复数与复数集

合集下载

复数的知识点总结与题型归纳

复数的知识点总结与题型归纳

复数的知识点总结与题型归纳一、知识要点 1.复数的有关概念我们把集合C ={}a +b i|a ,b ∈R 中的数,即形如a +b i(a ,b ∈R)的数叫做复数,其中i 叫做虚数单位.全体复数所成的集合C 叫做复数集.复数通常用字母z 表示,即z =a +b i(a ,b ∈R),这一表示形式叫做复数的代数形式.对于复数z =a +b i ,以后不作特殊说明都有a ,b ∈R ,其中的a 与b 分别叫做复数z 的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a +b i(a ,b ∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b 而非b i.(3)复数z =a +b i 只有在a ,b ∈R 时才是复数的代数形式,否则不是代数形式. 2.复数相等在复数集C ={}a +b i|a ,b ∈R 中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R),我们规定:a +b i 与c +d i 相等的充要条件是a =c 且b =d .3.复数的分类对于复数a +b i ,当且仅当b =0时,它是实数;当且仅当a =b =0时,它是实数0;当b ≠0时,叫做虚数;当a =0且b ≠0时,叫做纯虚数.这样,复数z =a +b i 可以分类如下:复数z ⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)(当a =0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b ) (2)复数z =a +b i(a ,b ∈R) ――――→一一对应平面向量OZ ――→. 5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模. (2)记法:复数z =a +b i 的模记为|z |或|a +b i|. (3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R). 说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i. 7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3). 8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→ 所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律 对任意复数z 1,z 2,z 3∈C ,有11.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则 (1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d . (2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0. 12.复数代数形式的除法法则: (a +b i)÷(c +d i)=a +b ic +d i =ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0). 说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例] 实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解] (1)当x 满足⎩⎪⎨⎪⎧x 2-2x -15=0,x +3≠0,即x =5时,z 是实数.(2)当x 满足⎩⎪⎨⎪⎧x 2-2x -15≠0,x +3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 满足⎩⎪⎨⎪⎧x 2-x -6x +3=0,x 2-2x -15≠0,x +3≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件设复数z =a +b i(a ,b ∈R),则①z 为实数⇔b =0,②z 为虚数⇔b ≠0,③z 为纯虚数⇔a =0,b ≠0.④z =0⇔a =0,且b =0题型二、复数相等[典例] 已知关于x 的方程x 2+(1-2i)x +(3m -i)=0有实数根,则实数m 的值为________,方程的实根x 为________.[解析] 设a 是原方程的实根,则a 2+(1-2i)a +(3m -i)=0, 即(a 2+a +3m )-(2a +1)i =0+0i ,所以a 2+a +3m =0且2a +1=0, 所以a =-12且⎝ ⎛⎭⎪⎫-122-12+3m =0,所以m =112.题型三:复数与点的对应关系[典例] 求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R)对应的点Z 满足下列条件:(1)在复平面的第二象限内. (2)在复平面内的x 轴上方.[解](1)点Z 在复平面的第二象限内,则⎩⎪⎨⎪⎧a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎪⎨⎪⎧a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.题型四:复数的模[典例] (1)若复数z 对应的点在直线y =2x 上,且|z |=5,则复数z =( ) A .1+2i B .-1-2i C .±1±2iD .1+2i 或-1-2i(2)设复数z 1=a +2i ,z 2=-2+i ,且|z 1|<|z 2|,则实数a 的取值范围是( ) A .(-∞,-1)∪(1,+∞) B .(-1,1) C .(1,+∞)D .(0,+∞)[解析] (1)依题意可设复数z =a +2a i(a ∈R),由|z |=5得 a 2+4a 2=5,解得a =±1,故z =1+2i 或z =-1-2i. (2)因为|z 1|= a 2+4,|z 2|=4+1=5,所以a 2+4<5,即a 2+4<5,所以a 2<1,即-1<a <1. [答案] (1)D (2)B题型五:复数与复平面内向量的关系[典例] 向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,则OZ 1――→+OZ 2――→对应的复数是( )A .-10+8iB .10-8iC .0D .10+8i[解析] 因为向量OZ 1――→对应的复数是5-4i ,向量OZ 2――→对应的复数是-5+4i ,所以OZ 1――→=(-5, 4), OZ 2――→=(5, -4),所以OZ 2――→=(5,-4)+(-5,4)=(0,0),所以OZ 1――→+OZ 2――→对应的复数是0.[答案] C题型六:复数代数形式的加、减运算[典例] (1)计算:(2-3i)+(-4+2i)=________.(2)已知z 1=(3x -4y )+(y -2x )i ,z 2=(-2x +y )+(x -3y )i ,x ,y 为实数,若z 1-z 2=5-3i ,则|z 1+z 2|=________.[解析] (1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i =-2-i.(2)z 1-z 2=[(3x -4y )+(y -2x )i]-[(-2x +y )+(x -3y )i]=[(3x -4y )-(-2x +y )]+[(y -2x )-(x -3y )]i =(5x -5y )+(-3x +4y )i =5-3i ,所以⎩⎪⎨⎪⎧5x -5y =5,-3x +4y =-3,解得x =1,y =0,所以z 1=3-2i ,z 2=-2+i ,则z 1+z 2=1-i ,所以|z 1+z 2|= 2. [答案] (1)-2-i (2)2题型七:复数加减运算的几何意义[典例] 如图所示,平行四边形OABC 的顶点O ,A ,C分别表示0,3+2i ,-2+4i.求:(1) AO ――→表示的复数; (2)对角线CA ――→表示的复数; (3)对角线OB ――→表示的复数.[解] (1)因为AO ――→=-OA ――→,所以AO ――→表示的复数为-3-2i.(2)因为CA ――→=OA ――→--OC ――→,所以对角线CA ――→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB ――→=OA ――→+OC ――→,所以对角线OB ――→表示的复数为(3+2i)+(-2+4i)=1+6i.题型八:复数模的最值问题[典例] (1)如果复数z 满足|z +i|+|z -i|=2,那么|z +i +1|的最小值是( ) A .1 B.12 C .2D. 5(2)若复数z 满足|z +3+i|≤1,求|z |的最大值和最小值.[解析] (1)设复数-i ,i ,-1-i 在复平面内对应的点分别为Z 1,Z 2,Z 3, 因为|z+i|+|z-i|=2,|Z 1Z 2|=2,所以点Z 的集合为线段Z 1Z 2.问题转化为:动点Z 在线段Z 1Z 2上移动,求|ZZ 3|的最小值,因为|Z 1Z 3|=1. 所以|z+i+1|min=1. [答案] A(2)解:如图所示, |OM ――→|=(-3)2+(-1)2=2.所以|z |max =2+1=3,|z |min =2-1=1.题型九:复数代数形式的乘法运算[典例](1)已知i 是虚数单位,若复数(1+a i)(2+i)是纯虚数,则实数a 等于( )A .2 B.12 C .-12D .-2(2)(江苏高考)复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. [解析] (1)(1+a i)(2+i)=2-a +(1+2a )i ,要使复数为纯虚数,所以有2-a =0,1+2a ≠0,解得a =2.(2)(1+2i)(3-i)=3-i +6i -2i 2=5+5i ,所以z 的实部是5.题型十:复数代数形式的除法运算[典例] (1)若复数z 满足z (2-i)=11+7i(i 是虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5iD .-3-5i(2)设i 是虚数单位,复数1+a i2-i为纯虚数,则实数a 为( ) A .2 B .-2 C .-12D.12[解析] (1)∵z (2-i)=11+7i ,∴z =11+7i2-i =(11+7i)(2+i)(2-i)(2+i)=15+25i5=3+5i.(2)1+a i2-i =(1+a i)(2+i)(2-i)(2+i)=2-a 5+1+2a 5i ,由1+a i 2-i 是纯虚数,则2-a 5=0,1+2a 5≠0,所以a =2.[答案] (1)A (2)A题型十一:i 的乘方的周期性及应用[典例] (1)(湖北高考)i 为虚数单位,i 607的共轭复数为( ) A .iB .-iC.1 D.-1(2)计算i1+i2+i3+…+i2 016=________.[解析](1)因为i607=i4×151+3=i3=-i,所以其共轭复数为i,故选A.(2)法一:原式=i(1-i2 016)1-i=i[1-(i2)1 008]1-i=i(1-1)1-i=0.法二:∵i1+i2+i3+i4=0,∴i n+i n+1+i n+2+i n+3=0(n∈N),∴i1+i2+i3+…+i2 016,=(i1+i2+i3+i4)+(i5+i6+i7+i8)+…+(i2 013+i2 014+i2 015+i2 016)=0. [答案](1)A(2)0说明:虚数单位i的周期性(1)i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N*)(2)i n+i n+1+i n+2+i n+3=0(n∈N)。

