汽车传动系原理

合集下载

汽车传动系统的工作原理

汽车传动系统的工作原理

汽车传动系统的工作原理汽车传动系统是指将发动机动力传输到车轮,使车辆前进或后退的系统。

它起到了连接发动机和车轮的重要作用,是实现汽车运行的关键组成部分。

本文将详细介绍汽车传动系统的工作原理。

一、概述汽车传动系统主要包括离合器、变速器、传动轴、驱动轴和差速器等部件。

它们协同工作,通过变速和转向等操作,将发动机的输出转化为合适的转矩和速度,驱使车辆前进或后退。

二、离合器离合器位于发动机和变速器之间,主要用于分离和连接发动机与变速器之间的动力传递。

当离合器踏板被踩下时,离合器片即与飞轮分离,使发动机的动力无法传递到变速器,车辆处于空档状态;当离合器踏板松开时,离合器片紧密贴合飞轮,使发动机的动力传递到变速器,推动车辆运动。

三、变速器变速器是用于调节发动机输出转矩和转速的装置。

在手动变速器中,驾驶员通过换挡操作调整传动比,以适应不同的行驶条件;而在自动变速器中,系统会根据车速和发动机负载等信息自动调整传动比。

变速器根据需求将合适的转矩和速度传送给传动轴。

四、传动轴传动轴将变速器输出的动力传输给驱动轴。

传动轴一般是由多个万向节和轴段组成,能够适应驱动轴和发动机之间的角度变化。

它具有较强的扭转刚度和弹性,使传动过程更加平稳。

五、驱动轴驱动轴直接连接传动轴和车轮,通过传递发动机的动力,使车轮产生驱动力。

驱动轴一般由半轴和万向节组成,根据车辆的驱动方式有前驱、后驱和四驱等不同类型。

六、差速器差速器是驱动轴与车轮之间的重要连接部件。

它允许两个车轮以不同的转速旋转,从而在转弯时避免车轮打滑。

差速器通过齿轮的组合和设计,使驱动轴的转速传递到两个车轮,保证车辆行驶的平稳性和稳定性。

七、其他辅助装置汽车传动系统还包括其他辅助装置,如离合器分泵、行星齿轮机构、液力变矩器等。

它们能够在特定行驶条件下提供更好的驱动性能和行车舒适性。

总结:通过以上对汽车传动系统的工作原理的介绍,我们可以看出,汽车传动系统起到了将发动机动力传递到车轮的关键作用。

汽车传动系统的构造与原理

汽车传动系统的构造与原理

汽车传动系统的构造与原理汽车传动系统是汽车的重要组成部分之一,它负责将发动机的动力传递给车轮,使汽车得以行驶。

了解汽车传动系统的构造和原理对于驾驶员和维修人员都非常重要。

本文将详细介绍汽车传动系统的构造和原理。

一、传动系统的基本构造汽车传动系统主要由以下几个部分组成:1. 发动机:发动机是汽车传动系统的源头,它负责产生动力。

发动机的类型有多种,包括汽油发动机、柴油发动机以及电动机等。

2. 配气机构:配气机构控制发动机进气和排气过程,影响着发动机的效率和动力输出。

常见的配气机构有气门、凸轮轴等。

3. 离合器:离合器连接发动机和变速器,使发动机的动力能够顺利传递给变速器。

离合器可以通过踩下踏板来实现离合和结合的功能。

4. 变速器:变速器负责调节发动机输出的转速和扭矩,并将其传递给车轮。

常见的变速器类型包括手动变速器和自动变速器。

5. 传动轴:传动轴将变速器的动力传递给车轮。

根据车辆类型不同,传动轴可以是前驱、后驱或四驱传动系统。

6. 差速器:差速器是传动系统的重要组成部分,它分配动力到车辆的左右两侧,使车辆转弯时左右轮胎能够旋转不同的速度。

7. 车轮和轮胎:车轮和轮胎是汽车传动系统的最终输出部分,承载着整个车辆的重量,为车辆提供行驶的支撑和牵引力。

二、传动系统的工作原理汽车传动系统的工作原理主要是将发动机的转动力通过离合器、变速器和传动轴传递给车轮。

其主要步骤如下:首先,当驾驶员发动汽车并踩下离合器踏板时,离合器与发动机分离,发动机转动的动力不再传递到变速器上。

接着,驾驶员将档位调整到合适的位置,从而选择了合适的齿轮比。

变速器会根据驾驶员选择的档位,改变输入轴和输出轴的转速比例。

然后,通过传动轴将变速器输出的动力传递给差速器。

差速器会将动力分配到车辆的左右两侧,并使车轮能够以不同的速度旋转。

最后,车轮通过与地面的摩擦力,将动力转化为行驶的力量,使汽车得以行驶。

三、传动系统的优化与创新随着科技的进步和汽车工业的发展,传动系统也在不断优化和创新。

汽车传动系统原理与维护

汽车传动系统原理与维护

汽车传动系统原理与维护汽车作为现代社会中不可或缺的交通工具,其性能和可靠性很大程度上取决于传动系统的工作状况。

传动系统就像是汽车的“力量传递者”,将发动机产生的动力有效地传递到车轮,使车辆能够平稳行驶。

接下来,让我们一起深入了解汽车传动系统的原理以及如何进行有效的维护。

汽车传动系统主要由离合器、变速器、传动轴、主减速器和差速器等组成。

离合器位于发动机和变速器之间,它的作用是在车辆起步和换挡时,暂时切断发动机与变速器之间的动力传递,使换挡更加平稳。

当我们踩下离合器踏板时,离合器分离,发动机的动力无法传递到变速器;松开踏板时,离合器结合,动力得以传递。

变速器则是用来改变汽车行驶速度和扭矩的装置。

常见的变速器有手动变速器和自动变速器。

手动变速器通过驾驶员手动换挡,选择不同的齿轮组合来实现变速;自动变速器则根据车辆的行驶状况和驾驶员的操作意图,自动切换挡位。

变速器的工作原理是利用不同大小的齿轮组合,改变输出轴的转速和扭矩。

较小的齿轮带动较大的齿轮时,输出扭矩增大但转速降低;反之,较大的齿轮带动较小的齿轮时,输出转速增大但扭矩减小。

传动轴将变速器输出的动力传递到主减速器。

它通常由一根或多根钢管制成,两端装有万向节,以适应车辆行驶过程中的角度变化。

主减速器的作用是进一步降低转速、增大扭矩,并将动力传递给差速器。

差速器则允许左右车轮在行驶过程中以不同的转速转动,例如在车辆转弯时,内侧车轮的转速比外侧车轮低,差速器能够自动调节左右车轮的转速,保证车辆平稳转弯。

了解了汽车传动系统的原理,接下来我们谈谈如何进行维护。

定期检查和更换传动系统的润滑油是至关重要的。

润滑油不仅能减少零部件之间的磨损,还能起到冷却和清洁的作用。

不同类型的传动部件使用的润滑油种类和更换周期可能不同,一般来说,手动变速器和差速器的润滑油需要每隔一定里程或时间进行更换,而自动变速器的润滑油更换要求则更为严格。

