第二十一章一元二次方程学情与教材分析
初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案
一元二次方程一、教学目标:知识技能:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3..理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.二、教学重难点:通过类比一元一次方程,了解一元二次方程的概念、一般形式ax2+bx+c=0(a≠0)及一元二次方程的根等概念,并能用这些概念解决简单问题.把实际问题转化为一元二次方程模型.教学时间:两课时三、教学过程:第一课时洋葱小视频分享一、有关解方程的科学家的故事,激发学生学习方程的兴趣。
洋葱小视频分享二、一元二次方程的定义讲解,激发学生利用手中的工具提前预习,轻松学习知识。
(一)、知识回顾、教师引导学生完成下列题目,复习一元一次方程的相关知识:一元一次方程的知识:1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.若关于x的方程(m+1)x|m|+1=0是一元一次方程,则m=____1____.3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=__-3__.(二)、【课堂引入】问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?学生先自主探究、分析,再在小组内合作讨论,设出合适的未知数,根据等量关系列出方程.1.探究交流观察[课堂引入]中所列的方程,分析以上两个方程是不是一元二次方程,它们与一元一次方程有什么区别与联系.学生观察、思考、讨论、交流、汇报.教师重点引导学生观察得到所列方程的特点:①整式;②一元;③二次.引入课题(板书):一元二次方程.2.归纳定义问题:根据找出的一元二次方程的特征,你能给一元二次方程下个定义吗?教师引导学生结合所列方程的三个特征及一元二次方程的名称,类比一元一次方程的定义,得出一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.教师板书:整式;一元;二次.(三)、新知探究运用1、(试一试)抢答:下列各方程是不是一元二次方程:①3x+2=5x-2;②2x2-2x=0;③x2=0;④-=0;⑤3y2=(3y+1)(y-2);⑥ax2+bx+c=0;⑦3x2=5x-1;⑧(x+3)(2x-4)=0.第二课时教学过程:一、简单回顾一元二次方程的定义及判断二、新知探究:(一)、一元二次方程的一般形式:问题1:类比一元一次方程的一般形式,你能写出一元二次方程的一般形式,并说出各项的名称吗?师生共同小结(板书):一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(试一试)抢答:指出下列各方程的二次项、一次项和常数项.①3x2+2x-1=0;②2x2=3;③=0.(二)、问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?师生共同小结(板书):概念:一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. (试一试)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3,4.(三)、【应用举例】例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.例2已知关于x的方程x2-2x+k2=0的一个根是1,那么k的值是________.变式练习:已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________.(四)、【拓展提升】例3已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程?例4已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.例5求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用.三、【达标测评】1.若方程mx2-2x+m=0是关于x的一元二次方程,则( C )A.m为任意实数B.m=0C.m≠0 D.m=0或m=12.下列方程中,不含一次项的是(D)A.3x2-5=2x B.16x=x2C.x(x-7)=0 D.(x+5)(x-5)=03.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__.4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__.5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.四、课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!五、【教学反思】①[授课流程反思]在问题导入环节中,出示的问题有难度,需要教师进一步讲解;在新知探究环节中,学生充分发挥主动性,总结新知能力较强;在能力训练环节中,学生完成较好,值得鼓励与表扬.②[讲授效果反思]对于一元二次方程的定义,教师必须强调:(1)把握一般形式;(2)二次项系数不为0;(3)分清各项系数.③[师生互动反思]从课堂过程和效果分析,学生能够充分交流、合作,对于问题思考和解答都有独立性,效果较好.。
“研课标,说教材”活动-------九年级第二十一章一元二次方程
填空题
4分
方程
14、填空题
23、解答题
(第二问)
解答题
填空题
2022年
解答题
(第一问)
14、4分
2018年
23、8分
8分
实际问题
16
教学建议
读中学:探索发现
问中学:思考质疑
动中学:锻炼能力
练中学:巩固提高
17
三
个案分析
21.1一元二次方程
一
元
二
次
方
程
定义课
21.2 解一元二次方程
方法课
标
数学
思考
情感
态度
核心素养
会用数学的眼光观察现实世界
会用数学的思维思考现实世界
会用数学的语言表达现实世界
二
单元分析
1.单元总览
8
2.地位和作用
9
一元二次
方程
二次
函数
一元一次方程七上
消元
整式七上
整式方程
式
式
二元一次方程(组)七下
一元二次方程
分式八下
无理方程
降
次
分式方程
一元二次不等式
高次方程
10
§21.2 解一元二次方程
21.2.2---------因式分解法
复习导入
1.解一元二次方程的方法有哪些?
2=a (a≥0)
x
直接开平方法:
配方法: (x+m)2=n (n≥0)
b b 4ac
(b2-4ac≥0)
公式法: x=
2a
2
2.
什么叫因式分解?