高一集合与复数知识点总结

高一集合与复数知识点总结

高一集合与复数知识点总结高一数学学习中,集合与复数是很重要的内容之一。

本文将对高一集合与复数的知识点进行总结,以帮助同学们更好地掌握这些知识。

一、集合1. 集合的概念及表示方法集合是由若干个元素组成的整体,可以用大括号{}表示。

如果一个元素在集合中,就用小写字母表示,例如集合A={a, b, c},表示元素a、b、c属于集合A。

2. 集合的分类根据元素的性质,集合可以分为:空集、单元素集、有限集、无限集、相等集等。

3. 集合之间的关系常见的集合关系有:相等关系、子集关系、真子集关系,分别用等号=、⊆、⊂表示。

4. 常见的集合运算常见的集合运算有:并集、交集和补集。

如果A、B是集合,分别表示为A∪B(并集)、A∩B(交集)、A'(A的补集)。

二、复数1. 复数的概念及表示方法复数是由实部和虚部组成的数,一般表示为a+bi,其中a是实部,b是虚部,i是虚数单位,满足i²=-1。

2. 复数的性质复数具有加法、减法、乘法和除法等运算。

复数加法满足交换律和结合律,复数乘法满足交换律和分配律。

3. 复数的共轭复数a+bi的共轭复数是a-bi,可以用来求解复数的模和复数的除法。

4. 复数的绝对值和幅角复数a+bi的绝对值是√(a²+b²),表示复数到原点的距离;复数的幅角是复数的辐角,表示复数与实轴正方向的夹角。

5. 真实数与虚数当虚部b为0时,复数a+bi就是一个真实数;当实部a为0时,复数a+bi就是一个虚数。

三、高一集合与复数知识点综合应用1. 集合的应用集合常用于数学中的概率、统计等问题,可以用来表示样本空间、事件等。

2. 复数的应用复数在电路分析、信号处理、几何学等领域中有广泛的应用。

例如,复数可以表示交流电路中的电压和电流,用于解决电路中的稳态分析和暂态分析问题。

总结:高一集合与复数是初步数学学习的重要知识点。

通过对集合的认识,可以帮助同学们更好地理解集合的关系和运算;通过对复数的学习,可以拓宽数学思维,应用于实际问题的解决中。

常用的数集及其表示符号

常用的数集及其表示符号

常用的数集及其表示符号一、数集的分类1.整数集:整数集是指包括所有整数的集合,表示为Z。

整数集可以进一步细分为正整数集、负整数集和零。

2.有理数集:有理数集是指包括所有可以表示为两个整数之比的数,表示为Q。

有理数集包括了整数集,因为整数可以看作是分母为1的有理数。

3.实数集:实数集是指包括所有可以表示为无限小数的有理数,表示为R。

实数集包括了有理数集和无理数集,例如圆周率π就是一个无理数。

4.复数集:复数集是指包括所有实部和虚部组成的复数,表示为C。

复数集包括了实数集,因为实数可以看作是虚部为零的复数。

二、表示符号1.整数集:用Z表示。

2.有理数集:用Q表示。

3.实数集:用R表示。

4.复数集:用C表示。

三、常见子集及其表示1.空集:表示为,表示没有任何元素的集合。

2.单元集:表示为{x},表示只有一个元素的集合,其中的元素为x。

3.有限集:表示具有有限元素的集合。

例如,{1, 2, 3}就是一个有限集。

4.无限集:表示具有无限元素的集合。

例如,自然数集Z就是一个无限集。

四、集合的运算1.并集:表示两个或多个集合中所有元素的集合。

例如,集合A和集合B 的并集表示为A∪B。

2.交集:表示两个或多个集合中共同拥有的元素的集合。

例如,集合A和集合B的交集表示为A∩B。

3.补集:表示一个集合中不属于另一个集合的元素的集合。

例如,集合A 的补集表示为B。

4.运算规律:集合运算满足交换律、结合律和分配律。

五、应用实例1.几何中的集合应用:在几何中,集合用于表示线段、角度、多边形等形状的属性。

例如,表示一个三角形的三条边组成的集合。

2.逻辑中的集合应用:在逻辑学中,集合用于表示命题和概念。

例如,用集合表示一个逻辑论证中的前提和结论。

3.概率论中的集合应用:在概率论中,集合用于表示样本空间、事件和概率。

例如,表示一个赌博游戏中所有可能结果的集合。

4.编程中的集合应用:在编程中,集合数据结构用于存储和处理集合。

例如,Python中的集合(set)可以用于去除列表中的重复元素。

高三集合复数知识点总结

高三集合复数知识点总结

高三集合复数知识点总结集合与复数是高中数学中的重要内容,它们在解决实际问题和理解数学概念中扮演着关键角色。

本文将对高三阶段所涉及的集合与复数的知识点进行总结,以帮助学生更好地理解和掌握这些概念。

一、集合的概念及运算集合是由具有某种特定性质的事物或对象组成的整体。

在数学中,我们通常用大写字母来表示集合,如集合A、集合B等。

集合中的元素可以是数字、字母、图形等。

1. 集合的表示方法集合通常用大括号表示,元素之间用逗号分隔。

例如,集合A = {1, 2, 3} 表示集合A包含元素1、2和3。

2. 集合的分类集合可以分为有限集和无限集。

有限集是元素数量有限的集合,而无限集是元素数量无限的集合。

此外,还有空集,即不包含任何元素的集合。

3. 集合间的关系集合间的关系主要包括子集、真子集、相等和并集等。

子集是指一个集合的所有元素都是另一个集合的元素;真子集是指一个集合不仅是另一个集合的子集,而且还有自己独有的元素;两个集合相等是指它们包含完全相同的元素;并集是指将两个集合的所有元素合并在一起构成的新集合。

