运动的合成与分解的三种模型

合集下载

第2节 运动的合成与分解

第2节   运动的合成与分解

四、关联速度模型
算一算:如图,A、B两个物体用细绳相连,A
在力F作用下在水平面上运动,B在竖直方向
运动。当细绳与水平面间的夹角为θ时,B的
速度为V1,求此时物体A的速度多大?
v2
V1=Vcosθ
v
v1
F
θ
θA
V=V1/cosθ
解题关键:找到沿绳的速度
找到真正的合速度(实际速度)
V1
B
V1
四、关联速度模型
D.只有用力吹气,乒乓球才能沿吹气方向进入纸筒
拓展:怎么操作才能将乒乓球吹进纸筒?
)
二、合运动的性质与运动轨迹
一个分运动是匀速直线运动,垂直方向上的分
运动是匀加速直线运动 ,合运动的轨迹是?
二、合运动的性质与运动轨迹
理论分析
加速度与合速度不共线, 物体一定做曲线运动。
v
vy
0
加速度恒定, 物体一定做匀变速曲线运动。
(2) 等效性----各分运动的规律叠加起来和合运动的规律等效。
(3) 同体性----各分运动与合运动是同一物体的运动。
(4) 独立性----各分运动独立进行,互不影响;
一、运动的合成与分解
3.运动的合成与分解
运动的合成与分解是指 x、v、 a 的合成与分解。
运动的合成
分运动
合运动
运动的分解
分解原则:根据运动的实际效果分解,也可以正交分解。
匀加速直线运动
两个初速度不为零的匀变速直线运动
如果 v 合与 a 合共线,为匀变速直线运动
如果 v 合与 a 合不共线,为匀变速曲线运动
思考:一匀速直线与一匀变速曲线互成角度合成合运动是?
可能直线运动;可能曲线运动