离合器的维护也不容忽视。

如果离合器踏板的行程过大或过小,可能会导致离合器磨损加剧或换挡困难。

新能源汽车传动系统的工作原理

新能源汽车传动系统的工作原理

新能源汽车传动系统的工作原理1. 传动系统的基本概念哎,说到新能源汽车,咱们首先得聊聊传动系统。

这东西就像车的“心脏”,负责把动力从电机传递到车轮。

想象一下,你骑着自行车,脚蹬得飞快,但车轮就是不转,那可就太尴尬了!新能源汽车的传动系统就负责确保这动力顺畅无阻,简直就是“无声的英雄”呀。

1.1 电机的“动力源泉”新能源汽车的动力来源于电机,这可是个神奇的家伙!电机通过电流产生磁场,进而让转子转动。

简单来说,就是电流在里面“舞蹈”,转子跟着它一起摇摆,哇,听起来是不是很有意思?而且,电机的转速可以调节,越快车子跑得越快,直接“飞”起来,让你体验到极速的快感,真是让人兴奋不已。

1.2 变速器的“调节器”接下来我们得聊聊变速器,别小看它哦!在传统汽车里,变速器就像一位指挥家,调节着各个乐器的音调。

而在新能源汽车中,变速器的角色有所不同。

很多电动车采用的是单速变速器,省去了换挡的烦恼。

你只需踩下油门,车子就像被施了魔法一样,瞬间加速,简直让人感觉自己是飞行员,飞向蓝天!2. 动力传递的“桥梁”传动系统的另一个重要组成部分就是动力传递部分,这可是个重要的“桥梁”!电机产生的动力通过传动系统的组件,像齿轮、轴承,最后到达车轮。

这个过程就像把一瓶可乐从冰箱里拿出来,倒进杯子,顺畅又畅快。

它需要确保动力传递的效率高,避免浪费,就像节约用水,才能让你享受更多的清凉。

2.1 轮毂电机的“新宠”说到这里,不得不提轮毂电机。

这玩意儿把电机直接装在轮子里,简直就是“黑科技”呀!这样一来,车子在加速和刹车时,反应速度贼快,仿佛在开飞船。

车子的重心也降低了,稳定性大大提升,简直是行驶时的“稳如老狗”!2.2 电子控制的“智能化”再来聊聊电子控制系统,这可是整个传动系统的“大脑”。

通过传感器和计算机,电子控制系统实时监测车辆的状态,精确调节电机的输出。

就像你在比赛时,教练一直在给你指导,确保你发挥得淋漓尽致。

这样一来,不仅能提高车辆的加速性能,还能在急刹时保证安全,真是一举两得!3. 节能环保的“先锋”新能源汽车的传动系统可不是单纯为了让你爽快开车,它还有个更大的使命,就是环保!相比传统燃油车,电动汽车的能耗更低,污染更少,简直是地球的“保护神”。

汽车原理与构造--第二章 汽车传动系

汽车原理与构造--第二章 汽车传动系
第二章 汽车传动系
内容提要
• • • • • 2-1传动系概述 2-2离合器 2-3变速器与分动器 2-4自动变速器 2-5万向传动装置与驱动桥
2-1 传动系概述
一、传动系的功用及组成 基本功用:将发动机发出的动力传递给驱 动车轮。
组成:离合器、变速器、万向传动装置、 主减速器、差速器、半轴及驱动车轮。
为何要采用同步器进行换档?
功用:使结合套与待啮合齿圈迅速同步,缩短 换档时间,同时防止啮合时齿间冲击。
分类: 常压式 惯性式 自行增力式
(一)锁环式惯性同步器
1)组成
2)结构
(二)锁销式惯性同步器
三、换挡机构
1、功能:保证驾驶员 能准确可靠地进行挂 档和退档操作。 2、组成:操纵杆(变速 杆)、拨叉、拨叉轴、 安全装置 (传动杆 系)——远距离操纵 时要求:刚度好、间 隙小。
Balance patch rear patch
Undee spring billet
Former patch Press patch Driven set form Driven set billet
Driven set hub
扭转减振器从动盘
扭转减振器:减振器盘 和减振器弹簧构成, 将从动盘和盘毂弹性 连接
作用:避免传动系共振, 缓和制动时对传动系 的冲击。
Friction bur
Undee spring billet
Driven set hub
spacer spool special type rivet friction wafer Driven set billet Absorber spring
二、手动变速器构造及其工作原理
1、组成: 传动机构(壳内) 、操纵机构(盖上) 2、分类: 三轴式变速器:应用于FR的汽车上 二轴式变速器:应用于FF及RR的汽车上 3、功用: 传动机构:改变转速比 操纵机构:实现换档

