压铸件结构设计及压铸工艺

合集下载

压铸件工艺流程

压铸件工艺流程

压铸件工艺流程压铸是一种常见的金属件制造工艺,它通过在高压下将熔化的金属注入模具中,然后冷却凝固成型,最终得到所需的零件。

压铸件广泛应用于汽车、航空航天、电子、机械等行业,因其成型精度高、表面光洁度好、制造效率高而备受青睐。

下面将详细介绍压铸件的工艺流程。

1. 模具设计和制造首先,根据产品的设计要求,制定模具的设计方案。

设计师需要考虑产品的形状、尺寸、结构等因素,然后绘制出模具的图纸。

接着,利用CAD/CAM软件进行模具的三维建模和工艺分析,确定模具的结构和加工工艺。

最后,根据设计图纸,制造模具,通常采用数控加工中心进行精密加工,确保模具的精度和表面质量。

2. 材料准备在进行压铸之前,需要准备好所需的金属材料。

通常使用的金属包括铝合金、锌合金、镁合金等。

这些金属需要按照一定的配方比例进行熔炼,然后通过除渣、过滤等工艺处理,确保金属液的纯净度和稳定性。

3. 熔炼和保温将准备好的金属材料加入熔炉中进行熔炼,直至达到所需的温度和流动性。

然后将熔融金属倒入保温炉中进行保温,以保持金属液的温度和流动性,为后续的压铸工艺做准备。

4. 压铸成型在保温炉中保持金属液的温度和流动性后,将金属液注入压铸机的射出室。

通过高压注射系统,将金属液压入模具腔内,填充整个模腔。

在一定的压力和温度下,金属液在模具中凝固成型,形成所需的压铸件。

5. 冷却和固化在金属液填充模腔后,需要等待一定时间,让压铸件在模具中冷却和固化。

冷却时间的长短取决于金属的种类和厚度等因素。

在固化完成后,打开模具,取出成型的压铸件。

6. 修磨和处理取出的压铸件通常会存在一些毛刺、气孔等缺陷,需要进行修磨和处理。

通过去毛刺、抛光、喷砂等工艺,使压铸件的表面光洁度达到要求。

同时,还可以进行热处理、表面处理等工艺,提高压铸件的性能和表面质量。

7. 检验和包装最后,对成型的压铸件进行检验,包括尺寸、外观、化学成分等方面的检测。

合格后,对压铸件进行包装,通常采用防震防潮的包装方式,以确保产品的质量和运输安全。

第4章 压铸件结构设计及压铸工艺

第4章 压铸件结构设计及压铸工艺

(一)从简化模具结构、延长模具使用寿命考虑
• 铸件的分型面上应尽量避免圆角; 如果将结构改为如图4-1b所示的结构,则分型面平整, 加工简便,避免了上述缺点。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免模具局部过薄; 如下图a所示的压铸件,因孔边离凸缘距离过小,易使模 具镶块在a处断裂。若将压铸件改为如下图b所示的 a≥3mm的结构,则使镶快具有足够的强度,延长了模具 的使用寿命。
• 两壁连接时的圆角---交叉连接
β=90°,R=s; β=45°,R1=0.7s,R2=1.5s; β=30°,R1=0.5s,R2=2.5s
3.脱模斜度(铸造斜度) 作用: • 减少铸件与模型的摩擦,容易取出铸件; • 保证铸件表面不被拉伤; • 延长模型使用寿命。 压铸件上各部分所需要的斜度值是不相同的,应按金属收缩 的方向来确定。当金属的收缩受到的阻力大时,斜度应大些, 反之则取小些。
避免压铸件上互相交叉的不通孔
• 3)将型芯B分为两部分,从两侧抽出(见下图c)。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免内侧凹 针对要求采取的措施有: 1)外形不加大,内部形状凸出至底部(见下图a)。
2)局部加厚,内形加至底部,外形加至分型面处,从而消 除侧凹(见下图b) 。
3)原凸台形状不改变,在零件底部开出通孔,模型成型镶 件可以从通孔处插入形成台阶(见下图c)。
三、压铸件的精度、表面粗糙度及加工余量
(一) 压铸件的精度、表面粗糙度及加工余量
◇压铸件的尺寸精度
压铸件的尺寸精度较高,基本上由压铸模的制造精度而定。
1.长度尺寸
压铸件线性尺寸公差及选用见表4-5。 尺寸公差带的位置如下: 1、不加工的配合尺寸,孔取正(+), 轴取负(-)。

压铸件结构设计工艺

压铸件结构设计工艺

压铸件结构设计工艺1.引言概述部分的内容可以如下所示:1.1 概述压铸件结构设计工艺是指在制造过程中对压铸件的结构进行设计和优化的一项重要工作。

压铸件是指利用金属液态材料在高压下通过模具形成的零件。

它具有形状复杂、尺寸精确、表面光滑等特点,在现代工业中得到了广泛的应用。

压铸件结构设计工艺的目标是通过合理的构造和设计,确保压铸件在使用过程中具有良好的力学性能、耐磨性、抗腐蚀性和耐久性。

同时,优化压铸件的结构设计还可以降低材料的浪费、减少生产成本、提高生产效率,并且能够更好地满足使用者的需求。

本文将全面介绍压铸件结构设计工艺的相关内容。

首先,将对压铸件的定义和分类进行详细讲解,以便读者对压铸件有一个清晰的认识。

其次,将阐述压铸件结构设计的重要性,说明合理的结构设计对于压铸件的性能和品质起到至关重要的作用。

最后,将总结压铸件结构设计的关键点,并展望未来的发展方向。

通过本文的阅读,读者将了解到压铸件结构设计工艺的基本概念和原理,掌握压铸件结构设计的方法和技巧,并且对未来的研究和发展方向有一个清晰的了解。

希望本文能够为相关领域的研究人员和工程师提供一定的参考和借鉴,促进压铸件结构设计工艺的进一步发展。

1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将按照以下几个部分来进行介绍和分析压铸件结构设计工艺。