高考物理一轮基础复习:5.2运动的合成与分解

高考物理一轮基础复习:5.2运动的合成与分解

高考物理一轮基础复习:5.2运动的合成与分解一、一个平面运动的实例1.蜡块的位置:如图所示,蜡块沿玻璃管匀速上升的速度设为v y,玻璃管向右匀速移动的速度设为v x,从蜡块开始运动的时刻开始计时,在某时刻t,蜡块的位置P可以用它的x、y两个坐标表示:x=v x t,y=v y t.2.蜡块运动的速度:大小v=v2x+v2y,方向满足tan θ=vyvx .3.蜡块运动的轨迹:y=vyvxx,是一条过原点的直线.二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.2.运动的合成与分解:已知分运动求合运动的过程,叫运动的合成;已知合运动求分运动的过程,叫运动的分解.3.运动的合成与分解实质是对运动的位移、速度和加速度的合成和分解,遵循矢量运算法则.1.思考判断(正确的打“√”,错误的打“×”)(1)合运动与分运动是同时进行的,时间相等.(√)(2)合运动一定是实际发生的运动.(√)(3)合运动的速度一定比分运动的速度大.(×)(4)两个互成角度的匀速直线运动的合运动,一定也是匀速直线运动.(√)2.雨滴由静止开始下落,遇到水平方向吹来的风,下述说法中正确的是( )①风速越大,雨滴下落时间越长②风速越大,雨滴着地时速度越大③雨滴下落时间与风速无关④雨滴着地速度与风速无关A.①②B.②③C.③④ D.①④B [将雨滴的运动在水平方向和竖直方向分解,两个分运动相互独立,雨滴下落时间与竖直高度有关,与水平方向的风速无关,故①错误,③正确.风速越大,落地时,雨滴水平方向分速度越大,合速度也越大,故②正确,④错误,故选B.]3.如图所示,在玻璃管的水中有一红蜡块正在匀速上升,若红蜡块在A点匀速上升的同时,使玻璃管从AB位置水平向右做匀加速直线运动,则红蜡块实际运动的轨迹是图中的( )A.直线P B.曲线QC.曲线R D.三条轨迹都有可能B [红蜡块参与了竖直方向的匀速直线运动和水平方向的匀加速直线运动这两个分运动,实际运动的轨迹即是合运动的轨迹.由于它在任意一点的合速度方向是向上或斜向右上的,而合加速度就是水平方向的加速度,方向是水平向右的,合加速度和合速度之间有一定夹角,故轨迹是曲线.又因为物体做曲线运动的轨迹总向加速度方向偏折(或加速度方向总指向曲线的凹侧),故选项B正确.]运动的合成与分解[观察探究]如图所示,跳伞运动员打开降落伞后正在从高空下落.(1)跳伞员在无风时竖直匀速下落,有风时运动员的实际运动轨迹还竖直向下吗?竖直方向的运动是跳伞员的合运动还是分运动?(2)已知跳伞员的两个分运动速度,怎样求跳伞员的合速度?提示:(1)有风时不沿竖直向下运动.无风时跳伞员竖直匀速下落,有风时,一方面竖直匀速下落,一方面在风力作用下水平运动.因此,竖直匀速下落的运动是跳伞员的分运动.(2)应用矢量运算法则求合速度.[探究归纳]1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.(2)物体实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度.2.合运动与分运动的四个特性等时性各分运动与合运动同时发生和结束,时间相同等效性各分运动的共同效果与合运动的效果相同同体性各分运动与合运动是同一物体的运动独立性各分运动之间互不相干,彼此独立,互不影响3.(1)运动的合成与分解:已知分运动求合运动,叫运动的合成;已知合运动求分运动,叫运动的分解.(2)运动合成与分解的法则:合成和分解的对象是位移、速度、加速度,这些量都是矢量,遵循的是平行四边形定则.【例1】竖直放置的两端封闭的玻璃管中注满清水,内有一个蜡块能在水中以0.1 m/s的速度匀速上浮.在蜡块从玻璃管的下端匀速上浮的同时,使玻璃管水平向右匀速运动,测得蜡块实际运动方向与水平方向成30°角,如图所示.若玻璃管的长度为1.0 m,在蜡块从底端上升到顶端的过程中,下列关于玻璃管水平方向的移动速度和水平运动的距离计算结果正确的是( )A.0.1 m/s,1.73 m B.0.173 m/s,1.0 mC.0.173 m/s,1.73 m D.0.1 m/s,1.0 mC [由题图知竖直位移与水平位移之间的关系为tan 30°=y x由分运动具有独立性和等时性得:y=v y t、x=v x t联立解得:x=1.73 m,v x=0.173 m/s.故C项正确.]上例中,若将玻璃管水平向右匀速运动改为从静止开始匀加速运动;将蜡块实际运动方向与水平方向成30°角改为蜡块最终位移方向与水平方向成45°角,其他条件不变,则玻璃管水平方向的加速度多大?提示:由tan 45°=yx,则x=1.0 m,由x=12at2,y=vyt得t=10 s,a=0.02 m/s2.“三步走”求解合运动或分运动(1)根据题意确定物体的合运动与分运动.(2)根据平行四边形定则作出矢量合成或分解的平行四边形.(3)根据所画图形求解合运动或分运动的参量,求解时可以用勾股定理、三角函数、三角形相似等数学知识.1.两个互成角度的匀变速直线运动,初速度分别为v1和v2,加速度分别为a1和a2,它们的合运动的轨迹( )A.如果v1=v2≠0,那么轨迹一定是直线B .如果v 1=v 2≠0,那么轨迹一定是曲线C .如果a 1=a 2,那么轨迹一定是直线D .如果a 1a 2=v 1v 2,那么轨迹一定是直线D [本题考查两直线运动合运动性质的确定,解题关键是明确做曲线运动的条件是合外力的方向(即合加速度的方向)与速度的方向不在一条直线上.如果a 1a 2=v 1v 2,那么,合加速度的方向与合速度的方向一定在一条直线上,所以D 正确.]小船渡河问题[观察探究]小船渡河问题中,小船渡河参与了哪两个运动?怎样过河时间最短?怎样过河位移最短?提示:小船渡河参与了相对于静水的运动和随河水漂流的运动;船头垂直河岸渡河时时间最短,合位移垂直河岸时位移最短.[探究归纳]1.模型特点:小船参与的两个分运动:小船在河流中实际的运动(站在岸上的观察者看到的运动)可视为船同时参与了这样两个分运动:(1)船相对水的运动(即船在静水中的运动),它的方向与船身的指向相同. (2)船随水漂流的运动(即速度等于水的流速),它的方向与河岸平行.船在流水中实际的运动(合运动)是上述两个分运动的合成.2.两类最值问题(1)渡河时间最短问题:若要渡河时间最短,由于水流速度始终沿河道方向,不能提供指向河对岸的分速度.因此,只要使船头垂直于河岸航行即可.由图可知,t短=dv船,此时船渡河的位移x=dsin θ,位移方向满足tan θ=v船v水.(2)渡河位移最短问题甲情况一:v水<v船最短的位移为河宽d,此时渡河所用时间t=dv船sin θ,船头与上游河岸夹角θ满足v船cos θ=v水,如图甲所示.情况二:v水>v船如图乙所示,以v水矢量的末端为圆心,以v船的大小为半径作圆,当合速度的方向与圆相切时,合速度的方向与河岸的夹角最大(设为α),此时航程最短.由图可知sin α=v船v水,最短航程为x=dsin α=v水v船d.此时船头指向应与上游河岸成θ′角,且cos θ′=v船v水.乙【例2】一小船渡河,河宽d=180 m,水流速度为v1=2.5 m/s.船在静水中的速度为v2=5 m/s,求:(1)小船渡河的最短时间为多少?此时位移多大?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?[解析] (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图甲所示,甲合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv⊥=dv2=1805s=36 sv合=v21+v22=525 m/sx=v合t=90 5 m.(2)欲使船渡河的航程最短,船的合运动方向应垂直河岸.船头应朝上游与河岸成某一角度β.如图乙所示,由v2sin α=v1得α=30°.所以当船头朝上游与河岸成一定角度β=60°时航程最短.乙x=d=180 mt=dv′⊥=dv2cos 30°=180523s=24 3 s.[答案] (1)36 s 90 5 m(2)偏向上游与河岸成60°角24 3 s小船渡河问题要注意三点(1)研究小船渡河时间时→常对某一分运动进行研究求解,一般用垂直河岸的分运动求解.(2)分析小船速度时→可画出小船的速度分解图进行分析.(3)研究小船渡河位移时→要对小船的合运动进行分析,必要时画出位移合成图.2.一艘船的船头始终正对河岸方向行驶,如图所示.已知船在静水中行驶的速度为v1,水流速度为v2,河宽为d.则下列判断正确的是( )A.船渡河时间为d v 2B.船渡河时间为dv21+v22C.船渡河过程被冲到下游的距离为v2v1·dD.船渡河过程被冲到下游的距离为dv21+v22·dC [船正对河岸运动,渡河时间最短t=dv1,沿河岸运动的位移s2=v2t=v2v1·d,所以A、B、D选项错误,C选项正确.]“绳联物体”的速度分解问题[观察探究绳联物体问题中,如何判断合速度和分速度?速度怎样分解?提示:物体的实际运动是合运动;将物体的实际速度分解为垂直于绳(杆)和沿绳(杆)的两个分量.[探究归纳]1.“绳联物体”指物体拉绳(杆)或绳(杆)拉物体的问题(下面为了方便,统一说“绳”),要注意以下两点:(1)物体的实际速度一定是合速度,分解时两个分速度方向应取沿绳方向和垂直于绳方向.(2)由于绳不可伸长,一根绳两端物体沿绳方向的速度分量相等.2.常见的速度分解模型【例3】如图所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为( )A.vB.v sin θC.v cos θD.v sin θD [将A的速度分解为沿绳子方向和垂直于绳子方向,如图所示,根据平行四边形定则得,v B=v sin θ,故D正确.]上例中,若物体B以速度v向左匀速运动,则物体A做什么运动?提示:v A′=v sin θ由于θ变小,故v A′变大,故物体A向上做加速运动.3.如图所示,AB杆和墙的夹角为θ时,杆的A端沿墙下滑的速度大小为v1,B端沿地面的速度大小为v2,则v1、v2的关系是( )A.v1=v2B.v1=v2cos θC.v1=v2tan θD.v1=v2sin θC [可以把A、B两点的速度分解,如图所示,由于杆不能变长或变短,沿杆方向的速度应满足v1x=v2x,即v1cos θ=v2sin θ,v1=v2tan θ,C正确.]课堂小结知识脉络1.物体实际发生的运动是合运动,参与的几个运动是分运动,合运动与分运动遵循平行四边形定则.2.小船渡河问题中,船头垂直河岸渡河时间最短,合速度垂直河岸位移最小.3.“绳联物体”问题中,将物体的实际速度分解为垂直于绳(杆)和沿绳(杆)的两个分量.【课堂同步练习】1.关于合运动与分运动的关系,下列说法正确的是( )A.合运动速度一定不小于分运动速度B.合运动加速度不可能与分运动加速度相同C.合运动的速度与分运动的速度没有关系,但合运动与分运动的时间相等D.合位移可能等于两分位移的代数和D [根据平行四边形定则,作出以两个互成角度的分速度为邻边的平行四边形,过两邻边夹角的对角线表示合速度,对角线的长度可能等于邻边长度,也可能小于邻边长度,也可能大于邻边长度,选项A错误;合运动的加速度可能大于、等于或小于分运动的加速度,选项B错误;合运动与分运动具有等效性、同体性、等时性等关系,选项C错误;如果两个分运动在同一直线上,且方向相同,其合位移就等于两分位移的代数和,选项D正确.]2.(多选)已知河水自西向东流动,流速为v1,小船在静水中的速度为v2,且v2>v1,用小箭头表示船头的指向及小船在不同时刻的位置,虚线表示小船过河的路径,则下图中可能正确的是( )A BC DCD [小船的路径应沿合速度方向,不可能与船头指向相同,故A、B错误,C、D正确.]3.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车以速度v匀速向右运动到如图所示位置时,物体P的速度为( )A.v B.v cos θC.vcos θD.v cos2θB [如图所示,绳子与水平方向的夹角为θ,将小车的速度沿绳子方向和垂直于绳子方向分解,沿绳子方向的速度等于P的速度,根据平行四边形定则得vP=v cos θ,故B正确,A、C、D错误.]4.飞机在航行时,它的航线方向要严格地从东到西,如果飞机的速度是160 km/h,风从南面吹来,风的速度为80 km/h,那么:(1)飞机应朝哪个方向飞行?(2)如果所测地区长达80 3 km,飞机飞过所测地区所需时间是多少?