汽车传动系的工作原理

汽车传动系的工作原理

汽车传动系的工作原理
汽车传动系统是指汽车发动机输出的动力经过一系列传动装置传递到车轮,使车辆能够前进或后退的机制。

传动系统包括离合器、变速器、传动轴、差速器和驱动轮等部件。

其工作原理如下:
1. 离合器:位于发动机和变速器之间,通过与发动机输出轴相连,用于在发动机工作时将动力传递给传动系统。

当驾驶员踩下离合器踏板时,离合器分离发动机和传动系统,使发动机不再传递动力。

2. 变速器:用于调整发动机输出转速和扭矩,以适应不同的行驶工况。

变速器有多个齿轮组成的齿轮箱,通过切换不同齿轮比来实现不同的速度和扭矩输出。

比如,低速齿轮比适用于起步和爬坡,而高速齿轮比适用于高速行驶。

3. 传动轴:将动力从变速器传递到驱动轮。

传动轴是一根连接前后轴的金属轴杆,它通过万向节和万向轴传递动力,并且能够适应车辆转向和悬挂系统的运动。

4. 差速器:用于将动力分配给两个驱动轮。

差速器允许内外驱动轮在行驶过程中以不同的速度转动,以适应转弯时内外侧轮胎的滑动差异。

差速器还可以通过限滑差速器等装置来提供更好的牵引力。

5. 驱动轮:接受动力并将其传递到路面,从而推动车辆行驶。

驱动轮通常采用前驱、后驱或全驱的方式,其中前驱为前轮驱
动,后驱为后轮驱动,而全驱则同时由前后轮提供驱动力。

通过以上一系列的传动装置,汽车传动系统能够将发动机输出的动力传递到驱动轮,使车辆能够行驶并完成各种工况下的驾驶需求。

汽车传动系原理范文

汽车传动系原理范文

汽车传动系原理范文离合器是汽车传动系统的起始点,它连接发动机和变速器。

当驾驶员踩下离合器踏板时,离合器断开发动机和变速器之间的连接,使发动机不再向车轮输送动力。

变速器将发动机输出的动力转换为适合车速和驾驶条件的扭矩输出。

主要有手动变速器和自动变速器两种类型。

手动变速器通过手动操纵换挡杆来改变不同齿轮的啮合状态,从而改变扭矩输出。

自动变速器则根据车速和发动机负载自动选择最佳的挡位。

传动轴是将变速器输出的动力传递到车轮的部分。

通常汽车传动轴有前驱、后驱和四驱三种形式。

前驱车的传动轴将动力从发动机传递到前轮,后驱车的传动轴将动力传递到后轮,而四驱车的传动轴则将动力传递到四个车轮。

差速器是位于传动轴和车轮之间的装置,主要用于解决转弯时内外轮速度差异的问题。

差速器允许两个车轮以不同的速度旋转,从而提高车辆的转向稳定性。

主动齿轮通常是连接发动机的输出齿轮,其大小决定了扭矩的输出。

而从动齿轮则通过齿轮啮合方式与主动齿轮连接,从而转动车轮。

通过改变主动齿轮和从动齿轮的齿数比例,汽车可以实现不同的传动比,从而达到不同的车速和动力输出。

传动系统中的齿轮通常采用齿轮啮合原理传递转矩。

齿轮啮合时,齿轮的齿数和模数决定了传递转矩的大小,而齿轮的直径则决定了车速。

通过组合不同齿轮的大小和数量,可以实现多个传动比,以适应不同的驾驶条件和要求。

在汽车行驶过程中,驾驶员可以通过手动变速器或自动变速器来选择合适的挡位,从而调整扭矩输出和车速。

低挡位可以提供更大的扭矩输出,适用于起步和爬坡等工况,而高挡位则可以提供更高的车速和燃油经济性。

总之,汽车传动系统是将发动机的动力传递到车轮并实现车辆驱动的重要装置。

其工作原理主要通过变速器和不同齿轮间的齿轮啮合来改变扭矩输出和车速。

合理的传动系统设计和工作原理可以提高汽车的性能和燃油经济性,提供更好的驾驶体验。

传动系统工作原理

传动系统工作原理

传动系统工作原理传动系统是指将发动机产生的动力传递到车辆的驱动轮上,从而推动车辆行驶的系统。

传动系统的工作原理是通过一系列的机械装置和传动元件,将发动机的动力传递到车轮上,实现车辆的运动。

传动系统通常包括离合器、变速器、传动轴、差速器和驱动轮等部件,下面我们将逐一介绍这些部件的工作原理。

首先是离合器,它位于发动机和变速器之间,主要作用是在换挡时断开发动机与变速器之间的动力传递。

当离合器踏板踩下时,离合器压盘与离合器壳体分离,发动机输出的动力不再传递到变速器,从而实现换挡操作。

接下来是变速器,它的作用是根据车速和行驶条件来改变发动机输出的扭矩和转速,以满足车辆行驶的需要。

变速器内部包含多个齿轮和离合器组件,通过它们的组合和配合,可以实现不同档位的换挡和传动。

然后是传动轴,传动轴是将变速器输出的动力传递到车辆的驱动轮上的装置。

传动轴通常分为前传动轴和后传动轴,通过万向节和传动轴的连接,将动力传递到驱动轮上,推动车辆行驶。

差速器是传动系统中的重要部件,它的作用是平衡车辆驱动轮的转速差异,确保车辆在转弯时能够平稳行驶。

差速器内部包含一组齿轮和差速器壳体,当车辆转弯时,驱动轮的转速会有所不同,差速器通过齿轮的组合和配合来平衡这种差异,使车辆能够顺利转弯。

最后是驱动轮,它是车辆行驶的关键部件,直接受到传动系统传递的动力作用,推动车辆前进。

驱动轮通常采用胎面粗糙的花纹设计,以增加与地面的摩擦力,提高车辆的牵引力和抓地力。

总的来说,传动系统通过离合器、变速器、传动轴、差速器和驱动轮等部件的协同作用,将发动机产生的动力传递到车辆的驱动轮上,实现车辆的运动。

每个部件都发挥着重要的作用,任何一个部件的故障都可能导致传动系统失效,因此对传动系统的定期检查和维护至关重要。

