大学物理第2章 质点动力学习题(含解答)..
大学物理2-1第二章(质点动力学)习题(含答案)答案
习题二2-1 质量为m的子弹以速率v水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v,子弹进入沙土的最大深度为s,由题意知,子弹所受的阻力f= - kv(1) 由牛顿第二定律tvmmafdd==即vmkvd==-xvmvtxxvmtvmmafdddddddd====即xvmvkvdd=-所以vxmkdd=-对上式两边积分⎰⎰=-000ddvsvxmk得到vsmk-=-即kmvs0=2-2 质量为m的小球,在水中受到的浮力为F,当它从静止开始沉降时,受到水的粘滞阻力为f=kv(k为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v与时间的关系为⎪⎪⎭⎫⎝⎛--=-mktekFmgv1[证明] 任意时刻t小球的受力如图所示,取向下为y轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得tvmmafFmgdd==--即tvmmakvFmgdd==--整理得mtkvFmgv dd=--m,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kvF=。
求跳伞员的运动速率v随时间t变化的规律和极限速率Tv。
[解] 设运动员在任一时刻的速率为v,极限速率为Tv,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
此时2Tkvmg=即kmgv=T有牛顿第二定律tvmkvmgdd2=-整理得mtkvmgv dd2=-对上式两边积分mgkmtkvmgv tv21dd02⎰⎰=-得mtv kmgv kmg=+-ln整理得T22221111veekmgeevkgmtkgmtkgmtkgmt+-=+-=2-4 61085.1⨯=h m的高空f的大小;(2)()2ehRmMG+=地2eRMGg地=由上面两式得()()()N1082.71085.11063781063788.913273263232e2e⨯=⨯+⨯⨯⨯⨯=+=hRRmgf(2) 由牛顿第二定律hRvmf+=e2()()m1096.613271085.11063781082.73633e⨯=⨯+⨯⨯⨯=+=mhRfv(3) 卫星的运转周期()()2h3min50ss1043.71096.61085.1106378223363e=⨯=⨯⨯+⨯=+=ππvhRT2-5 试求赤道上方的地球同步卫星距地面的高度。
大学物理练习册习题及答案
习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
大学物理第2章 质点动力学习题(含解答)
第2章质点动力学习题解答2-1如图所示,电梯作加速度大小为a 运动。
物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。
解:(a )ma mg N =-)(a g m N +=(b )ma N mg =-)(a g m N -=(c )ma mg F =-)(a g m F +=2-2如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。
该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。
解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。
ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3一质点质量为2.0kg ,在O x y 平面内运动,•其所受合力j t i t F 232+=(SI ),0=t 时,速度j v 20=(SI ),位矢i r20=。
求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s时质点的速度和位矢。
解:j t i t m Fa+==223 223t a x =,00=x v ,20=x ⎰⎰=t v x dt t dv x 0223,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a +=(2)j t i t v )22(223++=,1=t s 时,j i v2521+= j t t i t r )26()28(34+++=,1=t s 时,j i r613817+=2-4质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。
质点动力学答案
第2章-质点动力学答案(总6页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2015-2016(2)大学物理A (1)第二次作业第二章 质点动力学答案[ A ] 1、【基础训练1 】 一根细绳跨过一光滑的定滑轮,一端挂一质量为M 的物体,另一端被人用双手拉着,人的质量M m 21=.若人相对于绳以加速度a 0向上爬,则人相对于地面的加速度(以竖直向上为正)是 (A) 3/)2(0g a +. (B) )3(0a g --.(C) 3/)2(0g a +-. (D) 0a [解答]:()()()()00000(),/3,2/3Mg T Ma T mg m a a M m g M m a ma a g a a a g a -=-=+-=++=-∴+=+ [ D ]2、【基础训练3】 图示系统置于以g a 21=的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为 (A) mg . (B) m g 21.(C) 2mg . (D) 3mg / 4.[解答]: 设绳的张力为T ,F 惯=mamg −T +ma =ma‘,T =ma’,mg +mg /2=2ma’. 所以 a’=3g/4, T=3mg/4[ B ] 3、【基础训练5】 光滑的水平桌面上放有两块相互接触的滑块,质量分别为m 1和m 2,且m 1<m 2.今对两滑块施加相同的水平作用力,如图所示.设在运动过程中,两滑块不离开,则两滑块之间的相互作用力N 应有BA a(A) N =0. (B) 0 < N < F.(C) F < N <2F. (D) N > 2F.[解答]:2F=(m 1+m 2)a, F+N=m 2a, 所以:2N=(-m 1+m 2)a=2F(-m 1+m 2)/ (m 1+m 2)N=F(-m 1+m 2)/ (m 1+m 2) 0 < N < F.[ C ] 4、【自测1】 在升降机天花板上拴有轻绳,其下端系一重物,当升降机以加速度a 1上升时,绳中的张力正好等于绳子所能承受的最大张力的一半,问升降机以多大加速度上升时,绳子刚好被拉断 (A) 2a 1. (B) 2(a 1+g ).(C) 2a 1+g . (D) a 1+g . [解答]: 适合用非惯性系做。
大学物理习题答案02质点动力学
大学物理练习题二一、选择题1. 质量为m的小球在向心力作用下,在水平面内作半径为R、速率为v的匀速圆周运动,如下左图所示。
小球自A点逆时针运动到B点的半周内,动量的增量应为:(A )mv 2j (B )jmv2 (C )i mv 2 (D )i mv 2 [ B ]解: j mv j mv v m v m p A B)(j mv 2 ; 另解:取y 轴为运动正向,mv mv mv p 2)( , pj mv 22. 如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R,当摆球在轨道上运动半周时,摆球所受重力冲量的大小为(A ).2mv (B )22/2v R mg mv(C )v Rmg / (D )0。
