交大大物第四章习题答案培训资料
大学物理第四章习题答案

大学物理第四章习题答案大学物理第四章习题答案大学物理是一门让许多学生感到头疼的学科,尤其是对于那些对数学和计算不太擅长的学生来说。
而第四章是大学物理中的一个重要章节,涵盖了许多关于力学和运动的基本概念和原理。
在这篇文章中,我将为大家提供一些大学物理第四章习题的答案,希望能够帮助到那些正在学习这门课程的学生。
1. 一个物体以10 m/s的速度沿着水平方向运动,受到一个10 N的水平力的作用,求物体在2秒钟内的位移。
根据牛顿第二定律,物体的加速度可以通过力和质量的比值来计算。
在这个问题中,物体的质量未知,但我们可以通过已知的力和加速度来计算出质量。
由于力和加速度的关系是F = ma,我们可以将已知的力和加速度代入这个公式,解出物体的质量。
然后,我们可以使用物体的质量和已知的力来计算物体的加速度。
最后,我们可以使用物体的初始速度、加速度和时间来计算物体的位移。
2. 一个物体以5 m/s的速度沿着斜坡上升,斜坡的倾角为30度。
求物体在10秒钟内上升的高度。
在这个问题中,我们需要使用三角函数来计算物体在斜坡上升时的垂直位移。
首先,我们可以使用已知的速度和斜坡的倾角来计算物体在斜坡上的水平速度。
然后,我们可以使用已知的时间和水平速度来计算物体在斜坡上的水平位移。
最后,我们可以使用已知的斜坡的倾角和物体在斜坡上的水平位移来计算物体在斜坡上升时的垂直位移。
3. 一个物体以10 m/s的速度竖直向上抛出,求物体在2秒钟内的最大高度和总的飞行时间。
在这个问题中,我们需要使用物体的初速度和重力加速度来计算物体在竖直抛物线运动中的最大高度和总的飞行时间。
首先,我们可以使用已知的初速度和时间来计算物体在竖直方向上的位移。
然后,我们可以使用已知的初速度和重力加速度来计算物体在竖直方向上的最大高度。
最后,我们可以使用已知的重力加速度来计算物体在竖直方向上的总的飞行时间。
这些问题只是大学物理第四章中的一小部分,但它们涵盖了一些基本的概念和原理。
大学物理第四章习题解答PPT演示课件

16
解: 冲击:子弹和摆锤角动量守恒
mlvm2 vl(J1J2)0
J1
1 3
ml 2
J2 ml2
v 0
摆动:摆锤和地球机械能守恒
Ek Ep
1 2(J1J2)0 2mg2lmgl
4m vmin m
2gl
17
解:子弹+杆系统: M外 0
m 22 lv(1 JJ2) J2)(1JJ2)
J1
1 12
m1l
2
J2
m1(
l )2 2
v v r l/2
J2 6m 2v 2.1 9r3a/sd
J1J2 m 1l3m 2l
11
426:一质量 m/、 为半径 R的 为转台,以a角 转速 动度 ,转轴的
不计, 1)( 有一质 m的 量蜘 为蛛垂直地边 落缘 在上 转, 台此时角 ,
解: JJ盘2J柱
J盘 12m盘R盘 2
R盘
3
01 2
02
m
J柱 12m柱R柱 2
10102 R柱 2 m
m盘 V盘
m柱 V柱
J0.13k6gm2
7
413:如图所示m1, 1质 6kg的 量实心圆 A,柱 其体 半r径 15c为 m ,可 绕其固定水平 阻轴 力转 忽动 略, 不计 的。 柔一 绳条 绕轻 在圆 其柱 一
(A) 角速度从小到大,角加速度不变 O
A
(B) 角速度从小到大,角加速度从小 到大
(C) 角速度从小到大,角加速度从 大到小
(D) 角速度不变,角加速度为零
2
绕过O点的轴做定轴转动。求:运动过程中角速度和角 加速度的变化情况
西安交通大学大学物理ppt第四章 (1)