[解析] (1)根据平行四边形定则可确定飞机的航向,如图所示,有sin θ=v1v2=80160=12,θ=30°即西偏南30°.(2)飞机的合速度v=v2cos 30°=80 3 km/h所需时间t=xv=1 h.[答案] (1)西偏南30°(2)1 h《5.2 运动的合成与分解》专题训练一、一个平面运动的实例——观察蜡块的运动1.建立坐标系研究蜡块在平面内的运动,可以选择建立平面直角坐标系.如图1所示,以蜡块开始匀速运动的位置为原点O,以水平向右的方向和竖直向上的方向分别为x轴和y轴的方向,建立平面直角坐标系.图12.蜡块运动的位置:玻璃管向右匀速平移的速度设为v x,蜡块沿玻璃管匀速上升的速度设为v y,在某时刻t,蜡块的位置P的坐标:x=v x t,y=v y t.3.蜡块运动的轨迹:将x、y消去t,得到y=vyvxx,可见蜡块的运动轨迹是一条过原点的直线.4.蜡块运动的速度:大小v=v2x+v2y,方向满足tan θ=vyvx .二、运动的合成与分解1.合运动与分运动如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,同时参与的几个运动就是分运动.2.运动的合成与分解:已知分运动求合运动的过程,叫作运动的合成;已知合运动求分运动的过程,叫作运动的分解.3.运动的合成与分解遵循矢量运算法则.1.判断下列说法的正误.(1)合运动与分运动是同时进行的,时间相等.( √)(2)合运动一定是实际发生的运动.( √)(3)合运动的速度一定比分运动的速度大.( ×)(4)两个夹角为90°的匀速直线运动的合运动,一定也是匀速直线运动.( √)2.竖直放置的两端封闭的玻璃管中注满清水,内有一个蜡块能在水中以0.3 m/s的速度匀速上浮.在蜡块从玻璃管的下端匀速上浮的同时,使玻璃管沿水平方向匀速向右运动,测得蜡块实际运动方向与水平方向成37°角,如图2所示.若玻璃管的长度为0.9 m,在蜡块从底端上升到顶端的过程中,玻璃管水平方向的移动速度和沿水平方向运动的距离分别约为________m/s和________m.(sin 37°=0.6,cos 37°=0.8)图2答案0.4 1.2解析设蜡块沿玻璃管匀速上升的速度为v1,位移为x1,蜡块随玻璃管水平向右移动的速度为v2,位移为x2,如图所示,v2=v1tan 37°=0.334m/s=0.4 m/s.蜡块沿玻璃管匀速上升的时间t=x1v1=0.90.3s=3 s.由于两分运动具有等时性,故玻璃管水平移动的时间为3 s.水平运动的距离x2=v2t=0.4×3 m=1.2 m.一、运动的合成与分解1.合运动与分运动(1)如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,参与的几个运动就是分运动.(2)物体实际运动的位移、速度、加速度是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度就是它的分位移、分速度、分加速度.2.合运动与分运动的四个特性等时性各分运动与合运动同时发生和结束,时间相同等效性各分运动的共同效果与合运动的效果相同同体性各分运动与合运动是同一物体的运动独立性各分运动之间互不相干,彼此独立,互不影响3.运动的合成与分解(1)运动的合成与分解是指位移、速度、加速度的合成与分解.其合成、分解遵循平行四边形定则.(2)对速度v进行分解时,不能随意分解,应按物体的实际运动效果进行分解.跳伞是人们普遍喜欢的观赏性体育项目,当运动员在某高度从直升机上由静止跳下后,在下落过程中将会受到水平风力的影响,下列说法中正确的是( )A.风力越大,运动员下落时间越长,运动员可完成更多的动作B.风力越大,运动员着地速度越大,有可能对运动员造成伤害C.运动员下落时间与风力有关D.运动员着地速度与风力无关答案 B解析运动员同时参与了两个分运动:竖直方向向下落的运动和水平方向随风飘的运动.这两个分运动同时发生,相互独立.所以水平风力越大,运动员着地速度越大,但下落时间由下落的高度决定,与风力无关,故选B.针对训练1 竖直放置的两端封闭的玻璃管中注满清水,内有一个红蜡块能在水中匀速上浮.如图3所示,当红蜡块从玻璃管的下端匀速上浮的同时,第一次使玻璃管水平向右匀速运动,测得红蜡块运动到顶端所需时间为t1;第二次使玻璃管水平向右加速运动,测得红蜡块从下端运动到顶端所需时间为t2,则( )图3A.t1=t2B.t1>t2C.t1<t2D.无法比较答案 A解析由于分运动的独立性,故玻璃管水平向右的分运动不影响红蜡块向上的运动,t1=t2,所以A正确.(多选)玻璃生产线的最后有一台切割机,能将一定宽度但很长的原始玻璃板按需要的长度切成矩形.假设送入切割机的原始玻璃板的宽度是L=2 m,它沿切割机的轨道(与玻璃板的两侧边平行)以v1=0.15 m/s的速度水平向右匀速移动;已知割刀相对玻璃板的切割速度v2=0.2 m/s,为了确保割下的玻璃板是矩形,则相对地面( )A.割刀运动的轨迹是一段直线B.割刀完成一次切割的时间为10 sC.割刀运动的实际速度大小为0.057 m/sD.割刀完成一次切割的时间内,玻璃板的位移大小是1.5 m 答案 ABD解析 为了使割下的玻璃板都成规定尺寸的矩形,割刀相对玻璃板的运动速度应垂直于玻璃板侧边,割刀实际参与了两个分运动,即沿玻璃板侧边方向的运动和垂直于玻璃板侧边方向的运动.两个分运动都是匀速直线运动,则合运动为匀速直线运动,故A 正确;对于垂直于玻璃板侧边方向的运动,运动时间t =20.2s =10 s ,故B 正确;割刀运动的实际速度v =v 21+v 22=0.152+0.22 m/s =0.25 m/s ,故C 错误;10 s 内玻璃板沿轨道方向的位移x =v 1t =1.5 m ,故D 正确.二、合运动的性质与运动轨迹1.分析两个互成角度的直线运动的合运动的性质时,应先求出合运动的合初速度v 和合加速度a ,然后进行判断.(1)是否为匀变速的判断: 加速度或合力⎩⎨⎧变化:变加速运动不变:匀变速运动(2)曲、直判断:加速度或合力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动2.两个互成角度的直线运动的合运动轨迹的判断:轨迹在合初速度v 0与合加速度a 之间,且向加速度一侧弯曲.(多选)质量为2 kg 的质点在xOy 平面内做曲线运动,在x 方向的速度-时间图像和y 方向的位移-时间图像如图4所示,下列说法正确的是( )图4A.质点的初速度为5 m/sB.质点所受的合外力为3 N,做匀变速曲线运动C.2 s末质点速度大小为6 m/sD.2 s内质点的位移大小约为12 m答案ABD解析由题图x方向的速度-时间图像可知,在x方向的加速度为1.5 m/s2,x方向受力Fx=3 N,由题图y方向的位移-时间图像可知在y方向做匀速直线运动,速度大小为v y=4 m/s,y方向受力F y=0.因此质点的初速度为5 m/s,A 正确;受到的合外力恒为3 N,质点初速度方向与合外力方向不在同一条直线上,故做匀变速曲线运动,B正确;2 s末质点速度大小为v=62+42 m/s=213m/s,C错误;2 s内,x=v x0t+12at2=9 m,y=8 m,合位移l=x2+y2=145 m≈12m,D正确.针对训练2 质量为1 kg的物体在水平面内做曲线运动,已知该物体在两个互相垂直方向上的分运动的速度-时间图像分别如图5甲、乙所示,则下列说法正确的是( )图5A.2 s末物体速度大小为7 m/sB.物体所受的合外力大小为3 NC.物体的初速度大小为5 m/sD.物体初速度的方向与合外力方向垂直,做匀变速曲线运动答案 D解析根据题意可知,物体在两个互相垂直方向上运动,即x方向与y方向垂直,且物体在x方向做初速度为零的匀加速直线运动,在y方向做匀速直线运动,2 s 末,v x =3 m/s ,v y =4 m/s ,因而v =v 2x +v 2y =5m/s ,A 错误;a x =ΔvΔt=1.5 m/s 2,a y =0,根据牛顿第二定律F x =ma x =1×1.5 N=1.5 N ,F y =0,因而F =1.5 N ,B 错误;t =0时,v x =0,v y =4 m/s.因而初速度v 0=4 m/s ,C 错误;由于初速度v 0=4 m/s ,且沿y 方向,F =1.5 N ,且沿x 方向,故物体做匀变速曲线运动,D 正确.如图6所示,在光滑水平面上有两条互相平行的直线l 1、l 2,AB 是这两条平行直线的垂线,其中A 点在直线l 1上,B 、C 两点在直线l 2上.一个物体正沿直线l 1以恒定的速度匀速向右运动,如果物体要从A 点运动到C 点,图中1、2、3为可能的路径,则可以使物体通过A 点时( )图6A.获得由A 指向B 的任意瞬时速度,物体的路径是2B.获得由A 指向B 的确定瞬时速度,物体的路径是2C.持续受到平行AB 的任意大小的恒力,物体的路径可能是1D.持续受到平行AB 的确定大小的恒力,物体的路径可能是3 答案 B解析 获得由A 指向B 的确定瞬时速度,即两个匀速直线运动的合运动轨迹可能是2,A 错误,B 正确.持续受到平行AB 的确定大小的恒力,即合加速度与合初速度垂直,轨迹偏向加速度一侧,轨迹可能是1,C 、D 错误.1.(运动的合成和分解)(多选)关于运动的合成和分解,下列说法正确的是( )A.合运动的时间就是分运动的时间之和B.已知两分运动的速度大小,就可以确定合速度的大小C.已知两分运动的速度大小和方向,可以用平行四边形定则确定合速度的大小和方向D.若两匀速直线运动的速度大小分别为v 1、v 2,则合速度v 大小的范围为|v 1-v 2|≤v ≤v 1+v 2答案 CD解析 合运动与分运动具有等时性,故A 错误;已知两分运动的速度大小和方向,可以用平行四边形定则确定合速度的大小和方向,故B 错误,C 正确;两匀速直线运动的速度大小分别为v 1、v 2,则合速度v 大小的范围为|v 1-v 2|≤v ≤v 1+v 2,故D 正确.2.(运动的合成和分解)在第十一届珠海国际航展上,歼-20战机是此次航展最大的“明星”.如图7,歼-20战机在降落过程中水平方向的初速度为60 m/s ,竖直方向的初速度为6 m/s ,已知歼-20战机在水平方向做加速度大小为2 m/s 2的匀减速直线运动,在竖直方向做加速度大小为0.2 m/s 2的匀减速直线运动,则歼-20战机在降落过程中,下列说法正确的是( )图7A.歼-20战机的运动轨迹为曲线B.经20 s ,歼-20战机水平方向的分速度与竖直方向的分速度大小相等C.在前20 s 内,歼-20战机在水平方向的分位移与竖直方向的分位移大小相等D.歼-20战机在前20 s 内,水平方向的平均速度为40 m/s 答案 D解析 歼-20战机的合初速度方向与水平方向夹角的正切值tan θ=660=110,歼-20战机的合加速度方向与水平方向夹角的正切值tan β=0.22=110,可以知道歼-20战机的合初速度的方向与合加速度的方向在同一直线上,歼-20战机做匀变速直线运动,故A 错误;经20 s ,歼-20战机水平方向的分速度v 1=60 m/s -2×20 m/s=20 m/s ,竖直方向上的分速度为v 2=6 m/s -0.2×20 m/s=2 m/s ,故B 错误;在前20 s 内,歼-20战机水平方向的平均速度v 水平=60+202m/s =40 m/s ,D 正确.歼-20战机在水平方向的分位移s 1=v水平×20 s=800 m ,在竖直方向的分位移h =6 m/s +2 m/s 2×20 s=80 m ,故C 错误. 3.(合运动轨迹的判断)如图8所示,在一次救灾工作中,一架离水面高为H m 、沿水平直线飞行的直升机A ,用悬索(重力可忽略不计)救护困在湖水中的伤员B ,在直升机A 和伤员B 以相同的水平速率匀速运动的同时,悬索将伤员吊起.设经t s 时间后,A 、B 之间的距离为l m ,且l =H -t 2,则在这段时间内伤员B 的受力情况和运动轨迹是下列哪个图( )图8答案 A解析 根据l =H -t 2,位移h =H -l =t 2,可知伤员B 在竖直方向上是匀加速上升的,悬索中拉力大于重力,即表示拉力F 的线段要比表示重力G 的线段长,伤员B 在水平方向匀速运动,所以F 、G 都在竖直方向上;向上加速,运动轨迹向上偏转,只有A 符合,所以在这段时间内伤员B 的受力情况和运动轨迹是A.4.(合运动性质的判断)(多选)如图9甲所示,在杂技表演中,猴子沿竖直杆向上运动,其v -t 图像如图乙所示,同时人顶着杆沿水平地面运动的x -t 图像如图丙所示.若以地面为参考系,下列说法正确的是( )。