[ C ]解: v /R 2T ,2/T t ,t mgd I T 20v /R mg(注)不能用0v m v m p I,因为它是合力的冲量。
3. 一质点在力)25(5t m F (SI )(式中m 为质点的质量,t 为时间)的作用下,0 t 时从静止开始作直线运动,则当s t 5 时,质点的速率为(A )s m /50 (B )s m /25 (C )0 (D )s m /50 [ C ]mvR解:F 为合力,00 v ,0525)25(5525t tt mt mt dt t m Fdt由mv mv mv Fdt tt 00可得0 v解2:由知)25(5t m F 知)25(5t a ,550)25(5dt t adt v v0)5(5520 t t v v , (00 v )4. 质量分别为m和4m的两个质点分别以动能E和4E沿一直线相向运动,它们的总动量大小为(A ),22mE (B )mE 23, (C )mE 25, (D ) mE 2122 。
[ B ]解:由M p Mv E k 22122,有k ME p 2 ,mE 2p 1 ,12p 4)E 4)(m 4(2p ,1123)(p p p p 总m E 235. 一个质点同时在几个力作用下的位移为:k j i r654 (SI ) 其中一个力为恒力k j i F953 (SI ),则此力在该位移过程中所作的功为 (A) 67J (B) 91J (C) 17J (D) –67J [ A ]解:恒力作功,z F y F x F r F A z y x69)5()5(4)3()(67J6. 对功的概念有以下几种说法:(1)保守力作正功时,系统内相应的势能增加。
大学物理第二章质点动力学习题答案
习题二2-1质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系;(2)子弹射入沙土的最大深度。
[解]设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力f =-kv (1)由牛顿第二定律tv mma f d d == 即tv mkv d d ==- 所以t mk v v d d -=对等式两边积分⎰⎰-=tvv t m k v v 0d d 0得t mkv v -=0ln因此t mke v v -=0(2)由牛顿第二定律xv mv t x x v m t v m ma f d d d d d d d d ==== 即xvmv kv d d =- 所以v x mkd d =-对上式两边积分⎰⎰=-000d d v sv x mk 得到0v s m k-=-即kmv s 0=2-2质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为[证明]任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得即tvm ma kv F mg d d ==--整理得mtkv F mg v d d =--对上式两边积分⎰⎰=--t vmt kv F mg v00d dy得mktF mg kv F mg -=---ln即⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1 2-3跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。
[解]设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。
大学物理习题精选-答案——第2章 质点动力学
质点动力学习题谜底之公保含烟创作2-1一个质量为P 的质点,在润滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .树立坐标:取0v方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-1.图2-1X 方向: 0=x F t v x 0=①Y方向:y y ma mg F ==αsin ②0=t 时 0=y 0=y v由①、②式消去t ,得2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为常数.求物体升高到最高点时所用时间及上升的最年夜高度. 解:⑴研究对象:m⑵受力剖析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律:合力:f P F+=y 重量:dtdVmKV mg =-- 即dt mKV mg dV 1-=+mg Ke KV mg K V t m K1)(10-+=⇒-①0=V 时,物体到达了最高点,可有0t 为)1ln(ln 000mgKV K mmg KV mg K m t +=+=② ∵dtdy V=∴Vdt dy =021()1K t m mmg KV e mgt K K-+--⎡⎤=⎢⎥⎣⎦③ 0t t =时,max y y =,2-3 一条质量为m ,长为l 的匀质链条,放在一润滑的水平桌面,链子的一端由极小的一段长度被推出桌子边缘,在重力作用下开端下落,试求链条刚刚分开桌面时的速度. 解:链条在运动进程中,其局部的速度、减速度均相同,沿链条方向,受力为m xg l,依据牛顿定律,有图2-4通过变量替换有m dv xg mv l dx= 0,0x v ==,积分00lv mxg mvdv l =⎰⎰ 由上式可得链条刚分开桌面时的速度为v gl =2-5 升降机内有两物体,质量辨别为1m 和2m ,且2m =21m .用细绳衔接,跨过滑轮,绳子不成伸长,滑轮质量及一切摩擦都疏忽不计,当升降机以匀减速a =12g 上升时,求:(1)1m 和2m 相对升降机的减速度.(2)在空中上察看1m 和2m 的减速度各为多少?解: 辨别以1m ,2m 为研究对象,其受力图如图所示.(1)设2m 相对滑轮(即升降机)的减速度为a ',则2m 对地减速度a a a -'=2;因绳不成伸长,故1m 对滑轮的减速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地减速度亦为a ',由牛顿定律,有题2-5图联立,解得g a ='方向向下(2)2m 对地减速度为22ga a a =-'=方向向上 1m 在水面方向有相对减速度,竖直方向有牵连减速度,即牵相绝a a a +='∴g g g a a a 25422221=+=+'=a a '=arctanθo 6.2621arctan ==,左偏上. 2-6 一物体受合力为t F 2=(SI ),做直线运动,试问在第二个5秒内和第一个5秒内物体受冲量之比及动量增量之比各为多少?解:设物体沿+x 方向运动,25250501===⎰⎰tdt Fdt I N·S(1I 沿i方向)7521051052===⎰⎰tdt Fdt I N·S(2I 沿i方向)∵⎩⎨⎧∆=∆=1122)()(p I p I∴3)()(12=∆∆p p2-7 一弹性球,质量为020.0=m kg ,速率5=v m/s ,与墙壁碰撞后跳回. 设跳回时速率不变,碰撞前后的速度方向和墙的法线夹角都为60α︒=,⑴求碰撞进程中小球受到的冲量?=I⑵设碰撞时间为05.0=∆t s ,求碰撞进程中小球受到的平均冲力?F = 解:i i i mv i I I x10.060cos 5020.02cos 2=⨯⨯⨯===⇒αN·S2-9 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被减速时,它所受的合力为 F=(bt a -)N(b a ,为常数),其中t 以秒为单元:(1)假定子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得bat =(2)子弹所受的冲量 将ba t =代入,得(3)由动量定理可求得子弹的质量2-10 木块B 运动置于水平台面上,小木块A 放在B 板的一端上,如图所示. 