传动系工作原理

传动系工作原理

传动系工作原理
传动系是指由动力装置、离合器、变速器和传动轴等组成的用于传递动力和变速的系统。

它的工作原理可以分为以下几个步骤:
1. 当驾驶员踩下离合器踏板时,离合器分离,动力装置与变速器的输入轴断开连接。

这样可以实现发动机的启停以及换挡时的动力中断。

2. 当离合器释放时,动力装置的动力通过变速器输出轴传递到传动轴上。

传动轴将动力传递给车辆的驱动轮,从而推动车辆前进。

3. 变速器的工作原理是通过不同的齿轮组合来改变输出轴的转速和扭矩。

例如,低速挡齿轮比较大,可以提供更大的扭矩,适用于爬坡和起步;高速挡齿轮比较小,可以提供更高的转速,适用于高速行驶。

通过选择不同的齿轮组合,可以实现不同的车速和扭矩输出。

4. 在传动过程中,还可能存在不同的传动方式,如前驱、后驱和四驱。

前驱车型的传动轴连接在前轮上,后驱车型的传动轴连接在后轮上,四驱车型则通过差速器将动力传递给前后两对轮胎。

总之,传动系通过离合器、变速器和传动轴等组件的协调作用,将动力源的动力传递到车辆的驱动轮上,实现车辆的变速和推
动。

不同的传动方式和变速器设计,可以适应不同驾驶场景和需求,提供更好的动力输出和驾驶性能。

汽车传动系统工作原理

汽车传动系统工作原理

汽车传动系统工作原理现代汽车在行驶时,通过传动系统将发动机的动力传递到车轮上,从而驱动汽车前进。

汽车传动系统是由多个组件和机械装置组成,其工作原理复杂而精密。

本文将详细探讨汽车传动系统的工作原理,以帮助读者对汽车的基本工作原理有更深入的了解。

1. 发动机汽车的传动系统的源头是发动机,它是汽车传动系统的动力来源。

发动机内燃机通过可控爆炸来产生高温高压气体,然后将气体转化为机械能,驱动车辆前进。

常见的发动机类型包括汽油发动机和柴油发动机,它们通过燃烧燃料来产生动力。

2. 离合器离合器是位于发动机和传动装置之间的设备,其主要功能是连接和断开发动机与传动装置之间的动力传递。

当离合器踏板踩下时,离合器离合器盘与传动装置之间的连接会被切断,使发动机可以独立运转;当离合器踏板松开时,离合器盘会与传动装置重新连接,从而使动力传递。

3. 变速器变速器是汽车传动系统中的关键部件,其主要功能是将发动机提供的动力输出转化为合适的扭矩和速度,以适应不同行驶条件和速度要求。

变速器通常有多个挡位,可以手动或自动选择。

当驾驶员选择不同的挡位时,变速器会改变传动比例以调整发动机输出的扭矩和转速。

4. 传动轴传动轴位于车辆底盘上,连接变速器和驱动轴。

它的主要功能是将变速器输出的传动动力传递给驱动轴和车轮,从而推动汽车前进或倒退。

传动轴通常采用纵向或横向布置,具体取决于车辆的驱动方式(前驱、后驱或四驱)。

5. 驱动轴和差速器驱动轴是连接传动轴和车轮的组件,其主要作用是将传动轴传递的动力传递给车轮。

差速器是驱动轴的重要部分,它允许两个驱动轮以不同的速度旋转,以适应转弯时内外侧轮胎的旋转速度差异。

这有助于提高汽车的操控性和稳定性。

6. 轮毂和轮胎轮毂是连接驱动轴与车轮的部件,它通过螺栓固定在驱动轴上。

轮胎是与地面直接接触的部分,它提供了摩擦力以推动汽车行驶。

轮胎的类型和条件对汽车的行驶性能有很大影响,因此在日常使用中需要进行定期检查和维护。

汽车底盘传动系统的工作原理

汽车底盘传动系统的工作原理

汽车底盘传动系统的工作原理汽车底盘传动系统是指将发动机的动力传递到车辆的驱动轮上,以推动车辆行驶的系统。

它是汽车动力系统中至关重要的部分,承担着转速和扭矩传递的任务。

底盘传动系统主要包括离合器、变速器、传动轴和驱动轴等组成部分,下面将详细介绍底盘传动系统的工作原理。

1. 离合器的作用离合器是底盘传动系统的第一个重要组成部分。

当汽车启动时,发动机的动力通过离合器传递到变速器。

离合器的作用是在发动机和变速器之间建立或切断动力传递的连接。

当离合器踏板踩下时,离合器压盘与飞轮分离,使发动机和变速器之间断开连接,发动机的动力不会传递到变速器上。

当离合器踏板松开时,离合器压盘与飞轮接触,发动机的动力就可以传递到变速器上。

2. 变速器的作用变速器是底盘传动系统中的核心部分,它根据不同的行驶条件和需要,调整发动机输出的扭矩和转速,以适应车辆的行驶速度和负载。

常见的变速器有手动变速器和自动变速器两种。

手动变速器通过不同齿轮的组合,实现不同档位的切换,从而改变车辆的速度和转向力。

自动变速器则通过液压系统和电控系统,根据车速和发动机负荷自动调整齿轮的组合,以实现平稳的换挡过程。

3. 传动轴的作用传动轴是将变速器输出的动力传递到驱动轮上的关键部件。

它通常由多个万向节和传动轴管组成,可以通过柔性连接和伸缩功能适应车辆的行驶过程中发生的悬挂运动和车轮转向。

传动轴的长度和转速要根据车辆的设计和使用条件进行合理选择,以保证传动效率和行驶平稳性。

4. 驱动轴的作用驱动轴是底盘传动系统的最后一部分,它将传动轴传递过来的动力转化为驱动力,推动车辆前进。

驱动轴由多个半轴和差速器组成,差速器可以使驱动轮以不同的速度旋转,以适应转弯时内外轮的转速差异。