5.2运动的合成与分解

5.2运动的合成与分解

板书设计
(2)各分运动之间独立性; (3)合运动与分运动必须对同一物体; (4)合运动与分运动在效果上是等效替代的关系。 2、运动的合成与分解 (1)由分运动求合运动的过程叫运动的合成。 (2)由合运动求分运动的过程叫运动的分解。 四、运动的合成与分解的应用___小船渡河模型
作业布置
课后练习和同步练习
1.在一端封闭、长约1m的玻璃管内注满清水,水中放一个红蜡块R.将玻璃
管的开口端用橡胶塞塞紧。将玻璃管倒置,可以认为红蜡块R沿玻璃管上升
的速度不变。再次将玻璃管上下颠倒,在红蜡块上升的同时,将玻璃管紧贴
着黑板沿水平方向向右做匀加速移动,如图建立坐标系,则红蜡块的轨迹可
能是( C )
y
y
y
y
y R
x
x
F2 F合
初速度为零的两个不在同一直线上的匀变速直线运动的合运 动是匀变速直线运动。
新知讲解
思考讨论4:初速度不为零的两个不在同一直线上的匀变速直线 运动的合运动是什么运动?
v1 F1
v2
v合 F合
F2
F合与v合共线-匀变速直线运动
v1 v合
F1
F合与v合不共线-匀变
速曲线运动
v2
F2
F合
课堂练习
新知讲解
说明 (1)运动的合成与分解是分析复杂运动时常用的 方法。 (2)运动合成与分解的思想和方法对分运动是变 速运动的情况也是适用的。
新知讲解
思考与讨论:在如图所示的实验中,如果将玻璃管紧贴着黑板沿水
平方向向右匀加速移动,若玻璃管内壁是光滑的,蜡块的轨迹还是
一条直线吗?
y 蜡块的轨迹不再是一
y = vy t 述一条曲线(包括直线)。 上面x、y的表达式中消去变量t, 这样就得到: 由于vx和vy都是常量,所以v—vyx 也是常量

高中物理经典解题模型归纳

高中物理经典解题模型归纳

高中物理经典解题模型归纳高中物理24个经典模型1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题.2、"斜面"模型:运动规律.三大定律.数理问题.3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系.4、"人船"模型:动量守恒定律.能量守恒定律.数理问题.5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题.6、"爆炸"模型:动量守恒定律.能量守恒定律.7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法.8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律.9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题.10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动).11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题).12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法.13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度.14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题.15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法.16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等.17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题.18.远距离输电升压降压的变压器模型.19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.20、"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题.21、"磁流发电机"模型:平衡与偏转.力和能问题.22、"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题.23、"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性.24、电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度.高中物理11种基本模型题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

