void Delete(){PostOrder(Free,root);root=0;}int Height()const{return Height(root);}int Size()const{return Size(root);}BinaryTreeNode<T>*iCreat();bool equal(BinaryTree<T>&Tree){return compare(root,Tree.root);}void swap(){swap(root);}int leave(){return leave(root);}int noleave(){return noleave(root);}private:BinaryTreeNode<T>*root;void PreOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>*t);void InOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>*t);void PostOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>*t);static void Output(BinaryTreeNode<T>* t){cout<<t->data <<" ";}static void Free(BinaryTreeNode<T>*t){delete t;}int Height(BinaryTreeNode<T>*t)const;int Size(BinaryTreeNode<T>*t)const;bool compare(BinaryTreeNode<T>*t1,BinaryTreeNode<T>*t2);void copy(const BinaryTreeNode<T>*t1,BinaryTreeNode<T>*&t2);void swap(BinaryTreeNode<T>*t);int leave(BinaryTreeNode<T>*t);int noleave(BinaryTreeNode<T>*t);};template<class T>class LinkedQueue;template<class T>class Node{friend LinkedQueue<T>;private:T data;Node<T>*link;};template<class T>class LinkedQueue{public:LinkedQueue(){front=rear=0;}~LinkedQueue();bool IsEmpty()const{return ((front)?false:true);}bool IsFull()const;T First()const;T Last()const;LinkedQueue<T>&Add(const T &x);LinkedQueue<T>&Delete(T&x); private:Node<T>*front;Node<T>*rear;};template<class T>bool BinaryTree<T>::Root(T&x)const {if(root){x=root->data;return true;}else return false;}template<class T>void BinaryTree<T>::MakeTree(const T &element ,BinaryTree<T>&left,BinaryTree<T>&right){root=new BinaryTreeNode<T>(element,left.root,right.root);left.root=right.root=0;}template<class T>voidBinaryTree<T>::BreakTree(T&element ,BinaryTree<T>&left,BinaryTree<T>&right) {element=root->data;left.root=root->LeftChild;right.root=root->RightChild;delete root;root=0;}template<class T>voidBinaryTree<T>::PreOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T> *t){if(t){Visit(t);PreOrder(Visit,t->LeftChild);PreOrder(Visit,t->RightChild);}}template<class T>voidBinaryTree<T>::InOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T>* t){if(t){InOrder(Visit,t->LeftChild);Visit(t);InOrder(Visit,t->RightChild);}}template<class T>voidBinaryTree<T>::PostOrder(void(*Visit)(BinaryTreeNode<T>*u),BinaryTreeNode<T >*t){if(t){PostOrder(Visit,t->LeftChild);PostOrder(Visit,t->RightChild);Visit(t);}}template<class T>void BinaryTree<T>::LevelOrder(void(*Visit)(BinaryTreeNode<T>*u)){LinkedQueue<BinaryTreeNode<T>*> Q;BinaryTreeNode<T>*t;t=root;while(t){Visit(t);if(t->LeftChild) Q.Add(t->LeftChild);if(t->RightChild) Q.Add(t->RightChild);if(Q.IsEmpty()) return ;else Q.Delete(t);}}template<class T>int BinaryTree<T>::Height(BinaryTreeNode<T>*t)const{if(!t) return 0;int hl=Height(t->LeftChild);int hr=Height(t->RightChild);if(hl>hr) return ++hl;else return ++hr;}template<class T>int BinaryTree<T>::Size(BinaryTreeNode<T>*t)const{if(!t) return 0;int sl=Size(t->LeftChild);int sr=Size(t->RightChild);return (1+sl+sr);}template<class T>BinaryTreeNode<T>*BinaryTree<T>::iCreat( ){T ch;cin>>ch;BinaryTreeNode<T> * root;if(ch=='#'){root=NULL;}else{root=new BinaryTreeNode<T>;root->data=ch;root->LeftChild=this->iCreat();root->RightChild=this->iCreat();}return root;}template<class T>void BinaryTree<T>::Creat(){this->root = iCreat();}template<class T>bool BinaryTree<T>::compare(BinaryTreeNode<T> *t1, BinaryTreeNode<T> *t2) {if (t1==NULL&&t2==NULL) return true;else if (t1!=NULL&&t2==NULL) return false;else if (t1==NULL&&t2!=NULL) return false;else if (t1->data!=t2->data) return false;elsereturn(compare(t1->leftChild,t2->leftChild)&&compare(t1->RightChild,t2->RightChi ld));}template<class T>void BinaryTree<T>::copy(const BinaryTreeNode<T>*t1,BinaryTreeNode<T>*&t2) {if(t1){t2=new BinaryTreeNode<T>;t2->data=t1->data;copy(t1->LeftChild,t2->LeftChild);copy(t1->RightChild,t2->RightChild);}}template<class T>void BinaryTree<T>::swap(BinaryTreeNode<T> *t){BinaryTreeNode<T> *temp;if(!t) return;else{temp=t->LeftChild;t->LeftChild=t->RightChild;t->RightChild=temp;swap(t->leftChild);swap(t->RightChild);}}template<class T>int BinaryTree<T>::leave(BinaryTreeNode<T>*t){if(!t) return 0;if(t->LeftChild==0&&t->RightChild==0)return 1;int leafl=leave(t->LeftChild);int leafr=leave(t->RightChild);return leafl+leafr;}template<class T>int BinaryTree<T>::noleave(BinaryTreeNode<T> *t){if(!t) return 0;if(!t->LeftChild&&!t->RightChild)return 0;int leafl=noleave(t->LeftChild);int leafr=noleave(t->RightChild);return leafl+leafr+1;}template<class T>class BinaryTree;template<class T>class BinaryTreeNode{friend BinaryTree<T>;public:BinaryTreeNode(){LeftChild=RightChild=0;}BinaryTreeNode(const T&e){data=e;LeftChild=RightChild=0;}BinaryTreeNode(const T&e,BinaryTreeNode *l,BinaryTreeNode *r) {data=e;LeftChild=l;RightChild=r;}private:T data;BinaryTreeNode<T>*LeftChild,*RightChild;};template<class T>LinkedQueue<T>::~LinkedQueue(){Node<T>*next;while(front){next=front->link;delete front;front=next;}}template<class T>LinkedQueue<T>&LinkedQueue<T>::Add(const T &x) {Node<T>*p=new Node<T>;p->data=x;p->link=0;if (front) rear->link=p;else front=p;rear=p;return *this;}template<class T>LinkedQueue<T>&LinkedQueue<T>::Delete(T&x) {x=front->data;Node<T>*p=front;front=front->link;delete p;return*this;}template<class T>bool LinkedQueue<T>::IsFull()const{Node<T>*p;try{p=new Node<T>;delete p;return false;}catch (NoMem) {return true;}}template <class T>T LinkedQueue<T>::First()const{if(IsEmpty()) throw OutOfBounds;return front->data;}template<class T>T LinkedQueue<T>::Last()const{if(IsEmpty()) throw OutOfBounds;return rear->data;}BinaryTree<int> a,x,y,z;void main(){cout<<"输入二叉树:"<<endl;BinaryTree<char> Tree;Tree.Creat();cout<<"前序遍历:"<<" ";Tree.PreOutput();cout<<"后序遍历:"<<" ";Tree.Postput();cout<<"中序遍历:"<<endl;Tree.InOutput();cout<<"层序遍历:"<<" ";Tree.LevelOutPut();。

相关文档
最新文档