驱动轴的选择和设计要根据车辆的驱动方式(前驱、后驱或四驱)、车辆的动力输出和悬挂结构等因素进行合理安排。

汽车底盘传动系统通过离合器、变速器、传动轴和驱动轴等组成部分,将发动机的动力传递到驱动轮上,以推动车辆行驶。

汽车动力传动系统的原理解析

汽车动力传动系统的原理解析

汽车动力传动系统的原理解析当我们驾驶汽车在路上飞驰时,很少有人会深入思考是什么让车辆能够平稳地加速、换挡和行驶。

其实,这背后的功臣就是汽车的动力传动系统。

这个复杂而精妙的系统就像是汽车的“肌肉和骨骼”,将发动机产生的动力有效地传递到车轮,从而驱动车辆前进。

汽车动力传动系统主要由离合器、变速器、传动轴、主减速器和差速器等部件组成。

每个部件都有着独特的作用,它们协同工作,确保汽车能够在各种路况下正常行驶。

首先,让我们来了解一下离合器。

离合器位于发动机和变速器之间,它的主要作用是在换挡时切断或连接发动机与变速器之间的动力传递。

当我们踩下离合器踏板时,离合器分离,发动机的动力无法传递到变速器;当松开踏板时,离合器结合,动力得以传输。

这就好比我们在跑步时,需要根据速度和节奏调整步伐,离合器就是那个帮助我们调整“动力步伐”的关键部件。

接下来是变速器。

变速器可以说是动力传动系统中的“多面手”,它通过不同的齿轮组合来改变传动比。

简单来说,就是根据车速和负载的不同,调整发动机输出的转速和扭矩,以达到最佳的动力性能和燃油经济性。

常见的变速器类型有手动变速器和自动变速器。

手动变速器需要驾驶员通过操作换挡杆来选择挡位,而自动变速器则能够根据车辆的行驶状况自动完成换挡操作。

无论是哪种变速器,其目的都是为了让汽车在不同的行驶条件下都能发挥出最佳的性能。

传动轴在动力传动系统中起着连接变速器和后桥的重要作用。

它将变速器输出的动力传递到后桥的主减速器上。

传动轴通常由钢管制成,具有一定的强度和扭转刚度,以承受车辆行驶过程中的各种负载和扭矩。

主减速器则是进一步降低转速、增大扭矩的装置。

它通过一组齿轮将传动轴传来的动力进行减速增扭,然后将动力传递给差速器。

差速器是一个非常巧妙的部件,它能够允许左右车轮以不同的转速旋转。

当汽车在转弯时,内侧车轮的行驶距离较短,转速较慢;外侧车轮的行驶距离较长,转速较快。

差速器能够自动调整左右车轮的转速差,确保车辆平稳转弯,同时避免车轮打滑和磨损。

汽车传动系统的工作原理

汽车传动系统的工作原理

汽车传动系统的工作原理汽车传动系统是驱动汽车前进的关键部件,它将发动机产生的动力转化为车轮的转动力,从而实现汽车的运动。

汽车传动系统的工作原理十分复杂,涉及到各种机械和电子元件的协同作用。

本文将详细介绍汽车传动系统的工作原理,并分点列出其主要组成部分和功能。

一、主要组成部分1. 发动机:传动系统的源动力,通过燃烧混合气体产生动力。

2. 变速器:用于改变发动机转速和车辆行进速度之间的关系,分为手动变速器和自动变速器两种。

3. 离合器:连接发动机和变速器之间的元件,用于断开和连接发动机的动力传递。

4. 传动轴:将变速器输出的动力传输到车轮上,并带动车辆前进。

5. 差速器:在车轮转速不一致时,调节驱动力的分配,使车轮能够平稳转动。

二、工作原理1. 发动机工作原理:发动机通过燃烧混合气体产生爆发力,将活塞推动,进而带动曲轴转动。

曲轴输出的动力通过连杆和活塞转化为线性运动,然后通过曲轴的转动带动传动系统。

2. 变速器工作原理:变速器可以改变发动机转速和车辆行进速度之间的关系。

手动变速器通过改变齿轮之间的组合来实现速度的变化,而自动变速器则通过液压或电子控制系统来自动调整齿轮组合。

变速器的齿轮间传递动力的方式有直接齿轮传动、经济性齿轮传动和行星齿轮传动等。

3. 离合器工作原理:离合器用于连接和断开发动机的动力传递。

当离合器踏板踩下时,离合器压盖向发动机方向移动,使离合器片与发动机之间的摩擦片脱开,发动机动力不再传递到传动轴;当离合器踏板松开时,离合器压盖松开,摩擦片与发动机之间的摩擦片紧密接触,发动机动力得以传递到传动轴。

4. 传动轴工作原理:传动轴将变速器输出的动力传输到车轮上,并带动车辆前进。

传动轴通常由多个关节和轴段组成,能够适应车轮悬挂的运动。

传动轴通过万向节和轴段的协同作用,将动力从变速器传递到驱动轮。

5. 差速器工作原理:差速器在车轮转速不一致时,能够调节驱动力的分配,使车轮能够平稳转动。

差速器通常由主行星齿轮、副行星齿轮和差速锁等组成。

汽车传动系各个部分的工作原理以及作用

汽车传动系各个部分的工作原理以及作用

汽车传动系各个部分的工作原理以及作用【答案解析】汽车发动机与驱动轮之间的动力传递装置称为汽车的传动系。

它应保证汽车具有在各种行驶条件下所必需的牵引力、车速,以及保证牵引力与车速之间协调变化等功能,使汽车具有良好的动力性和燃油经济性;还应保证汽车能倒车,以及左、右驱动轮能适应差速要求,并使动力传递能根据需要而平稳地结合或彻底、迅速地分离。

传动系包括离合器、变速器、传动轴、主减速器、差速器及半轴等部分。

下面分别介绍传动系各个分总成的工作原理以及作用:1、离合器:离合器位于发动机和变速箱之间的飞轮壳内,用螺钉将离合器总成固定在飞轮的后平面上,离合器的输出轴就是变速箱的输入轴。