高中物理必修二知识点总结

高中物理必修二知识点总结

第一节 曲线运动 运动的合成与分解【基本概念、规律】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的切线方向.2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是变速运动. 3.曲线运动的条件:物体所受合力的方向跟它的速度方向不在同一条直线上或它的加速度方向与速度方向不在同一条直线上. 二、运动的合成与分解 1.运算法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循平行四边形定则. 2.合运动和分运动的关系(1)等时性:合运动与分运动经历的时间相等.(2)独立性:一个物体同时参与几个分运动时,各分运动独立进行,不受其他分运动的影响. (3)等效性:各分运动叠加起来与合运动有完全相同的效果. 【重要考点归纳】考点一 对曲线运动规律的理解 1.曲线运动的分类及特点(1)匀变速曲线运动:合力(加速度)恒定不变. (2)变加速曲线运动:合力(加速度)变化. 2.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在合外力方向与速度方向之间,速度方向与轨迹相切,合外力方向指向轨迹的“凹”侧. 3.速率变化情况判断(1)当合力方向与速度方向的夹角为锐角时,速率增大; (2)当合力方向与速度方向的夹角为钝角时,速率减小; (3)当合力方向与速度方向垂直时,速率不变. 考点二 运动的合成及合运动性质的判断 1.运动的合成与分解的运算法则运动的合成与分解是指描述运动的各物理量即位移、速度、加速度的合成与分解,由于它们均是矢量,故合成与分解都遵循平行四边形定则. 2.合运动的性质判断⎩⎪⎨⎪⎧加速度或合外力⎩⎨⎧变化:变加速运动不变:匀变速运动加速度或合外力与速度方向⎩⎨⎧共线:直线运动不共线:曲线运动3.两个直线运动的合运动性质的判断两个互成角度的分运动 合运动的性质 两个匀速直线运动 匀速直线运动 一个匀速直线运动、匀变速曲线运动进行各量的合成运算.【思想方法与技巧】两种运动的合成与分解实例一、小船渡河模型1.模型特点两个分运动和合运动都是匀速直线运动,其中一个分运动的速度大小、方向都不变,另一分运动的速度大小不变,研究其速度方向不同时对合运动的影响.这样的运动系统可看做小船渡河模型.2.模型分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)两个极值①过河时间最短:v1⊥v2,t min=dv1(d为河宽).②过河位移最小:v⊥v2(前提v1>v2),如图甲所示,此时x min=d,船头指向上游与河岸夹角为α,cos α=v2v1;v1⊥v(前提v1<v2),如图乙所示.过河最小位移为x min=dsin α=v2v1d.3.求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下三点:(1)解决这类问题的关键是:正确区分分运动和合运动,在船的航行方向也就是船头指向方向的运动,是分运动;船的运动也就是船的实际运动,是合运动,一般情况下与船头指向不共线.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则沿水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.二、绳(杆)端速度分解模型1.模型特点绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型.2.模型分析(1)合运动→绳拉物体的实际运动速度v(2)分运动→⎩⎨⎧其一:沿绳或杆的分速度v 1其二:与绳或杆垂直的分速度v 2(3)关系:沿绳(杆)方向的速度分量大小相等. 3.解决绳(杆)端速度分解问题的技巧(1)明确分解谁——分解不沿绳(杆)方向运动物体的速度; (2)知道如何分解——沿绳(杆)方向和垂直绳(杆)方向分解;(3)求解依据——因为绳(杆)不能伸长,所以沿绳(杆)方向的速度分量大小相等.第二节 抛体运动【基本概念、规律】 一、平抛运动1.性质:平抛运动是加速度恒为重力加速度g 的匀变速曲线运动,轨迹是抛物线.2.规律:以抛出点为原点,以水平方向(初速度v 0方向)为x 轴,以竖直向下的方向为y 轴建立平面直角坐标系,则(1)水平方向:做匀速直线运动,速度:v x =v 0,位移:x =v 0t .(2)竖直方向:做自由落体运动,速度:v y =gt ,位移:y =12gt 2. (3)合运动①合速度:v =v 2x +v 2y ,方向与水平方向夹角为θ,则tan θ=v y v 0=gt v 0. ②合位移:x 合=x 2+y 2,方向与水平方向夹角为α,则tan α=y x =gt2v 0.二、斜抛运动 1.性质加速度为g 的匀变速曲线运动,轨迹为抛物线.2.规律(以斜向上抛为例说明,如图所示)(1)水平方向:做匀速直线运动,v x =v 0cos θ. (2)竖直方向:做竖直上抛运动,v y =v 0sin θ-gt . 【重要考点归纳】考点一 平抛运动的基本规律及应用 1.飞行时间:由t =2hg 知,时间取决于下落高度h ,与初速度v 0无关.2.水平射程:x =v 0t =v 02hg ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关.3.落地速度:v t =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与x轴正方向的夹角,有tan θ=v y v x =2ghv 0,所以落地速度也只与初速度v 0和下落高度h 有关.4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g,所以做平抛运动的物体在任意相等时间间隔Δt内的速度改变量Δv=gΔt相同,方向恒为竖直向下,如图甲所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图乙中A点和B点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ.6.“化曲为直”思想在抛体运动中的应用(1)根据等效性,利用运动分解的方法,将其转化为两个方向上的直线运动,在这两个方向上分别求解.(2)运用运动合成的方法求出平抛运动的速度、位移等.考点二与斜面相关联的平抛运动1.斜面上的平抛问题是一种常见的题型,在解答这类问题时除要运用平抛运动的位移和速度规律,还要充分运用斜面倾角,找出斜面倾角同位移和速度与水平方向夹角的关系,从而使问题得到顺利解决.常见的模型如下:2.(1)从斜面上某点抛出又落到斜面上,位移与水平方向夹角等于斜面倾角;(2)从斜面外抛出的物体落到斜面上,注意找速度方向与斜面倾角的关系.考点三与圆轨道关联的平抛运动在竖直半圆内进行平抛时,圆的半径和半圆轨道对平抛运动形成制约.画出落点相对圆心的位置,利用几何关系和平抛运动规律求解.平抛运动的临界问题(1)在解决临界和极值问题时,正确找出临界条件(点)是解题关键.(2)对于平抛运动,已知平抛点高度,又已知初速度和水平距离时,要进行平抛运动时间的判断,即比较t1=2hg与t2=xv0,平抛运动时间取t1、t2的小者.(3)本题中,两发子弹不可能打到靶上同一点的说明:若打到靶上同一点,则子弹平抛运动时间相同,即t =Lv 0+v =L -90v ,L =3 690 m ,t =4.5 s >2hg =0.6 s ,即子弹0.6 s 后就已经打到地上.第三节 圆周运动【基本概念、规律】一、描述圆周运动的物理量1.线速度:描述物体圆周运动的快慢,v =Δs Δt =2πrT .2.角速度:描述物体转动的快慢,ω=ΔθΔt =2πT .3.周期和频率:描述物体转动的快慢,T =2πr v ,T =1f . 4.向心加速度:描述线速度方向变化的快慢.a n =rω2=v 2r =ωv =4π2T 2r .5.向心力:作用效果产生向心加速度,F n =ma n . 二、匀速圆周运动和非匀速圆周运动的比较 项目 匀速圆周运动 非匀速圆周运动 定义 线速度大小不变的圆周运动 线速度大小变化的圆周运动 运动特点 F 向、a 向、v 均大小不变,方向变化,ω不变F 向、a 向、v 大小、方向均发生变化,ω发生变化向心力F 向=F 合由F 合沿半径方向的分力提供三、离心运动1.定义:做圆周运动的物体,在合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动. 2.供需关系与运动如图所示,F 为实际提供的向心力,则: (1)当F =mω2r 时,物体做匀速圆周运动; (2)当F =0时,物体沿切线方向飞出; (3)当F <mω2r 时,物体逐渐远离圆心; (4)当F >mω2r 时,物体逐渐靠近圆心. 【重要考点归纳】考点一 水平面内的圆周运动1.运动实例:圆锥摆、火车转弯、飞机在水平面内做匀速圆周飞行等.2.重力对向心力没有贡献,向心力一般来自弹力、摩擦力或电磁力.向心力的方向水平,竖直方向的合力为零.3.涉及静摩擦力时,常出现临界和极值问题. 4.水平面内的匀速圆周运动的解题方法(1)对研究对象受力分析,确定向心力的来源,涉及临界问题时,确定临界条件; (2)确定圆周运动的圆心和半径; (3)应用相关力学规律列方程求解.考点二竖直面内的圆周运动1.物体在竖直平面内的圆周运动有匀速圆周运动和变速圆周运动两种.2.只有重力做功的竖直面内的圆周运动一定是变速圆周运动,遵守机械能守恒.3.竖直面内的圆周运动问题,涉及知识面比较广,既有临界问题,又有能量守恒的问题.4.一般情况下,竖直面内的变速圆周运动问题只涉及最高点和最低点的两种情形.考点三圆周运动的综合问题圆周运动常与平抛(类平抛)运动、匀变速直线运动等组合而成为多过程问题,除应用各自的运动规律外,还要结合功能关系进行求解.解答时应从下列两点入手:1.分析转变点:分析哪些物理量突变,哪些物理量不变,特别是转变点前后的速度关系.2.分析每个运动过程的受力情况和运动性质,明确遵守的规律.3.平抛运动与圆周运动的组合题,用平抛运动的规律求解平抛运动问题,用牛顿定律求解圆周运动问题,关键是找到两者的速度关系.若先做圆周运动后做平抛运动,则圆周运动的末速等于平抛运动的水平初速;若物体平抛后进入圆轨道,圆周运动的初速等于平抛末速在圆切线方向的分速度.【思想方法与技巧】竖直平面内圆周运动的“轻杆、轻绳”模型1.模型特点在竖直平面内做圆周运动的物体,运动至轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道的“过山车”等),称为“轻绳模型”;二是有支撑(如球与杆连接、小球在弯管内运动等),称为“轻杆模型”.2.模型分析绳、杆模型常涉及临界问题,分析如下:(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同,其原因主要是“绳”不能支持物体,而“杆”既能支持物体,也能拉物体.(2)确定临界点:v 临=gr ,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N 表现为支持力还是拉力的临界点. (3)定规律:用牛顿第二定律列方程求解.第四节 万有引力与航天【基本概念、规律】 一、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2.3.适用条件:严格地说,公式只适用于质点间的相互作用,当两个物体间的距离远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,其中r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离. 二、宇宙速度1.经典时空观(1)在经典力学中,物体的质量是不随速度的改变而改变的.(2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是相同的.2.相对论时空观同一过程的位移和时间的测量与参考系有关,在不同的参考系中不同. 3.经典力学的适用范围只适用于低速运动,不适用于高速运动;只适用于宏观世界,不适用于微观世界. 【重要考点归纳】考点一 天体质量和密度的估算 1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即 G Mm r 2=ma n =m v 2r =mω2r =m 4π2r T 2(2)在中心天体表面或附近运动时,万有引力近似等于重力,即G MmR 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR 3=3πr 3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 3.(1)利用圆周运动模型,只能估算中心天体质量,而不能估算环绕天体质量.(2)区别天体半径R 和卫星轨道半径r :只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径.考点二 卫星运行参量的比较与运算 1.卫星的各物理量随轨道半径变化的规律2.卫星运动中的机械能(1)只在万有引力作用下卫星绕中心天体做匀速圆周运动和沿椭圆轨道运动,机械能均守恒,这里的机械能包括卫星的动能、卫星(与中心天体)的引力势能.(2)质量相同的卫星,圆轨道半径越大,动能越小,势能越大,机械能越大. 3.极地卫星、近地卫星和同步卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s. (3)同步卫星①轨道平面一定:轨道平面和赤道平面重合.②周期一定:与地球自转周期相同,即T =24 h =86 400 s. ③角速度一定:与地球自转的角速度相同. ④高度一定:卫星离地面高度h =3.6×104 km.⑤速率一定:运动速度v=3.07 km/s(为恒量).⑥绕行方向一定:与地球自转的方向一致.考点三卫星(航天器)的变轨问题1.轨道的渐变做匀速圆周运动的卫星的轨道半径发生缓慢变化,由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动.解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r是增大还是减小,然后再判断卫星的其他相关物理量如何变化.2.轨道的突变由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道.(1)当卫星的速度突然增加时,G Mmr2<mv2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时减小.(2)当卫星的速度突然减小时,G Mmr2>mv2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v=GMr可知其运行速度比原轨道时增大;卫星的发射和回收就是利用这一原理.不论是轨道的渐变还是突变,都将涉及功和能量问题,对卫星做正功,卫星机械能增大,由低轨道进入高轨道;对卫星做负功,卫星机械能减小,由高轨道进入低轨道.考点四宇宙速度的理解与计算1.第一宇宙速度v1=7.9 km/s,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMmR2=mv21R,所以v1=GMR. (2)mg=mv21R,所以v1=gR.【思想方法与技巧】双星系统模型1.模型特点(1)两颗星彼此相距较近,且间距保持不变.(2)两颗星靠相互之间的万有引力做匀速圆周运动.(3)两颗星绕同一圆心做圆周运动.2.模型分析(1)双星运动的周期和角速度相等,各以一定的速率绕某一点转动,才不至于因万有引力作用而吸在一起.(2)双星做匀速圆周运动的向心力大小相等,方向相反.(3)双星绕共同的中心做圆周运动时总是位于旋转中心的两侧,且三者在一条直线上.(4)双星轨道半径之和等于它们之间的距离.3.(1)解决双星问题时,应注意区分星体间距与轨道半径:万有引力定律中的r为两星体间距离,向心力公式中的r为所研究星球做圆周运动的轨道半径.(2)宇宙空间大量存在这样的双星系统,如地月系统就可视为一个双星系统,只不过旋转中心没有出地壳而已,在不是很精确的计算中,可以认为月球绕着地球的中心旋转.求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法. 一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.二、二次函数极值法对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a .也可以采取配方法求解. 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值. 四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值. 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小. 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.第五节 功和功率【基本概念、规律】 一、功1.做功的两个必要条件:力和物体在力的方向上发生的位移.2.公式:W =Fl cos_α.适用于恒力做功.其中α为F 、l 方向间夹角,l 为物体对地的位移. 3.功的正负判断(1)α<90°,力对物体做正功.(2)α>90°,力对物体做负功,或说物体克服该力做功. (3)α=90°,力对物体不做功.特别提示:功是标量,比较做功多少看功的绝对值. 二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)定义式:P =Wt ,P 为时间t 内的平均功率.(2)推论式:P=Fv cos_α.(α为F与v的夹角)【重要考点归纳】考点一恒力做功的计算1.恒力做的功直接用W=Fl cos α计算.不论物体做直线运动还是曲线运动,上式均适用.2.合外力做的功方法一:先求合外力F合,再用W合=F合l cos α求功.适用于F合为恒力的过程.方法二:先求各个力做的功W1、W2、W3…,再应用W合=W1+W2+W3+…求合外力做的功.3.(1)在求力做功时,首先要区分是求某个力的功还是合力的功,是求恒力的功还是变力的功.(2)恒力做功与物体的实际路径无关,等于力与物体在力方向上的位移的乘积,或等于位移与在位移方向上的力的乘积.考点二功率的计算1.平均功率的计算:(1)利用P=W t.(2)利用P=F·v cos α,其中v为物体运动的平均速度.2.瞬时功率的计算:利用公式P=F·v cos α,其中v为t时刻的瞬时速度.注意:对于α变化的不能用P=Fv cos α计算平均功率.3.计算功率的基本思路:(1)首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.(2)求瞬时功率时,如果F与v不同向,可用力F乘以F方向的分速度,或速度v乘以速度v 方向的分力求解.考点三机车启动问题的分析1.两种启动方式的比较v↑⇒F=P不变v↓⇒a=F-F阻m↓F-F2.三个重要关系式(1)无论哪种运行过程,机车的最大速度都等于其匀速运动时的速度,即v m=PF min=PF阻(式中F min为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的过程中,匀加速过程结束时,功率最大,速度不是最大,即v=P F<v m=P F阻.(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻x=ΔE k.此式经常用于求解机车以恒定功率启动过程的位移大小.3.分析机车启动问题时的注意事项(1)在用公式P=Fv计算机车的功率时,F是指机车的牵引力而不是机车所受到的合力.(2)恒定功率下的加速一定不是匀加速,这种加速过程发动机做的功可用W=Pt计算,不能用W=Fl计算(因为F是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W=Fl计算,不能用W=Pt计算(因为功率P是变化的).【思想方法与技巧】变力做功的求解方法一、动能定理法动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力功也适用于求变力功.二、平均力法如果力的方向不变,力的大小对位移按线性规律变化(即F=kx+b)时,F由F1变化到F2的过程中,力的平均值为F=F1+F22,再利用功的定义式W=F l cos α来求功.三、微元法当物体在变力的作用下做曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,可将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和.通过微元法不难得到,在往返的运动中,摩擦力、空气阻力做的功,其大小等于力和路程的乘积.四、等效转换法若某一变力的功和某一恒力的功相等,即效果相同,则可以通过计算该恒力做的功,求出该变力做的功,从而使问题变得简单,也就是说通过关联点,将变力做功转化为恒力做功,这种方法称为等效转换法.五、图象法由于功W=Fx,则在F-x图象中图线和x轴所围图形的面积表示F做的功.在x轴上方的“面积”表示正功,x轴下方的“面积”表示负功.六、用W=Pt计算机车以恒定功率P行驶的过程,随速度增加牵引力不断减小,此时牵引力所做的功不能用W=Fx来计算,但因功率恒定,可以用W=Pt计算.第六节动能动能定理【基本概念、规律】一、动能1.定义:物体由于运动而具有的能.2.表达式:E k =12mv 2.3.单位:焦耳,1 J =1 N·m =1 kg·m 2/s 2. 4.矢标性:标量. 二、动能定理1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.2.表达式:W =E k2-E k1=12mv 22-12mv 21. 3.适用范围(1)动能定理既适用于直线运动,也适用于曲线运动. (2)既适用于恒力做功,也适用于变力做功.(3)力可以是各种性质的力,既可以同时作用,也可以不同时作用. 【重要考点归纳】考点一 动能定理及其应用 1.对动能定理的理解(1)动能定理公式中等号表明了合外力做功与物体动能的变化间的两个关系: ①数量关系:即合外力所做的功与物体动能的变化具有等量代换关系. ②因果关系:合外力的功是引起物体动能变化的原因.(2)动能定理中涉及的物理量有F 、l 、m 、v 、W 、E k 等,在处理含有上述物理量的问题时,优先考虑使用动能定理.2.运用动能定理需注意的问题(1)应用动能定理解题时,不必深究物体运动过程中状态变化的细节,只需考虑整个过程的功及过程初末的动能.(2)若过程包含了几个运动性质不同的分过程,既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同的情况分别对待求出总功,计算时要把各力的功连同正负号一同代入公式. 3.应用动能定理解题的基本思路(1)选取研究对象,明确它的运动过程;(2)分析研究对象的受力情况和各力的做功情况: 受哪些力→各力是否做功→做正功还是负功→做多少功→各力做功的代数和(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解. 考点二 动能定理与图象结合问题 解决物理图象问题的基本步骤1.观察题目给出的图象,弄清纵坐标、横坐标所对应的物理量及图线所表示的物理意义. 2.根据物理规律推导出纵坐标与横坐标所对应的物理量间的函数关系式.3.将推导出的物理规律与数学上与之相对应的标准函数关系式相对比,找出图线的斜率、截距、图线的交点,图线下的面积所对应的物理意义,分析解答问题.或者利用函数图线上的特定值代入函数关系式求物理量.4.解决这类问题首先要分清图象的类型.若是F -x 图象,则图象与坐标轴围成的图形的面积。