已知0.25A m =kg ,B m =,小木块A 与木块B 之间的摩擦因数1μ=0.5,木板B 与台面间的摩擦因数2μ=0.1. 现在给小木块A 一向右的水平初速度0v =40m/s ,问经过多长时间A 、B 恰好具有相同的速度?(设B 板足够长)图2-10解:当小木块A 以初速度0v 向右开端运动时,它将受到木板B 的摩擦阻力的作用,木板B 则在A 给予的摩擦力及台面给予的摩擦力的共同作用下向右运动. 如果将木板B 与小木块A 视为一个系统,A 、B 之间的摩擦力是内力,不改动系统的总动量,只有台面与木板B 之间的摩擦力才是系统所受的外力,改动系统的总动量. 设经过t ∆时间,A 、B 具有相同的速度,依据质点系的动量定理0()k A B A F t m m v m v -∆=+-再对小木块A 独自予以思索,A 受到B 给予的摩擦阻力'K F ,应用质点的动量定理'0k A B F t m v m v -∆=- 以及'1k A F m g μ= 解得0012121(),A A B v v v m v t m m gμμμμμ-=-∆=+- 代入数据得 2.5v =m/st ∆2-11一粒子弹水平地穿过并排运动放置在润滑水平面上的木块,如图2-11所示. 已知两木块的质量辨别为1m 和2m ,子弹穿过两木块的时间各为1t ∆和2t ∆,设子弹在木块中所受的阻力为恒力F ,求子弹穿事先,两木块各以多年夜速度运动.解:子弹穿过第一木块时,两木块速度相同,均为1v ,初始两木块运动,由动量定理,于是有图2-11设子弹穿过第二木块后,第二木块速度酿成2v ,对第二块木块,由动量定理有 解以上方程可得2-12一端平均的软链铅直地挂着,链的下端刚好触到桌面.如果把链的上端放开,证明在链下落的任一时刻,作用于桌面上的压力三倍于已落到桌面上那局部链条的重量.解:设开端下落时0t =,在任意时刻t 落到桌面上的链长为x ,链未接触桌面的局部下落速度为v ,在dt 时间内又有质量dm dx ρ=(ρ为链的线密度)的链落到桌面上而运动. 依据动量定理,桌面给予dm 的冲量等于dm 的动量增量,即 所以2dx F v v dtρρ==由自由落体的速度22v gx =得这是t 时刻桌面给予链的冲力. 依据牛顿第三定律,链对桌面的冲力'F F =,'F 方向向下,t 时刻桌面受的总压力等于冲力'F 和t 时刻已落到桌面上的那局部链的重力之和,所以 所以3Nxgρ= 即链条作用于桌面上的压力3倍于落在桌面上那局部链条的重量.2-13一质量为50kg 的人站在质量为100kg 的停在静水中的小船上,船主为5m ,问当人从船头走到船尾时,船头移动的间隔.解:以人和船为系统,整个系统水平方向上动量守恒 设人的质量为m ,船的质量为M ,应用动量守恒得 其中v ,V辨别为人和小船相关于静水的速度,可得m -MV =v人相关于船的速度为'M m M+=-=v v V v设人在t 时间内走完船主l ,则有在这段时间内,人相关于空中走了0tx vdt =⎰所以Mlx M m=+船头移动的间隔为'53ml x l x M m =-==+2-14质量为M 的木块运动在润滑的水平桌面上,质量为m ,速度0v 的子弹水平地射入木块,并陷在木块内与木块一起运动.求:(1)子弹相对木块运动后,木块的速度和动量; (2)子弹相对木块运动后,子弹的动量;(3) 在这个进程中,子弹施于木块的冲量.解:子弹相对木块运动后,其共同速度设为u ,子弹和木块组成系统动量守恒 (1)0()mv m M u =+ 所以0mv u m M=+(2)子弹的动量20m m v P mu m M==+(3)针对木块,由动量守恒知,子弹施于木块的冲量为 2-15质量均为M 的两辆小车沿着一直线停在润滑的空中上,质量为m 的人自一辆车跳入另一辆车,接着又以相同的速率跳回来. 试求两辆车的速率之比.解:质量为m 的人,以相关于空中的速度v 从车A 跳到车B ,此时车A 失掉速度1u ,由于车是在润滑的空中上,沿水平方向不受外力,因此,由动量守恒得人抵达车B 时,共同得速度为2u ,由动量守恒得人再由车B 以相关于空中的速度v 跳回到车A ,则车B 的速度为'2u ,而车A 与人的共同速度为'1u ,如图所示,由动量守恒得联立方程解得:'22m u v M='12mu v M m=+所以车B 和车A 得速率之比为2-16体重为P 的人拿着重为p 的物体跳远,起跳仰角为ϕ,初速度为0v . 抵达最高点时,该人将手中的物体以水平向后的相对速度u 抛出,问跳远成果因此增加多少? 解:人和物体组成系统在最高点抛出物体前后沿水平方向动量守恒,注意到对空中这个惯性参考系从最高点到落地,人做平抛运动所需时间0sin v t gϕ=跳远间隔增加为2-17铁路上有一平板车,其质量为M ,设平板车可无摩擦地在水平轨道上运动. 现有N 团体从平板车的后端跳下,每团体的质量均为m ,相对平板车的速度均为u . 问在下述两种情况下,平板车的末速度是多少?(1)N 团体同时跳离;(2)一团体、一团体的跳离. 所得后果是否相同.解:取平板车和N 团体为研究对象,由于在水平方向上无外力作用,故系统在该方向上动量守恒. 取平板车运动方向为坐标轴正方向,设最初平板车运动,则有()0Mv Nm v u +-= 所以N 团体同时跑步跳车时,车速为(2)若一团体、一团体地跳车,情况就分歧了. 第一个跳车时,由动量守恒定律可得第二团体跳车时,有以此类推,第N 团体跳车时,有所以1111()2NN n muv mu M m M m M Nm M nm ==++⋅⋅⋅=++++∑因为1112M m M m M Nm>>⋅⋅⋅>+++故N v v >2-18质量为kg 10的物体作直线运动,受力与坐标关系如图2-18所示.若0=x 时,s m v /1=,试求m x 16=时,?=v解:在0x =到m x 16=进程图2-18中,外力功为力曲线与x 轴所围的面积代数和=40J由动能定理为:即1102110214022⨯⨯-⨯=v2-19在润滑的水平桌面上,水平放置一固定的半圆形屏障. 有一质量为m 的滑块以初速度0v 沿切线方向进入屏障一端,如图2-19所示,设滑块与屏障间的摩擦因数为μ,试证明当滑块从屏障另一端滑出时,摩擦力作功为2201(1)2fWmv e μπ-=-解:滑块做圆周运动,依牛顿定律,有:法向:2mv N R=切向:dv dv d mv dv fN mm dt d dt R d θμθθ=-=== 由以上两式,可得dv d vμθ=-对上式两边积分,有00vv dvd vπμθ=-⎰⎰可得0v v e μπ-=由动能定理可得摩擦力做功为2-20质量为M 的木块运动于润滑水平面上,一质量为m ,速率为v 的子弹水平射入木块后嵌在木块内,并于木块一起运动,求:(1)木块施于子弹的力所做的功;(2)子弹施于木块的力所做的功;(3)木块和子弹系统耗散的图2-19机械能.解:把子弹和木块看成一个系统,动量守恒 因而求得子弹和木块共同速度m u v M m=+ (1)222221121()22()2M Mm A mu mv mv M m +=-=-+ (2)'222110()2()2Mm A Mu mv M m =-=+ (3)22221111()()222()2M E mu Mu mv mv M m ∆=+-=-+ 2-21一质量10M =kg 的物体放在润滑的水平桌面上,并与一水平轻弹簧相连,弹簧的劲度系数1000k =N/m. 今有一质量m =1kg 的小球以水平速度0v =4m/s 飞来,与物体M 相撞后以1v =2m/s 的速度弹回,试问:(1) 弹簧被压缩的长度为多少?(2) 小球m 和物体M 的碰撞是完全弹性碰撞吗?(3) 如果小球上涂有黏性物质,相撞后可与M 粘在一起,则(1),(2)所问的后果又如何?