在汽车行驶过程中,驾驶员可根据需要踩下或松开离合器踏板,使发动机与变速箱暂时分离和逐渐接合,以切断或传递发动机向变速器输入的动力。

2、变速器:变速器是用来改变来自发动机的转速和转矩的机构,它能固定或分档改变输出轴和输入轴传动比,又称变速箱。

通过改变传动比,改变发动机曲轴的转拒,适应在起步、加速、行驶以及克服各种道路阻碍等不同行驶条件下对驱动车轮牵引力及车速不同要求的需要。

一般上讲,汽车变速器为手动变速器(MT),自动变速器(AT),双离合变速器(DCT),无级式变速器(CVT)。

变速器的功能是变速变扭,并且能让车辆实现倒车和怠速停车功能。

变速箱、发动机桥人同称为汽车三大核心部件,由此可见,变速器对于汽车来讲非常重要。

3、传动轴:传动轴总成由外万向节(RF 节)、内万向节(VL 节)和花键轴组成,RF 节和 VL 节均为球笼式等速万向节。

VL 节用螺栓与差速器传动轴凸缘相连接,RF 节通过外星轮端部的花键轴与前轮相连接,左、右前轮分别由 1 根等速万向节传动轴驱动。

4、主减速器:主减速器是汽车传动系中减小转速、增大扭矩的主要部件。

对发动机纵置的汽车来说,主减速器还利用锥齿轮传动以改变动力方向。

主减速器通常装在车桥里,因外观似一鼓包,俗称后桥牙包。

汽车结构原理-传动系-详解

汽车结构原理-传动系-详解

2、膜片弹簧离合器
1)结构
2.2.2膜片弹簧离合器
1、膜片弹簧离合器的构造
主要由离合器盖、分离弹簧(分离杠杆)和离合器压盘组 成。
压紧、分离机构 由膜片弹簧(压紧作用及分离杠杆作用)、枢轴环、压力板、金属
带、收缩弹簧等组成。 膜片弹簧为碟形,其上开有若干个径向开口,形成若干个弹性杠杠。
弹簧中部有钢丝支承圈,用铆钉将其安装在离合器盖上。在离合器盖 未固定到飞轮上时,膜片弹簧处于自由状态,离合器盖与飞轮接合面 间有一距离L。 用螺栓将离合器盖固定到飞轮上时,离合器盖通过后 钢丝支承圈把膜片弹簧中部向前移动了一段距离。由于膜片弹簧外端 位置没有变化,所以膜片弹簧被压缩变形。膜片弹簧外缘通过压盘把 从动盘压靠在飞轮后端面上,这时离合器为接合状态。在分离离合器 时,分离轴承前移,膜片弹簧将以前钢丝支承圈为支点,其外缘向后 移动,在分离钩的作用下,压盘离开从动盘后移,离合器就变为分离 状态了。
3.结合过程 缓慢抬起离合器踏板,传递的转矩逐渐增大,离合器从打滑到部分
打滑到完全结合。
2.2、摩擦离合器
摩擦式离合器的类型
按从动盘的数目不同 单片、双片和多片离合器;
按弹簧的类型和布置形式不同 周向布置多个弹簧离合器、中央弹簧离合器,斜置弹簧离合器
以及膜片弹簧离合器; 按操纵机构的不同
机械式、液压式、气压式和空气助力式。
1.2、传动系的布置形式
传动系的布置形式主要决定于发动机的安装位置及汽车的驱动形式。 汽车的驱动形式用汽车车轮总数×驱动车轮数来表示。驱动形式有 4×2、4×4、6×6、6×2、6×4等,其中4×4、6×6为越野汽车。此外,汽 车的驱动形式也可以用车桥总数×驱动桥数来表示。 布置形式分为: 1、发动机前置、前轮驱动(FF方式) 2、发动机前置、后轮驱动(FR方式) 3、发动机中置、后轮驱动(MR方式) 4、发动机后置、后轮驱动(RR方式) 5、越野汽车传动系布置形式(4WD方式)