把一个多项式分解成几个整式乘积的形式叫做因
一元二次方程的根与系数的关系 优秀教学设计(教案)
21.2 .4一元二次方程的根与系数的关系一、教材分析:《一元二次方程根与系数的关系》是人教版初中数学九年级上册第二十一章21.2节的内容,该内容是在在学生学习了一元二次方程的解法和根的判别式之后引入的。
它深化了两根与系数之间的关系,是今后继续研究一元二次方程根的情况的主要工具,是方程理论的重要组成部分。
利用这一关系可以解决许多问题,同时在高中数学的学习中有着更加广泛的应用。
因此本节课起着承上启下的作用。
二、学情分析:九年级阶段的学生,随着年龄的增长以及实验几何向论证几何的逐步推进,学生们的逻辑推理能力已有了较大提高。
因此在前面学习了一元二次方程的解法后,对根与系数的关系进行探究就比较容易。
三、教学目标:(一)知识与技能了解一元二次方程根与系数的关系,并利用根与系数关系求出两根之和、两根之积。
(二)过程与方法通过问题的引导,发现、证明并归纳一元二次方程根与系数的关系,在探究过程中,感受由特殊到一般地认识事物的规律。
(三)情感态度价值观在经历探索一元二次方程根与系数的关系的过程中,培养观察分析和综合判断的能力,激发学生发现规律的积极性,鼓励他们培养勇于探索的精神。
四、教学策略教学方法:讲授法、练习法、课堂合作探究法。
教学工具:ppt课件、白板笔。
五、重点难点:重点:一元二次方程根与系数关系的探索及简单应用难点:探索发现一元二次方程根与系数关系六、教学过程:教学环节教师活动学生活动设计意图(一)创设情境(3分钟)1、问:操场的长和宽满足一元二次方程2x2-400x +15000= 0的两个根,如果方程的两个根为x1、x2,你能用x1、x2表示操场的周长和面积并求出来么?2、用以前的方法解这个方程求出两个根很麻烦,是否还有别的方法---不解方程也能迅速求出操场的周长和面积?----要解决这学生能表示矩形周长=(x1+x2)×2,面积=x1x2,,并用以前的方法解方程,从而得出操场的周长和面积。
安吉县实验中学九年级数学上册第二十一章一元二次方程21.1一元二次方程教案1新版新人教版
21.1 一元二次方程教学目标1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式。
2.会应用一元二次方程的解的定义解决有关问题。
3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次的感性认识。
重难点关键1.•重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?108设梯子底端距墙为xm,那么,根据题意,可得方程为___________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动1:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)•都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.学生活动2 提问:(1)问题1中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解.(3)如果抛开实际问题,问题(1)中还有x=-6的解为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)•(•5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1 B.―1C.0 D.无法确定分析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到时一元二次方程,所以还要其二次项系数要不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目的时候,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题。
初中数学九年级上册第二十一章 一元二次方程实际问题与一元二次方程-面积问题的教学设计说明
实际问题与一元二次方程-面积问题的教学设计说明一、教材分析:生活中不少实际问题的解决都要用到方程的知识,在学习本节课之前,学生已经学会了用一元一次方程、二元一次方程(组)解决实际问题,所以本节课对学生来说并不陌生。
本节内容是运用一元二次方程分析解决生活中的两类实际问题:面积问题。
通过本节课的学习,可以对一元二次方程的解法加以巩固,同时本节课的学习又是后面继续学习列方程解决实际问题、用二次函数解决实际问题的基础。
因此,它具有承上启下的作用。
二、学情分析:我校是一所农村镇级中学,学生大多是出生在农村,长在农村。
所以他们对数学与现实生活的联系知之甚少。
更不要说理论联系实际。
但是就这个年龄段的小孩都有一颗好奇的心理。
我们可以充分利用这一契机。
为了能够提高学生学习数学的能力,也为同学们对知识的学以致用思想打下基础。
知识掌握方面:学生对列方程解应用题的一般步骤已经熟悉,适合由特殊到一般的探究方式。