Epa = ∫
b(势能零点)
a
F ⋅ dr 保
重力势能: 重力势能:
Ep = mgy
万有引力势能: 万有引力势能: 弹簧弹性力势能: 弹簧弹性力势能:
(以 y = 0 的平面为势能零点) 的平面为势能零点)
m m2 Ep = −G 1 r 1 2 Ep = kx 2
(以无穷远处为势能零点) 以无穷远处为势能零点)
如果系统中只有保守内力作功,而其它内力和外力都不作 如果系统中只有保守内力作功, 或作功的总和始终为零,则系统总机械能保持不变。 功,或作功的总和始终为零,则系统总机械能保持不变。 注意: 注意: (1)守恒条件
A外 + A非内 = 0
(2)守恒定律是对一个系统而言的 (3)守恒是对整个过程而言的,不能只考虑始末两状态 守恒是对整个过程而言的, (4)机械能守恒定律是普遍的能量守恒定律在机械运动范 围内的体现。 围内的体现。
m
P = mv
d(mv) =F dt
力F 的 元冲量
d(mv) = dP = Fdt = dI
动量定理的微分形式) (动量定理的微分形式)
质点动量的增量微元等于合外力乘以作用时间微元 质点动量的增量微元等于合外一段有限时间, 对一段有限时间, 有
mv1
mv2
作用于质点系内各质点上的所有外力和非保守内力在某 一过程中作功的总和,等于质点系机械能的增量。 一过程中作功的总和,等于质点系机械能的增量。
2. 机械能守恒定律 系统的功能原理 当 则
A = A外 + A非保内 = Eb − Ea A= A + A 外 非保内 = 0
E = Ek + Ep = 恒量(质点系的机械能守恒定律) 质点系的机械能守恒定律)
上海交大版大学物理参考答案

上海交大版大学物理参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-版权归原着所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。
容器与大气相通排出一部分气体后,气压下降了。
若温度不变,求排出气体的质量。
解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。
由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV L P ⨯= 则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。
根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。
如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H HOm mM M =,代入数据有: 1.6O m kg = 。
9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。
用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。
要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少则体积和压强相同,如图。
由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。
大学物理练习册习题及答案5--振动学基础-推荐下载

x
k1
思考题 4-8 图
0.1cos
m(D) Βιβλιοθήκη E1。8t
2 3
k2
(SI)
将 m2 从平衡位置向下拉 2cm 后,给予向上的初速度 v0=5cm/s 并开始计时,试求 m2 的振动周期和振动的数值表达式。
4-3
一质点作简谐振动,其振动方程为
x
0.24cos
1 2
(A)
(C)
A
A
o1
1A
2
o
A 2
x
x
思考题 4-5 图
(B)
(D)
(A)12s; (B)10s;
(C)14s; (D)1 1s。
4-5 一个质点作简谐振动,振幅为 A,
t(s)
在起始时刻质点的位移为 A/2,且向 x 轴的
正方向运动;代表此简谐振动的雄转矢量
o2
1A
2
A
1A
图为( )
4-6 一质点作简谐振动,其运动速度与时间的曲线 如图所示,若质点的振动规律用余弦函数描述,则其
A
o
x
4-7 把单摆从平衡位置拉开,使摆线与竖直方向成一微小角度 θ,然后由静止放手任其振 从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为( )
(A)θ; (B) π; (C)0; (D π/2。 4-8 如图所示,质量为 m 的物体由倔强系数为 k1 和 k2 的两个轻弹簧连接,在光滑导轨上 作微小振动,则系统的振动频率为()
(1)此小物体是停在振动物体上面还是离开它? (2)如果使放在振动物体上的小物体与振动物体分离,则振幅 A 需满足何条件?两者在何
西安交通大学大学物理ppt第四章++(2)

Fdt mdv vrdm
dm 与 m 合并前 相对于m 的速度
F
vr
dm dt
m dv (变质量动力学基本方程) dt
• 变质量动力学的应用 —— 火箭的运动方程
t 时刻,火箭质量为 m,速度为 v
v
dt 内火箭喷出速度为u,质量为 – dm 的高温气体
参 考
方
向
速度与角速度的矢量关系式
v
dr
ω
r
dt
加速度与角加速度的矢量关系式
z ω,v
a
dv
d(ω
r)
dt dω
r
dt ω
dr
dt
dt
β
r
ω
v
r' P
Oθ
刚体 r
参
×基点O
考 方
向
瞬时轴
定轴
aτ
r
i1
m
rdm m
xO
r1m1
y
讨论:• 质心矢量与参照系的选取有关,但质心相对于系统内各质
点的相对位置与参照系选取无关
一般形状对称的匀质物体,其质心位于它的几何对称中心
例 已知一半圆环半径为 R,质量为M
求 它的质心位置
解 建坐标系如图 取 dl
dl Rd dm M Rd
πR
x Rcos y Rsin
解
设 t 时刻(地面上有
l 长的绳子)
ml
l m l
L
h
此时绳的速度为
西南交大大物试卷答案04A