解:碰撞进程中物体、弹簧、小球组成系统的动量守恒 01()1(42)0.610m v v u M +⨯+===m/s 小球与弹簧碰撞,弹簧被压缩,对物体M 有作用力,对物体M ,由动能定理(1)2211022kx Mu -=-弹簧被压缩的长度 100.60.061000M x u k ==⨯=m (2)22210111222k E Mu mv mv ∆=+- (3)小球与物体M 碰撞后粘在一起,设其共同速度为'u ,依据动量守恒及动量定理'0()mv M m u =+此时弹簧被压缩的长度'00.04()mv x k M m ==+m2-22 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如2-22图.求这一系统运动时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如2-22图所示平衡时,有又11x k F A ∆=所以运动时两弹簧伸长量之比为弹性势能之比为 2-23 如题2-23图所示,一物体质量为2kg ,以初速度0v =3m·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,抵达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧图2-22的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最优点的位置为重力势能零点,弹簧原优点为弹性势能零点.则由功用原理,有式中m 52.08.4=+=s ,m 2.0=x ,再代入有关数据,解得 再次运用功用原理,求木块弹回的高度h '代入有关数据,得m 4.1='s ,则木块弹回高度2-24铅直平面内有一润滑的轨道,轨道的BCDE 局部是半径为R 的圆. 若物体从A 处由运动下滑,求h 应为多年夜才恰好能使物体沿圆周BCDE 运动?解:木块如能通过D 点,就可以绕整个圆周运动. 设木块质量为m ,它在D 点的法向运动方程为 式中N 为圆环给木块的法向推力. 显然N =0时,木块刚好能通过D 点,所以木块刚好能绕圆周运动的条件为选木块和地球为系统,系统的机械能守恒,所以可得 联立求解得 2.5h R =即高度为 2.5h R =时木块刚好能绕圆周运动2-25两个质量辨别为1m 和2m 的木块A 和B ,用一个质量疏忽不计、顽强系数为k 的弹簧衔接起来,放置在润滑水平图2-23 图2-25面上,是A 紧靠墙壁,如图示. 用力推木块B 使弹簧压缩0x ,然后释放. 已知12,3m m m m ==,求(1) 释放后,A 、B 两木块速度相等时的瞬时速度的年夜小;(2) 释放后,子弹的最年夜伸长量.解:释放后,子弹恢复到原长时A将要分开墙壁,设此时B 的速度为v ,由机械能守恒,由22013/22kx mv = 得03k v x m= A 分开墙壁后,系统在润滑水平面上运动,系统动量守恒,机械能守恒,有22221122211112222m v kx m v m v ++=(1) 事先12v v =,求得:12033443k v v v x m===(2) (2)弹簧有最年夜伸长量时,1234v v v ==,由式(2)得 2-26两块质量各为1m 和2m 的木块,用劲度系数为k 的轻弹簧连在一起,放置在空中上,如图示,问至少要用多年夜的力F 压缩上面的木块,才华在该力撤去后因上面的木板升高而将下面的木板提起?图2-26 图2-27解:将12,m m 和弹簧和地球视为一个系统,该系统在压力撤离后,只有守旧力作用,所以机械能守恒. 设压力撤离时刻为初态,2m 恰好提离空中时为末态,初态、末态时动能均为零. 设弹簧原长时为坐标原点和势能零点,则式中0x 为压力F 作用时弹簧的压缩量,则式中x 为2m 恰好能提离空中时弹簧的伸长量,此时要求2kx m g ≥ 联立以上几个方程解得故能使2m 提离空中的最小压力为min 12()F m m g =+2-27一质量为'm 的三角形木块放在润滑的水平面上,另一质量为m 的立方木块由斜面最低处沿斜面向上运动,相关于斜面的初速度为0v ,如图所示,如果不思索木块接触面上的摩擦,问立方木块能沿斜面上滑多高?解:三角形木块与立方木块组成的系统在水平方向不受外力作用,水平方向动量守恒. 初始时,立方木块速度为0v ,其水平方向重量为0cos v θ,三角形木块运动;当立方木块达最高点时,相关于三角形木块运动,设二者共同的速度为v ,则在运动进程中,两木块和地球组成的系统只有重力做功,机械能守恒,得图2-28由以上两式得立方木块沿斜面上滑的高度为2-28两个形状完全相同、质量都为M 的弧形导轨A 和B ,放在地板上,今有一质量为m 的小物体,从运动状态由A 的顶端下滑,A 顶端的高度为0h ,所有接触面均润滑.试求小物体在B 轨上上升的最年夜高度(设A 、B 导轨与空中相切)解:设小物体沿A 轨下滑至地板时的速度为v ,对小物体与A 组成的系统,应用机械能守恒定律及沿水平方向动量守恒定律,有0A Mv mv -+=(1)2201122A mgh Mv mv =+(2) 解得02/()v Mgh M m =+(3)当小物体以初速v 沿B 轨上升到最年夜高度H 时,此时小物体相对B 的速度为零,设小物体与B 相对地沿水平方向的共同速度为u ,依据动量守恒与机械能守恒,有()Mv M m u =+(4)2211()22mv M m u mgH =++(5)联立(3)-(5)解得2-29一质量为200g 的砝码盘悬挂在劲度系数图2-29196k=N/m的弹簧下,现有质量为100g的砝码自30cm 高处落入盘中,求盘向下移动的间隔(假定砝码与盘的碰撞是完全非弹性碰撞)解:第一阶段:砝码落入盘中以前,由机械能守恒有第二阶段:砝码与盘碰撞,因为完全非弹性碰撞,其共同速度设为2v,在垂直方向,砝码和盘组成系统之碰撞内力远年夜于重力、弹簧的弹性力,可认为在垂直方向动量守恒,因而有第三阶段:砝码和盘向下移动进程中机械能守恒,注意到弹性势能零点是选在弹簧的原优点解以上方程可得向下移动的最年夜间隔为20.037l=2-30顽强系数为k的轻弹簧,一端固定,另一端与桌面上的质量为m的小球B相衔接. 推动小球,将弹簧压缩一端间隔L后放开,假定小球所受的滑动摩擦力年夜小为F且恒定不变,滑动摩擦系数与静摩擦系数可视为相等. 试求L必需满足什么条件时,才华使小球在放开后就开端运动,而且一旦停止下来就一直坚持运动状态.图2-30图2-31解:取弹簧的自然长度处为坐标原点 在0t =时,运动于x L =-的小球开端运动的条件是kL F > (1)小球运动随处x 运动的条件,由功用原理得 2211()22F L x kx kL -+=- (2) 使小球持续坚持运动的条件为2||||F k x k L F k=-≤ (3) 所求L 同时满足(1)和(3)式,求得2-31一绳跨过一定滑轮,两端辨别拴有质量为m 及M 的物体,如图示,M 运动在桌面上(M >m ).抬高m , 使绳处于松弛状态. 当m 自由落下h 间隔后, 绳才被拉紧,求此时两物体的速度及M 所能上升的最年夜高度.解:分三个阶段m 自由下落212mgh mv =,m M 相互作用(通过绳),在此阶段,绳中张力T 比物体所受重力年夜得多,此时可疏忽重力,由动量定理对m 有0t Tdt mV mv ∆-=-⎰ 对M 有00t Tdt MV ∆=-⎰图2-32m下降,M上升进程机械能守恒解以上方程可得。
第2章 质点动力学 习题答案
2-8. 长为l的轻绳,一端固定,另一端系一质量为m的小 长为 的轻绳,一端固定,另一端系一质量为 的小 的轻绳 开始运动, 球,使小球从悬挂着的位置以水平初速度 v 0 开始运动, 求小球沿逆时针转过 解:法向方程 角度时的角速度和绳子张力。 角度时的角速度和绳子张力。 θ
T − mg cos θ = m ω 2 l m v + 2 gl (cos θ − 1) = l
r2
r
2
,求电子从 r1 运动到 r2 ( r1 > r2 )
r1
r r r2 k 1 1 f ⋅dr = − ∫ 2 dr = k − r r r1 r 2 1
2-14. 质量为 m = 2 × 10 −3 kg的子弹,在枪筒中前进时受到 的子弹, 的合力为 F = 400 − 300m/s,试计算枪筒的长度。 ,试计算枪筒的长度。 解:设枪筒的长度为
其速度是? 其速度是?