4. 集合的运算集合的运算主要包括并集、交集和补集。

并集运算用符号∪表示,交集运算用符号∩表示,补集运算用符号'或{ }^c表示。

例如,集合A 和集合B的并集是A∪B,交集是A∩B,集合A在全集U中的补集是A'或U^c。

二、复数的概念及运算复数是实数的扩展,它由实部和虚部组成,一般形式为a+bi,其中a 和b是实数,i是虚数单位,满足i^2=-1。

1. 复数的表示复数可以在平面上表示为一个点或一个向量。

实部对应于横坐标,虚部对应于纵坐标。

这种表示方法称为复平面。

2. 复数的分类复数可以根据实部和虚部的符号进行分类,包括实数、纯虚数、正实数、负实数等。

3. 复数的运算复数的运算包括加法、减法、乘法和除法。

复数的加法和减法运算类似于向量的加法和减法,即将对应的实部和虚部分别相加或相减。

复数的乘法运算需要使用分配律和虚数单位i的幂运算规则。

高中数学第七章复数(分层练习)(必修第二册)(2)

高中数学第七章复数(分层练习)(必修第二册)(2)

7.1.1 数系的扩充和复数的概念【自主学习】一.复数的有关概念1.复数的定义:形如a +b i(a ,b ∈R )的数叫做复数,其中i 叫做 ,满足i 2= .2.复数集:全体复数所构成的集合C ={a +b i|a ,b ∈R }叫做复数集.3.复数的表示方法复数通常用字母z 表示,即 ,其中a 叫做复数z 的实部,b 叫做复数z 的虚部. 二.复数相等的充要条件在复数集C ={a +b i|a ,b ∈R }中任取两个数a +b i ,c +d i(a ,b ,c ,d ∈R ),我们规定:a +b i 与c +d i 相等当且仅当 且 . 三.复数的分类1.复数z =a +b i(a ,b ∈R )⎩⎨⎧实数(b =0),虚数(b ≠0)⎩⎨⎧纯虚数a =0,非纯虚数a ≠0W.2.复数集、实数集、虚数集、纯虚数集之间的关系【小试牛刀】1.思维辨析(对的打“√”,错的打“×”)(1)若a ,b 为实数,则z =a +b i 为虚数.( )(2)复数z 1=3i ,z 2=2i ,则z 1>z 2.( ) (3)若b 为实数,则z= bi 必为纯虚数.( )(4)实数集与复数集的交集是实数集.( ) 2.若复数(a +1)+(a 2-1)i(a ∈R )是实数,则a =( ) A .-1 B .1 C .±1D .不存在【经典例题】题型一 复数的概念例1 写出下列复数的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数:4, 2-3i ,-12+43i, 5+2i, 6i.【训练】1若a ∈R ,i 为虚数单位,则“a =1”是“复数(a -1)(a +2)+(a +3)i 为纯虚数”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分又不必要条件题型二复数的分类例2 实数m取什么值时,复数z=m+1+(m-1)i是(1)实数;(2)虚数;(3)纯虚数。

复数的知识点总结与题型归纳

复数的知识点总结与题型归纳

复数的知识点总结与题型归纳一、知识要点1.复数的有关概念我们把集合C={a+b i|a,b∈R}中的数,即形如a+b i(a,b∈R)的数叫做复数,其中i叫做虚数单位.全体复数所成的集合C叫做复数集.复数通常用字母z表示,即z=a+b i(a,b∈R),这一表示形式叫做复数的代数形式.对于复数z=a+b i,以后不作特殊说明都有a,b∈R,其中的a与b分别叫做复数z的实部与虚部.说明:(1)复数集是最大的数集,任何一个数都可以写成a+b i(a,b∈R)的形式,其中0=0+0i.(2)复数的虚部是实数b而非b i.(3)复数z=a+b i只有在a,b∈R时才是复数的代数形式,否则不是代数形式.2.复数相等在复数集C={a+b i|a,b∈R}中任取两个数a+b i,c+d i(a,b,c,d∈R),我们规定:a+b i与c+d i相等的充要条件是a=c且b=d.3.复数的分类对于复数a+b i,当且仅当b=0时,它是实数;当且仅当a=b=0时,它是实数0;当b≠0时,叫做虚数;当a=0且b≠0时,叫做纯虚数.这样,复数z =a+b i可以分类如下:复数(b=0),(b≠0)(当a=0时为纯虚数).说明:复数集、实数集、虚数集、纯虚数集之间的关系4.复数的几何意义(1)复数z =a +b i(a ,b ∈R)―――――――→一一对应复平面内的点Z (a ,b )(2)复数z =a +b i(a ,b ∈R)――――→一一对应平面向量OZ ――→.5.复数的模(1)定义:向量OZ 的模r 叫做复数z =a +b i(a ,b ∈R)的模.(2)记法:复数z =a +b i 的模记为|z |或|a +b i|.(3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R).说明:实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.6.复数的加、减法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1+z 2=(a +c )+(b +d )i ,z 1-z 2=(a -c )+(b -d )i.7.复数加法运算律设z 1,z 2,z 3∈C ,有z 1+z 2=z 2+z 1,(z 1+z 2)+z 3=z 1+(z 2+z 3).8.复数加、减法的几何意义设复数z 1,z 2对应的向量为OZ 1――→,OZ 2――→,则复数z 1+z 2是以OZ 1――→,OZ 2――→为邻边的平行四边形的对角线OZ ――→所对应的复数,z 1-z 2是连接向量OZ 1――→与OZ 2――→的终点并指向OZ 1――→的向量所对应的复数.它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.9.复数代数形式的乘法法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R),则z 1·z 2=(a +b i)(c +d i)=(ac -bd )+(ad +bc )i.10.复数乘法的运算律对任意复数z 1,z 2,z 3∈C ,有交换律z 1·z 2=z 2·z 1结合律(z 1·z 2)·z 3=z 1·(z 2·z 3)分配律z 1(z 2+z 3)=z 1z 2+z 1z 311.共轭复数已知z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ,则(1)z 1,z 2互为共轭复数的充要条件是a =c 且b =-d .(2)z 1,z 2互为共轭虚数的充要条件是a =c 且b =-d ≠0.12.复数代数形式的除法法则:(a +b i)÷(c +d i)=a +b i c +d i =ac +bd c 2+d 2+bc -ad c 2+d 2i(c +d i ≠0).说明:在进行复数除法时,分子、分母同乘以分母的共轭复数c -d i ,化简后即得结果,这个过程实际上就是把分母实数化,这与根式除法的分母“有理化”很类似.二、题型总结题型一:复数的概念及分类[典例]实数x 分别取什么值时,复数z =x 2-x -6x +3+(x 2-2x -15)i 是(1)实数?(2)虚数?(3)纯虚数?[解](1)当x 2-2x -15=0,+3≠0,即x =5时,z 是实数.(2)当x2-2x -15≠0,+3≠0,即x ≠-3且x ≠5时,z 是虚数.(3)当x 0,≠0,即x =-2或x =3时,z 是纯虚数.复数分类的关键(1)利用复数的代数形式,对复数进行分类,关键是根据分类标准列出实部、虚部应满足的关系式.求解参数时,注意考虑问题要全面,当条件不满足代数形式z =a +b i(a ,b ∈R)时应先转化形式.(2)注意分清复数分类中的条件。