高中物理精品课件:第1讲 曲线运动 运动的合成与分解

高中物理精品课件:第1讲 曲线运动 运动的合成与分解
√A.水流的速度大小为0.2 m/s
B.船头与河岸间的夹角α为60° C.小船在静水中的速度大小为0.6 m/s
√D.河的宽度为200 m
考点四
绳(杆)速度分解模型
1.模型特点 与绳(杆)相连的物体运动方向与绳(杆)不在一条直线上. 2.明确合速度与分速度 合速度→绳(杆)拉物体的实际运动速度v→平行四边形对角线
1 2 3 4 5 6 7 8 9 10 11 12
素养提升练
12.(多选)(2019·全国卷Ⅱ·19)如图(a),在跳台滑雪比赛中,运动员在空中 滑翔时身体的姿态会影响其下落的速度和滑翔的距离.某运动员先后两次 从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向 的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪道上的时刻.则
1 2 3 4 5 6 7 8 9 10 11 12
A.第二次滑翔过程中在竖直方向上的位移比第一次的小
√B.第二次滑翔过程中在水平方向上的位移比第一次的大
C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大
√D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一
次的大
1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12
4.(2021·湖南省1月适应性考试·2)有一圆柱形水井,井壁光滑且竖直, 过其中心轴的剖面图如图所示.一个质量为m的小球以速度v从井口边缘 沿直径方向水平射入水井,小球与井壁做多次弹性碰撞(碰撞前后小球 水平方向速度大小不变、方向反向,小球竖直方向速度大小和方向都 不变).不计空气阻力,从小球水平射入水井到落至水面的过程中,下列 说法正确的是 A.小球下落时间与小球质量m有关 B.小球下落时间与小球初速度v有关 C.小球下落时间与水井井口直径d有关

运动的合成与分解知识点

运动的合成与分解知识点

运动的合成与分解知识总结知识点一一、曲线运动1、ΣF与v的关系(1)合力方向与速度方向在同一直线上时,合力只改变速度的;(2)合力方向与速度方向垂直时,合力只改变速度。

(3)合力方向与速度方向有夹角θ(θ≠900)时,合力既改变速度的,又改变速度2、ΣF与运动的关系力决定了给定物体的加速度,力与速度的方向关系决定了物体运动的轨迹F(或a)跟v在一直线上→直线运动:a恒定→ ;a变化→ 。

F(或a)跟v不在一直线上→曲线运动:a恒定→ ;a变化→3、曲线运动的特点:曲线运动速度的方向是时刻改变的。

质点在某一点(某一时刻)的速度方向是在运动轨迹的该点切线方向上,曲线运动是变速运动(但变速不一定是曲线运动),曲线运动的加速度不为零4、条件:合外力方向(加速度方向)和速度方向不在同一条直线上5、运动轨迹:做曲线运动的物体所受的合外力必指向运动轨迹的内侧,也就是运动轨迹必夹在方向与方向之间二、运动的合成与分解1、合运动与分运动一个物体同时参与两种运动时,这两种运动都是分运动,而物体的实际运动就是合运动2、分运动与合运动的关系(1)等时性:合运动与分运动同时发生,同时进行,同时结束,经历相等的时间,故实际运动(合运动)的时间就是分运动的时间(2)独立性:也叫叠加原理。

一个物体同时参与几个分运动,各分运动独立进行,互不干扰,合运动是各分运动的叠加(3)同体性:各分运动和合运动是指同一物体而言,计算时针对同一质量而言,不用把质量分开和叠加(4)矢量性:运动学中各矢量(如位移s、速度v、加速度a等)在合成和分解的过程满足平行四边形法则(5)等效性:各分运动的规律叠加起来与合运动规律有完全相同的效果3、运动合成与分解的方法合成法则:A、一条直线力矢量的合成例:nvvvvv++++321=合。

如果各速度在同一直线上,设一个正方向,上式中各速度与正方向相同的代正值,相反的代负值,上式就由矢量式变成代数式进行代数运算。

B、两个矢量相互垂直,充分利用直角三角形性质(勾股定理、三角函数关系等)进行运算。

运动的合成和分解位移速度

运动的合成和分解位移速度
位移速度分解实例
假设有一个飞机在飞行过程中同时进行水平和垂直运动,且已知飞机的总速度和总位移。根据位移速 度的分解原理,可以将飞机的总速度分解为水平方向上的分速度和垂直方向上的分速度。通过分解, 可以更好地理解飞机在水平和垂直方向上的运动情况。
THANKS
感谢观看
体育运动的技术分析
将复杂的体育运动技术分解为若干个基本的动作要领,有助于提高 运动员的技术水平。
03
CATALOGUE
位移速度的合成与分解
位移速度的合成
总结词
位移速度合成是指将两个或多个分速度合成一个总速度的过 程。
详细描述
在物理学中,位移速度的合成遵循平行四边形法则,即两个 分速度可以合成一个总速度。总速度的大小和方向可以通过 分速度的大小和方向以及它们之间的夹角计算得出。
运动的合成和分解
目 录
• 运动的合成 • 运动的分解 • 位移速度的合成与分解 • 运动的合成与分解的实例分析
01
CATALOGUE
运动的合成
合成的基本概念
运动的合成是指将两个或多个 简单运动合成为一个复杂运动 的描述过程。
合成的基本原则是平行四边形 法则,即两个矢量(速度和力 )按照平行四边形的边长和角 度进行合成。
详细描述
在航空航天领域,飞行员需要根据风速和飞机自身的速度进行速度合成与分解,以准确 判断飞行方向和位置;在航海领域,船长需要了解风速、水流速度、船速等参数,通过 速度合成与分解来制定航行计划;在车辆运动领域,驾驶员需要考虑道路状况、车速、
车辆加速度等参数,通过速度合成与分解来控制车辆运动轨迹。
04
合成运动的分析有助于理解物 体在复杂环境中的运动规律, 为实际应用提供理论支持。
合成的方法

