人教高中数学《椭圆》ppt优秀课件

合集下载

椭圆ppt课件

椭圆ppt课件

02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例

3.1.2椭圆的简单几何性质课件(人教版)

3.1.2椭圆的简单几何性质课件(人教版)

x2 a2
y2 b2
1,
(4)
由此可知,点M的轨迹是椭圆,方程(1)是椭圆
的参数方程,在椭圆的参数方程(1)中,常数a、
b分别是椭圆的长半轴长和短半轴长.
6、椭圆的参数方程
椭圆 x2 a2
y2 b2
1 (a
b
0),的参数方程是
x
y
a cos b sin
(为参数)
7、椭圆的焦半径公式
P(x0,y0)是椭圆
c2
b2,就可化
成:x a
2 2
y2 b2
(1 a
b 0).
这是椭圆的标准方程,所以点M的轨迹是长轴、 短轴长分别为2a、2b的椭圆.
5、椭圆的第二定义
平面内点M与一个定点的距离和它到一定直线的
距离的比是常数:e c (0<e<1)时,这个 a
点M的轨迹是椭圆,定点是椭圆的焦点,定直线 叫做椭圆的准线,常数e是椭圆的离心率.
长、离心率、焦点和顶点的坐标,并用描点法
画出它的图形.
解:把已知方程化成标准方程: x 2 52
y2 42
1,
这里,a 5,b 4,所以:c 25 16 3,
因此,椭圆的长轴和短轴的长分别是:2a 10
和 2b 8,离心率 e c 3,两个焦点分别是 a5
F1 ( 3,0)和F2 (3,0),椭圆的四个顶点是 A(1 5,0)、A(2 5,0),B(1 0, 4)和B(2 0,4).
练习
一、选择题
1、椭圆短轴长是2,长轴是短轴的2倍,则椭圆
的中心到其准线的距离是(D )
A、8 5 5
B、 4 5 5
C、8 3 3
D、 4 3 3
2、椭圆 9x2 25 y 2 225 上有一点P,它到右准

高中数学课件圆锥曲线基本知识-椭圆课件.ppt

高中数学课件圆锥曲线基本知识-椭圆课件.ppt

2024/9/27
15
练习 3
椭圆 4x2 y2 16
长轴长是 短轴长是 离心率是 焦点坐标 准线方程
2024/9/27
16
练习 4
椭圆
x2 y2 1 a8 9
的离心率是0.5,求a的值?
2024/9/27
17
练习 5
假设椭圆x2行于x轴,那么m的
2024/9/27
7
练习 7
过点〔3,-2〕且与椭圆 4x2+9y2=36有相同焦点的 椭圆方程是
2024/9/27
8
练习 8
椭圆x+2 4y 2=36的弦被点〔4, 2〕所平分,那么此弦所在 的直线方程是
2024/9/27
9
练习 9
P(x,y)是椭圆4x2+9y2 =36 上的动点,定点A(a,0) (o<a<3),|AP|的最小值是1, 那么a的值为
P x
(a>b>0)
12
椭圆中的根本元素
长轴:2a 短轴:2b 焦距:2c 离心率:e=
2024/9/27
13
练习 1
过椭圆 4x2 y2 16的一个
焦点F1的直线与椭圆交于A、 B两点,F2为椭圆的另一个焦 点,那么三角形ABF2的周长 是
2024/9/27
14
练习 2
假设方程x2 ky2 2 表示焦 点在y轴上的椭圆,那么实数 k 的取值范围是
2024/9/27
10
椭圆的定义
平面内与两个定点F1,F2的距离的和 等于常数〔大于|F1F2|〕的点的轨迹 叫做椭圆
到一个定点的距离和它到一条定 直线的距离的比是常数e (0<e<1) 的点的轨迹叫做椭圆