复数集合知识点总结

复数集合知识点总结

复数集合知识点总结一、复数英语名词的常规形式1. 在名词的词尾加-s。

例如:cat - catsdog - dogsbook - bookspen - pensstudent - studentsteacher - teachers2. 在以-s、-sh、-ch、-x、-z结尾的名词后加-es。

例如:bus - buseswish - wisheswatch - watchesbox - boxesquiz - quizzes3. 以-o结尾的名词通常是在词尾加-es。

例如:potato - potatoestomato - tomatoeshero - heroesvolcano - volcanoes4. 以-y结尾的名词如果前面是辅音,则变y为i再加-es。

例如: baby - babiescity - citiesfamily - familiesparty - parties5. 以-f或-fe结尾的名词通常变f或fe为v再加-es。

例如:leaf - leaveshalf - halvesknife - kniveswife - wives6. 以-us结尾的名词变us为i。

例如:cactus - cactifocus - focinucleus - nuclei以上是复数名词的常规形式,掌握这些规则可以帮助学习者正确地使用复数形式。

二、特殊情况1. 一些名词的复数形式与单数形式相同,如:sheep, deer, fish, series等。

2. 一些名词的复数形式是不规则的,需要进行记忆。

如:man - men, woman - women, child - children, foot - feet等。

三、使用复数名词的注意事项1. 复数名词通常用来表示两个或更多个事物、人或概念。

例如:There are five books onthe table.2. 当谈论一组事物的时候,可以用复数名词表示整体。

复数的概念

复数的概念
复数的基本概念
1、为了解决负数开方问题,引入新数 i,叫虚数单位。
规定:
i2= -1
2、复数: 把形如 bi(a, b R)的数叫复数。 a 复数集: 复数全体所组成的集合叫复数集, 一般用字母C表示 复数系:定义了复数的加法和乘法运算后的复数集
3、复数的代数形式: 复数Z表示成a+bi,叫做复数的代数形式 a叫复数Z的实部,记作ReZ
a bi c di(a, b, c, d R) a c b d
复数相等的概念
如果有两个复数Z1=a+bi (a,b∊R)和Z2=c+di (c,d∊R) 的实部与虚部分别相当,即a=c且b=d,那么这两个 复数相等。 记做 a+bi =c+di 说明 1、若Z1,Z2均为实数,则Z1,Z2具有大小关系 2、若Z1,Z2中不都为实数,Z1与Z2只有相等或 不相等两关系,而不能比较大小
Z1 Z2 Z1 Z2
Z Z
n
Z2 0

n
Z Z
Z Z 2a
Z Z a b
2
2
Z Z 2bi
复数的运算常用结论
i2=-1 (1) 一般地,如果n∈N*
i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i
(2) in+in+1+in+2+in+3=0 in· · · =-1 in+1 in+2 in+3 (3)(1+i)2=2i (1-i)2=-2i (4) w有什么类似的性质呢?
例题选讲
例2 已知复数z1满足 z1 2 i 1 i , 复数z2的 虚部为2,且z1 z2是实数,求复数z2 .

复数的性质-总结

复数的性质-总结
, ,
12.复数的运算律
(1)复数的乘方:
(2)对任何 , 及 有
13.复数的几何意义
,加减法的几何意义:平行四边形法则
注:复数几何意义给数形结合提供了条件.
⑴复平面内的两点间距离公式: .其中 是复平面内的两点 所对应的复数 间的距离.
⑵曲线方程的复数形式:
① 为圆心,r为半径的圆的方程.
② 表示线段 的垂直平分线的方程.
②z是纯虚数 z+ =0(z≠0); ③z是纯虚数 z2<0
4.复数相等
如果两个复数实部相等且虚部相等就说这两个复数相等
5.复数的模
= =
6.较大小
两个复数,如果不全是实数,就不能比较大小.
(1)若 为复数,则
①若 ,则 .(×)[ 为复数,而不是实数]
②若 ,则 .(√)
(2)若 ,则 是 的必要不充分条件.
(当 , 时,上式成立)
8.共轭复数
复数z=a+bi与复数z=a-bi互为共轭复数(当虚部不为零时,也可说成互为共轭虚数).
9.复平面
建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴除去原点的部分叫虚轴.
10.复数四则运算法则
设z1=a+bi,z2=c+di(a,b,c,d∈R),则:
复数
1.复数定义
形如 的数叫做复数,a,b分别叫它的实部和虚部.(复数集C—全体复数的集合)
2.复数单位
复数的单位为i,它的平方等于-1,即 .
3.复数分类
(1)复数—形如z=a+bi(其中 );
(2)实数— 当b = 0时的复数z=a+bi,即a;
(3)虚数—当 时的复数z=a+bi;
(4)纯虚数—①当a= 0且 时的复数z=a+bi,即bi.

