中考数学二次函数综合题解题技巧讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C x
x
y y
A O
B
E
D A
C B C
D G
图1 图2
A
P O B E C
x y
中考数学二次函数综合题解题技巧
一、 动态:动点、动线
1.如图,抛物线与x 轴交于A (x 1,0)、B (x 2,0)两点,且x 1>x 2,与y 轴交于点C (0,4),其中x 1、
x 2是方程x 2-2x -8=0的两个根. (1)求这条抛物线的解析式;
(2)点P 是线段AB 上的动点,过点P 作 PE ∥AC ,交BC 于点E ,连接CP ,当△CPE
的面积最大时,求点P 的坐标;
(3)探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三 角形?若存在,请直接写出所有符合条件的
点Q 的坐标;若不存在,请说明理由.
二、 圆
2. 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l.
(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式;
(2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD△相似时,求出BF 的长 .
3.如图1,在平面直角坐标系xOy ,二次函数y =ax 2
+bx +c (a >0)的图象顶点为D ,与y 轴交于
点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO = 1
3.
(1)求这个二次函数的解析式;
(2)若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;
(3)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.
4.在平面直角坐标系中,已知A (-4,0),B (1,0),且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D .
(1)求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; (2)求点D 的坐标;
(3)设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切?若存在,求出该圆的半径,若不存在,请说明理由.
三、比例比值取值范围
5.图9是二次函数k m x y ++=2
)(的图象,其顶点坐标为M(1,-4). (1)求出图象与x 轴的交点A,B 的坐标; (2)在二次函数的图象上是否存在点P ,使MAB PAB S S ∆∆=
4
5
,若存在,求出P 点的坐标;若不存在,请说明理由;
(3)将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.
6.如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;
(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值;
(3)当△OPQ 与△PAB 和△QPB 相似时,抛物线21
4
y x bx c =++经过B 、P 两点,过线段BP 上
一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.
B A P
x
C Q O
y 第26题图
7.在平面直角坐标系xOy 中,抛物线2
y ax bx c =++与x 轴交于A B 、两点(点A 在点B 的左侧),与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.
(1)求直线AC 及抛物线的函数表达式;
(2)如果P 是线段AC 上一点,设ABP ∆、BPC ∆的面积分别为ABP S ∆、BPC S ∆,且
:2:3ABP BPC S S ∆∆=,求点P 的坐标;
(3)设
Q 的半径为l ,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相
切的情况?若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切? 四、探究型
.
8.如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).⑴ 求抛物线的解析式;
⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形? 若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.
9.已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交
OA 于点E .
(1)求过点E 、D 、C 的抛物线的解析式;
(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段
OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为5
6
,那么EF =2GO
是否成立?若成立,请给予证明;若不成立,请说明理由; (3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交
点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.
10.如图,抛物线y =ax 2
+bx +c (a ≠0)与x 轴交于A (-3,0)、B 两点,与y 轴相交于点C (0,3).当
x =-4和x =2时,二次函数y =ax 2
+bx +c (a ≠0)的函数值y 相等,连结AC 、BC . (1)求实数a ,b ,c 的值;
(2)若点M 、N 同时从B 点出发,均以每秒1个单位长度的速度分别沿BA 、BC 边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将△BMN 沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.