《大学物理》作业 No 4 能量、能量守恒定律一、选择题1. 一个质点同时在几个力作用下的位移为)S I (654kj i r+-=∆, 其中一个力为恒力)S I (953kj i F+--=,则此力在该位移过程中所作的功为[ A ] J 76)A (J 19)B ( J 71)C (J 76)D (-解:由功的定义,F力的功为(J)67542512)654()953(=++-=+-⋅+--=∆⋅=k j i k j i r F A2. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上。
在该质点从坐标原点运动到)2,0(R 位置过程中,力F对它所作的功为[ B ] 20)A (R F 202)B (R F 203)C (R F204)D (R F解:由功的定义,F力的功为⎰⎰⎰+=⋅=y F x F r F A y x d d d202000002d d R F y y F x x F R=+=⎰⎰3. 对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加。
(2) 质点运动经一闭合路径,保守力对质点作的功为零。
(3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。
在上述说法中:[ C ] (A) (1)、(2)是正确的; (B) (2)、(3)是正确的;(C) 只有(2)是正确的; (D) 只有(3)是正确的。
解: (1) 不对。
0,时0,<∆>∆-=p p E A E A 保保,势能减小。
(2) 正确。
保守力的定义就是沿任意一闭全回路径作功为零。
(3) 不对。
一对力虽然大小相等方向相反,但两质点的位移并不一定大小相等方向相反,所以一对力的功的代数和不一定为零。
只有两质点的间距不变时,作用力和反作用力功的代数和才为零。
4. 对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? [ C ] (A) 合外力为0; (B) 合外力不作功;(C) 外力和非保守内力都不作功; (D) 外力和保守力都不作功。
上海交大版大学物理上册答案

第一章 质点运动学【例题】例1-1 A t= 1.19 s 例1-2 D 例1-3 D 例1-4 B 例1-5 3 3 例1-6 D 例1-7 C例1-8 证明:2d d d d d d d d v xv vtx xv tv K -==⋅= ∴ d v /v =-K d x⎰⎰-=xx K 0d d 10v vvv , Kx -=0lnv v ∴ v =v 0e-Kx例1-9 1 s 1.5 m 例1-10 B【练习题】1-1 x=(y-3)2 1-2 -0.5m/s -6m/s 2.25m 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小t a 必为常数,即321t t t a a a ==,现在虽然321a a a ==, 但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即321t t t a a a ≠≠,故该质点不作匀变速率运动。
1-5 D 1-6证明:设质点在x 处的速度为v 62d d d d d d 2x tx xta +=⋅==v v()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v1-7 16 R t 24 rad /s21-8 Hv/(H-v) 1-9 C第二章 质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律∴⎰⎰=-=-vv 00vv d d ,vv d d tt mKt m K ∴ mKt /0e -=v v (2) 求最大深度 tx d d =vt x mKt d ed /0-=vt x mKt txd ed /000-⎰⎰=v ∴ )e1()/(/0mKt K m x --=vK m x /0max v = 例2-4 D 例2-5 答:(1) 不正确。
向心力是质点所受合外力在法向方向的分量。
质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。
大学物理第四章课后思考题详解

谐振动:
X. J. Feng,
1. 力学特征: 线性恢复力(力矩)
F kx
F mg
2.动力学方程:
d 2x dt 2
02 x
0
M mgb 思考: 拍皮球时球的往
3.运动学方程: x Acos(0t ) 复运动是否是谐振动?
v 0 Asin( 0t )
m
Px
X. J. Feng,
M 0t
Px
X. J. Feng,
M
P
x
M P
Xபைடு நூலகம் J. Feng,
x
X. J. Feng,
M
P
x
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
M Px
突然速度为0的质点m0轻粘在m上,求:m0粘上后振动系统
周期和振幅
m0
解: 两弹簧的等效系数:2k
km k
(请同学们课后自己证明)
m0粘上前系统振动的圆频率: 0
2k m
v 2l0
m0粘上后系统振动的圆频率:
2k
m m0
T 2 m m0
2k
A
x0
v02
2
x0 0
x
M
M nm
l0
·m
(2).t Tn 2
Tn
2 n
n
k M nm
MO
l0
大学物理下册(上海交大第四版)课后习题解答