(完整版)复数的基本概念和几何意义

(完整版)复数的基本概念和几何意义

一、考点、热点回顾1. 复数的有关概念 (1)复数① 定义:形如 a + bi ( a , b ∈ R )的数叫做复数,其中 i 叫做虚数单位,满足 i 2=- 1. ② 表示方法:复数通常用字母 z 表示,即 z = a +bi ( a ,b ∈ R ),这一表示形式叫做复数的代数形式 .a 叫做复 数 z 的实部, b 叫做复数 z 的虚部 .注意:复数 m +ni 的实部、虚部不一定是 m 、 n ,只有当 m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部 . ( 2)复数集①定义:全体复数所成的集合叫做复数集 . ②表示:通常用大写字母 C 表示 .2. 复数的分类实数( b =0)2)复数集、实数集、虚数集、纯虚数集之间的关系3. 复数相等的充要条件设 a 、 b 、 c 、 d 都是实数,则 a +bi =c +di? a =c 且 b =d ,a +bi =0?a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为 z =a +bi (a , b ∈R )的形式,即分离实部和虚 部.2)只有当 a =c 且 b =d 的时候才有 a +bi =c +di ,a = c 和 b =d 有一个不成立时,就有 a +bi ≠c + di.3)由 a + bi = 0,a ,b ∈R ,可得 a =0 且 b = 0. 4.复平面的概念 建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴, y 轴叫做虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数 .6.复数的模复数 z =a +bi (a ,b ∈R )对应的向量为 O →Z ,则O →Z 的模叫做复数 z 的模,记作 |z|,且 |z|= a 2+b 2. 注意:复数 a +bi (a , b ∈R )的模 |a + bi|= a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以 比较大小 .考点一、复数的概念 例 1、下列命题:①若 a ∈ R ,则( a +1)i 是纯虚数; ②若 a ,b ∈R ,且 a>b ,则 a +i>b + i ;复数1)复数 z =a +bi (a , b ∈R )虚数( b ≠0)纯虚数 a = 0 非纯虚数5.复数的两种几何意义 ( 1)复数 z =a +bi (a , b ∈R )一一对应←一―一对―应→复平面内的点Z (a ,b ) 一一对应←―平面向量 O →Z.典型例题③若( x2- 4)+( x2+3x+ 2)i 是纯虚数,则实数 x=±2;④实数集是复数集的真子集 .其中正确的是( ) A. ① B.② C.③ D.④【解析】 对于复数 a +bi (a ,b ∈R ),当 a =0且 b ≠0 时,为纯虚数 .对于① ,若 a =- 1,则( a +1)i 不 是纯虚数,即 ①错误.两个虚数不能比较大小,则 ②错误.对于 ③,若 x =-2,则 x 2-4=0,x 2+3x +2=0,此时 (x 2-4)+( x 2+3x +2)i =0,不是纯虚数,则 ③错误 .显然,④正确 .故选 D.【 答案】 D 变式训练 1、 1.对于复数 a + bi ( a ,b ∈R ),下列说法正确的是( A. 若 a =0,则 a +bi 为纯虚数B. 若 a +( b -1)i =3-2i ,则 a = 3,b =- 2C. 若 b =0,则 a +bi 为实数D. i 的平方等于 1 解析: 选 C.对于 A ,当 a =0 时, a +bi 也可能为实数; 对于 B ,若 a +( b - 1) i = 3- 2i , 对于 D ,i 的平方为- 1.故选 C.2. 若 4-3a -a 2i =a 2+4ai ,则实数 A.1 C.-4 4 - 3a = a 2,解析: 选 C.易知 2 解得-a 2=4a , 考点二、复数的分类例 2、已知 m ∈R ,复数 z =m (m +2)m -1(1)z 为实数?( 2)z 为虚数?( 3) z 为纯虚数?则 a =3,b =- 1;a 的值为( ) B.1 或- 4D.0 或- 4 a =- 4. (m 2+2m -3)i ,当 m 为何值时,解】 2) 要使1)要使 z 为实数, m 需满足 m 2+2m -3=0,且 m ( m + 2)有意义,即 m -1≠0,解得 m =-3. m -1 z 为虚数, m 需满足 m 2+ 2m - 3≠ 0,且m ( m + 2)有意义,即 m -1≠ 0,解得 m ≠1 且m ≠-3. m -13) 要使z 为纯虚数, m 需满足m ( m + 2)变式训练 2、 当实数 m 为何值时,复数 纯虚数;( 2)实数 . =0,且 m 2+2m -3≠0,解得 m =0 或- 2. m -1lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是解:(1)复数 lg ( m 2- 2m - 7)+ m 2+5m +6)i 是纯虚数,则lg 2(m2-2m -7)=0,m 2+ 5m +6≠0,解得 m = 4.m2-2m -7>0 ,2)复数 lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是实数,则 m 2+5m +6=0,解得 m =- 2 或 m =- 3.考点三、复数相等 例 3、( 1) 3) 若( x +y )+ yi =( x +1)i ,求实数 x ,y 的值;已知 a 2+(m +2i )a +2+mi =0(m ∈R )成立,求实数 a 的值; 若关于 x 的方程 3x 2- a 2x - 1=( 10- x - 2x 2)求实数 a 的值 . x +y =0, 解】 ( 1)由复数相等的充要条件,得解得 y =x +1, 1 x =- 2, 2)因为 a ,m ∈ R ,所以由 a 2+ am +2+( 2a +m )i = 0,可得 1y =12. a 2+ am +2=0, 2a + m =0,解得a m ==-22,2或 a =- 2, m = 2 2, 所以 a = ± 2.( 3)设方程的实根为 x = m ,则原方程可变为 3m 2-a 2m -1=( 10-m -2m 2) i ,2a3m 2-m - 1=0, 712 解得 a = 11 或- 71. 25 10- m - 2m 2= 0,考点五、复数与复平面内的向量例 5、(1)已知 M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出 O →M ,O →N ,O →P , O →Q 所表示的复数;( 2)已知复数 1,- 1+2i ,- 3i ,6-7i ,在复平面内画出这些复数对应的向量;( 3)在复平面内的长方形 ABCD 的四个顶点中,点 A ,B ,C 对应的复数分别是 2+3i ,3+2i ,- 2-3i ,求 点 D 对应的复数 .【 解】 ( 1)O →M 表示的复数为 1+ 3i ; O →N 表示的复数为 4-i ; O →P 表示的复数为 2i ; O →Q 表示的复数为- 4.(2)复数 1 对应的向量为 O →A ,其中 A (1,0);复数- 1+2i 对应的向量为 O →B ,其中 B (- 1,2); 复数- 3i 对应的向量为 O →C ,其中 C (0,- 3);复数 6-7i 对应的向量为 O →D ,其中 D (6,-7). 如图所示 .所以 变式训练所以所以3、已知 A ={1,2,a 2-3a -1+(a 2-5a -6)i },B ={-1,3},A ∩B ={3} ,求实数 a 的值. 由题意知, a 2- 3a - 1+ a 2- 3a - 1= 3 , a 2- 5a - 6= 0 , a =- 1.a 2-5a -6)i =3(a ∈R ), a = 4或 a =- 1, 即 考点四、复数与复平面内的点例 4、已知复数 z =( a 2- 1)+ 的值(或取值范围) .( 1)在实轴上; ( 2)在第三象限 .【 解】 ( 1 )若对应的点在实轴上,则有12a -1= 0,解得 a = 2.( 2)若 z 对应的点在第三象限,则有 a 2 -1<0 , 1解得- 1<a<1.故 a 的取值范围是 - 1, 2a - 1<0. 2变式训练 4、求实数 a 取什么值时,复平面内表示复数( 1)位于第二象限;( 2)位于直线 y = x 上 .解: 根据复数的几何意义可知,复平面内表示复数 a 2- 3a + 2) .( 1)由点 Z 位于第二象限,得 a 2+a -2<0,2 解得- 2<a<1. a 2-3a +2>0,故满足条件的实数 a 的取值范围为(- 2,1).2a -1)i ,其中 a ∈R.