2023年高考小专题复习学案 专题18曲线运动与运动的合成分解

2023年高考小专题复习学案 专题18曲线运动与运动的合成分解

专题18曲线运动与运动的合成分解【知识梳理】 一、曲线运动1.速度的方向:质点在某一点的速度方向,沿曲线在这一点的 。

2.运动的性质:做曲线运动的物体,速度的方向时刻在改变,所以曲线运动一定是 运动。

3.运动的条件:物体所受 的方向跟它的速度方向不在同一条直线上,或它 方向与速度方向不在同一条直线上。

4.合外力方向与轨迹的关系物体做曲线运动的轨迹一定夹在 方向与 方向之间,速度方向与轨迹相切,合外力方向指向轨迹的 侧。

二、运动的合成与分解 1.遵循的法则位移、速度、加速度都是矢量,故它们的合成与分解都遵循 。

2.合运动与分运动的关系(1)等时性:合运动和分运动经历的 相等,即同时开始、同时进行、同时结束。

(2)独立性:一个物体同时参与几个分运动,各分运动 ,不受其他分运动运动的影响。

(3)等效性:各分运动的规律叠加起来与合运动的规律有完全相同的 。

3.运动性质的判断⎩⎨⎧加速度(或合外力)⎩⎪⎨⎪⎧ 变化:非匀变速运动不变:匀变速运动加速度(或合外力)方向与速度方向⎩⎪⎨⎪⎧共线:直线运动不共线:曲线运动4.两个直线运动的合运动性质的判断关键:看合初速度方向与合加速度方向是否共线。

三、两种模型 1.小船渡河模型2.绳(杆)端速度分解模型(1)模型特点:绳(杆)拉物体或物体拉绳(杆),以及两物体通过绳(杆)相连,物体运动方向与绳(杆)不在一条直线上,求解运动过程中它们的速度关系,都属于该模型。

(2)模型分析①合运动:绳(杆)拉物体的实际运动速度v ; ②分运动:⎩⎪⎨⎪⎧其一:沿绳(或杆)的分速度v ∥其二:与绳(或杆)垂直的分速度v ⊥ (3)解题原则:根据沿绳(杆)方向的分速度 求解。

【专题练习】 一、单项选择题1.2022年冬奥会将在中国北京举行,冰球是冬奥会的一个比赛项目.如图所示,冰球以速度1v 在水平冰面上向右运动,运动员沿冰面在垂直1v 的方向上快速击打冰球,冰球立即获得沿击打方向的分速度2v .不计冰面摩擦和空气阻力,下列图中的虚线能正确反映冰球被击打后运动轨迹的是( )A .B .C .D .2.羽毛球运动是我国的传统优势体育项目,屡屡在历届奥运会上争金夺银。

运动的合成与分解

运动的合成与分解
v sin
v
运动的合成与分解专题
例:一条河宽500m,水流速度是3m/s,小船在静 水中的速度是5m/s,求
(1)最短渡河的时间是多小? 小船的实际位移,沿 下流的位移是多少?
(2)最短位移渡河的时间是多少? 最短渡河的位移 是多少?
【例题】一船准备渡河,已知水流速度为v2=1m/s,船在静水 中的航速为v1=2m/s,则: ①要使船能够垂直地渡过河去,那么应向何方划船? ②要使船能在最短时间内渡河,应向何方划船?
解析: 合速度与分速度之间的关系满足平行四边形定则,它的大小可
以比分速度大或小或相等,A不正确;两个分运动的时间一定与它们合
山 东
运动的时间相等,B正确;平抛运动是曲线运动,而它的两个分运动分
金 太
别是匀速直线运动和自由落体运动,C不正确;当两个匀变速直线运动 阳 书
的合速度方向与合加速度方向不在同一直线上时,合运动是曲线运动, 业
v
a1
a
a2
v2
加速曲线运动
点评: 运动的合成
1.两互成角度的匀速直线运动的合成
(一定是匀速直线运动)
2.两互成角度的初速为零的匀加速直线 运动的合成 (一定是匀加速直线运动)
3.两互成角度的初速不为零的匀加速直 线运动的合成
(匀变速直线运动或匀变速曲线运动)
4.一个匀速直线运动和一个匀加速直线运 动的合成
d
v水
结论: 欲使船渡河时间最短,船头的方向
应该垂直于河岸。
t最短=
d v船
解1:当船头垂直河岸时, 所用时间最短
最短时间 tmin
d v2
100 4
s
25 s
此时合速度
v
v12 v22

中学物理“小船渡河”模型详解

中学物理“小船渡河”模型详解

中学物理“小船渡河”模型详解“小船渡河”模型是“运动的合成与分解”板块中一个重要的模型,主要考察的方面有三个:运动合成与分解的“正交分解法”处理一般问题;合运动与分运动的等效性、独立性和等时性;运动合成与分解的“三角形定则”处理动态分析与极值问题。

1、基本概念(1)船的实际运动:水流的运动和船相对静水的运动的合运动.(2)三种速度:船在静水中的速度:V船;水的流速:V水;船的实际航速:V;2、正交分解法小船渡河,其目的是研究实际运动。

直接矢量合成并不能解决问题,可以先正交分解再合成。

(沿河岸方向和垂直河岸方向建立直角坐标系)x轴方向:Vx=V船· cosθ-V水Sx=Vx · ty轴方向:Vy=V船 ·sinθSy=Vy · t船的实际运动:3、渡河时间船在X轴方向运动没有限制条件,在Y轴有限制条件。

根据运动的独立性与等时性,决定运动时间的是Y轴的分运动。

最短渡河时间:当θ等于90°时,sinθ=1,为最大值。

即船头垂直河岸渡河时,用时最短。

(最短渡河时间示意图)4、渡河位移在X轴方向的运动:Vx=V船· cosθ-V水Vx>0,表示船向上游运动Vx<0,表示船向下游运动最短渡河位移:(1)V船>V水,调整船头方向,存在Vx>0,Vx=0,Vx<0三种情况,即船可向上游、对岸、下游运动。

根据数学知识:点到直线,垂线段最短。

最短位移为运动到河正对岸,即为河宽d。

最短位移:Smin=d。

(V船>V水,最短渡河位移示意图)(2)V船<V水,无论如何调整船头方向,只存在Vx<0一种情况,即船只能向下游运动,无法到达河对岸。

此时,只能采用合成与分解的“三角形定则”。

水速与船速矢量首尾连接,即为船的实际航速。

随着船头方向不断变化,航向也会不断变化。

越靠近河正对岸,位移越短。

不断调整船头指向,当船速与实际运动速度垂直时,位移最小。

5-2-2运动的合成与分解-小船渡河 (教学课件)-高中物理人教版(2019)必修第二册

5-2-2运动的合成与分解-小船渡河   (教学课件)-高中物理人教版(2019)必修第二册
的位移多大?
(2)欲使船航行距离最短,船应怎样渡河?渡河时间多长?
知识小节
小船渡河模型
两类常见问题:
1、渡河时间最短
船头垂直于河岸航行即可
2、渡河位移最短
①v船 > v水,船能垂直过河,位移最短
②v水>v船,过河位移最短须满足v船 ⊥ v合
巩固练习
1.小明同学遥控小船做过河实验,并绘制了四幅小船过河的航线图如图所
3.一小船在静水中的速度为3 m/s,它在一条河宽为150 m,水
流速度为4 m/s的河流中渡河,则该小船( C )A.能到达正对
岸B.渡河的时间可能少于50 sC.以最短时间渡河时,它沿水
流方向的位移大小为200 mD.以最短位移渡河时,位移大小为
150 m
4.(多选)如图所示,甲、乙两船在同一条河流中同时开始渡河,
船位移最小时的合运动的方向.这时船头与河岸夹角θ满足
v船
cos θ= ,最短位移 x 短= d .
cos θ
v水
当v合沿圆的切线方
向时,合位移最短
例2、河宽d=200 m,水流速度v1=3 m/s,船在静水中的速度v2=
5 m/s。求:
(1)欲使船渡河时间最短,船应怎样渡河?最短时间是多少?船经过
MN分别是甲、乙两船的出发点。两船头与河岸均成α角,甲船船头
恰好对准N点的正对岸P点。经过一段时间乙船恰好到达P点。如果
划船速度大小相同,且两船相遇不影响各自的航行。下列判断正确
的是( BC )A.甲船也能到达正对岸B.两船渡河时间一定相等
C.两船相遇在NP连线上D.渡河过程中两船不会相遇
5.(多选)河水的流速与某河岸的距离的变化关系如图甲所示,船在静