《椭圆》精品ppt人教A版3

《椭圆》精品ppt人教A版3

《椭圆》精品ppt人教A版3
《椭圆》精品ppt人教A版3
Thank you for watching !
《椭圆》精品ppt人教A版3
B.5
C.8
D.10
D [由椭圆方程知 a2=25,则 a=5,|PF1|+|PF2|
=2a=10.]
《椭圆》精品ppt人教A版3
《椭圆》精品ppt人教A版3
3.椭 圆的两 个焦点坐 标分别 为 F1(0,-8) , 18
F2(0,8),且椭圆上一点到两个焦点的距离之和为 20,
则此椭圆的标准方程为( )
第三章 圆锥曲线的方程
3.1 椭圆 3.1.1 椭圆及其标准方程
2
学习目标 1.理解椭圆的定义及椭圆的标准方
核心素养
程。(重点)
2.理解椭圆标准方程的推导过程. 通过椭圆标准方程的学习,
(难点)
培养学生的数学运算素养.
3.掌握用定义法和待定系数法求椭圆
的标准方程.(重点)
动画演示
3
下面请你固定两个图钉,拉一根无弹性的细绳, 两端系在图钉上(如图),用铅笔抵住细绳并上下左右 转动,看铅笔留的轨迹是否是椭圆?
线段F1F2的中垂线为x轴,建立平面直角坐
标系,得到椭圆上动点M满足的方程:
y2 x2
F2
1(ab0)
a2 b2
o
这也是椭圆的一个标准方程。
F1
12
M x
《椭圆》精品ppt人教A版3
《椭圆》精品ppt人教A版3
思考:你能从图中找出 a,b,c表示的线段吗?
13
y M
a
b
F1 o c F2 a
x
a2 b2 c2 a最大,b与c无确定的大小关系。

椭圆的课件ppt

椭圆的课件ppt

椭圆的焦点性质与离心率性质的应用
焦点性质
椭圆焦点位置决定了椭圆形状,当两个焦点距离越大,椭圆越扁平;当两个焦点 距离越小,椭圆越圆。
离心率性质的应用
离心率可以用于计算椭圆形状的变化,离心率越小,椭圆越圆;离心率越大,椭 圆越扁平。
椭圆的焦点三角形与离心率三角形
焦点三角形
以椭圆中心为顶点,以两个焦点为侧顶点的三角形称为焦点三角形。
椭圆的范围与顶角
01
椭圆的范围是指椭圆上任一点到 椭圆中心的距离范围。对于标准 椭圆,这个范围是从-a到a的,其 中a是椭圆的长半轴长度。
02
椭圆的顶角是指椭圆上与两个焦 点相连的线段之间的夹角。对于 标准椭圆,这个夹角是90度。
椭圆的性质在生活中的应用
椭圆性质在生活中的应用广泛,例如在物理 学中,椭圆运动轨迹经常出现,如篮球投篮 、行星运动等;在工程学中,椭圆形状也经 常被用于建筑设计、汽车制造等方面。
转化方法
通过一些数学变换,可以将椭圆的参数方程或极坐标方程转化为另一种形式, 从而方便解的焦点与离心率
椭圆的焦点与离心率定义
椭圆焦点
椭圆的两个焦点位于长轴的端点,与椭圆中心距离相等,连 接两个焦点的线段称为焦距。
离心率定义
椭圆的离心率是指椭圆焦点到椭圆中心的距离与椭圆长轴长 度的比值。
离心率三角形
以椭圆中心为顶点,以两个焦点为侧顶点的三角形称为离心率三角形。
CHAPTER 04
椭圆的性质与运用
椭圆的对称性
椭圆的对称性是指椭圆关于坐标轴和原点都是对称的。这意味着无论从哪个方向开始,沿着坐标轴方 向移动,椭圆上的点都会以相同的形状和大小出现。
在椭圆中,与两个焦点距离之和等于定值的点构成的图形。这个定值是椭圆的长轴长度,与两个焦点 之间的距离之差等于短轴长度。