当复数 z 在复平面内对应的点 Z 满足下列条件时,求 a 1 2.z =a 2+a -2+( a 2-3a +2)i z =a 2+a -2+( a 2-3a + 2)i 的点就是点 Z ( a 2+a -2,解析: 3- 3i 对应向量为( 3,- 3),与 x 轴正半轴夹角为 30°,顺时针旋转 60°后所得向量终点在 y 轴 负半轴上,且模为 2 3.故所得向量对应的复数是- 2 3i.答案: - 2 3i 考点六、复数的模例 6、( 1)设( 1+i )x =1+yi ,其中 x ,y 是实数,则 |x + yi|=( )A.1B. 2C. 3D.2( 2)已知复数 z 满足 z +|z|=2+8i ,求复数 z.【 解】 (1)选 B.因为 x + xi = 1+ yi ,所以 x = y =1, 所以 |x +yi|=|1+i|= 12+12= 2.( 2)法一: 设 z =a +bi ( a ,b ∈R ),则 |z|= a 2+ b 2 , 代入原方程得 a + bi + a 2+b 2=2+ 8i , a + a 2+ b 2= 2, 根据复数相等的充要条件,得 + 解得b =8, 所以 z =- 15+ 8i. 法二: 由原方程得 z =2-|z|+8i (* ). 因为|z|∈R ,所以 2-|z|为 z 的实部, 故 |z|= ( 2-|z|)2+82, 即|z|2=4-4|z|+|z|2+64,得 |z|=17. 将|z|=17代入( *)式得 z =- 15+8i. 变式训练 6、已知复数 z = 3+ ai ( a ∈ R ),且 |z|<4,求实数 解:法一: 因为 z =3+ ai (a ∈ R ),所以 | 由已知得 32+ a 2<4 2,所以 a 2<7,所以 a ∈ 法二:由|z|<4知z在复平面内对应的点在以原点为圆心,以 4为半径的圆内(不包括边界) ,由 z =3+ ai 知z 对应的点在直线 x = 3 上,所以线段 AB (除去端点)为动点 Z (3,由图可知- 7<a< 7.三、课后练习1.若(x+y)i=x-1(x,y ∈R),则 2x+y 的值为 ( )A. B.2 C.0 D.1 解析 :由复数相等的充要条件知 ,x+y =0,x-1=0 故 x+y=0. 故 2x+y =2 0=1. 答案 :D则A →D =(x -2,y -3),B →C =(- 5,-5). → → x - 2=- 5, 由题知, A →D =B →C ,所以 即 x =- 3,故点 D 对应的复数为- 3- 2i.变式训练 5 、在复平面内,把复数 3- 3i 对应的向量按顺时针方向旋转π3 ,所得向量对应的复a =-15, b = a 的取值范围 . = 32 +a 2,- 7,2.已知集合 M={1,2,(m 2-3m-1)+(m 2-5m-6)i},N={-1,3}, 且 M∩ N={3}, 则实数 m的值为 ( )A.4B.-1C.-1 或 4D.-1 或 6 解析 :由于 M∩N={3} ,故 3∈M, 必有 m2-3m-1+(m 2-5m-6)i=3, 所以得 m=-1.答案 :B3. _______________________________________________________________ 给出下列复数 :①-2i,②3+,③8i2,④isin π⑤,4+i;其中表示实数的有 (填上序号 ) __________ .解析 :②为实数 ;③8i2=-8 为实数 ;④i · sin π =0为·实i=数0 ,其余为虚数 .答案 :②③④4.下列复数模大于 3,且对应的点位于第三象限的为 ( )A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i 解析 :A 中 |z|=<3;B 中对应点 (2,-3) 在第四象限 ;C 中对应点 (3,2)在第一象限 ;D 中对应点 (-3,-2) 在第三象限,|z|=>3.答案 :D5.已知复数 z满足 |z|2-2|z|-3=0,则复数 z对应点的轨迹为 ( ) A.一个圆 B.线段 C.两点 D.两个圆解析 :∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0, ∴|z|=3,表示一个圆 ,故选 A.答案 :A6. _______________________________________________________ 已知在△ABC 中 ,对应的复数分别为 -1+2i,-2-3i, 则对应的复数为______________________________ .解析 : 因为对应的复数分别为 -1+2i,-2-3i,所以 =(-1,2),=(-2,-3). 又=(-2,-3)-(-1,2)=(-1,-5), 所以对应的复数为 -1-5i.答案 :-1-5i7.在复平面内 ,若复数 z=(m2-m-2)+(m 2-3m+2)i 的对应点 ,(1) 在虚轴上 ,求复数 z;(2)在实轴负半轴上 ,求复数 z. 答案 :(1) 若复数 z 的对应点在虚轴上 ,则 m2-m-2=0, 所以 m=-1或 m=2. 此时 z=6i 或 z=0.(2)若复数 z 的对应点在实轴负半轴上 ,则 m2-3m+2=0,m2-m-2<0,∴m=1能力提升8. _____________________________________________________ 若复数 z=cos θ +(-msin -θcosθ )i为虚数 ,则实数 m 的取值范围是________________________ .解析 :∵z 为虚数 ,∴ m-sin θ-cosθ≠ 0,即 m ≠ sin θ+cos θ.∵ sin θ +cos ∈θ[ - 2 , 2 ], ∴ m ∈ (-∞,- 2 )∪( 2 ,+ ∞). 答案 :(-∞,- 2 )∪( 2 ,+ ∞)9. _____________________________________________________ 若复数 (a 2-a-2)+(|a-1|-1)i(a ∈ R)不是纯虚数 ,则 a 的取值范围是 ________________________解析 :若复数为纯虚数 ,则有 a 2-a-2=0,|a-1|-1≠0 即 a=-1. 故复数不是纯虚数时 a ≠-1. 答案 :{a|a ≠-1} 10. _______________________________________________________ 已知向量与实轴正向夹角为 135°,向量对应复数 z 的模为 1,则 z= _________________________________ .解析 :依题意知 Z 点在第二象限且在直线 y=-x 上 , 设 z=-a+ai(a>0).1∵ |z|=1,∴ a 2= .而 a>0,2∴ a=22 答案 :z= i2211. ___________________________________ 已知复数 z 满足 z+|z|=2+8i, 则复数 z= . 解析 :设 z=a+bi(a,b ∈R), 则 |z|= a 2b2 ,代入方程得 ,a+bi+ a 2b 2= 2+8i,∴解得 a=-15∴ z=-15+8i. 答案 :-15+8i12. 已知 M= {1,(m 2-2m)+(m 2+m-2)i}, P={ -1,1,4i}, 若 M ∪ P=P ,求实数 m 的值. 解析 :M ∪P=P,∴M?P,即 (m 2-2m)+(m 2+m-2)i=-1 或 (m 2-2m)+(m 2+m-2)i=4i. 由 (m 2-2m)+(m 2+m-2)i=-1, 得解得 m=1;由 (m 2-2m)+(m 2+m-2)i=4i,解得 m=2. 综上可知 m=1 或 m=2. 答案 :m=1 或 m=213. 已知复数 z=2+cos θ +(1+sin θ∈)iR( ), θ试确定复数 z 在复平面内对应的点的轨迹是什么曲线 解析 : 设复数 z=2+cos θ +(1+sin θ对)i 应的点为 Z(x,y), 则 x=2+cos θ ,y=1+sin θ 即 cos θ =-x2,sin θ =-1y 所以 (x-2)2+(y-1) 2=1.∴z22所以复数 z 在复平面内对应点的轨迹是以 (2,1)为圆心 ,1 为半径的圆答案 :复数 z在复平面内对应点的轨迹是以 (2,1)为圆心 ,1为半径的圆14.已知复数 z= m(m- 1)+ (m2+ 2m-3)i( m∈ R ).(1)若 z 是实数,求 m 的值;(2)若 z是纯虚数,求 m 的值;(3)若在复平面 C 内, z所对应的点在第四象限,求答案 : (1)∵z 为实数,∴m2+2m-3=0,解得 m=-(2)∵z 为纯虚数,m m- 1 =0 , m2+ 2m- 3≠0.m 的取值范围.解得 m= 0.(3)∵z 所对应的点在第四象限,m m- 1 >0 ,∴ 2解得- 3<m<0. m2+ 2m- 3<0.。