r 2-3. 一物体质量为 一物体质量为10kg,受方向不变的力 F = 30 + 40t ,
的作用,在开始的 内 此力的冲量大小为? 的作用,在开始的2s内,此力的冲量大小为?若物体的 方向与力同向,则在2s末物体 初速度大小为 10 m ⋅ s ,方向与力同向,则在 末物体 速度的大小等于? 速度的大小等于?
r r 2-2. 一质量为 一质量为10kg的物体在力 f = (120t + 40) i 作用 的物体在力 r r v0 = 6i m ⋅ s −1 ,则t=3时 轴运动, 时其速度 下,沿x轴运动,t=0时其速度 轴运动 时
r r r r f (120t + 40)i = = (12t + 4) i 解:a = m 10 r r r t r t r 2 v = ∫ adt = ∫ (12t + 4) i dt =(6t + 4t ) i + v0 0 0 r = ( 6t 2 + 4t + 6) i r r v ( 3) = 72i m ⋅ s −1
大学物理2-1第二章(质点动力学)习题答案
大学物理2-1第二章(质点动力学)习题答案习 题 二2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。
[解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv(1) 由牛顿第二定律 tv m ma f d d ==即 tv mkv d d ==-所以t m k v v d d -=对等式两边积分 ⎰⎰-=t v v tm k v v 0d d 0得t mk v v -=0ln因此t mke v v -=0(2)由牛顿第二定律xvmv t x x v m t v m ma f d d d d d d d d ==== 即 xvmvkv d d =- 所以 v x mkd d =-对上式两边积分 ⎰⎰=-000d d v sv x m k得到v s mk-=-即 kmv s 0=2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。
若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为⎪⎪⎭⎫ ⎝⎛--=-m kte kFmg v 1[证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。
由牛顿第二定律得t vm ma f F mg d d ==-- 即tvmma kv F mg d d ==-- 整理得mtkv F mg v d d =--对上式两边积分 ⎰⎰=--t v mt kv F mg v00d d 得mktF mg kv F mg -=---ln即 ⎪⎪⎭⎫ ⎝⎛--=-m kte kF mg v 1mgFf2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。
力学习题-第2章质点动力学(含答案)
第二章质点动力学单元测验题一、选择题1.如图,物体A 和B 的质量分别为2kg 和1kg ,用跨过定滑轮的细线相连,静止叠放在倾角为θ=30°的斜面上,各接触面的静摩擦系数均为μ=0.2,现有一沿斜面向下的力F 作用在物体A 上,则F 至少为多大才能使两物体运动.A.3.4N;B.5.9N;C.13.4N;D.14.7N答案:A解:设沿斜面方向向下为正方向。
A 、B 静止时,受力平衡。
A 在平行于斜面方向:sin A 12F m g T f f 0θ+---=B 在平行于斜面方向:1sin 0B f m g T θ+-=静摩擦力的极值条件:1cos B f m g μθ≤,2()cos B A f m m g μθ≤+联立可得使两物体运动的最小力minF 满足:min ()sin (3)cos B A B A F m m g m m g θμθ=-++=3.6N2.一质量为m 的汽艇在湖水中以速率v 0直线运动,当关闭发动机后,受水的阻力为f =-kv ,则速度随时间的变化关系为A.t mk ev v 0=; B.tm kev v -=0; C.t m kv v +=0;D.t mk v v -=0答案:B解:以关闭发动机时刻汽艇所在的位置为原点和计时零点,以0v 方向为正方向建立坐标系.牛顿第二定律:dvma mkv dt==-整理:dtm k vdv -=积分得:tm k ev v -=03.质量分别为1m 和2m (21m m >)的两个人,分别拉住跨在定滑轮(忽略质量)上的轻绳两边往上爬。
开始时两人至定滑轮的距离都是h .质量为1m 的人经过t 秒爬到滑轮处时,质量为2m 的人与滑轮的距离为A.0;B.h m m 21; C.)21+(221gt h m m ; D.)21+(-2212gt h m m m 答案:D解:如图建立坐标系,选竖直向下为正方向。
设人与绳之间的静摩擦力为f ,当质量为1m 的人经过t 秒爬到滑轮处时,质量为2m 的人与滑轮的距离为'h ,对二者分别列动力学方程。
大学物理第二章 质点动力学习题解答
第二章 习题解答2-17 质量为2kg 的质点的运动学方程为 j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+== , j i a m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b i t a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b i t a dt r d a 2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。
2-19在图示的装置中两物体的质量各为m 1,m 2,物体之间及物体与桌面间的摩擦系数都为μ,求在力F 的作用下两物体的加速度及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离m 1,m 2,受力及运动情况如图示,其中:f 1=μN 1=μm 1g , f 2=μN 2=μ(N 1+m 2g)=μ(m 1+m 2)g. 在水平方向对两个质点应用牛二定律:②①a m T g m m g m F a m g m T 221111)(=-+--=-μμμ①+②可求得:g m m gm F a μμ-+-=2112将a 代入①中,可求得:2111)2(m m g m F m T +-=μ2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为m 1,m 2的物体(m 1≠m 2),天平右端的托盘上放有砝码. 问天平托盘和砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴承摩擦,绳不伸长。
第2章质点动力学(含答案)
一、选择题:1. 两个质量相等的小球由一轻弹簧相连接,再用一细绳悬挂于天花板上,处于静止状态,如图所示。
将绳子剪断的瞬间,球1和球2的加速度分别为( D )A .g a g a ==21, B. g a a ==21,0C. 0,21==a g aD. 0,221==a g a2. 下列关于力和运动关系的说法中,正确的是( D )A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现;B .物体受力越大,运动的越快,这是符合牛顿第二定律的;C .物体所受合外力为零,则速度一定为零;物体所受合外力不为零,则其速度也一定不为零;D .物体所受的合外力最大时,而速度却可以为零;物体所受的合外力最小时,而速度却可以最大。
3. 关于牛顿第三定律,下列说法错误的是( A )A .由于作用力和反作用力大小相等方向相反,则对于一个物体来说一对作用力和反作用力的合力一定为零;B .作用力变化,反作用力也必然同时发生变化;C .任何一个力的产生必涉及两个物体,它总有反作用力;D .作用力和反作用力属于同一性质的力。
