生物素对谷氨酸发酵的影响及控制
氨基酸工艺学复习题综合测试题

综合测试题(一)一、选择题1.用发酵工程生产的产品,如果是菌体,则进行分离提纯可采用的方法是()A.蒸馏过滤C.过滤沉淀C.萃取离子D.沉淀萃取2.下列物质中,不能为异养生物作碳源的是()A.蛋白胨B.含碳有机物C.含碳无机物D.石油、花生饼3.培养生产青霉素的高产青霉素菌株的方法是()A.细胞工程B.基因工程C.人工诱变D.人工诱变和基因工程4.以下发酵产品中不属于微生物代谢产物的是()A.味精B.啤酒C.“人造肉”D.人生长激素5.对谷氨酸发酵的叙述正确的是()A.菌体是异养厌氧型微生物B.培养基属于液态的合成培养基C.谷氨酸的形成与搅拌速度无关D.产物可用离子交换法提取6.用于谷氨酸发酵的培养基需添加的生长因子是()A.氨基酸B.碱基C.核苷酸D.生物素7.关于菌种的选育不正确的是()A.自然选育的菌种不经过人工处理B.诱变育种原理的基础是基因突变C.通过有性杂交可形成工程细胞D.采用基因工程的方法可构建工程菌8.谷氨酸棒状杆菌扩大培养时,培养基应该是()A.C:N为4:1 B.C:N为3:1 C.隔绝空气D.加大氮源、碳源的比例9.灭菌的目的是()A.杀灭细菌B.杀灭杂菌C.杀灭所有微生物D.杀灭芽孢10.能影响发酵过程中温度变化的因素是()A.微生物分解有机物释放的能量B.机械搅拌C.发酵罐散热及水分蒸发D.B、C都对11.在发酵中有关氧的利用正确的是(B )A.微生物可直接利用空气中的氧B.微生物只能利用发酵液中溶解氧C.温度升高,发酵液中溶解氧增多D.需向发酵液中连续补充空气并不断地搅拌12.当培养基pH发生变化时,应该()A.加酸B.加碱C.加缓冲液D.加培养基13.大量生产酵母菌时,不正确的措施是(A)A.隔绝空气B.在对数期获得菌种C.过滤沉淀进行分离D.使菌体生长长期处于稳定期14.基因工程培育的“工程菌”通过发酵工程生产的产品有(B)①石油②人生长激素③紫草素④聚乙二醇⑤胰岛素⑥重组乙肝疫苗A.①③⑥ B.②⑤⑥ C.③⑤⑥ D.②③⑤15.不能以糖类作为碳源的细菌是()A.假单胞菌B.乳酸菌C.甲基营养菌D.固氮菌16.不能作为异养微生物碳源的是()A.牛肉膏B.含碳有机物C.石油D.含碳无机物17.根瘤菌能利用的营养物质的组别是()A.NH3,(CH2O),NaCl B.N2,(CH2O),CaCl2C.铵盐,CO2,NaCl D.NO2,CO2,CaCl218.配制培养基的叙述中正确的是()A.制作固体培养基必须加入琼脂B.加入青霉素可得到放线菌C.培养自生固氮菌不需要氮源D.发酵工程一般用半固体培养基19.下列属于微生物不可缺少的微量有机物的是()①牛肉膏②蛋白胨③氨基酸④维生素⑤碱基⑥生物素A.①②③B.②③④C.②③④⑤D.③④⑤⑥质20.在用伊红-美蓝培养基鉴别大肠杆菌时,培养基中可以不含有()A.碳源B.氮源C.生长因子D.水和无机盐21.自养型微生物与异养型微生物的培养基的主要差别是(A )A.碳源B.氮源C.无机盐D.生长因子22.下列关于生长因子的说法中,不正确的一项是()A.是微生物生长不可缺少的微量有机物B.是微生物生长不可缺少的微量矿质元素C.主要包括维生素、氨基酸和碱基等D.一般是酶和核酸的组成成分23.下列营养物质中,不是同时含有碳源、氮源和生长因子的是()A.牛肉膏B.蛋白胨C.生物素D.酵母粉24.鉴别培养基是根据微生物的代谢特点在培养基中加入一些物质配制而成,这些物质是()A.指示剂或化学药品B.青霉素或琼脂C.高浓度食盐D.维生素或指示剂25.纯培养是其中(A )的培养物。
4谷氨酸发酵机制