运动的合成与分解

运动的合成与分解

二、运动的合成与分解法则:
1.绝对运动:质点对地的运动称为绝对运动。 2.相对运动:质点对运动参考系的运动称为相 对运动。 3.牵连运动:运动参考系对地的运动称为牵连 运动。
v绝对 v相对 v牵连来自同理有: a绝对 a相对 a牵连
练习1:甲乙丙三人各乘一个热气球,甲看到 楼房匀速上升,乙看到甲匀速上升,丙看到乙 匀速下降,甲看到丙匀速上升。那么甲、乙、 丙相对于地面运动的情况可能是( ) A.甲乙匀速下降,且 v乙 v甲,丙停在空中 B.甲乙匀速下降,且 v乙 v甲,丙匀速上升 C.甲乙匀速下降,且 v乙 v甲,丙匀速下降,且 D.甲乙匀速下降,且 v乙 v甲,丙匀速下降,且
再取与直线l2一起以速度v2运动的参考系为运 动参考系,在此参考系中,A点运动也一定沿 着直线l2,设此相对速度为v2',则A点的绝对 速度v
v v2 'v2 2 ()
由(1)、(2)得
v1 'v1 v '2 v2 3 ()
v'2 v1
v'1 v v2
v丙 v甲
v丙 v甲
练习2:太阳从东边升起,西边落下,是地球上 的自然现象。但在某些条件下,在纬度较高的 地区上空飞行的飞机上,旅客可以看到太阳从 西边升起的奇妙现象。这些条件是( )
A.时间应在清晨,飞机由东向西飞行,飞机速 度较大 B.时间应在清晨,飞机由西向东飞行,飞机速 度较大 C.时间应在傍晚,飞机由东向西飞行,飞机速 度较大 D.时间应在傍晚,飞机由西向东飞行,飞机速 度较大
三、相对速度: 分析物体(质点)的运动,除可以用运动的合成 知识外,还可充分应用物系相关速度间的关系简 捷求解。以下三个结论在竞赛解题中十分有用: 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、 绳的分速度; 2.接触物系在接触面法线方向的分速度相同,切向 分速度在无相对滑动时亦相同;

关于运动的合成与分解模型方法简析

关于运动的合成与分解模型方法简析

习题研究f r 炻i f教学参考第50卷第3期2021年3月关于运动的合成与分解模型方法简析王善锋(山东省邹平市第一中学山东滨州 256200)文章编号:1002-218X (2021)03-0042-02 中图分类号:G 632. 4 文献标识码:B摘要:从运动模型入手,简析在高中物理阶段有关物体运动合成与分解的常规模型,并给出一定的解题思路;从不同的角度讲述如何快速解题,提高学生的解题能力,引导学生在总结方法的过程中完成对知识点的消化与吸收,自我探 究与总结。

关键词:高中物理;运动的合成与分解;常规模型一、运动的合成与分解模型分类在高中阶段关于运动的合成与分解这一知识点, 常常涉及多重力或多个运动对象的共同作用.为了方 便学生在脑海中形成对这类知识点的清晰概念,我们 将这类运动模型简单分为两种,一种是涉及本体速度 与附加速度的流水模型,另一种是需要考虑相互作用 的牵引问题。

这两类问题都是高中物理阶段比较常 见的运动模型,对于运动的合成与分解考查也比较全 面,是学生应该重点把握的两类模型。

1.水流模型水流模型一般是指物体在流水当中的运动模型, 这类运动由于水本身有一个流动速度,无论是对物体 运动的速度还是其运动的方向都会有影响,因此需要 学生对速度的合成与分解十分熟练。

这类问题常常 涉及最值问题,比如如何在最短时间内过河或是在运 动过程中何时达到最小速度等。

在解决问题时,学生 要善于利用物体本身速度和流水速度构成三角模型, 然后结合三角形去解题。

① 水中声音在沸腾前响度较________^ (选填“大”或“小”),沸腾时气泡现象如图7中的________(选填“图(a )”或“图(b )’’)所描述一样,水在沸腾过程中需要________热量,温度________(选填“变大”“变小”或“不变”)。

② 由图8所示的图像知,水的沸点是______°C ,此时的大气压应该______(选填“高于”“等于”或“低于”)标准大气压。

运动的合成与分解

运动的合成与分解
第二课时
1、知道分运动、合运动,知道分运动、合 运动的关系。
2、会运用平行四边形定则解决有关的合成、 分解问题.
1.合运动与分运动
(1)如果物体同时参与了几个运动,那么 物体实际发生的运动就是合运动,参与的几 个运动就是分运动。物体实际运动的位移、 速度、加速度是它的合位移、合速度、合加 速度,而分运动的位移、速度、加速度就是 它的分位移、分速度、分加速度。
吊车运动的分解
[题组通关]
5.如图所示,跳伞员在降落伞打开一段时间以 后,在空中做匀速运动。若跳伞员在无风时竖直匀 速下落,着地速度大小是4.0 m/s。当有正东方向吹 来的风,受此影响,跳伞员在水平方向速度大小是 3.0 m/s,则跳伞员着地时的速度 A
A.大小为5.0 m/s,方向偏西 B.大小为5.0 m/s,方向偏东 C.大小为7.0 m/s,方向偏西 D.大小为7.0 m/s,方向偏东
于航线方向的分量,由几何关系可得 sinα=35,cosα =45。所以 vmin=v⊥=vsinα=35v=30 m/s。
此时游艇在河中航行的时间为
t= =
=37.5 s。
答案 30 m/s 37.5 s
题型二 关联物体速度分解(绳杆端速度的分解)
1.条件:在实际生活中,常见到物体斜拉 绳或绳斜拉物体的问题,如图 5-Ⅰ-4 所示。
2.合运动与分运动的关系
等时性 各分运动与合运动同时发生和结束,时间相同 。 分运动和合运动都是矢量,它们之间的运算遵
矢量性 循平行四边形定则。
等效性 各分运动的共同效果与合运动的效果相同 。
同体性 各分运动与合运动是同一物体的运动。 各分运动之间互不相干,彼此独立,互不影响 ;
独立性 各个方向彼此独立。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动的合成与分解的三种模型
1.一般模型:两个物体都在运动。

处理方法:转化为一个物体的运动。

例1.已知雨滴竖直下落的速度为4m/s,一人撑伞以3m/s的速度前行,则此人如何撑伞可以使雨滴垂直地打在伞上?打在伞上的速度大小为多少?
例2.如图所示,有甲乙两船,甲船在水中的航速为V,且沿AB方向航
行,乙船在C处,AC与AB的夹角为θ,则乙船应怎样航行才能以最小的航
速赶上甲船?不计水流速度的影响。

练习:有一在水平面内以角速度ω匀速运动的圆台,半径为R,如图,圆台边缘A处
坐着一个人,此人想举枪击中圆心处的目标,如果子弹的速度为v,则枪身的方向应
为。

2.拉船模型:绳的方向与船(或车)的运动方向有一定的夹角。

处理方法:找出合运动(即物体实际的运动),对其按照运动的效果
进行分解。

(一般:一个径向速度、一个法向速度)。

例3.如图所示,用绳牵引小船靠岸,若收绳的速度为V,在绳与水平方
向夹角为α时,船的速度为。

若此时小船的速度为V,则人拉绳
的速度为。

例4.如图所示,一质量为m的物体静止在光滑水平面,一人用一绳子
绕过滑轮从滑轮的正下方h处以恒定的速度V向右匀速地拉绳,则当绳与水平
方向的夹角为θ时,物体m的速度大小为,在这一过程中人对物体
m所作的功为。

例5.如图所示,一质量为m的物体被绕过光滑滑轮的绳系着,一小车从
滑轮的正下方以恒定的速度V沿水平方向向左拉动,则当小车拉的绳与水平方
向成θ角时,m的机械能增加了多少?
例6.如图,一质量为m的圆环穿在一水平光滑的竿上,一质量为M的物体通过两个小滑轮A、B与圆环连接,绳与竿的夹角为 ,滑轮距水平竿的高度为h。

当把M由静止释放,则m的最大速度为少?
x例6.如图所示,一质量为M的物体置于光滑水平地面上,一人利用图中的装置以恒定的速度V 沿水平方向拉绳,则当人拉到AC与BC的夹角为θ时,M的速度为。

3.渡河模型(水流速度不为零)设水的流速为V1,船在静水中的速度为V2。

处理方法:①.当V2>V1时,直接将船速分解;
②.当V2<V1时,借助矢量三角形。

例7.一宽度为1000m的河流的水流速度为3m/s,一渔船在静水中的速度为5m/s,则渔船渡河的最
短时间为min,渡河的最短位移为m。

例8.一宽度为1000m的河流的水流速度为5m/s,一渔船在静水中的速度
为3m/s,则渔船渡河的最短时间为min,渡河的最短位移为m。

例9.如图所示,一条两岸为平行直线的小河,河宽60m,水流速度5m/s。

一条小船欲从码头A处渡河,A的下游80m处河床陡然降低形成瀑布,要保证小船不掉下瀑布,小船相对水的划行速度至少应多大?此时船的划行方向如何?。

相关文档
最新文档