学生年龄特点:九年级学生具有丰富的想象力、好奇心和好胜心理。
容易开发他们的主观能动性,适合自主探究、合作交流的数学学习方式。
三、本课例需要解决的几个问题:1.如何审题,以及从繁琐的题目文字当中提炼出有用的信息。
2.如何把实际生活问题转化为数学问题,用数学思想去解决实际问题。
3.如何发挥学生自学、合作、探究三大学习方式。
4.如何渗透信息技术与学科深度融合。
四、教学过程:1.教学设计的指导思想及依据教学设计的指导思想及依据课程标准和新课程的理念,关注了学生的学习过程,创设了一个有利于学生自主探究、合作交流的课堂氛围。
教师真正成为教学的组织者、引导者和合作者。
本课的教学力求遵循知识的发展规律和学生的认知规律,充分调动学生学习的主动性。
教学中重视“学生的亲身感受”。
2.教学目标:知识和技能目标:能根据具体问题中的数量关系,列出一元二次方程,并求解检验。
过程和方法目标:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对其进行描述。
2024年人教版九年级上册教学第二十一章 一元二次方程第二十一章 一元二次方程
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元二次方程”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出“方程与方程组”要求能根据现实情境理解方程的意义,能针对具体问题列出方程,解决实际问题.在教学中,应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程.用数学眼光发现问题并提出数学问题,用数学的思维探索、分析和解决具体情境中的现实生活问题,给出数学描述和解释,运用数学的语言与思想方法,综合运用多个领域的知识,提出设计思路,制定解决方案.结合实际问题建立方程模型,进而分析和解决问题,是学习方程的核心.2.本单元教学内容分析人教版教材九年级上册第二十一章“一元二次方程”,本章包括三个小节:21.1一元二次方程;21.2解一元二次方程;21.3实际问题与一元二次方程.本章系统的学习了一元二次方程及其根的概念、解方程的方法与步骤,以及应用方程的思想和方法来解决实际问题等.正确理解方程根的意义,并学会解方程的方法,是基本运算技能的重要组成部分.依据等式的基本性质,采用“降次”的方法来解方程,充分体现了转化与化归的数学思想.方程是刻画现实情景中数量关系的一个非常重要的数学模型,方程的学习应注意对实际应用问题的探索、研究和讨论.构建方程最重要的环节就是分析具体情境中的数量关系,找出两件等价的事情后,建立数量间的相等关系,即等量关系.方程的学习使学生从原有的算术思维向代数思维转变,是学生代数思维发展的开始.在教学中引导学生积极主动地收集现实的、有意义的数学问题作为学习和研究的素材,依据问题的相关信息,将问题数学化,进而对其中的数量关系进行梳理,设定未知数,并列出相应的方程.帮助学生积累相关数学活动经验,提升分析问题和解决问题的能力.三、单元学情分析本单元内容是人教版教材数学九年级上册第二十一章一元二次方程,学生在前面已经学习了数与式的运算、一元一次方程和二元一次方程组,其内容都是学习一元二次方程的基础.一元二次方程是中学教学的主要内容,在初中“数与代数”中占有重要的地位.在现实生活中,许多问题中的数量关系可以抽象为一元二次方程.因此,从深化数学模型思想、加强应用意识的角度看,从实际问题中抽象出数量关系,列出一元二次方程,求出它的根进而解决实际问题,是本章学习的一条主线.通过对一元二次方程的学习,可以为以后的学习作铺垫,此外,学习一元二次方程对其他学科也有重要的意义.四、单元学习目标1.了解一元二次方程的概念,会把任意的一元二次方程化为一般形式:ax2+bx+c=0(a≠0),并能熟练的确定一元二次方程的二次项系数、一次项系数和常数项.2.掌握一元二次方程的解法,并能根据方程的特点选择合适的方法来解方程,培养学生的数学运算和推理能力.3.理解一元二次方程根的判别式,会用根的判别式判断一元二次方程的根的情况.4.掌握一元二次方程的根与系数的关系,学会应用它来求一元二次方程的各项系数.5.通过分析问题,建立方程来解决生活中的实际问题,体现数学的实用价值,培养学生的数学抽象、数学建模、数学运算的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的作业,及时反馈学生的学业质量情况.自主性原则:学生可以根据自己的学习能力自主选择,每课时留下拓展性练习或自主编写自己的易错题类型.生活性原则:本单元的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
【初中数学九年级上册人教版 第21章 一元二次方程说课稿】 直接开平方法解一元二次方程说课稿
《直接开平方法解一元二次方程》说课稿今天我说课的课题是《直接开平方法方法解一元二次方程》。
内容选自人教版教科书,数学九年级上册第22章一元一次方程第2节。