汽车动力传动系统基本原理和构成

汽车动力传动系统基本原理和构成

汽车动力传动系统基本原理和构成发动机是动力传动系统的核心部件,它将燃油的能量转化为机械能的动力。

发动机的转动力通过曲轴传递给离合器,离合器作为发动机和变速器之间的连接装置,能够实现发动机与其他传动装置的隔离和连接。

当离合器处于分离状态时,发动机的转动力无法传递给变速器和传动装置,车辆处于空档状态。

而当离合器处于结合状态时,发动机的转动力可以通过离合器传递给变速器。

变速器是动力传动系统中的重要装置,它的主要功能是根据行驶条件和驾驶要求,使发动机的转速和扭矩在较宽的范围内调整,以提供适当的车速和动力输出。

一般来说,汽车常见的变速器有手动变速器和自动变速器两种。

手动变速器需要司机通过操作离合器和换挡杆来实现档位的切换,而自动变速器则能够根据驾驶状态和车速自动调整档位。

变速器还具有适应性,能够在不同的驾驶条件下实现不同档位的自动调节。

传动轴是将变速器的输出轴转动力传递到车轮的组成部分。

传动轴通常由几节连接而成,它们通过万向节和传动罩相互配合,以接受和传递转动力。

传动轴的长度和角度是根据车辆的结构和行驶需求设计的,以保证能够将动力传递给驱动轮。

差速器是动力传动系统中的一个特殊装置,其主要作用是将传动轴的转动力平均分配给驱动轮。

差速器能够通过齿轮和差速齿轮的组合,使驱动轮在行驶过程中能够保持合适的转速差值,以降低车辆的摩擦和损耗,提高车辆的操控性。

驱动轮是汽车动力传动系统中直接与地面接触的车轮。

驱动轮接受传动轴传递的动力,并通过与地面的摩擦力推动车辆前进。

一般来说,前驱车常用前轮作为驱动轮,后驱车常用后轮作为驱动轮,而四驱车则有多个轮胎作为驱动轮。

总之,汽车动力传动系统通过发动机、离合器、变速器、传动轴、差速器和驱动轮等部件的相互配合,将发动机的动力传递给车轮,实现车辆的驱动和行驶。

这些组成部分的设计和优化直接影响着汽车的性能、燃油经济性和操控性,对于汽车的安全性和乘坐舒适性也有着重要的影响。

因此,对于汽车动力传动系统的研究和发展具有重要的意义。

汽车传动系组成及工作原理

汽车传动系组成及工作原理

汽车传动系组成及工作原理1.离合器:离合器位于发动机和变速器之间,用于控制发动机与变速器的连接与分离。

其主要工作原理是利用离合器压盘的压力,将发动机动力传递到变速器。

当踩下离合器踏板时,离合器压盘与飞轮分离,发动机与变速器断开连接,实现换挡或空档;当松开离合器踏板时,离合器压盘与飞轮接合,发动机动力传递到变速器。

2.变速器:变速器用于调整发动机输出动力的转速和扭矩,并将其输出到传动轴上。

一般汽车采用的是手动变速器和自动变速器。

手动变速器的工作原理是通过手动启用离合器来控制齿轮的换挡,使发动机功率合适地传递到动力系统;自动变速器则通过液力传递和电控系统来实现换挡的操作。

3.传动轴:传动轴是连接变速器和驱动轮的部件,用于将变速器输出的动力传递到驱动轮上。

传动轴通常由多个连接在一起的万向节组成,能够在不同角度下传递动力,并能吸收地面不平造成的震动和外部冲击。

4.差速器:差速器位于传动轴的中央,用于使两个驱动轮能够以不同速度旋转,并帮助车辆在转弯时保持稳定性。

差速器的工作原理是通过齿轮组实现驱动轮之间的不同速度分配。

当车辆行驶直线时,差速器内齿轮转动没有滑差;当车辆转弯时,差速器内齿轮就会产生滑差,使得外侧驱动轮转速加快,内侧驱动轮转速减慢,保证了车辆行驶的平稳性。

5.驱动轮:驱动轮是通过差速器传递动力、将汽车推动起来的部件。

一般情况下,汽车只有前轮驱动、后轮驱动或四轮驱动。

不同驱动方式的工作原理略有不同,但基本原理都是通过动力系统使驱动轮转动,从而推动汽车前进。

总之,汽车传动系通过离合器将发动机动力传递给变速器,然后通过传动轴将变速器输出的动力传递到差速器,最终通过驱动轮将动力转化为车辆的运动能力。

每个部分都有着不可或缺的作用,共同协作,实现汽车的正常运行。

电动汽车传动系统的工作原理

电动汽车传动系统的工作原理

电动汽车传动系统的工作原理电动汽车,这个词听起来就像未来科技的代名词,仿佛一打开车门,宇宙飞船就要起飞一样。

不过,今天我们要聊的可不是科幻电影,而是真真切切的电动汽车传动系统。

想象一下,坐在车里,轻轻一踩油门,车子就像吃了兴奋剂一样飞驰而出,没错,这个神奇的过程全靠它的传动系统。

那么,这个传动系统到底是个啥呢?1. 电动汽车传动系统的基本构造电动汽车的传动系统其实没有那么复杂,简单来说,它就是把电能转化为动能的一套设备。

我们先从最基础的开始说起。

电动汽车的心脏,就是它的电动机。

想象一下,这就像是汽车的“马达”,负责驱动汽车前进。

电动机的好处是,响应速度快,转速高,可以随时随地提供动力,不用再像传统汽车那样忍受发动机转速上升的漫长等待。

接下来,我们来聊聊电池。

电池就像是电动汽车的“血液”,没有它,电动机就无法工作。

现在的电池一般都是锂电池,轻巧又能量大,能让你在市区开一天都不成问题。

再加上充电设施逐渐完善,你完全可以不必担心电量告急的窘境。

1.1 电动机的工作原理电动机的工作原理其实挺简单的。

它通过电流产生磁场,然后利用磁场的作用力来驱动转子转动。

你可以想象成一对好朋友,在操场上互相推拉,最终就形成了动力。

电动机的转速与电流的大小直接相关,所以,只要你踩下油门,电流立刻增大,转速自然也跟着上升。

1.2 变速系统的作用不过,电动汽车并不是只有电动机这么简单。

这里还得提到变速系统。

虽然很多电动汽车只用单速变速箱,听起来就像是“懒人”的选择,但这恰恰是电动汽车的聪明之处。

由于电动机的转速范围宽广,所以一个档位就足够应对各种驾驶需求。

不过,如果你想体验一下像赛车一样的速度,变速系统还是能给你带来一些不同的感觉。

2. 驱动方式的多样性说到电动汽车的传动系统,就不能不提到它的驱动方式。

电动汽车的驱动方式一般分为前驱、后驱和四轮驱动。

前驱就是发动机在前面,车轮也在前面,像小猫一样灵活,适合城市驾驶;后驱则是在后面发力,更适合那些喜欢漂移的朋友们;而四轮驱动则是无敌模式,适合越野和复杂路况,像极了在玩游戏时开启了无敌外挂。

电动汽车动力传动系的结构与工作原理

电动汽车动力传动系的结构与工作原理

电动汽车动力传动系的结构与工作原理电动汽车动力传动系统的结构与工作原理一、引言电动汽车作为一种新型的交通工具,其动力传动系统是实现车辆运动的关键组成部分。

本文将详细介绍电动汽车动力传动系统的结构和工作原理。

二、电动汽车动力传动系统的结构电动汽车动力传动系统主要由电机、电控器、电池组、减速器和传动装置组成。

1. 电机电动汽车的动力来源于电机。

电机通常采用交流异步电机或直流永磁电机。

电机的功率大小决定了车辆的加速性能和续航里程。

2. 电控器电控器是控制电机工作的核心部件。

它通过控制电流和电压来实现对电机的启动、加速、减速和停止等功能。

电控器还可以监测电池组的电量,确保电动汽车的安全运行。

3. 电池组电池组是储存电能的装置,为电动汽车提供动力。

电池组通常采用锂离子电池或镍氢电池。

电池组的容量和电压决定了电动汽车的续航里程和输出功率。

4. 减速器减速器的作用是将电机的高速旋转转换为车轮的低速高扭矩旋转。

减速器通常采用齿轮传动或链传动的方式,使得电动汽车能够在低速情况下具备足够的牵引力。

5. 传动装置传动装置将电机输出的转矩和转速传递到车轮上,使车辆能够运动。

传动装置通常采用传统的机械传动方式,如齿轮传动或链传动。

三、电动汽车动力传动系统的工作原理电动汽车动力传动系统的工作原理可以简单概括为电能转化为机械能,再转化为车辆运动。

1. 电能转化为机械能电池组储存的电能通过电控器控制电流和电压,向电机供电。

电机接收到电能后,通过电磁感应原理产生旋转力矩,将电能转化为机械能。

2. 机械能传递到车轮电机输出的旋转力矩经过减速器的减速作用,降低转速并增加扭矩。

然后,传动装置将减速后的力矩传递到车轮上,使车辆能够运动。

3. 车辆运动通过控制电机的电流和电压,可以实现电动汽车的启动、加速、减速和停止等动作。

电动汽车的速度和行驶距离取决于电池组的容量和电机的功率。

四、电动汽车动力传动系统的优势与传统的内燃机动力传动系统相比,电动汽车动力传动系统具有以下优势:1. 零排放电动汽车使用电能作为动力源,不产生尾气排放,对环境污染更少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。






行星齿轮
CA1091
3、贯通式主减速器
前面(或后面)两驱动桥的传动轴是串联的,传动轴从离分动器较近的驱动桥中穿过, 通往另一驱动桥。
主动圆柱齿轮
贯通轴 从动准双曲面齿轮
凸缘盘
从动圆柱齿轮 主动准双曲面齿轮 延安SX2150型汽车贯通式中驱动桥
三、差速器 1、功用:
汽车差速器是一个差速传动机构,用来保证各驱 动轮在各种运动条件下的动力传递,避免 轮胎与地面间打滑。
大传动比的中、重型车采用双级主减速器外,一般微、轻、中型车基本采用单级主减速器。
1、单级主减速器
(1)结构:只有一对锥齿轮; (2)优点:结构简单、体积小,重量轻和传动效率高等优点。
(3)组成
主动锥齿轮
圆锥滚子轴承 凸缘
差速器右半壳
调整螺母 圆锥滚子轴承
半轴齿轮
调整垫片 隔套 轴承座
调整垫片 壳
从动锥齿轮
差速原理影片介绍
⑶转矩特性 这种差速器在传力过程中行星齿轮相当
十字轴
东风EQ1141G型汽车主减速器及差速器
行星齿轮 差速器左半壳
2、双级主减速器
(1)结构:
一对 螺旋锥齿轮,一对圆柱 斜齿轮。
一级主动齿轮
(2)优点: 可以得到较大的传动比。
(3)组成: (见右图)
二级主动齿轮 中间轴
二级从动齿轮
差速器壳
半轴齿轮
主动轴