首先,在引言部分,将对整篇文章进行概述,介绍文章的目的和结构。

接着,正文部分将分为两个主要章节,分别是压铸件的定义和分类以及压铸件结构设计的重要性。

在第一章节中,将详细解释压铸件的定义,并对其进行分类,以便读者更好地理解和掌握压铸件结构设计的工艺。

在第二章节中,将重点探讨压铸件结构设计的重要性,包括其在产品设计中的作用,以及对产品质量、成本和生产效率的影响。

最后,结论部分将总结本文所介绍的压铸件结构设计的关键点,同时对未来的发展方向进行展望。

通过对以上不同章节的详细讲解和分析,读者将能够全面了解压铸件结构设计工艺的相关知识,并能够应用于实际生产中。

完整版)铝合金压铸工艺

完整版)铝合金压铸工艺

完整版)铝合金压铸工艺的分类压铸合金根据其成分和特性的不同,可分为铝合金、镁合金、锌合金、铜合金等几类。

其中,铝合金压铸件应用最广,其次为锌合金压铸件。

铝合金压铸件具有轻质、强度高、耐腐蚀、导热性好等优点,广泛应用于汽车、航空航天、电子、机械等领域。

锌合金压铸件具有良好的流动性、耐磨损、耐腐蚀等特点,主要应用于家电、电子、汽车等领域。

2.2压铸合金的性能要求压铸合金的性能要求主要包括力学性能、物理性能、化学性能和表面质量。

力学性能包括抗拉强度、屈服强度、伸长率等;物理性能包括密度、导热系数等;化学性能包括耐腐蚀性、氧化性等;表面质量包括表面光洁度、气孔、夹杂物等。

2.3压铸合金的选择在选择压铸合金时,需要考虑其应用领域、要求的性能、成本等因素。

铝合金压铸件适用于要求轻质、高强度、耐腐蚀的领域,如汽车、航空航天、电子等。

锌合金压铸件适用于要求良好流动性、耐磨损、耐腐蚀的领域,如家电、电子、汽车等。

镁合金压铸件则适用于要求轻质、高强度、高刚性的领域,如航空航天、汽车等。

2.4压铸合金的加工工艺压铸合金的加工工艺包括模具设计、热处理、涂料配制、浇注压射、保压、开模、抽芯取件、表面质量检查、时效处理、清理整修、铸件浸渗喷丸处理等。

其中,模具设计和制造、热处理工艺、涂料配制对铝合金压铸件的寿命影响较大。

保压、时效处理、铸件浸渗喷丸处理等工艺则可提高压铸件的力学性能和表面质量。

压铸合金是压铸生产的重要元素之一。

要生产优质的压铸件,需要合理的零件构造、设计完善的压铸模和工艺性能优越的压铸机,还需要性能良好的合金。

压铸合金具有较高的强度,因此在选择压铸合金时,应考虑使用性能、工艺性能、使用场合、生产条件和经济性等多种因素。

2.12各类压铸铝合金Al-Si合金是目前应用最为广泛的压铸铝合金。

它具有结晶温度间隔小、合金中硅相有很大的凝固潜热和较大的比热容等特点,因此铸造性能较好,充型能力也较好,热裂、缩松倾向也都比较小。

压铸件结构设计

压铸件结构设计
r1=(0.5bcosahsina) /(1-sina)
h2≥0.8mm
a≤3°
压铸件加强筋的运用
3,作为散热加强;
4,作为装饰作用。
2,引导料流流向;
1,加强结构强度;
压铸件结构工艺性分析一
不好的案例
好的案例
说明
于型模中加工凹入文字较之加工凸出文字为困难﹒且模具寿命难以保证,使用后续刻加工﹐则与此相反。
1.5
0.014~0.020
6
0.056~0.084
2
0.018~0.026
7
0.066~0.100
2.5
0.022~0.032
8
0.076~0.116
3
0.028~0.040
9
0.088~0.138
3.5
0.034~0.050
10
0.100~0.160
4
0.040~0.060
合金浇注温度高时,填充时间可选长些。 模具温度高时,填充时间可选长些。 铸件厚壁部分离内浇口远时,填充时间可选长些。 熔化潜热和比热高的合金,填充时间可选长些。
好的案例
说明
陈学民
2021
2023
内容大纲
O1
产品的壁厚(模具成型的基础)
O2
产品的拔模(模具脱模的保障)
O3
产品的圆角(模具寿命的关键)
O4
加强筋的设计(结构优化的手段)
压铸件壁厚的设计
3.5
2.5
3.5
2.5
2.5
2.0
>500
3.0
1.8
3.0
1.8
2.2
1.5
>100~500
2.5

压铸产品结构设计的工艺要求

压铸产品结构设计的工艺要求

压铸类产品结构设计的工艺要求
压力铸造是将熔融状态或者(半)熔融状态合金浇入压铸机的压室,以极高的速度在高压的作用下充填在压铸模的型腔内,使熔融合金在高压下冷却凝固成型的方法。