下面我从教材分析、教学目标的确定,教学重、难点的分析,教法、学法,教学过程几个方面对本节课的教学进行一个说明。
一、教材分析:一元二次方程的解法是本章的重点内容,直接开平方法一元二次方程解法的起始课,直接接开平方法是解一元二次方程的基础方法。
它的推导建立在平方根意义和开方运算的基础上,首先它配方法的基础,其次再求二次函数与X轴交点等问题中都必须用一元二次方程的解法。
同时,这一届教材的编写中突出体现了化归、类比等重要的数学思想方法。
因此这一届不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
为此,根据课标要求和学生实际情况,制定了如下的教学目标:二、教学目标:1.知识与技能(1)会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程.(2)能根据具体问题的实际意义检验结果是否合理,并对其进行取舍.2.过程与方法通过实例,使学生体会一元二次方程应用价值并意识到解一元二次方程的重要性,理解直接开平方法的数学依据,并能应用直接开平方法.让学生经历由简到繁过程,体验类比、化归、降次的数学思想方法,培养学生观察、分析、计算等思维能力及应用意识.3.情感态度与价值观通过学生对具体问题的思考、讨论、交流,最终得出结论的过程,培养学生的进取精神,让学生养成科学严谨的治学态度和应用所学知识解决问题的习惯.三、教学重点与教学难点的分析本节课是一元二次方程解法的起始课,教学重点是用直接开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程。
难点是不可直接降次解方程化为可直接降次解方程的“化归”的转化方法与技巧.四、教法学法分析:1、教法:本节课采用启发式和自主探究式与交流讨论相结合的教学方式。
在教学中以启发学生进行探究的形式展开,利用已有的知识,利用学生已有的知识,让学生多交流,主动参与到教学活动中来,让学生处于主导地位。
初中数学_21.1一元二次方程教学设计学情分析教材分析课后反思
课题:21.1一元二次方程【教学目标】【知识与技能】1.理解一元二次方程的概念;2.了解一元二次方程的一般形式,正确认识二次项系数、一次项系数及常数项;3.了解一元二次方程的解(根);【过程与方法】通过类比与观察,归纳一元二次方程的概念及一般形式;【情感态度与价值观】1. 从实际问题中抽象出一元二次方程,向学生渗透转化思想,在经历数学建模过程中,培养学生解决问题的能力;2. 激发学生兴趣,培养学生自主学习和合作交流的意识。
【教学重点、难点】重点:一元二次方程的概念、一般形式及其有关概念难点:从实际问题中抽象出一元二次方程,向学生渗透转化思想,在经历数学建模过程中,培养学生解决问题的能力。
教学过程:【温故知新】分别指出下面的方程叫做什么方程?(l)3x+4=l ;(2)6x-5y=7;(3)一元一次方程的一般形式是:ax+b=0(a,b 为常数,且a ≠0)设计目的:为下面学习一元二次方程的定义与一般形式做准备,也从而引出本节课。
【走进生活】问题情境:(1) 设计师在设计人体雕像时,一般都考虑到美学角度。
比如下面我们看到的雷锋纪念馆前的雷锋雕像,就符合黄金分割比例:腰部以上AC 与腰部以下BC 的高度比等于腰部以下BC 与全身高度AB 的比.(AC :BC= BC :2 )即:BC 2=2AC根据题意列方程: 整理得: ①师先降低难度,给出明确的等量关系再让学生列出方程,可调动学生的兴趣,师生一起整理,规范步骤,也为下面化成一般形式做铺垫(2) 有一个面积为54 m 2的长方形,将它的一边剪去5 m ,另一边剪去2 m ,恰好变成一个正方形,设剪切后的正方形边长为x ,那么原来长方形长是m ,宽是 3435=-xx42=x 2112xx x =-+-22)2(4+=-x x m ,得方程,整理得 ②. 学生独立思考,指一名学生回答,并板书【观察思考】 (1)方程①②中两边是整式还是分式?(2)方程①②中各有几个未知数?(3)方程①②中未知数的最高次数各是多少?(类比一元一次方程的定义归纳)一元二次方程的定义:注意三方面:【跟踪训练】判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) (3)(4) 老师抽号接龙检查设计意图:巩固定义,并为遇到类似(4)方程需整理再判断做要求【再探新知】观察:两个一元二次方程等号左边是一个什么整式,右边?x 2+2x-4=0 x 2+7x -44 =0学生举例:老师也举一个,并让学生整理(目的引导学生明白所有的一元二次方程都可转化为一种形式,为下面归纳一般式做准备)请类比一元一次方程一般形式ax+b=0(a,b 为常数,且a ≠0给上面的方程规定一个一般形式:引出:一元二次方程的一般形式: (a,b,c 为常数,a ≠0) 为什么要限制a ≠0,b,c 可以为零吗?若a=0,则方程变成:若a ≠0时,b=0则方程变为:若a ≠0时,c=0则方程变为:若a ≠0时,b=c=0则方程变为:总结一元二次方程三种特殊形式:介绍一元二次方程一般式中的各部分:二次项及系数: 一次项及系数: 常数项:【赛前热身】在组内互相说一说以上两个一元二次方程 ①②的二次项系数、一次项系数和常数项为后面的抢答比赛做准备,也是对一般形式掌握情况的检测老师采取顺时针检查的形式【学以致用】抢答:指出下列一元二次方程的二次项系数、一次项系数和常数项2x 2+x +4=0 -4y 2+2y=0 3x 2-x -1=0 4x 2-5=0 关于x 的方程(m-3)x 2-(m-1)x-m=0(m ≠3) 3x(x-1)=5(x+2)说明:要找到一元二次方程的各项系数和常数项,必须先将方程化为一般形式。