12-4. 将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为 ,四分之 一圆弧 AB 的半径为 R ,试求圆心 O 点的场强. 解:设 O 为坐标原点,水平方向为 x 轴,竖直方向为 y 轴 半无限长导线 A 在 O 点的场强 E 1
(i j ) 4 0 R
U1
则内球电荷:
4 0 R1
q1
4 0 R2
q1
Q q1 0 4 0 R3
q1
外球电势:
R1 R2 Q R1 R3 R3 R2 R1 R2
U2
电势差:
Q q1 Q( R1 R2 ) 4 0 R3 4 0 ( R1 R3 R3 R2 R1 R2 ) Q( R1 R2 ) 4 0 ( R1 R3 R3 R2 R1 R2 )
B0
B2
L2
由于两段圆弧电流对 O 的磁感应强度方向相反,所以
14-10. 在 半径 R 1cm 的 无 限 长 半 圆 柱 形 金 属 片 中 , 有 电 流 I 5A 自下而上通过,如图所示。试求圆柱轴线上一点 P 处的磁 感应强度的大小。 解:将半圆柱形无限长载流薄板细分成宽为 dl Rdθ 的长直电流
根据安培环路定理
B dL
0
I
B
0
2
(R 2 r 2 )
(2) 带电长直圆柱体旋转相当于螺线管, 端面的磁感应强度是中间磁感应强度的一半, 所以端面的磁感应强度
B
0 R 2
4
14-16. 如图所示的空心柱形导体,柱的半径分别为 a 和 b ,导体内载有电 流 I ,设电流 I 均匀分布在导体横截面上。证明导体内部各点( a < r < b ) 的磁感应强度 B 由下式给出:
西安交通大学网络学院公共课《普通物理》课后复习集规范标准答案

参考答案第一章 质点运动学参考答案一、单项选择题:1 C 2C 3D ;4.C ;5.B ;6. B,7. D 二、填空题:1.2R π;2.加速;3.加速;4.22i t j -r r ,22i j -r r ;5.244y x =-;6. -2j r7. (1060)(1540)v t i t j =-++-r r r 8045i j -r r三、计算题:第二章 牛顿定律参考答案一、单项选择题:1. B ;2.B ;3.D ;4.B ;5B ;6. A, 7. C; 二、填空题:1. 20N ;2. 12N,3. ①θsin 4/20g v ;三、计算题:1. 解:(1)由牛顿第二定律 cv dt dvm-=分离变量 dt mc v dv -= 积分可得 mct e v v /0-= (2)由上式 dt ev dx mct /0-=积分可得 )1(/0m ct e v cmx --=2. 解:由牛顿第二定律 412+==t m Fdt dv积分得 t t v dtdxv 4620++==再积分得 230022t t t v x x +++=代入v 0和x 0得 6462++=t t v m/s562223+++=t t t x m第三章 动量守恒定律和能量守恒定律参考答案一、单项选择题:1. D ;2. A3. B4. A;5. A; 二、填空题:1.;2.02sin P I mv j α=-r r;3.()ML M m +,()mL M m -+;4.02mv j -r ;三、计算题:1.(1)由功能原理,摩擦力做功222000113228k k W E E mv mv mv =-=-=- (2)又由功的定义,摩擦力做功d 2W f l r mg πμ=⋅=-⎰r v因此可得20316v rgμπ=(3)静止前运行圈数 20201042338mv n mv -==-圈2. 解:水平方向动量守恒 v m vm mv ''+=2由题意,在最高点 0=T F 则l v m g m h2'='由机械能守恒2212212h v m l g m v m '+'='' 解之,得弹丸所需速率的最小值为gl mm v 52'=3..取球形屋面球心为重力势能零参考点,由机械能守恒,有2sin mgR mv mgR θ=+根据牛顿第二定律,有2sin N mg F mv R θ-=冰块离开屋面的条件是0N F =由以上三式解得v 2θ=4.解:取小球开始时在位置A 为重力势能的参考点,由系统的机械能守恒定律,有22()2(3)2C k l mg r mv =+V(1) 小球要刚好通过最高点C 的条件是0N F = (2) 由牛顿第二定律,有2N C F mg mv r += (3)由(1),(2),(3)式解得:27()k mgr l =V5.由动量守恒定律 1102201122m v m v m v m v +=+由机械能守恒定律2222110220112211112222m v m v m v m v +=+11012220()()m v v m v v -=-222211012220()()m v v m v v -=-101220v v v v +=+ 102021v v v v -=-1210220112()2m m v m v v m m -+=+2120110212()2m m v m v v m m -+=+6.在沿斜面的方向上动量守恒 10)(V m m COS mV +'=α 上滑过程机械能守恒 ghm m V m m V m m )()()(22212121+'++'=+' 解得:gh COS V V m m m 2)(202-=+'α第四章 刚体的转动参考答案一、单项选择题: 1. A二、填空题:1. ①ml 2/3;2. ①3mR 2/2; 三、计算题:1. 解:设A 段绳子中的张力为T A ,B 段绳子中的张力为T B ,物体A 的加速度为a .可以分别列出物体A 、B 和定滑轮的动力学方程αJ R T R T ma T mg ma mg T A B B A =-=-=-ο30sin式中22221mR R m J =⋅⋅=为滑轮的转动惯量,R a=α为滑轮的角加速度。
大学物理学课后习题4第四章答案