一级从 车
动齿轮




十字轴 及

前驱动桥
越野车的传动系 离合器
分动器
发动机
变速器
桑塔纳轿车传动系
液力变矩器 不但可以传递转矩,还可以改变转矩的大小,实现无级变速,应用更为广泛。
液力机械式传动 液力变矩器的输出转矩和输入转矩比值的变化范围不能满足汽车各种行驶工况要求,一般在
后面串联一个有级式机械变速器。
液力变矩器
发动机
行星齿轮变速系统
汽车传动系原理
第十二章 汽车传动系
概述 离合器 机械变速器 自动变速器 万向传动装置 驱动桥
§12.1
概述
一、功用
将发动机发出的动力传递给驱动车轮使车在各种不同的工况下均能正常行驶,并具有良好 的经济性和动力性。
具体地分为以下几点:
1、减速
通过传动系的作用,使驱动轮的转速降低为发动机转速的若干分之一,相应驱动轮所 得到的转矩增大到发动机转矩的若干倍。
2、变速 保持发动机在有利的转速范围内工作,汽车牵引力又在足够大的范围内变化。
3、倒车 在传动系的变速器中加设倒档,使汽车能在某些情况下倒车。
4、中断传动 发动机只能在无负荷情况下起动,而且起动后转速必须保持在最低稳定转速以上,所以在汽 车起步以前,必须将发动机与驱动轮之间的传动路线切断,即传动系的中断传动作用。
差速器壳
十字轴
螺栓 半轴齿轮垫片 行星齿轮
行星齿轮垫片
⑵差速器的工作原理
1、2-半轴齿轮 3-差速器壳 4-行星齿轮 5-十字轴 6-从动锥齿轮 锥齿轮差速器的运动特性方程式:n1+n2=2n0 结论: (1)当差速器壳转速为零时,若一侧半轴齿轮受其它外来力矩而转动,则另一侧半轴齿轮即以相 同转速反向转动。 (2)当任何一侧半轴齿轮的转速为零时,另一侧半轴齿轮的转速为差速器壳转速的两倍。
5、差速作用 汽车转弯时,左右车轮滚过的距离不同,传动系的差速作用可以使左右两驱动轮以不同的
角速度旋转。
二、传动系的分类
1、机械传动系
组成:离合器、变速器、万向传动装置、主减速器、差速 器和半轴
变速器
传动轴
驱动桥
半轴
发动机
离合器
万向节
主减速器
差速器
2、液力机械式传动系 液力机械传动系是将液力传动与机械传动有机地组合起来。以液体为传动介质,利用其在主动 元件和从动元件之间循环流动过程中动能的变化来传递动力。
1-轴承;2-左外壳;3-垫片;4-半轴齿轮;5-垫圈;6-行星齿轮; 7-从动齿轮;8-右外壳; 9-十字轴;10-螺栓
2、差速器分类
(1)按用途分:轮间差速器和轴间差速器。 (2)按工作特性分:普通锥齿轮差速器和防滑差速器。
3、普通锥齿轮差速器 ⑴组成
行星齿轮
半轴齿轮
差速器壳
半轴齿轮垫片 半轴齿轮
1、膜片式离合器工作原理 飞轮
离合器盖离合器踏板从Fra bibliotek盘膜片弹簧
压盘
2、摩擦式离合器工作原理
由主动部分、从动部分、压紧机构和操纵机构四部分组成。 压盘
飞轮
离合器盖
从动盘毂
摩擦片
从动盘本体
摩擦片
减振器盘
从动盘的总体结构
⑵、扭转减振器
1.动力传递 摩擦片-从动钢片-减振盘-减振弹簧-从动 盘毂。
压盘
从动盘
压紧弹簧
离合器盖
用弹簧钢板制成的带有锥度的膜片弹簧作为压紧弹簧。 膜片弹簧
外端圆孔,可防止应力 集中。
⑷、膜片弹簧离合器工作原理 盖
后钢丝 支承圈
前钢丝 支承圈
飞轮
压盘 膜片弹簧
膜片弹簧处于自由状态,离 合器盖与飞轮接合面有一距离 。
接合状态,膜片弹簧锥 度变小。
分离状态,膜 片弹簧呈反形。
非断开式驱动桥
主减速器 驱动桥壳
差速器
轮毂
半轴
断开式驱动桥 减振器
弹性元件
半轴
主减速器
车轮
摆臂
摆臂轴
后轮驱动驱动桥的主要部件
1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴; 6-主减速 器从动齿轮齿圈;7-主减速器主动小齿轮
二、主减速器 按参加减速传动的齿轮副数目分,可分为单级式主减速器和双级式主减速器。除了一些要求
2.减振弹簧和阻尼片衰减振动。
摩擦片转动,从动盘毂没有转 动时,弹簧被压缩
不工作时
工作时
飞轮
压盘
膜片弹簧 分离轴承
作用: 驾驶员借以使离合器分离,而后又使之柔和结合的一套机构。
组成: 包括离合器踏板到离合器壳内的分离轴承及中间的传动部件。
推杆 踏板
储液室
分离杠杆
主缸
分离轴承 推杆
工作缸
分离叉
EQ1090E型汽车传动轴中间支承 轴承
轴承座
油封 U型支架
注油嘴 蜂窝形橡胶垫
12.6 驱动桥
一、概述 1、组成与功用
(1)组成:主减速器、差速器、半轴和驱动桥壳等 组成。
(2)功用:将万向传动装置传来的发动机动力经过 降速,将增大的转矩分配到驱动车轮。
(3)分类:断开式驱动桥、非开式驱动桥。
3、静液式传动系 原理:通过液体介质的静压力能的变化来传动的。 组成:由发动机驱动的油泵、液压马达和控制
装置。
变速操纵杆
静液式传动系示意图
液压自动控制装 置
液压马达 驱动桥
发动机 油泵
4、电力式传动系 电动机控制器
发动机
电动机
电池
发电机
三、
传动系的布置型式
传动系的布置方式
发动机前置后轮驱动
发动机前置前轮驱动 四轮驱动
相关文档
最新文档