第21章 一元二次方程——一元二次方程的解法(复习课) 2022—2023学年人教版数学九年级上册
课题:《一元二次方程的解法》复习教案一、教材分析:解一元二次方程是人教版九年级上册第21章第二节的内容,本节的主要内容是一元二次方程的解法(直接开方法、因式分解法、配方法、公式法)。
解一元二次方程在课标中的要求是:理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。
一元二次方程的解法是中学方程教学的重要环节,又是后续内容学习解决实际问题的基础和工具。
一元二次方程是对一元一次方程知识的延续和深化,同时为二次函数的学习作好准备。
学好这部分内容,对增强学生学习代数的信心具有十分重要的意义。
二、学情分析:学生已经学习了一元二次方程的解法:直接开方法、配方法、公式法、因式分解法后的一节复习课,已经掌握了学生的薄弱点:1.易错点:直接开平方法中,学生容易只取正的这一个根;2.配方法中,学生容易把一次项系数不除以2直接平方,个别学生会忘记平方,方程左边加了常数项,右边忘记加;公式法中,学生容易把公式中的-b记错成b,个别学生再代入系数的时候会忘记前面的负号;等等。
2.不能灵活选择解法,由于不会根据方程系数的特征找到最优解法,造成错误率提高,用时过长的弊端,从而影响到了少数学生对数学的自信心。
三、教学目标:(一)知识与技能:1.掌握一元二次方程的四种解法,会根据方程的不同特点,灵活选用适当的方法解方程。
2.避免易错点,提高解方程的正确率。
(二)过程与方法通过观察方程的特征选择不同解法,培养学生的观察猜想、归纳总结、分析问题、解决问题等能力,同时还培养学生化归的思想。
(三)情感态度价值观通过对一元二次方程解法的复习,使学生进一步理解“降次”的数学方法,进一步获得对事物可以转化的认识。
通过小组合作的形式,培养合作的习惯,提高分析的能力。
四、教学重点:掌握解一元二次方程的四种方法。
五、教学难点:会根据方程的特征灵活选用适当的方法解方程。
六、教学过程:(一)全班纠错,激发热情:教材P17习题21.2 6(3)3(1)2(1)x x x -=-作业完成中的不同解法展示:A :解:32x =∴ 23x = ∴原方程的解是:23x = B :解:23322x x x -=- C :解: 23322x x x -=-235+2=0x x - 235+2=0x x -252=33x x -- 252=33x x -- 22552+()=363x x -- 2225525+()=+()3636x x -- 252()=63x -- 251()=636x - ∴原方程无解 51=66x -∴=1x∴原方程的解为:=1xD :解:23322x x x -=-235+2=0x x -3,5,2a b c ==-=224(5)4321b ac ∆=-=--⨯⨯=21,2451223b b ac x a ±--±==⨯ ∴12213x x =-=-, ∴原方程的解是:12213x x =-=-,E :解:3(1)2(1)0x x x ---= (1)(32)0x x --=12213x x ==, ∴原方程的解是:12213x x ==, 提出问题,小组讨论:1.以上几位同学的解法是否正确,如果不正确请指出并改正,并小组内总结出哪些地方是易错点。
二次函数与一元二次方程教学设计学情分析教材分析
二次函数与一元二次方程教学设计学情分析在设计二次函数与一元二次方程的教学设计之前,我们需要进行学情分析,以便更好地了解学生的现状和需求。
根据学情分析,我们可以得出以下结论:1.学生对二次函数和一元二次方程的概念理解较为薄弱;2.学生对于解一元二次方程的方法掌握不扎实;3.学生在应用二次函数和一元二次方程解决实际问题方面存在困难;4.学生对于图像与函数关系的理解有待提高。
基于以上学情分析,我们需要设计一套教学方案,帮助学生提高对二次函数和一元二次方程的理解和应用能力。
教材分析在进行教学设计之前,我们需要对教材进行分析,以确保教学设计符合教材的要求。
教材:《高中数学课程标准实验教科书》根据教材分析,我们可以得出以下结论:1.二次函数和一元二次方程的概念和性质在教材中有详细的介绍和解释;2.教材中给出了解一元二次方程的多种方法;3.教材中包含了一些实际问题的应用;4.教材中有关函数图像的内容较为简单。
基于以上教材分析,我们可以结合学情分析,制定出适合学生学习的教学设计方案。
教学目标1.理解二次函数和一元二次方程的概念和性质;2.掌握解一元二次方程的方法;3.能够应用二次函数和一元二次方程解决实际问题;4.加深对函数图像的理解。