x 轴正方向运动,代表此简谐振动的旋转矢量图为
()
[答案:B]
(2)两个同周期简谐振动曲线如图所示,振动曲线 1 的相位比振动曲线 2
的相位 (
)
(A)落后
2
(B)超前
2
(C)落后
(D)超前
[答案: B]
习题 4.1(2)图
(3)一质点作简谐振动的周期是 T,当由平衡位置向 x 轴正方向运动时,从
E
1 2
mvm2
3.16 102 J
E p E k 1 E 1.58102 J 2
当 Ek E p 时,有 E 2E p ,
即
1 kx 2 1 ( 1 kA2 )
2
22
∴
x 2 A 2m
2
20
(3)
(t2 t1 ) 8 (5 1) 32
4.4 一个沿 x 轴作简谐振动的弹簧振子,振幅为 A ,周期为T ,其振动 方程用余弦函数表示.如果 t 0 时质点的状态分别是:
的单位是 s,则 (A)波长为 5m
向传播 [答案:C]
(B)波速为 10ms-1
(C)周期为 1 s 3
(D)波沿 x 正方
(8)如图所示,两列波长为 的相干波在 p 点相遇。波在 S1 点的振动初相是 1 ,点 S1 到点 p 的距离是 r1。波在 S2 点的振动初相是2 ,点 S2 到点 p 的距离是
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置
大物 上海交大课后答案 第四章

习题44-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=1.3g /L 。
容器与大气相通排出一部分气体后,气压下降了0.78atm 。
若温度不变,求排出气体的质量。
解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。
由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV LP ⨯=则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯=。
根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==4-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。
如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少?解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H H Om mM M =,代入数据有: 1.6O m kg =。
4-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。
用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。
要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少?解:已知氮气和氧气质量相同,水银滴停留在管的正中央,则体积和压强相同,如图。
由:molmpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+。
4-4.高压氧瓶:71.310p Pa =⨯,30V L =,每天用51 1.010p Pa =⨯,1400V L =,为保证瓶内6' 1.010p Pa ≥⨯,能用几天?解:由''pV p V =,可得:761.31030'390' 1.010pV Pa LV L p Pa⨯⨯===⨯, ∴'360V V V L ∆=-=;而:11'p V p V ∆=∆,有:615' 1.010********.010p V Pa LV L p Pa∆⨯⨯∆===⨯, 那么:能用的天数为36009400/Ln L ==天天。
大学物理第四章课后答案

υ2 l
9. 解: m 下降到斜面瞬间满足机械能守恒: 1 则 mgh = mυ 0 2 2 M 与 m 碰撞后无机械能损失: 1 1 1 mυ 0 2 = Mυ 2 + mυ ′ 2 2 2 2 水平方向 M 与 m 组成的系统动量守恒, 总动量 为 0, Mυ = m υ ′ 解得: υ = 2m 2 gh M ( M + m)
如图所示在一铅直面内有一光滑的轨道左边是一个上升的曲线右边是足够长的水平直线两者平滑连接现有b两个质点b在水平轨道上静止a在曲线部分高h处由静止滑下与b发生完全弹性碰撞碰后a仍可返回上升到曲线轨道某处并再度滑下已知ab两质点的质量a分别为和
自治区精品课程—大学物理学
题库
第四章 动量定理
一、 填空 1. 2. 3. 4. 是表示力在空间上累积作用的物理量, 是表示力在时间上累 积作用的物理量。 质点动量定理的微分形式是 。 质点动量定理的积分形式是 。 对于质点系来说,内力 ( “改变”或“不改变” )质点系中各个质点 的动量,但 ( “改变”或“不改变” )质点系的总动量。 若质点系沿某坐标方向所受的合外力为零,则 守恒。 如果两物体碰撞过程中,动能完全没有损失,这种碰撞称为 ,否则 就称为 ;如果碰撞后两物体以相同的速度运动,这种碰撞称 为 。 , 其中 υ10 ,υ1 是某一物
-1-
自治区精品课程—大学物理学
题库
上,如图所示。求链条下落在地面的长度为 l 瞬时,地面所受链条的作用力的大 小。 4. 质量为 M 的人,手里拿着一个质量为 m 的物体,此人以与地平面成 α 角的速 度 υ0 向前方跳起,当他达到最高点时,将物体以相对速度 µ 水平向后抛出,由 于物体的抛出,人跳的距离增加多少?假设空气阻力不计。 5. 速度为 υ0 的物体甲和一个质量为甲的 2 倍的静止物体乙作对心碰撞,碰撞后 1 甲物体以 υ 0 的速度沿原路径弹回,求: 3 (1)乙物体碰撞后的速度,问这碰撞是完全弹性碰撞吗? (2) 如果碰撞是完全非弹性碰撞, 碰撞后两物体的速度为多大?动能损失多少? 6. 如图所示,质量为 m 的物体从斜面上高度为 h 的 A 点处由静止开始下滑,滑至水平段 B 点 停止,今有一质量 m 的子弹射入物体中,使物 体恰好能返回到斜面上的 A 点处。求子弹的速 度( AB 段摩擦因数为恒量) 。 7. 如图所示,劲度系数 k = 100 N m 的弹簧, 一 段固 定于 O 点, 另一端 与一 质量 为
大学物理上海交大参考答案

