转轮热回收

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转轮热回收与乙二醇热回收对比分析

一、转轮热回收和乙二醇热回收工作原理

转轮热回收:以轮芯作为换热媒介,转轮使用定制的蜂窝状金属材料,表面涂有一层特殊等级的吸附材料分子筛干燥剂。将转轮置于风道之间,从而使其分成两部分。来自空调房间不新鲜空气从一半转轮排出,室外空气以相反的方向从另一半转轮进入。同时,轮子缓慢旋转(约20RPM)。金属层从较热(冷)空气流吸收存储热量(冷量),并释放到较冷(较热)部分,显热发生转移。附着干燥剂的金属片将来自高湿度的空气流里的湿气冷凝后,通过干燥剂吸收(同时释放热量),再蒸发(吸热),将湿气释放到低湿度的气流里,这个过程将潜热转移。

乙二醇热回收:以换热器和乙二醇溶液作为换热媒介在排风侧将排风中的冷量(热量)通过换热器传递给乙二醇溶液,降低(提高)乙二醇溶液的温度,然后通过循环泵将被冷却(加热)的乙二醇溶液输送到新风侧的换热器中,降低(提高)新风温度,减少系统的负荷和整个空调系统的运行成本。

二、关键部件外形图

转轮热回收转轮:乙二醇热回收换热器

三、关键部件材质

转轮热回收转轮:

其特点如下:

1、选择性吸附分子筛技术:热回收转轮的基材采用铝箔材料,在铝箔表面覆盖不可移动式分子筛干燥剂;相比采用其他材料覆盖在铝箔上的其他热回收转轮,分子筛热回收转轮在铝箔表面覆盖低微孔尺寸佛石干燥剂,仅容许水分子通过,拒绝所有其他污染物,其结果是

污染物只留在排风中。

2、转轮内置净化装置:消除了交叉污染,做到新风和排风气流的隔离,防止新风排风的交叉污染;净化装置具备严格的空气流隔离功能,以防止细菌、灰尘和污染物从排风侧携带到新风侧,净化装置和迷宫式密封系统把交叉污染的排风浓度限制在0.1%。

3、清洁扇:转轮采用可调整式内置清洁扇清洗部件;免除清洁烦恼,降低运行成本。

乙二醇热回收换热器:

排风侧的换热器和新风侧的换热器组成,两换热器直接通过乙二醇管道相连,通过循环泵循环。由于有载冷剂乙二醇的存在,乙二醇有一定的挥发性及有毒性,且是可燃性液体,存在泄露隐患。

四、与空调系统配套情况

转轮热回收:

由于转轮热回收整体结构简单,无连接件。则与空调系统配套较为方便,可作为空调箱的一个功能段可以上下安装也可以左右安装。可以承收5.5m/s的面风速,占用空间小。

乙二醇热回收:

由于连接部件较多,结构复杂,连接件较多。则与空调系统配套较复杂,连通管道的泄漏,换热媒介的质量,换热器的质量,管道循环泵的质量,均可形成空调整套系统隐患。可作为空调箱的一个功能段可以上下安装也可以左右安装。比较适用于送排风须完全隔离的(甚至是远距离的末端处理)送排风系统。可承受的最大面风速为2.8m/s,占用空间大。

五、换热效率

转轮热回收:

中间换热媒介单一,换热效率高,在高温高湿条件下显热效率和潜热效率到均可达到70%以上,最高可达80%(焓换效率)。

乙二醇热回收:

间接能量回收(显热)型,中间换热媒介较多,换热效率低,显热效率一般仅为30-40%,最高仅能达到45%基本上无潜热回收(温度交换效率)。

下面就本工程单台机组冬季运行时作经济分析:

转轮热回收换热效率按70%,乙二醇热回收换热效率按40%,其他参数暂定如下:

另外北京地区冬季室外空调计算干球温度-12℃,相对湿度45%,相对应的焓值为-10.68 kJ/kg;冬季室内空调设计干球温度按30℃,相对湿度60%,焓值71.79kJ/kg。

空气处理过程如下:

本机为组合式空调机组,型号为ZK100,按功能段组合,上层顺气流方向(从右向左)依次:回风段、挡水段、板式活性炭过滤段、旁通(中间)段、转轮热回收段、排风机段;下层顺气流方向(从左向右)依次:新风进风段、板式初效过滤段、袋式中效过滤段、中间段、转轮热回收段、混合段、送风机段、均流段、加热段、加湿段、顶出风段。其功能段布置如下图所示。

转轮热回收:

计算公式:

焓换效率

100⨯--=

RA

OA SA OA i i i i i η 式中:i η:焓换效率(%); OA i :新风进风空气焓值[kJ/kg(干)];

SA i :新风送风空气焓值[kJ/kg(干)];

RA i :排风进风空气焓值[kJ/kg(干)]。

暂且RA i 为冬季室内空调设计状态点焓值为71.79kJ/kg ,G 为新风量100000m3/h ,

OA i =-10.68 kJ/kg ,RA i =71.79kJ/kg ,

i η=70%,则SA i =i η*(RA i -OA i )+OA i =70%*(71.79-(-10.68))+(-10.68)=57.73-10.68=47.05 kJ/kg

则热回收的热量为:G*1.2*(SA i -OA i )/3600=100000*1.2*(57.73-(-10.68))/3600=1568.3KW 。

其中:热回收了部分水份,回收的水份为:(湿度交换效率按50%)

湿度交换效率

100⨯--=

RA OA SA OA x x x x x η

式中:x η:湿度交换效率(%); OA x :新风进风绝对湿度[g/kg(干)];

SA x :新风送风绝对湿度[g/kg(干)];

RA x :排风进风绝对湿度[g/kg(干)]。

暂且RA x 为冬季室内空调设计状态点绝对湿度16.23 g/kg(干)(相对湿度60%),G 为新风量100000m3/h ,OA x =0.58 g/kg(干)(相对湿度45%),RA x =16.23 g/kg(干)(相对湿度60%),x η=50%则SA x =x η*(RA x -OA x )+OA

i =50%*(16.23-0.58)+0.58=7.82+0.58=8.4 g/kg(干) 则热回收的水份为:G*1.2*( SA x -OA x )/1000=100000*1.2*(8.4-0.58)/1000=260 kg/h 如果转轮段改为乙二醇热回收段:

计算公式:

温度交换效率

1001⨯--=

RA OA SA OA t t t t η

式中:1η:温度交换效率(%); OA t :新风进风干球温度(℃);

SA t :新风出风干球温度(℃);

RA t :排风进风干球温度(℃)。

相关文档
最新文档