教学内容本次教学将围绕以下内容展开:1.二次函数的定义和性质;2.一元二次方程的定义和性质;3.解一元二次方程的方法;4.应用二次函数和一元二次方程解决实际问题;5.函数图像与二次函数的关系。
步骤一:引入二次函数和一元二次方程在引入二次函数和一元二次方程之前,可以通过一些有趣的例子或问题来激发学生的兴趣和好奇心。
例如,通过图像展示二次函数的变化趋势,或者通过实际问题引出一元二次方程。
步骤二:讲解二次函数和一元二次方程的概念和性质在讲解二次函数和一元二次方程的概念和性质时,可以给出定义,并通过示例来说明。
重点讲解二次函数图像的特点,一元二次方程的一般形式和解方程的方法。
步骤三:练习解一元二次方程的方法在练习解一元二次方程的方法时,可以设计一些简单的方程,并指导学生正确的解题步骤。
第二十一章一元二次方程学情与教材分析
第二十一章一元二次方程学情与教材分析第21章一元二次方程本章学情分析与教材分析(一)学情分析:本章内容面对的学生是初三年级十三四岁左右,他们思维活跃,模仿性强,已经开始占主导地位的抽象逻辑思维,逐步由经验型向理论型转化。
观察、记忆、想象诸能力迅速发展,能超出直接感知的事物提出假设和进行推理、论证,很大程度上还需要感性经验的支撑。
一元二次方程是刻画数量关系的重要数学模型,一元二次方程的解法和实际应用是初中阶段的核心内容。
前面已经研究了一元一次方程、二元一次方程组以及分式方程、平方根、因式分解等知识,对于解方程的基本思路(使方程逐步化为x=a 的形式)已经比较熟悉,按照这种思路继续研究一元二次方程的解法.本章还要讨论与方程的根有关的几个基本问题(判别式与方程的根、根与系数的关系等),在此基础上研究利用一元二次方程模型解决简单的实际问题。
本章的研究将为后续的二次函数等打下研究基础。
(二)教材分析:1.核心素养本章所触及的数学思想方法主要有:解方程过程中的转化、化归思想,配方法以及分类讨论思想,由实际问题抽象为方程模子的建模思想。
2.本章研究目标(1)联系一元一次方程、方程组和函数的根本知识,连续探究实际问题中的数量关系及其变革规律,履历由详细问题抽象出一元二次方程的过程,进一步体味方程是描画现实世界中数量关系的一个有效的数学模子。
(2)了解一元二次方程及其相关概念,理解一元二次方程解法的基本思想及其与一元一次方程的联系,体会两者之间相互比较和转化的思想方法。
(3)理解配方法的意义,会用直接开平方法、配方法、公式法、分解因式法解简单的一元二次方程(数字系数),并在解一元二次方程的过程中体味转化等数学思想。
(4)把握根的判别式的有关应用,理解一元二次方程两根与系数的关系。
(5)能够利用一元二次方程解决有关实际问题,能根据详细问题的实际意义检验结果的合理性,进一步造就学生分析问题,解决问题的意识和能力。
1(6)经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力。
一元二次方程根与系数的关系教学设计
《一元二次方程根与系数的关系》教学设计一、教材分析“一元二次方程根与系数的关系”是人教版数学九年级上册第二十一章2.4节的内容。
本节内容为选学内容。
一元二次方程根与系数的关系(也称韦达定理)是在学习了一元二次方程的解法及根的判别式之后来进一步揭示根与系数的关系,是对前面知识的巩固与深化,又为今后继续研究一元二次方程根的情况作下一个铺垫,因此虽为选学内容,但却起着承上启下的重要作用。
同时,在教学内容中体现的数学方法和数学思想对学生数学能力的培养起到非常重要的作用。
二、学情分析本节课的教学对象是九年级学生,在此之前,他们已经学习了一元二次方程的解法及根的判别式,虽然学生的学习能力有差异,但大部分学生已经会解一元二次方程。
同时,这一年龄阶段学生的思维正从形象思维向抽象思维过渡,已经具备一定的归纳推理能力和团结协作意识,相信在教师的引导下应该能很好地完成本节教学内容。
三、教学目标1.知识与能力(1)掌握一元二次方程根与系数的关系;(2)会利用定理求解已知一元二次方程的两根之和及两根之积;2.过程与方法(1)经历一元二次方程根与系数关系的探究过程,培养学生的观察、猜想、证明、归纳概括能力;(2)在运用一元二次方程根与系数关系解决数学问题的过程中,培养学生解决问题的能力,渗透特殊到一般的数学思想。
3.情感态度与价值观(1)通过学生自己探究,发现根与系数的关系,增强学习的自信心;(2)让学生感受到数学有很多有价值的规律等待我们去探索,激发学生的学习兴趣和探究欲望。
4.问题解决从探究具体实例入手,由学生观察、动手操作并发现一元二次方程根与系数的关系,让学生主动探索和讨论交流,对定理再严格加以证明,从而达到解决数学问题的目的。
教学重点:一元二次方程根与系数的关系及运用。
教学难点:一元二次方程根与系数的关系的推导及运用。
四、教法与学法教法:引导启发式,合作探究式.学法:学生在教师引导下分小组探究,合作交流.五、教具准备本节内容的多媒体课件。
九年级上册《一元二次方程的解法》说课稿
九年级上册《一元二次方程的解法》说课稿九年级上册《一元二次方程的解法》说课稿范文一、说教材1、教材的地位与作用《一元二次方程的解法》是人教版九年级上册第二十一章第二节的内容。