课件椭圆及其标准方程_人教版高中数学选修PPT课件_优秀版

课件椭圆及其标准方程_人教版高中数学选修PPT课件_优秀版

思 考 为什么要求 2a2c?
当绳长等于两定点间
距离即2a=2c 时,
M
轨迹为线段;
F1
F2
当绳长小于两定点
间距离即2a<2c时,
轨迹不存在。
F1
F2
例1:命题甲:动点P到两定点A,B的距离之 和|PA|+|PB|恒等于一个常数;命题乙:点P 的轨迹是椭圆.则命题甲是命题乙的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
y (x5); AM x5
k 同理,直线BM的斜率
y (x5); BM x5
由已知有 y y 4(x5)
x5 x5 9
化简,得点M的轨迹方程为
x2
y2 1( x 5).
25 100
9 椭圆
A.(1,+∞)
B.(-∞,-1)
C.(-1,1)
D.(-1,0)∪(0,1)
D
例3已:知椭圆两个焦点的坐标分别是( -2, 0 ), (2,0),
并且经过点P 5 , 3 ,求它的标准方程.
2 2
y
解:因为椭圆的焦点在 x轴上,设
x2 a2
by22
1(ab0)
由椭圆的定义知
F1 O
F2 P x
MFMFa, 为什么要求
已知椭圆两个焦点的坐标分别是( -2, 0 ), (2,0),
并且经过点P
那么,如何求椭圆1的方程呢? 2
y M ,求它的标准方程.
又设M与F1, F2的距离的和等于2a
a b c, 2 2 又因为 , 所以
那么,如何求椭圆的方程呢?
2
(1)距离的和2a 大于焦距2c ,即2a>2c>0.

人教A版高二数学《椭圆及其标准方程》课件

人教A版高二数学《椭圆及其标准方程》课件
y
设M(x, y)是椭圆上任意一点,
M
椭圆的焦距2c(c>0),M
与F1和F2的距离的和等于正 常数2a (2a>2c) ,则F1、F2的坐 标分别是(c,0)、(c,0) .
F1 0 F x
2
由椭圆的定义得,限制条件:| MF1 | | MF2 | 2a
代入坐标 | MF1 | (x c)2 y2 ,| MF2 | (x c)2 y2
点 焦点的位 x2 , y2 项中哪个分母大,焦点就在哪一条
置的判定
坐标轴上.
15
x2 变式1:椭圆的方程为:3
y2 7
1
,

a=____7_,b=____3___,c=___2____,焦点坐
标为:(0_,_2_)和__(__0_,-_2_)_焦距等于_____4_____;曲
线上一点P到焦点F2的距离为3,则点P到另 一个焦点F1的距离等于___2__7___3_,则 △F1PF2的周长为_2__7___4_____ y
25 16
25 16
思考:求合适下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-4,0)和(4,0),且椭
圆经过点(5,0).
y
解:因为椭圆的焦点在 x 轴上,设
x2 a2
y2 b2
1(a
>
b>
0).
由椭圆的定义知
F1 O
F2 P x
2a (5 4)2 (0 0)2 (5 4)2 (0 0)2 10,
所以 a 5.
又因为 c 4,所以 b2 a2 c2 25 16 9.
因此,所求椭圆的标准方程为
x2 y2 1. 25 9
定义法 20

椭圆及其标准方程(24张PPT)

椭圆及其标准方程(24张PPT)

知识生成
• (1)取一条细绳 • (2)把它的两端固定在图板上的两
点F1、F2 • (3)用铅笔尖把细绳拉紧,在图板上
慢慢移动看看画出的图形
知识生成
思考1
(1)在画图的过程中,F1、F2的位置是固定的
还是运动的?
固定的
F11
(2)在画图的过程中,绳子的长度变了没有?
说明了什么?
|MF1|+|MF2|为定值
x2
y2
(4) 1
m2 m2 1
焦点坐标为: F1(0,1),F2 (0,1)
应用拓展
2.已知椭圆两个焦点的坐标分别是( -2, 0 ), (2,0),
y
并且经过点P
5 , 3 2 2
,求它的标准方程.
F1 O
解:因为椭圆的焦点在x轴上,设 由椭圆的定义知
x2 a2
y2 b2
1(a
b
0)
2a
椭得圆,的b焦2 x距2 为a22 yc,2 则a有2bF2 1(-c,0)、F2(c,0).
化 两边同又除设以Ma与2bF2得1,axF222的 距by22离的1.和(a等于b 2a0)
构建方程
焦点在 x 轴上,椭圆的 标准方程
y
M (x, y)
F1 O
F2
x
x2 y2 a2 b2 1(a b 0)
当2a<2c时,即距离之和小于焦距时
知识生成
1.当2a 2c时,M点的轨迹是 椭圆 2.当2a 2c时,M点的轨迹是 线段F1F2 3.当2a 2c时,M点的轨迹是 不存在
知识深化
思考3
(1)已知A(-3,0),B(3,0),M点到A,B两点的距离和为
10,则M点的轨迹是什么?