复数知识点精心总结

复数知识点精心总结

复数知识点精心总结复数知识点精心总结复数的概念:形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。

全体复数所成的集合叫做复数集,用字母C表示。

复数的表示:复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。

复数的几何意义:(1)复平面、实轴、虚轴:点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。

显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数(2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。

这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。

复数的模:复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=虚数单位i:(1)它的平方等于-1,即i2=-1;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立(3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。

(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。

复数模的性质:复数与实数、虚数、纯虚数及0的关系:对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di a=c,b=d。

特殊地,a,b∈R时,a+bi=0a=0,b=0.复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。

复数的概念

复数的概念
பைடு நூலகம்
例:当 m 为何值时,复数 z = ( m 2 + m − 2) + ( m 2 − 1) i , 为: 为何值时, (1)实数 ( 2)虚数 ( 3)纯虚数 (1)若 z 为实数,则 m 2 − 1 = 0 ⇒ m = ± 1 为实数, ( 2 )若 z 为虚数,则 m 2 − 1 ≠ 0 ⇒ m ≠ ± 1 为虚数,
π
(m ∈ Z )成立
其中x,y∈ , 例2: 已知 : 已知(2x-y) + i =2 - (3-y) i , 其中 ∈R,求x, y. 解:由两个复数相等的定义可知: 由两个复数相等的定义可知:
2x − y = 2 x = 3, ⇒ − (3 − y) = 1. y = 4.
∴θ = kπ −
π
,θ = kπ + arctan 2(k ∈ Z )
4 π π 当k = 2m − 1时, θ = m π − (m ∈ Z )舍 ∴θ = kπ + (k ∈ Z ) 4 4 π (3)若Z为零,则 θ = kπ − ( k ∈ Z ) 为零, 4
当 k = 2 m 时, θ = m π +
2
x = −1
2
思考? 思考?
我们能否将实数集进行扩充,使得在新的数 我们能否将实数集进行扩充, 集中,该问题能得到圆满解决呢? 集中,该问题能得到圆满解决呢?
一、复数的概念: 复数的概念:
1。概念:为了解决负数的开方问题,人们引入了一个新 。 为了解决负数的开方问题,
i 数 i ,叫做虚数单位,规定: = -1,即 i 是-1的平方根;并 叫做虚数单位,规定: 即 的平方根; 叫做虚数单位 的平方根
∴m ≠ 3

(完整版)复数基础知识点

(完整版)复数基础知识点

1、复数的定义:设i 为方程21x =-的根,i 称为虚数单位,形如()a bi a b R +∈、的数,称为复数.所有复数构成的集合称复数集,通常用C 来表示.a 为实部,b 为虚部 2.复数集整 数有 理 数实数(0)分 数复 数(,)无理数(无限不循环小数)纯 虚 数(0)虚 数(0)非 纯 虚 数(0)b a bi a b R a b a ⎧⎧⎧⎪⎪⎨=⎨⎪⎩⎪⎪+∈⎨⎩⎪⎧≠⎪≠⎨⎪=⎩⎩3.复数的几何意义对任意复数z=a+bi (a,b ∈R ),a 称实部记作Re(z),b 称虚部记作Im(z).z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。

因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。

4. 两个复数相等的定义:a bi c di a c +=+⇔=且b d =(其中a b c d R ∈,,,,)特别地,00a bi a b +=⇔==.5.复数的四则运算 设111z a b i =+,222z a b i =+(1)加法:()()121212z z a a b b i +=+++,即实部与实部相加,虚部与虚部相加;(2)减法:()()121212z z a a b b i -=-+-,即实部与实部相减,虚部与虚部相减; (3)乘法:()()1212122112z z a a b b a b a b i ⋅=-++ , 特别22z z a b ⋅=+;(4)除法c diz a bi+=+(,a b 是均不为0的实数)的化简就是通过分母实数化的方法将分母化为实数,即分子分母同时乘以分母的共轭复数,然后再化简:()()22ac bd ad bc i c di c di a bi z a bi a bi a bi a b ++-++-==⋅=++-+;(5)四则运算的交换率、结合率;分配率都适合于复数的情况。

高考复数知识点精华总结

高考复数知识点精华总结

高考复数知识点精华总结1.复数的概念:复数是由实部和虚部组成的数,可以表示为z=a+bi,其中a和b都是实数,i是虚数单位。

2.复数集:复数集包括整数、有理数、实数(当b=0时)、分数、小数、无理数、纯虚数和虚数。

3.复数a+bi的实部为a,虚部为b,i是虚数单位。

当b=0时,a+bi是实数,当b≠0时,a+bi是虚数。

若a=0且b≠0,则a+bi是纯虚数。

4.复数的四则运算:加法、减法、乘法、除法都可以用实数单位和虚数单位进行运算。

特殊复数的运算包括周期性运算和(1±i)2=±2i等。

5.共轭复数与复数的模:复数z=a+bi的共轭复数为a-bi,模为|z|=√(a^2+b^2)。

共轭复数关于实轴对称,若b=0,则实数a与其共轭复数相等。

6.两个复数相等的定义为a+bi=c+di,其中a、b、c、d都是实数。

复数不能进行大小比较,只能由定义判断它们相等或不相等。

在运算中需要将虚数单位i的平方i^2=-1结合到实际运算过程中去。

6.复数的除法可以通过将分母实化得到,即满足(c+di)(x+yi)=a+bi (c+bi≠0)的复数x+yi被称为复数a+bi除以复数c+di的商。

由于两个共轭复数的积是实数,因此可以得到以下公式:a+bi / (c+di) = (ac+bd)/(c^2+d^2) + (bc-ad)i/(c^2+d^2)7.复数a+bi的模表示复数a+bi的点到原点的距离。

1.例1:对于复数z=m+1+(m-1)i,当m=1时,z是实数;当m≠1时,z是虚数;当m=-1时,z是纯虚数;当m<-1时,z对应的点Z在第三象限。

例2:已知(2x-1)+i=y-(3-y)i,其中x。

y∈R,求x。

y。

解得x=2.y=4.2.例4:对于复数z=m25+(m2+3m-10)i,当虚部m2+3m-10=0时,z为实数,解得m=2;当虚部m2+3m-10≠0且分母不为零时,z为虚数,解得m≠2且m≠±5;当虚部为0且分母不为零时,z为纯虚数,解得m=-2.3.计算i+i2+i3+……+i2005,可以将i的周期性用以下公式表示:i+i2+i3+……+i2005=(i+i2+i3+i4)+……+(i2001+i2002+ i2003+i2004)+i2005=(i-1-i+1)+ (i-1-i+1)+……+(i-1-i+1)+i。