从本章来看,前几节课已经学习了一元二次方程的概念及四种解法,后面即将学习一元二次方程的应用,本节课具有承上启下的作用;从本册书来看,一元二次方程是后面学习二次函数、圆中的有关计算的基础;从整个初中阶段学生数学学习的内容来看,一元二次方程是初中数学“数与代数”的的重要内容之一,在初中数学中占有重要地位,通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它多元方程、高次方程、一元二次不等式、二次函数等知识的基础;从学科领域来看,学习一元二次方程对其它学科也有重要意义,如物理学中电学的一些计算、化学中根据化学方程式的计算等,都要用到一元二次方程的知识。
本节课是一元二次方程的解法的练习课,旨在通过对一元二次方程四种解法的类比归纳,让学生会选择适当的方法解一元二次方程,并在学习中体会一些常用的数学思想。
2、教学目标(1)熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程。
(2)通过对一元二次方程的四种解法进行类比,理解解一远二次方程的基本思想是“降次”,体验分类讨论、转化归纳等数学思想。
(3)通过学生间合作交流、探索,进一步激发学生的学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。
3、教学重难点重点:用适当的方法解一元二次方程。
难点:对解一远二次方程的基本思想是“降次”的理解。
二、说教法学法常言道:知己知彼,百战不殆。
我们教学就相当于和学生作战,只有了解学生的学习情况,才能够针对学生的具体水平而选择最好的方法将知识传授给学生,所以要先分析学情,再确定教法。
1、学情分析在学习本节课之前,学生已经学习了一元二次方程的概念及四种解法,在七、八年级的时候也学习了一元一次方程、二元一次方程组、分式方程的解法,掌握了一些解方程的基本能力。
初中数学_一元二次方程教学设计学情分析教材分析课后反思
一元一次方程教学设计:一、开门见山,出示目标投影学习目标,并让学生读,同时教师简要板书【设计意图】由于这是第一节课,所以直接告诉学生本节课的学习内容,并出示目标让学生明确任务,有的放矢。
二、复习旧知,打下基础提问方程和一元一次方程两个概念【设计意图】由于本节课内容离一元一次方程的学习比较远,一些知识学生可能忘记,通过提问,让学生回想起有关的知识,有利于下一步的教学。
三、创设情境,引入新知教师课件展示:活动材料一:设计的是一个中国民谣,富有趣味性,可以激发学生的兴趣,使学生轻松愉悦地走进这堂课。
活动材料二:是以我们放城中学教学楼前的长方形花池为案例,设计了一个我们生活身边的数学问题,设计意图就是让学生了解到数学就在我们身边,培养学生善于观察生活,了解生活,可以把身边的生活问题转化成数学问题。
活动材料三:也是生活中常见的问题,是教科书引例,教师引导学生把实际问题数学化后,请同学们解答后,列出方程。
【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,学会把实际问题转化成数学模型,让学生体会学习的必要性,在已有的知识的体系中合理的构建一元二次方程这一新知识.同时自然的引导出本节课的重点知识,启发学生总结一元二次方程的定义。
四、精雕细琢,掌握重点1、让学生化简所列的两个方程,同时两个学生板书【设计意图】复习以前的化简知识,培养学生的计算能力。
2、观察方程的特点【设计意图】培养学生观察、思考的能力3、尝试给方程取名、下定义【设计意图】培养学生的总结能力,知识迁移能力4、教师强调一元二次方程定义中的注意事项,并给出一元二次方程的一般形式【设计意图】重点的地方,就要重点强调5、巩固训练【设计意图】通过题组,进一步让学生理解概念,掌握概念。
五、变式训练,突破难点做变式训练题【设计意图】通过两个不同的题目,突破一元二次方程方程概念中a ≠0条件这个难点六、归纳小结,反思提高让学生总结本节课学习的知识,反思注意的事项,注意易出现的错误。
人教版九年级数学上册第二十一章一元二次方程数学活动教学设计
-利用信息技术辅助教学,如使用多媒体演示解法过程,提高教学的直观性和趣味性。
4.教学评价:
-采用形成性评价,关注学生在学习过程中的表现,及时给予反馈和指导。
-设计综合性的评价任务,如开放性问题、项目式作业等,评估学生对知识的综合运用能力。
2.实践应用题:选取两道与生活实际相关的一元二次方程问题,要求学生运用所学知识进行解答。例如,计算抛物线运动中物体的高度、计算二次函数图像下的面积等。此类题目旨在培养学生将数学知识应用于解决实际问题的能力。
3.提高拓展题:设计一道综合性的题目,要求学生运用一元二次方程的根与系数的关系,结合图形进行问题分析。此类题目旨在提高学生的数学思维能力和综合运用知识的能力。
-培养学生运用数学知识解决实际问题的能力。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对一元二次方程的解法,让每个小组讨论一种方法,并总结出关键步骤和注意事项。