高中数学椭圆公开课全省一等奖PPT课件

高中数学椭圆公开课全省一等奖PPT课件

03
提高数学思维能力
通过学习和练习,提高数学思 维能力,包括逻辑推理、归纳 分类、化归等思想方法的应用 能力。
04
关注数学文化
了解数学史、数学名著和数学 家的故事等数学文化内容,丰 富自己的数学素养和视野。
2024/1/25
30
感谢您的观看
THANKS
2024/1/25
31
PF_2$,若$Delta PF_1F_2$的面积为9,求椭圆的方程。
7
02
椭圆与直线关系
2024/1/25
圆方程的解的情况,可以确定直线与椭圆的位置关系, 如相切、相交或相离。
判别式法
将直线方程代入椭圆方程,消去一个未知数,得到一个关于另一个未知数的二 次方程,通过判别式Δ的值来判断位置关系。当Δ>0时,直线与椭圆相交;当 Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离。
例题4
结合实际问题,利用参数方程求 解最值问题。
01
02
例题1
已知椭圆的参数方程,求其普通 方程和焦点坐标。
03
04
例题3
利用参数方程研究椭圆上点的运 动轨迹和性质。
2024/1/25
22
05
高考真题回顾与拓展延伸
2024/1/25
23
历年高考真题回顾
(2019年全国卷II)椭圆的焦点 三角形面积问题
解题思路
首先根据题目条件列出方程或不等式,然后结合图形分析,运用相关知识点进行 求解。在解题过程中,需要注意数形结合思想和转化与化归思想的应用。
2024/1/25
12
03
椭圆在几何图形中应用
2024/1/25
13
利用椭圆性质求最值问题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.爱国主义精神,是在中国共产党近 百年之 奋斗史 中不断 形成, 积聚与 升华而 成的。 4.面对史上规模最大的贸易战,中国 政府和 人民最 重要的 是“集中 力量做 好自己 的事” 5.美方发起贸易战,进行恫吓威胁, 不会给 中国发 展带来 困难和 影响, 只会更 加激发 中国人 民的勇 气、士 气与硬 气。 6.不能把质朴、理性的爱国主义视为 民粹主 义、狭 隘民族 主义, 同时应 防止各 种形式 的民粹 主义和 极端民 族主义 行为。 7. 众多短视频平台成为人们的消遣神 器,但 如果缺 乏内容 创新和 内涵续 航,短 视频的 发展将 不容乐 观。 8. 在这个浅表性阅读时代,越是具有 艺术美 感、内 容穿透 力和人 文内涵 的走心 作品越 能获得 观众的 认可。 9. 弊端重重的人类中心主义亟须克服 自身认 识的偏 见,而 中华民 族的中 道智慧 是一个 可取的 办法。
人教高中数学《椭圆》ppt优秀课件
挑战自我
已知椭圆的两个焦点分别为F1(-4,0)和 F2(4,0),再添加什么条件,可得椭 圆方程为
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
1.中美贸易摩擦已升级为舆论战,坚 持正确 舆论导 向、弘 扬爱国 主义精 神尤为 重要。 2.爱国主义精神具有深厚的历史性, 极强的 传承力 、感染 力,以 及坚韧 性,顽 强性和 理性。
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
结论
x2 y2 1 a2 b2
其中,a b 0 .
它的焦点坐标在x轴上,分别是F1(c,0), F2 (c,0)
c2 a2 b2
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件 人教高中数学《椭圆》ppt优秀课件
这两个定点叫做椭圆的焦点, 两焦点的距离叫做椭圆的焦距.
|MF1|+|MF2|=2a(2a> |F1F2|) 问题1:当常数等于|F1F2|时,点M的轨迹