常见的压铸材料包括:铝合金、锌合金、镁合金、铜合金等,铝合金又分为铝镁合金、铝铜合金、铝锌合金、铝硅合金等。

压铸类产品在结构设计时的工艺要求注意的几个方面。

①压铸件的厚度
压铸件产品的厚度一般指料厚,料的厚薄直接影响压铸的难易,一般情况下,压铸产品的料厚≥0.8mm,具体料厚根据产品设计。

压铸产品不会因为局部料厚产生缩水的现象,相反,在一些尖钢薄钢处要加料填充,避免模具强度低而损坏。

压铸产品的外观面局部最小料厚≥0.7mm,非外观面局部最小料厚度建议≥0.4mm,太薄会导致填充不良、无法成型,薄的区域面积也不能太大,否则无法成型。

②压铸件的拔模角
压铸件与塑胶件一样,内外表面都需要拔模角,压铸件外表面的
拔模角一般在1°~3°,内表面拔模角比外表面拔模角大一点,方便产品出模。

③压铸件的后续加工
压铸件有时达不到设计的要求,需要后续加工。

其中螺丝柱中的螺纹就是后续加工的,在设计产品时只需留出底孔就可以。

压铸件有深孔时,压铸件需要做出孔位置,再通过后续机械钻孔加工完成。

压铸件有些表面要求较高的精度,一般也需要后续加工,在设计时可在需要后续加工的地方留出加工余量,加工余量一般在0.5mm 左右。

④压铸件产品不能变形,一般是螺丝连接,在做扣位连接,连接的对应产品必须能变形,如塑胶产品等。

⑤压铸件产品加强筋不能太多,对于薄壁类零件,需适当设计加强筋,以增加产品的抗弯强度,防止产品变形损坏。

压铸件的工艺流程

压铸件的工艺流程

压铸件的工艺流程压铸件是一种常见的金属制品,其工艺流程包括模具设计、原料准备、熔炼、注射、冷却、脱模、后处理等多个环节。

下面将详细介绍压铸件的工艺流程。

一、模具设计模具设计是压铸件制造的第一步,它直接影响到产品的质量和成本。

模具设计需要根据产品的形状、尺寸和要求进行合理的布局和结构设计,确保能够满足产品的要求并且能够保证生产效率和质量。

二、原料准备原料准备是压铸件制造的第二步,通常使用的原料是铝合金、锌合金、镁合金等。

在原料准备阶段,需要对原料进行筛选、清洗和预热处理,以确保原料的纯净度和适用性。

三、熔炼熔炼是将原料加热至熔化状态的过程,通常使用电炉或燃气炉进行熔炼。

在熔炼过程中,需要控制炉温和炉内气氛,确保原料能够完全熔化并且保持一定的温度。

四、注射注射是将熔化的金属液注入模具腔体的过程,通常使用压铸机进行注射。

在注射过程中,需要控制注射速度和压力,确保金属液能够充分填充模具腔体并且形成完整的产品形状。

五、冷却冷却是将注射后的模具进行冷却的过程,通常使用冷却水或风冷设备进行冷却。

在冷却过程中,需要控制冷却速度和温度,确保产品能够快速冷却并且保持一定的结构和硬度。

六、脱模脱模是将冷却后的产品从模具中取出的过程,通常使用振动或冲击的方式进行脱模。

在脱模过程中,需要注意保护产品表面,避免产生划痕或变形。

七、后处理后处理是对脱模后的产品进行去除余料、修磨、喷漆等加工的过程。

在后处理过程中,需要根据产品的要求进行相应的处理,以确保产品的表面光滑、尺寸精度和表面质量。

总结压铸件的工艺流程包括模具设计、原料准备、熔炼、注射、冷却、脱模、后处理等多个环节,每个环节都需要严格控制和操作,以确保产品的质量和成本。

压铸件制造是一个复杂的工艺过程,需要生产厂家具备一定的设备和技术实力,以满足客户的需求。

压铸件结构设计和压铸工艺

压铸件结构设计和压铸工艺

压铸件结构设计和压铸工艺压铸是一种将熔融金属注入到铸型中,通过冷却凝固形成所需形状的金属成型工艺。

压铸件结构设计和压铸工艺是压铸过程中至关重要的两个环节,对于保证产品质量和提高生产效率具有重要意义。

下面将从压铸件结构设计和压铸工艺两个方面进行详细介绍。

一、压铸件结构设计1.几何形状:要考虑产品的形状是否适合压铸工艺,避免出现厚壁或复杂形状等难以生产的结构。

2.壁厚设计:在保证产品强度和刚性的前提下,尽量减少壁厚。

过厚的壁厚会导致液态金属充填困难,同时也会增加材料消耗和生产成本。

3.避免内部缺陷:合理设置内部结构,避免产生气孔、缩松等内部缺陷,影响产品质量。

4.轮廓设计:尽量简化复杂的轮廓,减少加工和后处理工序,提高生产效率。

5.集成功能:在设计阶段就考虑到产品的功能需求,尽量将不同功能集成到一个构件中,减少组装工序。

二、压铸工艺压铸工艺是将压铸件结构设计转换为实际产品的过程,主要包括模具设计、熔化与注射、冷却凝固、脱模、后处理等阶段。

1.模具设计:根据产品的形状和尺寸要求,设计出相应的模具。

模具设计要遵循易于加工和维修的原则,并考虑到产品的收缩率,以保证最终产品符合设计要求。

2.熔化与注射:将所需的金属材料加热至液态,然后通过注射机将熔融金属注入到模具中。

注射过程需要控制注射速度和压力,保证金属充填完整且无气泡。

3.冷却凝固:在模具中进行冷却凝固,使注入的金属逐渐凝固。

冷却过程需要控制温度和时间,以保证产品的结晶组织均匀性和性能稳定性。

4.脱模:凝固后的产品从模具中取出,包括冷却水冲洗和振动脱模等工序。

脱模过程需要注意避免产品的变形和损坏。