大学物理上海交大参考答案大学物理上海交大参考答案在大学物理课程中,上海交通大学一直以来都是备受关注的学府。
其严谨的教学体系和扎实的学术研究基础,使得上海交大的物理学科在国内外享有盛誉。
学生们在学习物理课程时,常常会遇到各种难题,而参考答案则成为他们解决问题的重要依据。
本文将为大家提供一些大学物理上海交大参考答案,希望对广大学子有所帮助。
第一章:力学1. 一个物体以初速度v0沿着直线做匀加速运动,经过时间t后速度变为v,求物体的加速度a。
答案:根据物体匀加速运动的公式v = v0 + at,可以得到a = (v - v0) / t。
2. 一个质量为m的物体在水平面上受到一个恒力F作用,已知物体在受力方向上的加速度为a,求恒力F的大小。
答案:根据牛顿第二定律F = ma,可以得到F = ma。
第二章:热学1. 一个理想气体在等温过程中,体积从V1变为V2,求气体对外界所做的功。
答案:由于等温过程中气体的温度不变,根据理想气体的状态方程PV = nRT,可以得到P1V1 = P2V2。
所以气体对外界所做的功为W = P1(V1 - V2)。
2. 一个理想气体在绝热过程中,体积从V1变为V2,求气体对外界所做的功。
答案:由于绝热过程中气体与外界不发生热交换,根据理想气体的状态方程PV^γ = 常数,可以得到P1V1^γ = P2V2^γ。
所以气体对外界所做的功为W = P1(V1 - V2) / (γ - 1)。
第三章:电磁学1. 一个电容器由两块平行金属板组成,两板间的电容为C,电压为U,求电容器储存的电能。
答案:电容器储存的电能为E = (1/2)CU^2。
2. 一个电感器的感抗为X,通过的电流为I,求电感器的电压。
答案:电感器的电压为U = IX。
第四章:光学1. 一束光线从空气射入玻璃中,入射角为θ1,折射角为θ2,求光线的折射率。
答案:光线的折射率为n = sinθ1 / sinθ2。
2. 一束平行光通过一个凸透镜后,光线会汇聚于焦点处,求凸透镜的焦距。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交大大物第四章习题答案收集于网络,如有侵权请联系管理员删除习题4-1. 如图所示的圆锥摆,绳长为l ,绳子一端固定,另一端系一质量为m 的质点,以匀角速ω绕铅直线作圆周运动,绳子与铅直线的夹角为θ。
在质点旋转一周的过程中,试求:(1)质点所受合外力的冲量I ;(2)质点所受张力T 的冲量I T 。
解:(1)根据冲量定理:⎰⎰∆==tt P P d dt 00ϖϖP P F其中动量的变化:0v v m m -在本题中,小球转动一周的过程中,速度没有变化,动量的变化就为0,冲量之和也为0,所以本题中质点所受合外力的冲量I 为零(2)该质点受的外力有重力和拉力,且两者产生的冲量大小相等,方向相反。
重力产生的冲量=mgT=2πmg /ω;所以拉力产生的冲量=2πmg /ω,方向为竖直向上。
4-2.一物体在多个外力作用下作匀速直线运动,速度=4m/s 。
已知其中一力F 方向恒与运动方向一致,大小随时间变化内关系曲线为半个椭圆,如图。
求:(1)力F 在1s 到3s 间所做的功;收集于网络,如有侵权请联系管理员删除(2)其他力在1s 到s 间所做的功。
解:(1)由做功的定义可知:J S v Fdt v Fvdt Fdx W x 6.1253131x 21=⨯====⎰⎰⎰椭圆 (2)由动能定理可知,当物体速度不变时,外力做的总功为零,所以当该F 做的功为125.6J 时,其他的力的功为-125.6J 。
4-3.质量为m 的质点在Oxy 平面内运动,运动学方程为j i r t b t a ωωsin cos +=,求:(1)质点在任一时刻的动量;(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量。
解:(1)根据动量的定义:(sin cos )P mv m a t b t ωωωω==-+i j(2)从0=t 到ωπ/2=t 的时间内质点受到的冲量等于它在这段时间内动量的变化,因为动量没变,所以冲量为零。
4-4.质量为M =2.0kg 的物体(不考虑体积),用一根长为l =1.0m 的细绳悬挂在天花板上。