是什么? 线段F1F2 问题2:当常数小于|F1F2|时,点M的轨迹
是什么? 轨迹不存在
人教高中数学《椭圆》ppt优秀课件
练习
1.已知B,C是两个定点,它们之间 距离为6,以线段BC为一边画周长 为20的三角形,问三角形的第三 个顶点的轨迹是什么图形?
(2) x2 y 2 1 答:在y轴。(0,-5)和(0,5) 144 169
(3)
x2 m2
m
y
2
2
1
1
答:在y轴。(0,-1)和(0,1)
判断椭圆标准方程的焦点在哪个轴上的准则: 焦点在分母大的那个轴上
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
例1.椭圆的两个焦点的坐标分别是(-4,0)
人教高中数学《椭圆》ppt优秀课件
两类标准方程的对照表:
定义
图形
方程 焦点
a,b,c之间的关系
|MF1|+|MF2|=2a(2a> |F1F2|)
y
M
y
F2 M
F1 o
F2 x
x2 a2
y2 b2
1
a
b
0
F(±c,0)在X轴上
o
x
F1
y2 a2
x2 b2
1
a
b
0
F(0,±c)在Y轴上
c2=a2-b2
人教高中数学《椭圆》ppt优秀课件
2.1.1椭圆及其标准方程(一)
学习目标:
1、掌握椭圆的定义; 2、了解椭圆标准方程的推导并掌握椭圆的标 准方程。
3、能求简单的椭圆的标准方程。
自主学习(一)
1.阅读教材33页,同时分组合作画图。 2.观察椭圆上的点有什么几何性质,绳 长满足什么条件?
椭圆的定义:
平面内与两个定点F1、F2的距离的和等于定长的 点的轨迹叫做椭圆(其中定长大于|F1F2|) ,
(4,0),椭圆上一点M 到两焦点距离之和
等于10,求椭圆的标准方程。
y
F1 o
M
F2 x
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
例2.已知椭圆的两个焦点为(0,-4), (0,4),并且椭圆经过点
求椭圆的标准方程
y
F2 M
o
x
F1
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
注: 结论:哪个项的分母大,焦点就在相应的哪条坐标轴上。反过来,焦点在哪个轴 上,相应那个项的分母就大。
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
练习
判定下列椭圆的标准方程在哪个轴上,并写出焦点坐标。
(1) x2 y 2 1 答:在x轴。(-3,0)和(3,0) 25 16
求椭圆的标准方程的步骤
1、确定焦点的位置 2、设出椭圆的标准方程 3、求出方程中的a与b或待定系数法
解方程 4、把a与b代入标准方程
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
练习
教材37页A组1题
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
小结
一个定义
2.已知A(-2,0),B(2,0),问 到A,B两点的距离之和为4的点的 轨迹是什么图形?
人教高中数学《椭圆》ppt优秀课件
人教高中数学《椭圆》ppt优秀课件
自主学习(二)
阅读教材35页,学习椭圆标准方程的 推导
1.如何建系 2.2a,2c的意义 3.根据什么条件列式 4.如何化简的 5.b的引入,它与a,c的关系
椭圆定义:平面内与两个定点F1、F2的距离的和等于 常数2a (大于│ F1F2│,)的点的轨迹,叫做椭圆.
两个方程
椭圆标准方程: (1). 椭圆焦点在x轴上
(2). 椭圆焦点在y轴上
两种方法
待定系数法、公式法
x2 a2
y2 b2
1(a
b 0).
y2 a2
x2 b椭圆》ppt优秀课件
相关文档
最新文档