5.后处理:包括修磨、去毛刺、清洗、表面处理等工序。

后处理旨在提高产品表面质量和机械性能,并满足特定的外观要求。

总结:压铸件结构设计和压铸工艺是相互关联的,一个合理的结构设计可以提高生产效率和产品质量,而一个良好的压铸工艺可以保证结构设计的实施效果。

因此,在进行压铸件结构设计和压铸工艺选择时,需要综合考虑产品的功能要求、材料特性、生产成本等因素,以达到最佳的工艺效果。

压铸件结构设计及压铸工艺

压铸件结构设计及压铸工艺

压铸件结构设计及压铸工艺压铸件结构设计是指在满足产品功能和使用要求的前提下,通过合理地设计压铸件的结构,使得其具有较好的可靠性、经济性和工艺性。

压铸工艺是将熔化的金属经过高压注入模具中,经冷却固化后得到所需形状和尺寸的工艺过程。

1.功能需求:首先需要明确产品的功能需求,包括产品所需的力学性能、流体性能、电气性能等。

根据功能需求来确定结构形状和尺寸。

2.材料选择:根据产品使用环境和功能需求,选择合适的材料。

材料的选择会影响到压铸件的结构设计。

3.结构强度:压铸件在使用过程中需要承受一定的载荷,因此要考虑结构的强度和刚度问题。

通过合理的布局和加强设计,保证产品在正常使用情况下不会发生失效。

4.成本控制:在结构设计中要考虑到成本因素,通过优化设计和合理选择材料等方式,尽量降低制造成本。

5.工艺性:结构设计需要考虑到压铸工艺的要求。

例如,制造过程中是否需要加工孔、缝隙等,模具是否能够顺利铸造等。

要尽量避免设计上的复杂性,方便生产制造。

压铸工艺是将熔化的金属通过高压注入模具中,并在固化后得到所需形状和尺寸的工艺过程。

压铸工艺一般包括以下几个步骤:1.模具设计:根据压铸件的结构和尺寸要求,设计合适的模具。

模具需要具备良好的冷却性能和顺畅的金属流动性。

2.材料准备:根据产品要求选择合适的金属材料,并进行熔化和调质处理。

熔化后的金属要满足一定的温度和流动性要求。

3.注入模具:将熔化的金属注入到模具中,通过高压力使金属充填模具腔体,保证细节部位的填充。

4.冷却固化:金属在模具中冷却并固化,使其具备一定的力学性能和稳定性。

5.取出铸件:打开模具,将固化好的压铸件取出,并清理剩余的模具材料。

6.补充工艺:根据产品需求,可能需要进行后续的加工和处理工艺,比如热处理、表面处理、组装等。

压铸工艺的选择和优化对产品的质量和成本具有重要影响。

在工艺中需要考虑的因素有:1.注射参数:包括注射速度、注射压力、注射温度等。

这些参数会影响到铸件的成形和凝固过程。

纯铝压铸工艺及压铸模技术要点总结

纯铝压铸工艺及压铸模技术要点总结

纯铝压铸工艺及压铸模技术要点总结
纯铝压铸技术的要点总结:
一、流道设计
流道可以采用圆形或梯形。

梯形流道避免宽而薄,以防热量损失。

最好配备模温机生产,模温300度。

二、浇口厚度设计
纯铝压铸的浇口设计一般比普通压铸开的厚些,最起码
1.2毫米厚起步。

有条件尽量开厚些,开太薄容易堵塞。

三、渣包设计
建议渣包比平时的做大一些,多排些冷料,避免氧化异色。

普通铝合金铸件排渣比为铸件25~30%;纯铝可以做到100%,小产品会更大。

渣包开排气槽,1.5~0.25毫米递减式设计。

四、顶针孔间隙设计
间隙比普通铝压铸模放大1.5~2.0倍,不会跑料。

五、钢材及热处理
可选用国产8418.热处理:48~50HRC比较合理。

模芯大的更低些,镶针镶件硬度可以高些,易断的部件降低点热处理硬度。

六、铝液温度
保持铝液的稳定性,一般生产在700~730度,也可以高于730度,最高不高于750度,最低不低于700.
七、根据压铸件氧化的颜色需求选择合适的铝含量成份
氧化黑色,建议用铝含量低的铝锭,可以用ADC10.氧化灰色,比如铁灰色,建议铝含量在95~97%的铝锭。

顶盖压铸工艺设计

顶盖压铸工艺设计

顶盖压铸工艺设计1铸件结构工艺分析1.1铸件材料分析顶盖铸件所用材料为YL102,硬度60HBW,抗压强度σb=220MPa,延伸率δ=2%,密度ρ=2.66g/cm3,浇注温度610~650℃。

1.2铸件结构工艺分析顶盖铸件是一外形尺寸为162mm×111 mm×63mm 的壳体,底座出设机械加工余量1mm,如图1所示。

其结构复杂,空腔尺寸相对较大,外形轮廓不规则,且壁厚不均匀(最大壁厚在18mm左右,最小壁厚仅4mm)。

为了与其他零件配合,Ø17、Ø22、Ø30的孔必须满足一定的同轴度。

带孔圆台的上端面必须底面保证一定的位置精度。

R11半圆台轴线也必须与Ø17孔的轴线保证一定的位置精度。

同时,为了满足使用性能,铸件应无气孔、疏松、裂纹等缺陷。

图1 顶盖零件图2分模面设计分模面是动模和定模的分界面。

分模面的形式与位置对整个压铸模具的结构有重要影响。

分模面确定后,压铸模具的基本结构随之确定。

选择分模面应综合考虑铸件在开模后应留在动模、浇注系统和排溢系统的设计、铸件的顺利脱出、抽芯机构的设计、Ø17、Ø22、Ø30孔的同轴度、各尺寸定位及铸件的整体美观要求,要有利于金属液填充和排气,要便于模具的制造以及容易去除铸件飞边等问题。