4. 判断下列各句中正确的是 ( C )A .物体只在不受力作用的情况下才能表现出惯性;B .要消除物体的惯性,可以在运动的相反方向上加上外力;C .物体惯性的大小与物体是否运动、运动的快慢以及受力无关;D .惯性定律可以用物体的平衡条件取而代之。
5. 用水平力N F 把一个物体压着靠在粗糙的竖直墙面上保持静止,当N F 逐渐增大时,物体所受的静摩擦力f F 的大小为( A )A. 不为零,但保持不变;B. 随N F 成正比地增大;C. 开始随N F 增大,达到某一最大值后,就保持不变;D. 无法确定。
6. 下列叙述中,哪种说法是正确的( C )A. 在同一直线上,大小相等、方向相反的一对力必定是作用力与反作用力;B. 一物体受两个力作用,其合力必定比这两个力中的任一个力都大;C. 如果质点所受合外力的方向与质点运动方向成某一角度(不等于0和π),则质点一定做曲线运动;D. 物体的质量越大,它的重力和重力加速度也必定越大。
大学物理_第2章_质点动力学_习题答案
第二章 质点动力学2-1一物体从一倾角为30︒的斜面底部以初速v 0=10m·s -1向斜面上方冲去,到最高点后又沿斜面滑下,当滑到底部时速率v =7m·s -1,求该物体与斜面间的摩擦系数。
解:物体与斜面间的摩擦力f =uN =umgcos30︒物体向斜面上方冲去又回到斜面底部的过程由动能定理得220112(1)22mv mv f s -=-⋅物体向斜面上方冲到最高点的过程由动能定理得2010sin 302mv f s mgh f s mgs -=-⋅-=-⋅-2(2)s ∴=把式(2)代入式(1)得,220.198u =2-2如本题图,一质量为m 的小球最初位于光滑圆形凹槽的A 点,然后沿圆弧ADCB 下滑,试求小球在C 点时的角速度和对圆弧表面的作用力,圆弧半径为r 。
解:小球在运动的过程中受到重力G 和轨道对它的支持力T.取如图所示的自然坐标系,由牛顿定律得22sin (1)cos (2)t n dv F mg mdtv F T mg m Rαα=-==-=由,,1ds rd rd v dt dt dt vαα===得代入式(), A 并根据小球从点运动到点C 始末条件进行积分有,902n (sin )m cos 3cos '3cos ,e v vdv rg d v vrv mg mg rmg αααωααα=-===+==-=-⎰⎰得则小球在点C 的角速度为=由式(2)得 T 由此可得小球对园轨道得作用力为T T 方向与反向2-3如本题图,一倾角为θ 的斜面置于光滑桌面上,斜面上放一质量为m 的木块,两习题2-2图者间摩擦系数为μ,为使木块相对斜面静止,求斜面的加速度a 应满足的条件。
解:如图所示()1212min max sin ,cos cos sin (1)sin cos 2(1)(2)(sin cos )(cos sin )(sin cos )()(cos sin )1(2)(1)(sin cos )(cos sin )(sin cos a a a a N mg ma ma mg uN m a ma u g u a u g u g tg u a u utg u g u a u g u a θθθθθθθθθθθθθθθθθθθθθ==∴-==±==⨯+-=+--∴==++-⨯+=-+∴=得,得,)()(cos sin )1()()11g tg u u utg g tg u g tg u a utg utg θθθθθθθθθ+=---+∴≤≤+- 2-4如本题图,A 、B 两物体质量均为m ,用质量不计的滑轮和细绳连接,并不计摩擦,则A 和B 的加速度大小各为多少 。
第二章 质点动力学学习题解答
第二章 质点动力学习题解答2-1 如题图2-1中(a)图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( D )(A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ2-2 用水平力F N 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F N 逐渐增大时,物体所受的静摩擦力F f 的大小( A )(A) 不为零,但保持不变 (B) 随F N 成正比地增大(C) 开始随F N 增大,达到某一最大值后,就保持不变 (D) 无法确定2-3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率( C )(A) 不得小于gR μ (B) 必须等于gR μ(C) 不得大于gR μ (D) 还应由汽车的质量m 决定2-4 如习题2-4图所示,一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( B )(A) 它的加速度方向永远指向圆心,其速率保持不变 (B) 它受到的轨道的作用力的大小不断增加 (C) 它受到的合外力大小变化,方向永远指向圆心 (D) 它受到的合外力大小不变,其速率不断增加2-5 习题2-5图所示,系统置于以a =1/4 g 的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为( A )(A) 5/8mg (B) 1/2mg (C) mg (D) 2mg 2-6 对质点组有以下几种说法: (1) 质点组总动量的改变与内力无关; (2) 质点组总动能的改变与内力无关; (3) 质点组机械能的改变与保守内力无关. 下列对上述说法判断正确的是( C )习题2-4图A习题2-5图B(A) 只有(1)是正确的 (B) (1)、(2)是正确的 (C) (1)、(3)是正确的 (D) (2)、(3)是正确的2-7 有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( D )(A) 物块到达斜面底端时的动量相等 (B) 物块到达斜面底端时动能相等(C) 物块和斜面(以及地球)组成的系统,机械能不守恒 (D) 物块和斜面组成的系统水平方向上动量守恒 2-8 对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加; (2) 质点运动经一闭合路径,保守力对质点作的功为零;(3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零. 下列上述说法中判断正确的是( C )(A) (1)、(2)是正确的 (B) (2)、(3)是正确的 (C) 只有(2)是正确的(D) 只有(3)是正确的2-9 如图所示,质量分别为m 1和m 2的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧。
大学物理第2章课后答案
第二章 质点动力学四、习题选解2-1 光滑的水平桌面上放有三个相互接触的物体,它们的质量分别为.4,2,1321kg m kg m kg m ===(1)如图a 所示,如果用一个大小等于N 98的水平力作用于1m 的左方,求此时2m 和3m 的左边所受的力各等于多少?(2)如图b 所示,如果用同样大小的力作用于3m 的右方。
求此时2m 和3m 的左边所受的力各等于多少?(3)如图c 所示,施力情况如(1), 但3m 的右方紧靠墙壁(不能动)。
求此时2m 和3m 左边所受的力各等 于多少?解:(1)三个物体受到一个水平力的作用,产生的加速度为a()a m m m F 321++=232114-⋅=++=sm m m m F a用隔离法分别画出32,m m 在水平方向的受力图(a ),题2-1(a )图由a m F =a m f f23212=- a m f323= 2332f f =N f 5623=N f 8412=(2)由()a m m m F321++=232114-⋅=++=sm m m m F a用隔离法画出321m m m 、、在水平方向的受力图(b )由a m F= 得⎪⎪⎪⎩⎪⎪⎪⎨⎧====-=-3223122112121232323f f ff a m f a m f f a m f F解得: N f 1412= N f 4223=题2-1(b )图(3)由于321m m m 、、都不运动,加速度0=a ,三个物体彼此的作用力都相等,都等于FN f f 982312== 2-2 如图所示,一轻质弹簧连接着1m 和2m 两个物体,1m 由细线拉着在外力作用下以加速a 竖直上升。