今有一质量为m =20g 的子弹以0v =600m/s 的收集于网络,如有侵权请联系管理员删除水平速度射穿物体。
刚射出物体时子弹的速度大小v =30m/s ,设穿透时间极短。
求:(1)子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量。
解:(1)解:由碰撞过程动量守恒可得: 10Mv mv mv +=代入数据 123002.060002.0v +⨯=⨯ 可得:s m v /7.51=根据圆周运动的规律:T-G=2v M R 2184.6v T Mg M N R =+= (2)根据冲量定理可得:s N mv mv I •-=⨯-=-=4.1157002.004-5. 一静止的原子核经放射性衰变产生出一个电子和一个中微子,巳知电子的动量为m /s kg 102.122⋅⨯-,中微子的动量为236.410kg m/s -⨯⋅,两动量方向彼此垂直。
(1)求核反冲动量的大小和方向;(2)已知衰变后原子核的质量为kg 108.526-⨯,求其反冲动能。
由碰撞时,动量守恒,分析示意图,可写成分量式:收集于网络,如有侵权请联系管理员删除ααcos sin 21m m =ααsin cos 21m m P +=所以221.410/P kg m s -=⨯• ο9.151=-=απθ(2)反冲的动能为:2180.17102k P E J m -==⨯4-6. 一颗子弹在枪筒里前进时所受的合力大小为3/1044005t F ⨯-=,子弹从枪口射出时的速率为m/s 300。
设子弹离开枪口处合力刚好为零。
求:(1)子弹走完枪筒全长所用的时间t ;(2)子弹在枪筒中所受力的冲量I ;(3)子弹的质量。
解:(1)由3/1044005t F ⨯-=和子弹离开枪口处合力刚好为零,则可以得到:03/1044005=⨯-=t F 算出t=0.003s 。
(2)由冲量定义:0.0030.0030.003552000400410/3400210/30.6I Fdt t dt t t N s==-⨯=-⨯=•⎰⎰()收集于网络,如有侵权请联系管理员删除(3)由动量定理:0.00300.60.6/3000.002I Fdt P mv N s m kg==∆==•==⎰所以:4-7. 有质量为m 2的弹丸,从地面斜抛出去,它的落地点为c x 。
如果它在飞行到最高点处爆炸成质量相等的两碎片。
其中一碎片铅直自由下落,另一碎片水平抛出,它们同时落地。
问第二块碎片落在何处。
解:在爆炸的前后,质心始终只受重力的作用,因此,质心的轨迹为一抛物线,它的落地点为x c 。
112212c m x m x x m m +=+ 因为12m m m ==,12c x x = 故 2223,42c c c mx mx x x x m +== 4-8. 两个质量分别为1m 和2m 的木块B A 、,用一劲度系数为k 的轻弹簧连接,放在光滑的水平面上。
A 紧靠墙。
今用力推B 块,使弹簧压缩0x 然后释放。
(已知m m =1,m m 32=)求:(1)释放后B A 、两滑块速度相等时的瞬时速度的大小;收集于网络,如有侵权请联系管理员删除(2)弹簧的最大伸长量。
解:分析题意,可知在弹簧由压缩状态回到原长时,是弹簧的弹性势能转换为B 木块的动能,然后B 带动A 一起运动,此时动量守恒,可得到两者相同的速度v ,并且此时就是弹簧伸长最大的位置,由机械能守恒可算出其量值。
2020222121kx v m = v v 2)(2102m m m += 所以mk x v 3430= (2)22122022212121v m m kx v m )(++= 那么计算可得:021x x = 4-9. 二质量相同的小球,一个静止,一个以速度0与另一个小球作对心碰撞,求碰撞后两球的速度。