经过综合考虑,铸件分模面的选择如图2所示的I-I分模面。

图2 分模面设计3压铸机的选用压铸机是压铸生产过程中必不可少的重要设备。

由于压铸机投资大,使用周期长,因此选用压铸机时需要认真论证。

压铸机选用主要包括三项内容:1)压铸机类型(热室压铸机或冷室压铸机)。

2)压铸机大小(吨位及技术参数)。

3)压铸机档次(压铸机的质量与性能)。

3.1压铸机类型的选择由于热室压铸机仅适用于压铸锌合金、镁合金,铝合金及铜合金不能采用热室压铸机。

而本例顶盖所用材料为铝合金,故只能采用冷室压铸机进行压铸生产。

3.2压铸机档次的选择选择压铸机档次主要与以下两点有关:1)产品要求。

压铸件结构设计规范

压铸件结构设计规范

压铸件结构设计规范压铸件是一种常见的金属制品,它具有成本低、生产效率高以及复杂形状和良好的表面质量等优点。

在压铸件的结构设计中,需要遵循一定的规范和要求,以确保产品的质量和性能。

以下是压铸件结构设计的一些常见规范:1.材料选择:在压铸件结构设计中,需要选择适合的材料,以确保产品的强度和耐用性。

常用的铸造材料包括铝合金、镁合金和锌合金等。

在选择材料时,需要考虑产品的功能要求、工作环境和制造工艺等因素。

2.壁厚设计:在压铸件的结构设计中,需要合理确定壁厚。

过薄的壁厚容易导致产品变形和脆性,而过厚的壁厚会增加产品的重量和生产成本。

一般来说,压铸件的壁厚应根据材料的强度、铸造工艺和表面质量要求等因素进行合理计算和选择。

3.强化设计:在压铸件结构设计中,需要考虑强化结构,以增加产品的刚性和耐用性。

常用的强化结构包括加强肋、加强筋和加强板等。

强化结构可以提高产品的抗拉强度和抗扭强度,减少变形和裂纹的产生。

4.浇注系统设计:在压铸件的结构设计中,需要合理设计浇注系统,以确保熔融金属能够均匀地充满模腔,并排除气体和杂质。

浇注系统设计包括喷嘴和浇口的位置、大小和形状等因素。

合理的浇注系统设计可以提高产品的充型性能和表面质量。

5.模具设计:在压铸件结构设计中,需要合理设计模具,以确保产品的精度和一致性。

模具设计包括型腔结构、型芯结构和冷却系统等。

合理的模具设计可以减少缺陷和变形的产生,提高产品的尺寸精度和表面质量。

综上所述,压铸件的结构设计需要遵循一定的规范和要求,以确保产品的质量和性能。

这些规范包括材料选择、壁厚设计、强化设计、浇注系统设计和模具设计等。

通过合理设计和优化,可以提高产品的制造效率、降低成本,并满足不同应用领域的需求。

压铸产品的结构设计

压铸产品的结构设计

随着越来越多的产品追求更好看的外观,更高的工艺水平。

压铸在产品中应用的越来越多,比如手机,监视器,灯,甚至特斯拉汽车外壳,随着这些工艺的发展,越来越多的产品会使用到压铸件,因此本文就介绍一下压铸产品的结构设计。

一,了解一下压铸的工艺压铸是一种金属铸造工艺,其特点是利用模具腔对融化的金属施加高压。

根据压铸类型的不同,需要使用冷室压铸机或者热室压铸机。

铸造设备和模具的造价高昂,因此压铸工艺普通只会用于批量创造大量产品。

压铸特殊适合创造大量的中小型铸件,因此压铸是各种铸造工艺中使用最广泛的一种。

同其他铸造技术相比,压铸的表面更为平整,拥有更高的尺寸一致性。

压铸分为热室压铸与冷室压铸。

热室压铸,有时也被称作鹅颈压铸,它的金属池内是熔融状态的液态、半液态金属,这些金属在压力作用下填充模具。

当压铸无法用于热室压铸工艺的金属时可以采用冷室压铸,包括铝、镁、铜以及含铝量较高的锌合金。

压铸模的使用寿命普通是 3 万-8 万次。

压铸模的精度要求越低,合用寿命越长。

二,合用于压铸的材料以及材料的相关特点锌最容易压铸的金属,创造小型部件时很经济,容易镀膜,抗压强度、塑性高,铸造寿命长。

如家具配件、建造装饰、浴室配件、灯饰零件、玩具、领带夹、皮带扣、各种金属饰扣等铝质量轻、创造复杂和薄壁铸件时尺寸稳定性高,耐腐蚀性强,机械性能好,高导热以及导电性,高温下强度依然很高。

铝合金压铸类产品主要用于交通信号灯外壳、拉手、渔轮配件、户外锁、电器产品、通信器材、厨具配件、摩托车散热器及喇叭罩、 LED 灯外壳、照像机器材、散热片、汽车配件、电子通讯器材、电子游戏机外壳等行业,一些高性能、高精度、高韧性的优质铝合金产品也被用于大型飞机、船舶等要求比较高的行业中。

镁易于进行机械加工,强度分量比高,常用压铸金属中最轻。

镁合金有优良的压铸工艺性能:镁合金液粘度低,流动性好,易于充满复杂型腔。

用镁合金可以很容易地生产壁厚 1.0mm~2.0mm 的压铸件,现在最小壁厚可达 0.6mm。

简述压铸件的结构工艺性及工艺设计

简述压铸件的结构工艺性及工艺设计

简述压铸件的结构工艺性及工艺设计1.压铸件的结构工艺性合理的铸件结构外形,应使压铸型结构简化,加工制造便利,不易形成铸造缺陷,有利于保证铸件质量。

压铸件外形和结构上应使铸件能顺当从压铸型中取出,影响取出铸件的障碍,应改进其结构加以消退。

压铸生产中,几乎全部压铸工艺参数都与铸件壁厚有关。

壁厚过厚,易产生气孔、缩孔及缩松等缺陷;若壁厚过薄,易产生表面缺陷,甚至浇不足。

允许最小的壁厚依合金种类及铸件单面表面积的大小而定。

2.压铸件的工艺设计压铸件工艺设计是压铸型设计前必需做的工作,其内容许多,除制订工艺方案外,还要确定一系列的工艺参数和详细细节。

1)压铸件分型面的选择分型面的确定对于压铸型的简单程度和加工制度是否便利,以及铸件质量(尤其是尺寸精度)都有很大影响。

因此,对分型面的选择有如下要求:分型面应取在铸件的最大截面上,且在开型时,应使铸件留在动型内;浇注系统和排气系统能够得到合理的分布;尺寸精度要求高的部分尽可能位于同一半型内,使压铸型尽可能简化。