-各小组汇报讨论成果,其他小组进行评价和补充。
2.教学目标:
-培养学生合作交流的能力。
-让学生通过讨论,加深对一元二次方程解法的理解。
-对于公式法,可以结合历史背景,介绍公式背后的数学故事,激发学生的学习兴趣,并帮助他们记忆公式。
-针对学生将实际问题抽象为一元二次方程的难点,可以设计一系列实际问题解决工作坊,让学生在小组合作中逐步培养抽象思维能力。
3.教学策略:
-采用问题驱动的教学方法,鼓励学生在解决具体问题的过程中,自主探索和发现数学规律。
-鼓励学生自我评价和同伴评价,培养他们的自我反思和批判性思维。
四、教学内容与过程
(一)导入新课
解元次方程说课稿
解元次方程说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是解一元二次方程。
下面我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析本节课是人教版九年级上册第二十一章《一元二次方程》中的重要内容。
一元二次方程是初中数学的重要组成部分,它不仅是对之前所学方程知识的深化和拓展,也为后续学习二次函数等知识奠定了基础。
解一元二次方程是解决实际问题的重要工具,在数学和其他学科中都有着广泛的应用。
二、学情分析学生在之前已经学习了一元一次方程和二元一次方程组的解法,对于方程的基本概念和求解方法有了一定的了解和掌握。
但是,一元二次方程的形式和求解方法相对较为复杂,需要学生具备更强的抽象思维和运算能力。
此外,学生在学习过程中可能会出现对公式的理解和应用不够熟练,计算过程容易出错等问题。
三、教学目标1、知识与技能目标理解一元二次方程的概念,掌握一元二次方程的一般形式。
熟练掌握直接开平方法、配方法、公式法和因式分解法解一元二次方程。
能根据方程的特点,灵活选择合适的解法。
2、过程与方法目标通过对一元二次方程的求解过程,培养学生的运算能力和逻辑思维能力。
让学生经历观察、比较、分析、归纳等数学活动,提高学生的数学素养。
3、情感态度与价值观目标通过实际问题的解决,让学生体会数学与生活的紧密联系,激发学生学习数学的兴趣。
培养学生勇于探索、敢于创新的精神,以及严谨的科学态度。
四、教学重难点1、教学重点一元二次方程的四种解法(直接开平方法、配方法、公式法、因式分解法)。
选择合适的方法解一元二次方程。
2、教学难点配方法的理解和应用。
公式法中求根公式的推导和应用。
五、教学方法为了实现教学目标,突破教学重难点,我将采用以下教学方法:1、讲授法通过讲解一元二次方程的概念、解法和例题,让学生系统地掌握知识。
2、练习法安排适量的课堂练习和课后作业,让学生在实践中巩固所学知识,提高解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21章一元二次方程
本章学情分析与教材分析
(一)学情分析:
本章内容面对的学生是初三年级十三四岁左右,他们思维活跃,模仿性强,已经开始占主导地位的抽象逻辑思维,逐步由经验型向理论型转化。
观察、记忆、想象诸能力迅速发展,能超出直接感知的事物提出假设和进行推理、论证,很大程度上还需要感性经验的支撑。
一元二次方程是刻画数量关系的重要数学模型,一元二次方程的解法和实际应用是初中阶段的核心内容。
前面已经学习了一元一次方程、二元一次方程组以及分式方程、平方根、因式分解等知识,对于解方程的基本思路(使方程逐步化为x=a的形式)已经比较熟悉,按照这种思路继续学习一元二次方程的解法.本章还要讨论与方程的根有关的几个基本问题(判别式与方程的根、根与系数的关系等),在此基础上学习利用一元二次方程模型解决简单的实际问题。
本章的学习将为后续的二次函数等打下学习基础。
(二)教材分析:
1.核心素养
本章所涉及的数学思想方法主要有:解方程过程中的转化、化归思想,配方法以及分类讨论思想,由实际问题抽象为方程模型的建模思想。
2.本章学习目标
(1)联系一元一次方程、方程组和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型。
(2)了解一元二次方程及其相关概念,理解一元二次方程解法的基本思想及其与一元一次方程的联系,体会两者之间相互比较和转化的思想方法。
(3)理解配方法的意义,会用直接开平方法、配方法、公式法、分解因式法解简单的一元二次方程(数字系数),并在解一元二次方程的过程中体会转化等数学思想。
(4)掌握根的判别式的有关应用,理解一元二次方程两根与系数的关系。
(5)能够利用一元二次方程解决有关实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题,解决问题的意识和能力。
(6)经历在具体情境中估计一元二次方程解的过程,发展估算意识和能力。
3.课时安排
本章教学时间约需12课时,具体分配如下(仅供参考):
21.1 一元二次方程 1课时
21.2 降次──解一元二次方程 6课时
21.3 实际问题与一元二次方程 3课时
章末回顾 2课时
4.本章重点
解一元二次方程的基本思路和具体解法.
5.本章难点
建立一元二次方程模型解决实际问题.。