复数的知识点总结

复数的知识点总结

复数的知识点总结
定义与性质:
复数是形如a+bi的数,其中a、b为实数,i是虚数单位,满足i²=-1。

在复数a+bi中,a称为复数的实部,b称为复数的虚部。

当虚部等于零时,复数就是实数;当虚部不等于零时,复数称为虚数。

虚数的实部如果等于零,则称为纯虚数。

复数集包含了实数集,是实数集的扩张。

复数的运算:
加减法:两个复数的和或差依然是复数,实部是原来两个复数实部的和或差,虚部是原来两个虚部的和或差。

复数的加法满足交换律和结合律。

乘除法:两个复数的积或商仍然是一个复数。

乘法可以通过多项式乘法展开得到,除法可以通过乘以分母的共轭复数来实现。

复数的应用:
复数是复变函数论、解析数论、傅里叶分析、分形、流体力学、相对论、量子力学等学科中最基础的对象和工具。

在几何和图形处理上,复数能表示平移、旋转、镜射、伸缩等变换,具有极为重要的应用。

在科学计算中,复数也广泛应用于电路设计、电磁场分析、交流电表示等领域。

总之,复数是数学中一个重要而基础的概念,在理论和应用方面都有着广泛的应用。

掌握复数的定义、性质和运算法则,对于理解高级数学概念和解决实际问题都非常重要。

数系—复数集(初等数学课件)

数系—复数集(初等数学课件)

复数的概念
两个复数相等,即a bi c di a c,b d 当两个复数互为共轭复数时,他们的实部不变,虚部变为原来的相反数,即
z a bi z a bi (共轭复数)
如, z 5 2i 的共轭复数就是 z 5 2i
复数的概念
定义2 复数的加、乘运算定义为
a bi c di a c b d i a bic di ac bd bc adi
向量OZ 的模r 叫做复数 z a bi 的模,记作 z 或a bi ,且 z a bi r a2 b2
复数的表示形式
2、三角形式
设复数 z a bi 的模 z r ,则 z r a b i ,令cos a ,sin b ,则 z rcos isin ,
r r
r
r
把 z rcos isin 称为复数 z a bi 的三角形式, 称为复数z a bi 的辐角。
减法、除法定义为
a bi- c di a - c b - d i
a
bi
c
di
ac
c2
bd d2
bc - ad
c2 d2
i
复数的加、乘运算满足交换律、结合律和分配律
复数的表示形式
1、几何与向量表示
复数 z a bi 与直角坐标平面内的点Za,b
一一对应,以原点O 为起点、Z 为终点的
向量OZ 一一对应,向量OZ 表示复数 z a bi ,
z rcos isin r 0有且只有n 个相等的n 次方根:
wk
n
r cos
2k n
isin
2k n
,k
0,1,2,, n
1
性质 3 复数集是不可数集。(实数集是不可数集,而实数集是复数集的子

1.7复数域

1.7复数域
乘法:结合律、交换律、乘法对加法的
分配律.
有单位元 1,0
a,b 0 . a,b
的逆元为
a2
a
b2
,
b a2 b2
目录
上页
下页
返回
二、复数的代数形式
R0 a,0 a R f : a, 0 a 是R0到R的一个一一映射
对 a,b R
f a,0b,0 f ab,0 ab f a,0b,0 f a b,0 a b
虚部不是零的复数叫做虚数,实部为零的虚数做 纯虚数.
i2 i i 0,10,1 1, 0 1
目录
上页
下页
返回
三、用向量观点处理复数
• 1. 与复数对应的点和向量
z a bi Z a,b OZ
• 不论向量的起点在哪里,凡是相等的向量都属于 同一个等价类,它们表示同一个复数.
• 2. 复数的三角形式
目录
上页
下页
返回
例 3 求 cos cos3 cos5
7
7
7
目录
上页
下页
返回
例4 已知 arctana+arctanb+arctanc=π, 求证:ab+bc+ca>1,且 a+b+c=a·b·c.
目录
上页
下页
返回
• (4) z1 z2 ≤ z1 z2 ≤ z1 z2
目录
上页
下页
返回
4. 复数运算的几何意义
(1) z a bi a,bR
(2) z1 z2 ,z1 z2 , k z k R
z r cos isin , z 的 n次方根 nN,n 1)
(3) z , z1 z2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复数导学案
课题:复数与复数集课型:新授执笔:
审核: 使用时间:
一、学习目标
1、了解引入复数的必要性
2、掌握虚数、复数的概念及复数集的构成
二、重点难点
1、虚单位
2、复数和复数集的构成
3、虚数与纯虚数的区别
三、学习内容
复数与复数集:
1、方程的解与数集扩展
2、虚单位、纯虚数和虚数
规定在新数集中有一个新数.在此基础上,再规定对任意负实数b,有

这样一来,在新数集中,任何都可以开方。

这个规定如同虚单位i与实数形式地进行乘法运算时,将i视为字母a,b,c,例如3i, -4i等.由此可见新数集中bi,(b∈R,b≠0)为新类型数,这种新类型数叫做.
把纯虚数bi,(b∈R,b≠0)与实数形式地进行加法运算,得到一般形式为a+bi,(a,b∈R,b≠0)的新类型数,这种新类型数叫做.全部虚数构成一个数集,叫做.
3、复数集
现在我们,由此得到一个比实数集更大的新数集,这个数集叫;
其中的每一个数叫做.复数集常用标识符表示,复数常用字母表示.复数的一般表示形式为因此C=
对于复数z=a+bi,当时是实数;当时是虚数;当时是纯虚数.为此我们把复数z=a+bi中的叫做z的实部,叫做z的虚部.因此可以说,
四、探究分析
1、下列数中,哪些是实数?哪些是虚数?哪些是纯虚数?哪些是复数?
5
7
, 2+3i, -4i, 0.8, -7+0.01i, -i-2, 10.4i, 9-
2
3
i.
方法总结:
2、实数m取什么值时,复数z=(m+3)+(m-1)i是(1)实
数;(2)虚数;(3)纯虚数?
方法总结:
课堂训练
1.在下列数中,哪些是实数?哪些是虚数?哪些是纯虚数?
(2)0.618i;(3)2
7
i;(4) 0;(5) i;
(6) i2;(7)5i-8;
;(9)i


2. 下列各复数的实部和虚部各是什么?
(1)-5+6i;
;(3) i;(4)0;

课后作业
1. 实数m取什么值时,复数z=(m-1)+ (m+4)i是:(1)实数;(2)虚数;
(3)纯虚数?
2. 实数m取什么值时,复数z=(m2+m-2)+(m2-1)i是:(1)实数;(2)
纯虚数?3.实数m取什么值时,复数z=(m2-m-2)+(m2-1)i是:(1)实数;(2)纯虚数?
教学后记。

相关文档
最新文档