对某一详细铸件而言,设计者应在全面考虑、权衡轻重后选择铸件的分型面。

2)压铸件浇注系统的设计浇注系统一般由直浇道、内浇口和横浇道等组成。

依据压铸机的类型及引入液体金属的方式不同,浇注系统的形式也有所不同。

图5-52示出了同一铸件在不同类型压铸机上的浇注系统结构。

(1)直浇道的设计。

典型的立式冷压室压铸机上的铸件直浇道由喷嘴、浇口套和定型上的相应孔洞形成。

每台压铸机上常有几种内孔直径的喷嚏,而形成直浇道金属喷喷入口处的直径依据压铸件金属的种类和经喷嘴被压射金属的质量进行选择。

太粗的直浇道会铺张金属液,还会引起铸型局部过热。

太细的直浇道会提高压铸时金属液在浇道中的流速,有可能冲刷下在浇口套壁上初凝的金属层进入型腔堵塞内浇口使金属液充型不畅。

(2)内浇口的设计。

一般在大多数压铸型中,内浇口都设在分型面上,应尽可能削减金属液充型过程中可能遇到的障碍,在压铸螺纹时,应使浇口顺着螺纹方向,对圆环形铸件采纳切向浇口,设置内浇口位置时应留意使金属流的方向与型腔捧气方向全都,且不应引起铸件变形。

压铸件工艺

压铸件工艺

压铸件工艺
压铸是将压铸机铸型和压铸机模具冷却到常温下,将液态金属注入型腔,经加压、冷却、固化后得到所需形状和尺寸的压铸产品。

其主要特征是铸件结构简单,壁厚均匀,机械性能好,质量轻,生产效率高。

压铸件主要有汽车、摩托车、家用电器等行业的各种塑料件和有色金属压铸件。

压铸件是一种先进的精密铸造工艺,具有生产效率高、产品质量好、适应性强和生产成本低等优点。

压铸件的工艺过程:
(1)制砂:将铝合金熔体加入压铸机内,并通过高压将熔
体注入型腔;
(2)浇铸:型腔中的液体金属在压力作用下,从压铸机的
浇冒口和内浇道中流出并充满型腔;
(3)排气:压铸机模腔中充满充满液体金属后,开始排气;
(4)压射:金属熔体从浇注口进入型腔并凝固,并在压铸
机模腔中形成所需形状和尺寸的铸件;
(5)冷却:型腔中的液体金属在压力作用下凝固,形成的
铸件从型腔中脱出;
— 1 —
(6)固化:压铸件经过冷却和固化后,得到所需形状和尺寸的压铸产品。

— 2 —。

压铸件结构设计规范方案

压铸件结构设计规范方案

压铸件结构设计规范方案压铸件是一种常见的金属制品,广泛应用于汽车、电子、航空航天、军工等领域。

在压铸件的结构设计中,需要考虑安全性、可靠性、质量控制和经济性等多个方面的要求。

下面是一些压铸件结构设计的规范方案:1.结构设计原则:设计师应遵循结构设计的基本原则,包括坚固性、合理性和安全性。

压铸件在使用过程中需经受各种力的作用,因此结构需要具有足够的强度和刚度,同时保持合理的重量和尺寸,以确保产品的性能和可靠性。

2.材料选择:压铸件一般使用铝合金、镁合金和锌合金制造,根据具体使用条件和要求选择适合的材料。

在材料选择过程中,需要考虑材料的特性、成本、可塑性以及耐磨性等因素。

3.壁厚设计:压铸件的壁厚对于产品的强度和质量至关重要。

过厚的壁厚会增加材料的用量和制造成本,同时也会降低产品的制造精度和性能;而过薄的壁厚会导致产品强度不足,容易发生变形和破裂。

因此,壁厚的设计需要综合考虑产品的用途和要求,确保最佳的壁厚。

4.结构设计和冷却系统设计:压铸件在制造过程中需要通过冷却系统进行冷却,以确保产品的质量和性能。

合理的结构设计和冷却系统设计可以提高产品的制造精度和表面质量,减少材料的收缩和变形,同时也可以确保冷却介质的循环流动,提高冷却效果。

5.模具设计:压铸件的形状和尺寸需要通过模具来实现。

模具设计需要考虑产品的尺寸、形状、结构和材料特性等多个因素,确保产品可以准确复制并保持良好的质量。

同时,模具设计也需要考虑到产品的成本和制造工艺的可行性。

6.表面处理和热处理:压铸件在制造完成后需要进行表面处理,以提高产品的表面质量和耐腐蚀性。

表面处理可以选择镀铬、喷涂、阳极氧化等方式,根据产品的具体要求进行选择。

另外,部分压铸件还需要进行热处理,以改善材料的性能和强度。

7.质量控制:压铸件的质量控制是确保产品质量和性能的重要环节。

在生产过程中,需要对原材料、模具和工艺进行严格的检验和控制,以确保产品的符合设计要求。

同时,还需要建立完善的质量管理体系和检验机制,对成品进行检验和测试,以确保产品的质量和可靠性。

铝合金压铸件产品结构设计要点

铝合金压铸件产品结构设计要点

铝合金压铸件的结构设计要点简介为了提升铝合金铸件产品研发的合格率,在结构设计、开发时应注意以下几方面的内容:铸件壁厚相差不能过大,厚度的差距过大会对填充带来影响,且一般浇口部分的肉厚要大于零件的平均肉厚,目的是减少多铝液的压力损失;脱模问题,这点在压铸过程中非常重要,现实中脱模往往容易出现问题,这比注塑脱模麻烦多了,所以拔模斜度的设置和动定模脱模力的计算要注意些,一般拔模斜度为1°~3°,通常考虑到脱模的顺利性,外拔模要比内拔模的斜度要小些,外拔模1°,而内拔模要2°~3°左右。