(1)假设碰撞是完全非弹性的;(2)假设碰撞是完全弹性的;(3)假设碰撞的恢复系数5.0=e .解:由碰撞过程动量守恒以及附加条件,可得收集于网络,如有侵权请联系管理员删除(1)假设碰撞是完全非弹性的,即两者将以共同的速度前行:mv mv 20=所以:021v v = (2)假设碰撞是完全弹性的,210mv mv mv +=222120212121mv mv mv += 两球交换速度, 01=v 02v v =(3)假设碰撞的恢复系数5.0=e ,也就是210mv mv mv +=5.0201012=--v v v v 所以:0141v v = , 0243v v = 4-10. 如图,光滑斜面与水平面的夹角为ο30=α,轻质弹簧上端固定.今在弹簧的另一端轻轻地挂上质量为kg 0.1=M 的木块,木块沿斜面从静止开始向下滑动.当木块向下滑cm 30=x 时,恰好有一质量kg 01.0=m 的子弹,沿水平方向以速度m/s 200=v 射中木块并收集于网络,如有侵权请联系管理员删除陷在其中。
设弹簧的劲度系数为N/m 25=k 。
求子弹打入木块后它们的共同速度。
解:由机械能守恒条件可得到碰撞前木快的速度,碰撞过程中子弹和木快沿斜面方向动量守恒,可得:22111sin 22Mv kx Mgx α+= 10.83v ⇒= (碰撞前木快的速度) 1cos Mv mv m M v α'-=+() 0.89v '⇒=-4-11. 水平路面上有一质量kg 51=m 的无动力小车以匀速率0m/s 2=运动。
小车由不可伸长的轻绳与另一质量为kg 252=m 的车厢连接,车厢前端有一质量为kg 203=m 的物体,物体与车厢间摩擦系数为2.0=μ。
开始时车厢静止,绳未拉紧。
求:(1)当小车、车厢、物体以共同速度运动时,物体相对车厢的位移;(2)从绳绷紧到三者达到共同速度所需要的时间。
(车与路面间摩擦不计,取g =10m/s 2)收集于网络,如有侵权请联系管理员删除 解:(1)由碰撞过程动量守恒,可得v m m m v m '++=)(32101 2.0='⇒v m sv m m v m )(2101+= s m v m m m v 31255250211=+⨯=+= 2321221321)(21v m m m v m m gs m '++-+=)(μm g m v m m m v m m s 60121)(213321221='++-+=μ)( (2)t g m μv m 33=' s g μv t 1.0102.02.0=⨯='=4-12. 一质量为M 千克的木块,系在一固定于墙壁的弹簧的末端,静止在光滑水平面上,弹簧的劲度系数为k .一质量为m 的子弹射入木块后,弹簧长度被压缩了L .(1)求子弹的速度;(2)若子弹射入木块的深度为s ,求子弹所受的平均阻力。
解:(1)碰撞过程中子弹和木块动量守恒,碰撞结束后的运动由机械能守恒条件可得,v M m mv '+=)(0222121kL v M m ='+)( 计算得到:)(M m k mL v +=0 (2)子弹射入木快所受的阻力做功使子弹动能减小,木块动能增加,两次作功的位移差为s ,所以:)(22021v v m fx '-= 221v M x f '=' 其中s x x ='- 所以:msMkL f 22= 4-13. 质量为M 、长为l 的船浮在静止的水面上,船上有一质量为m 的人,开始时人与船也相对静止,然后人以相对于船的速度u 从船尾走到船头,当人走到船头后人就站在船头上,经长时间后,人与船又都静止下来了。
设船在运动过程中受到的阻力与船相对水的速度成正比,即kv f -=.求在整个过程中船的位移x ∆.4-14. 以初速度0将质量为m 的质点以倾角θ从坐标原点处抛出。
设质点在Oxy 平面内运动,不计空气阻力,以坐标原点为参考点,计算任一时刻:(1)作用在质点上的力矩M ;(2)质点的角动量L 解:(1)k t mgv F r M ϖϖϖϖθcos 0-=⨯=(2)k t mgv dt M v m r L t ϖϖϖϖϖ200cos 2θ-==⨯=⎰4-15. 人造地球卫星近地点离地心r 1=2R ,(R 为地球半径),远地点离地心r 2=4R 。
求:(1)卫星在近地点及远地点处的速率1和2(用地球半径R 以及地球表面附近的重力加速度g 来表示);(2)卫星运行轨道在近地点处的轨迹的曲率半径ρ。
解:利用角动量守恒:2211mv r mv r L == 2142v v =⇒同时利用卫星的机械能守恒,所以:RMm G mv R Mm G mv 421221022021-=-mg RMm G =20 所以: 321Rg v = 62Rg v =(2)ρρ220v m Mm G = 可得到:R 38=ρ 4-16火箭以第二宇宙速度22v Rg =沿地球表面切向飞出,如图所示。