问作用在细线上的张力是多大?在加速上升的过程中,若将线剪断,该瞬时1m 、2m 的加速度各是多大?解:(1)分别画出1m 、2m 受力的隔离体如图(a ),题2-2(a )图取向上为正方向,由牛顿第二定律⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f T 2211故 ()()a g m m g m g m a m a m T ++=+++=212121 (2)将线剪断,画出21m m 、的隔离体图,如图(b )题2-2(b )图 取竖直向上为正方向,由牛顿第二定律得⎪⎩⎪⎨⎧='=-'=--f f a m g m f a m g m f 222111 得⎪⎩⎪⎨⎧+--==-=)(/)'(121222a g m m g a a m g m f a 1a 的方向向下,2a的方向向上。
大学物理第二章质点动力学课后答案
势能零点在 z = 0处。
1 2 弹性势能:E p kx 势能零点在弹簧原长处。 2 Mm 引力势能:E p G0 势能零点在 r 处。 r
五、功能原理与机械能守恒定律
W W E2 E1 功能原理
ex in 非
Ek 2 Ep 2 Ek1 Ep1 机械能守恒定律
4 105 t 0.003s F 400 t0 3 t t 4 105 I Fdt [400 t ]dt 0.6 N s 0 0 3 I 0.6 0.002kg m I mv 0 v 300
2-7 两块并排的木块A和B,质量分别为m1和m2,静 止地放置在光滑的水平面上。一子弹水平地穿过两木 块,设子弹穿过两木块所用的时间分别为t1和t2,木 块对子的阻力为恒力F,则子弹穿出后,木块A的速度 大小为 ,木块B的速度大小为 。
1 1 2 W mv2 mv12 2 2
质点的动能定理:在一个过程中,作用在质点上 合外力的功,等于质点动能的增量。
四、保守力的功 F保 dr 0
l
势能
E p F保 dr (b为势能零点) a
b
W保 ( Epb Epa ) Ep
重力势能:Ep mgz
l
dx v 2ct dt
l
W 0 fdx 0 4kcxdx 2kcl 2
2-28 水平方向动量守恒
( P Q)v0 cos Pv Q(v u)
Qu ( P Q) v0 cos Qu v0 cos v PQ PQ
Δx vt v0 cos t
总
结
一、动量定理和动量守恒定律 t2 Fdt mv2 mv1
大学物理第二章质点动力学习题解答
2-20天平左端挂一定滑轮,一轻绳跨过定滑轮,绳的两端分别系上质量为 m 1,m 2的物体(m 1M m 2),天平右端的托盘上放有砝码.问天平托盘和 砝码共重若干,天平才能保持平衡?不计滑轮和绳的质量及轴 承摩擦,绳不伸长。
解:隔离m 1,m 2及定滑轮,受力及运动情况如图示,应用 牛顿第二定律:第二章习题解答2-17质量为2kg 的质点的运动学方程为r (6t 2 1)? (3t 2 3t 1)?(单位:米,秒),求证质点受恒力而运动,并求力的方 向大小。
解:T a d 2r/dt 2 12? 6?, F ma 24? 12?为一与时间无关的恒矢量, 质点受恒力而运动。
F=(242+122)1/2=12 ■ 5N ,力与x 轴之间夹角为:arctgF y / F xarctg 0.526 34'2-18 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:r acos t ? bsin t ?, a,b,3为正常数,证明作用于质点的合力总指向原点证明:•.• a d 2r /dt 22(acos t? bsin tp) 2rF ma m 2r , •••作用于质点的合力总指向原点2-19在图示的装置中两物体的质量各为 m 1,m 2,物体之间及物 体与桌面间的摩擦系数都为卩,求在力F 的作用下两物体的加速度 及绳内张力,不计滑轮和绳的质量及轴承摩擦,绳不可伸长。
解:以地为参考系,隔离 m 1,m 2,受力及运动情况 如图示,其中:f 1=卩N 1=卩m 1g , f 2=卩N 2=卩(N 1+m 2g)=卩(m 1+m 2)g.在水平方向对 两个质点应用牛二定律:①+②可求得:a F 2 m 1ggm 1 m 2JlN 1 T ---------------- * f 11Fm1ga 亠T m g m 1a ① F m 1g (m 1 m 2)g T m 2a ②将a 代入①中,可求得:Tm 1(F 2 mg) m 1 m 2仃N 1 ‘‘ m2ga -N 1a 1一 1 • f 1 I'm 1gT' m 1 g m 1a ① m 2g T' m ?a ②T 2T' 由①②可求得:T' 2m 1m 2g T m 1 m 2 '2mim 2g m 1 m 22-21 一个机械装置如图所示,人的质量为m 仁60kg ,人所站的底 板的质量为m 2=30kg 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章质点动力学习题解答2-1 如图所示,电梯作加速度大小为a 运动。
物体质量为m ,弹簧的弹性系数为k ,•求图示三种情况下物体所受的电梯支持力(图a 、b )及电梯所受的弹簧对其拉力(图c )。
解:(a )ma mg N =- )(a g m N +=(b )ma N mg =- )(a g m N -= (c )ma mg F =- )(a g m F +=2-2 如图所示,质量为10kg 物体,•所受拉力为变力2132+=t F (SI ),0=t 时物体静止。
该物体与地面的静摩擦系数为20.0=s μ,滑动摩擦系数为10.0=μ,取10=g m/s 2,求1=t s 时,物体的速度和加速度。
解:最大静摩擦力)(20max N mg f s ==μmax f F >,0=t 时物体开始运动。
ma mg F =-μ,1.13.02+=-=t mmgF a μ 1=t s 时,)/(4.12s m a =dtdv a =,adt dv =,⎰⎰+=t v dt t dv 0201.13.0t t v 1.11.03+=1=t s 时,)/(2.1s m v =2-3 一质点质量为2.0kg ,在Oxy 平面内运动,•其所受合力j t i t F232+=(SI ),0=t 时,速度j v 20=(SI ),位矢i r 20=。
求:(1)1=t s 时,质点加速度的大小及方向;(2)1=t s 时质点的速度和位矢。
解:j t i t m F a+==223 223t a x =,00=x v ,20=x ⎰⎰=tv x dt t dv x02023,23t v x =⎰⎰⎰==txtx dt t dt v dx 03202,284+=t xt a y =,20=y v ,00=y⎰⎰=tv y tdt dv y02,222+=t v y⎰⎰⎰+==tyty dt t dt v dy 020)22(,t t y 263+=(1)1=t s 时,)/(232s m j i a+=(2)j t i t v)22(223++=,1=t s 时,j i v 2521+= j t t i t r)26()28(34+++=,1=t s 时,j i r 613817+= 2-4 质量为m 的子弹以速度0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度随时间变化的关系;(2)子弹射入沙土的最大深度。
解:依题意kv f -=,(1)m kv dt dv a -==,⎰⎰-=t v v dt mkv dv 0)(0,解得:t m ke v v -=0 (2)根据动量定理000)(mv kdx dt kv xt-=-=-⎰⎰,解得: km v x 0=即子弹射入沙土的最大深度km v x 0=2-5 一悬挂软梯的气球总质量为M ,软梯上站着一个质量为m 的人,共同在气球所受浮力F 作用下加速上升。