设计时考虑到模具设计的问题,如果有多个位置的抽芯位,尽量放两边,最好不要放在下位抽芯,这样时间长了下抽芯会容易出问题;有些压铸件外观可能会有特殊的要求,如喷油、喷粉等,这时就要使结构上避开重要外观位置,便于设置浇口溢流槽;在结构上尽量的避免出现导致模具结构复杂的情况出现,如不得不使用多个抽芯或螺旋抽芯等。

对于需进行表面加工的零件,在零件设计时给适合的加工留量,不能太多,会把里面的气孔都暴露出来的;不能太少,否则粗精定位一加工,黑皮还没加工掉,你就等再在模具上打火花了,留量最好不要大于0.8mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。

选料应注意选用ADC12还是A380等,但同时也要看具体的要求——销往法国的铝压铸件,如果有FDA的要求,就不能用ADC-12,须用ADC-3T代替;铝合金没有弹性,要做扣位只有和塑料配合。

一般不能做深孔,在开模具时只做点孔,然后在后加工;如果是薄壁件,不能太薄,而且一定要用加强肋,增加抗弯能力。

由于铝铸件的温度要在800摄氏度左右,模具寿命一般比较短,如电机外壳一般只有80K左右;压铸件的设计与塑胶件的设计比较相似,塑胶件的一些设计常规也适用于压铸件,压铸模具一般是不允许靠破的。

对于铝合金,模具所受温度和压力比塑胶的大很多,对设计的正确性要求特严,即使很好的模具材料,一旦有焊接,模具就几乎无寿命可言,锌合金跟塑胶差不多,模具寿命较好;不能有凹的尖角,避免模具崩角。

2-3压铸件结构设计-53

2-3压铸件结构设计-53
1).压铸件的尺寸精度
压铸件的尺寸精度不仅与其尺寸大小有关,而且受其结构和形状 的影响。一般压铸件精度为ITI3级,高精度压铸件为ITI1级。
压铸件的尺寸精度取决于压铸件的设计、模具结构以及模具制造 的质量。通常,压铸件的尺寸精度比模具的精度低3~4级左右。压 铸件尺寸稳定性取决于工艺因素、操作条件、模具修理次数及其 使用期限等各方面因素。压铸件的尺寸精度一般按机械加工精度 来选取,在满足使用要求的前提下,尽可能选取较低的精度等级。 此外,同一压铸件上不同部位的尺寸可按照实际使用要求选取不 同的精度,以提高经济性。
上一页 下一页 返回
国家标准(GB/T6414-1999)中将铸件尺寸公差划分为 16个等级,标记为CT1~CT16。压铸件尺寸公差可以控 制在CT4~CT8级,但不同合金可以达到的等级范围有 所不同,一般铝合金、镁合金可以达到CT4~CT7级, 锌合金可以达到CT4~CT6级。
1. 长度尺寸 表2-1列出了CT4~CT8级压铸件尺寸公差数值。
(二)消除抽芯受阻区域
图2-5 改变铸件结构消除抽芯受阻区域 示例2:图2-5(a)区域A侧抽芯无法抽出,改变凹坑方向,则抽芯
方便。区域B朝向内腔方向,无法抽出内腔型芯,将区域B朝向向 外,问题迎刃而解,如图2-5 (b)所示。
上一页 下一页 返回
(二)消除抽芯受阻区域
图2-6 改变铸件尺寸消除抽芯受阻区域 示例3:图2-6(a)压铸件的矩形孔B<A,无法抽芯,改变尺寸,使
上一页 下一页 返回
表2-1 压铸件尺寸公差数值(GB/T 6414-1999 )(mm)
返回
压铸件上一些受分型面或压铸模活动成形零件影响的 尺寸,确定它们的公差值时,在按表2-12查取的公差 数值基础上,还应加上一附加公差值。附加公差值按 表2-2选取。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)从简化模具结构、延长模具使用寿命考虑
• 避免压铸件上互相交叉的不通孔; • 1)又如下图所示,左图为抽芯C的型芯与型芯G交叉,右
图将型芯G分为相对的两部分,在抽芯C的轴线处结合, 避免了型芯交叉。
避免压铸件上互相交叉的不通孔
• 2)抽、拔的型芯C1和C2交叉,可将C2半圆部分改由C1构 成,避免C1插到C2内,零件左端的端部形状亦做相应更 新(见下图b)。
4)外形适当加大,保护内部尺寸和形状(见图d)。 5)内部形状改成便于脱型,外部加凹窝,使壁厚趋于均匀
(见下图e)。
• 避免内侧凹
下图a所示的压铸件内法兰 和轴承孔改为内侧凹,抽芯 困难,或需设置复杂的抽芯 机构,或需设置可溶型芯, 这既增加了模具的加工量, 有降低了生产率。若将压铸 件改为图b所示结构,既可 简化模具,又克服了图a所 示压铸件带来的缺点。
• 肋的设置原则:
• 下图为利用肋改变壁厚的示例:
二、压铸件基本结构的设计
二、压铸件基本结构的设计
• 压铸件壁的厚度(壁厚),是压铸工艺中一个具有特殊意 义的因素。壁厚与整个工艺规范有着密切关系,如:填 充时间的计算、内浇口速度的选择、凝固时间的计算、 模型温度梯度的分析、压力(最终比压)的作用、留型时 间的长短、铸件顶出温度的高低及操作效率。
• 压铸件壁厚的极限范围: 压铸件壁厚的极限范围很难加以限制。通常可按铸件
(三)方便压铸件脱模和抽芯
• 下图中a所示压铸件,因K处的的型芯受凸台阻碍,无法 抽芯。若将压铸件的形状作一定的修改,变为下图中b 所示的结构,K处的的型芯即可顺利抽出。
二、压铸件基本结构的设计
1.壁厚 压铸件设计的特点之一是壁厚设计。 ◆厚壁: 厚壁会使压铸件的力学性能明显下降,下图表示出锌合 金、铝合金、镁合金的强度增减百分比与铸件壁厚的关 系。
避免压铸件上互相交叉的不通孔
• 3)将型芯B分为两部分,从两侧抽出(见下图c)。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免内侧凹 针对要求采取的措施有:
1)外形不加大,内部形状凸出至底部(见下图a)。
2)局部加厚,内形加至底部,外形加至分型面处,从而消 除侧凹(见下图b) 。
3)原凸台形状不改变,在零件底部开出通孔,模型成型镶 件可以从通孔处插入形成台阶(见下图c)。
• 对于大面积的平板类厚 壁铸件,设置筋以减少 壁厚。下图为设置筋以 减少壁厚的示例。
• 改进铸件上壁 过厚的部位的 示例
• 肋的作用是:
• 壁厚改薄后,用以提高零件的强度和刚性,防止或减少 铸件收缩变形,避免工件从模型内顶出时发生变形,填 充时用以作辅助回路(金属流动的通路)。
• 肋的厚度应小于所在壁的厚度,一般取该处壁的厚度的 2/3~3/4。
第四章 压铸件结构设计及压铸工艺
§1. 压铸件结构设计
• 一、压铸工艺对压铸件结构的要求 • 压铸件结构设计的工艺性能是一个十分重要的因素,其结构的合理
性和工艺适应性决定了后序工作能否顺利进行。如分型面的选择, 浇道的设计,推出机构的布置,收缩规律的掌握、精度的保证,缺 陷的种类等都与压铸件本身的压铸工艺性的优劣相关。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免压铸件上互相交叉的不通孔;
交叉的盲孔必须使用公差配合较高的互相交叉的型芯 (如图4-3a),这既增加了模具的加工的量,又要求严 格控制抽芯的次序。一旦金属液窜入型芯交叉的间隙中, 便会使抽芯发生困难。若将交叉的盲孔改为图中b所示 的结构,即可避免型芯的交叉,消除了上述的缺点。
(一)从简化模具结构、延长模具使用寿命考虑
• 铸件的分型面上应尽量避免圆角;
如果将结构改为如图4-1b所示的结构,则分型面平整, 加工简便,避免了上述缺点。
(一)从简化模具结构、延长模具使用寿命考虑
• 避免模具局部过薄; 如下图a所示的压铸件,因孔边离凸缘距离过小,易使模 具镶块在a处断裂。若将压铸件改为如下图b所示的 a≥3mm的结构,则使镶快具有足够的强度,延长了模具 的使用寿命。
二、压铸件基本结构的设计
• 压铸件随壁厚的增加,其内部气孔、缩孔等缺陷增加, 故在保证铸件有足够强度和刚度的前提下,应尽量减小 厚度并保持截面的厚薄均匀一致。为了避免缩松等缺陷, 对铸件的厚壁处应减厚,增加加强筋。
二、压铸件基本结构的设计
◆薄壁: 薄壁铸件致密性好,相对提高了铸件强度及耐压性。
但壁不能太薄,太薄使合金熔接不好,易产生缺陷,并 给工艺带来困难。还会会发生填充不良,成形困难。不 同壁厚的铝合金压铸件的密度和强度见下表。
各个壁厚表面积的总和来选择适宜的壁厚。在零件的工 艺性能好以及压铸生产中又具备良好的工艺条件时,还 可以压铸出更薄的壁。
这时,锌合金铸件最小壁厚度为0.5mm,铝合金铸件 最小厚度为0.7mm,镁合金铸件最小厚度为0.8mm,铜合 金铸件最小厚度为1mm。
二、压铸件基本结构的设计
1.壁厚及肋
二、压铸件基本结构的设计
• 压铸件的结构设计直接影响压铸模的结构设计和制造的难易程度、 生产率和模具的使用寿命等。

(一)从简化模具结构、延长模具使用寿命考虑
• 铸件的分型面上应尽量避免圆角;
如图4-1a中的圆角不仅增加了模具的加工难度,而且使圆 角处的模具强度和寿命有所下降。若动模与定模稍有错位, 压铸圆角部分易形成台阶,影响外观
(二)改进模具结构,减少抽芯部位
• 减少不与分型面垂直的抽芯部位,可以降低模具的复杂 程度,容易保证压铸件的精度。
避免或减少抽芯部位主要注意以下两个问题: 1)当斜度较小时,侧孔采用抽芯的方法。当斜度加大后, 侧孔端与能够在动型与定型的形成部分构成,侧孔便可 以不用抽芯方法也能压铸出。
(二)改进模具结构,减少抽芯部位
2)对非配合的孔,为了 避免采用抽芯C的方 法(见右图),可采用 底部通槽,侧面增 加幅板B连接成构架 形。
(二)改进模具结构,减少抽芯部位
• 下图中a所示压铸件,中心方孔深度深,抽芯距离长, 需设专用抽芯机构,模具复杂;加上悬臂式型芯伸入型 腔,易变形,难以控制侧壁壁厚均匀。而采用下图中b 所示的H形断面结构就不需抽芯,简化了模具结构。
相关文档
最新文档