若该人相对软梯以加速度m a 上升,问气球的加速度如何?解:设气球开始时的加速度为a ,当人相对软梯以加速度m a 上升时的加速度为a '当人相对软梯以加速度m a 上升时,有:⎩⎨⎧'+=-'=--)(a a m mg T a M T Mg F m 解以上两式可得:m ma a m M g m M F +'+=+-)()(⋯⋯(1) 开始时刻:a m M g m M F )()(+=+-⋯⋯(2) 两种(1)(2)式比较可知,a a <',气球的加速度变小。
2-6 如图所示,在一列以加速度a 行驶的车厢上装有倾角30=θ的斜面,并于斜面上放一物体,已知物体与斜面间的最大静摩擦系数2.0=S μ,若欲使物体相对斜面静止,则车厢的加速度应有怎样限制?解:静摩擦力满足:N f s μ<<0当最大静摩擦力的方向沿斜面向上时,加速度最小。
⎩⎨⎧=+=-mg N N ma N N s s θμθθμθsin cos cos sin min解以上两式得:)/(39.3sin cos )cos (sin 2min s m g a s s ≈+-=θμθθμθ当最大静摩擦力的方向沿斜面向下时,加速度最大⎩⎨⎧=-=+mg N N ma N N s s θμθθμθsin cos cos sin min解以上两式得:)/(80.8sin cos )cos (sin 2min s m g a s s ≈-+=θμθθμθ欲使物体相对斜面静止,则车厢的加速度的值应满足22/80.8/39.3s m a s m ≤≤ 2-7 棒球质量为14.0kg ,用棒击打棒球的力随时间的变化关系如图所示。
设棒被击打前后速度增量大小为70 m/s ,求力的最大值。
设击打时不计重力作用。
解:根据面积法可求出力的冲量m a x m a x 04.008.021F F I =⨯⨯=根据动量定理,有v m mv mv I ∆=-=12 代入数据解得:)(245max N F =2-8 子弹在枪筒中前进时受到的合力可表示为t F 51034500⨯-= (SI),子弹由枪口飞出时的速度为300 m/s ,设子弹飞出枪口时合力刚好为零,求子弹的质量。
解:子弹飞出枪口时合力刚好为零,有:010345005=⨯-t ,)(1075.330s t -⨯= )(94.0103250020500Ns t t Fdt I t =⨯-==⎰(2)根据动量定理mv mv mv I =-=0,计算得())(1.3101.33g kg vIm =⨯==-2-9 有两个质量均为m 的人站在停于光滑水平直轨道的平板车上,平板车质量为M 。
当他们从车上沿相同方向跳下后,车获得了一定的速度。
设两个人跳下时相对于车的水平分速度均为u 。
试比较两个人同时跳下和两个人依次跳下这两种情况下,车所获得的速度的大小。
解:(1)两人同时跳下。
在地面参考系中,设平板车的末速度为v ,则两个人跳下时相对地面的速度为u v - 根据动量守恒,有:)(20u v m Mv -+=)2(2m M m uv +=(2)一个人跳下,另一个再跳下。
设第一个人跳下车后车的的速度为0v )()(000u v m v m M -++= mM muv 20+=设另一个再跳下车后车的速度为v ,以车和车上的人为质点系,有: )()(0u v m Mv v m M -+=+ u mM mm M m m M mu v m M v )2()(0+++=+++=2-10 质量为m 的人拿着质量为0m 的物体跳远,设人起跳速度为0v ,仰角为θ,到最高点时,此人将手中的物体以相对速度u 水平向后抛出,问此人的跳远成绩因此而增加多少? 解:人不向后抛出物体所能跳过的距离为θcos 00t v x =,式中0t 为人跳离地面的时间。
由021sin 200=-=gt t v y o θ可解得:gv t θsin 200= θcos 00t v x =gv g v θθθ2sin cos sin 22020==在最高点,人若不向后抛出物体,此时速度为θcos 0v v x =,当人在最高点将手中的物体以相对速度u 水平向后抛出时,设人在水平方向的速度为x v ',根据动量守恒定律,有:)(cos )(000u v m v m v m m x x -'+'=+θ000000cos cos )(m m u m v m m u m v m m v x ++=+++='θθ 可见与不抛出物体时相比,人的速度增加了00m m um v v v x x +=-'=∆此人增加的跳远距离为gm m uv m t v l )(sin 20000+=⋅∆=θ2-11 有一正立方体铜块,边长为a ,今在其下半部中央挖去一截面半径为4/a 的圆柱形洞,如图所示,求剩余铜块的质心位置。
解:由质量分布的对称性可知,铜块的质心应在此平面内通过圆洞中心的竖直线上。
完整铜块的质心应在丄立方体中心O 处。
把挖去的铜柱塞回原处,其质心应在其中心A 处。
挖去铜柱后剩余铜块的质心应在AO 连线上,设在B 处。
由于挖去的铜柱塞回后铜块复归完整,由此完整铜块的质心定义应有:AO m BO m 21=,其中22)4(aa m πρ=为挖去铜柱的质量,)161()4(3231πρπρρ-=-=a a a a m 为挖铜柱后剩余铜块的质量。
a a AO m m BO 061.0416/116/12=⨯-==ππ 即剩余铜块的质心在正方体中心上方a 061.0处2-12 用劲度系数为k 的轻质弹簧将质量为1m 和2m 的两物体A 和B 连接并平放在光滑桌面上,使A 紧靠墙,在B 上施力将弹簧自原长压缩l ∆,如图所示。
若以弹簧、A 和B 为系统,在外力撤去后,求:(1)系统质心加速度的最大值;(2)系统质心速度的最大值。
解:(1)初始时,系统平衡,系统受到两个外力作用:墙对A 的支持力N 和外力F ,且l k N F ∆==当撤去外力的瞬时,合外力最大,有:l k N F ∆==max根据质心运动定律,有:max 21max )(c a m m F +=, 系统质心加速度的最大值为:)()(2121max max m m lk m m F a c +∆=+=(2)撤去力后,物体B 开始运动,此时物体A 仍保持不动。
当B 运动使弹簧恢复到原长位置时,此时有:0=N ,0=A v ,物体B 的速度最大。
根据机械能守恒定律,有222)(2121l k v m B ∆=,2m k l v B ∆= 此时系统的动量为22210m klm v m v m P B A ∆=+=。
此后,系统只受到弹力的作用,系统的动量守恒,即:2221m k lm v m v m P B A ∆='+'= P v m m c =+)(21 2221m klm v m v m P B A ∆='+'= 系统质心速度的最大值:2212max m k m m l m v c +∆=2-13 人造卫星在地球引力作用下沿椭圆轨道运动,地球中心位于椭圆轨道的一个焦点上。
卫星近地点离地面的距离为439km ,卫星在近地点的速度大小为8.12 km/s 。
设地球的半径为6370 km ,已知卫星在远地点的速度大小为6.32 km/s 。
求卫星在远地点时离地面的距离。
解:卫星在绕地球运动时受到到的引力为万有引力,它对地球中心的力矩为零,因此卫星在运动中角动量守恒。
设卫星在近地点距地心的距离为1r ,速度大小为1v ,在远地点的距离为2r ,速度大小为2v ,由动量守恒定律,有:2211r mv r mv =)(874832.6)4396370(12.82112km v r v r =+⨯==卫星在远地点时离地面的距离:)(237863708748km h =-=2-14 炮弹的质量为20kg ,出口的速度5000=v m/s ,炮身及支架置于光滑铁轨上,左端连同支架的共同质量为600kg ,火药燃烧时间为001.0s ,弹簧劲度系数为1000k N/m ,求:(1)发射时铁轨约束力的平均值;(2)炮身后座的速度;(3)弹簧的最大压缩量。