硫是含硫氨基酸的组成成分,构成酶的活性基团。培养基 中的硫酸镁供应的硫已充足,不需另加。
3. 钾盐
许多酶的激活剂,钾盐少长菌体,钾盐足够产谷氨酸。 谷氨酸发酵产物生成期需要的钾盐比菌体生长期高。
菌体生长期需硫酸钾量约为0.1g/L,谷氨酸生成期需硫酸钾量
为0.2-1.0g/L.
4. 微量元素
添加方式:
铵盐、液氨等可采取流加方法,液氨作用快,采取连续流加, 尿素少量多次分批流加。 用硫酸铵等生理酸性盐为氮源时,由于铵离子被利用而残留 SO42-等酸根,使PH下降,需在培养基中加入碳酸钙以自动中 和pH。但添加碳酸钙易形成污染,生产上一般不用此法。
三、无机盐
功能
构成菌体成分、酶的组成成分、酶的激活剂或抑制剂、
斜面菌种的培养 目的:纯菌生长繁殖 措施:多含有机氮,不含或少含糖 一级种子培养
目的:大量繁殖活力强的菌体 措施:少含糖分,多含有机氮,培养条件有利于长菌。
二级种子培养
目的:获得发酵所需的足够数量的菌体
为发酵培养基的配制原则
供给菌体生长繁殖和谷氨酸生产所需要的适量的营养和能源 原料来源丰富,价格便宜,发酵周期短,对产物提取无妨碍等。
酶活
改变生物合成途径,使代谢产物发生变化
改变发酵液物理性质 影响菌种对营养物的分解与吸收
5.
6.
不同微生物的最适生长温度不同
同一种微生物,菌体生长和产物合成的最适温度不一定相同。
谷氨酸生产菌的最适生长温度为30-34℃,T6-13菌 株比较耐高温,斜面、一级、二级种子和发酵开始 温度可选用33-34 ℃,生产谷氨酸的最适温度为3537℃. 谷氨酸温度敏感菌株1021最适生长温度是30 ℃, 最适产谷氨酸温度38 ℃,发酵过程中采用分段控制。
谷氨酸发酵 实验报告(1)

兰州大学生命科学学院发酵工程实验谷氨酸发酵实验摘要:谷氨酸棒杆菌在合适的培养基中经摇瓶培养能快速生长,为发酵实验准备菌种。
还原糖的消耗和谷氨酸的生成是衡量谷氨酸发酵是否正常的重要标志,所以在发酵过程中,要求每两个小时测定一次还原糖的含量,并据此作出发酵的糖耗曲线。
关键字:种子的制备、发酵罐、谷氨酸棒杆菌、PH的调节引言:了解发酵工业菌种制备工艺和质量控制,为发酵实验准备菌种。
了解发酵罐罐体构造和管道系统,掌握对发酵罐及其管道系统的灭菌方法。
了解发酵罐的操作,完成谷氨酸发酵的全过程。
还原糖的消耗和谷氨酸的生成是衡量谷氨酸发酵是否正常的重要标志,在发酵后期当还原糖降至1%以下时,表明谷氨酸发酵已经完成。
所以在发酵过程中,要定时测定还原糖的含量,要求每两个小时测定一次,并据此作出发酵的糖耗曲线。
掌握还原糖和总糖的测定原理,学习用比色法测定还原糖的方法。
学习使用茚三酮比色法检测发酵液中谷氨酸浓度的方法。
谷氨酸棒杆菌通常在0-12小时为生长期,12小时后为产酸期,所以应该从12小时以后开始检测谷氨酸的含量,每两个小时取一次样。
原理:谷氨酸棒杆菌在合适的培养基中经摇瓶培养能快速生长,得到大量健壮的种子。
谷氨酸棒杆菌生长速度较快,接种量一般在1-2%。
谷氨酸发酵是有氧发酵,发酵罐由蒸汽管道、空气管道、加料出料管道等组成,在实验之前必须先对发酵罐进行空消。
谷氨酸产生菌是代谢异常化的菌种,对环境因素的变化很敏感,在适宜的培养条件下,谷氨酸产生菌能够将50%以上的糖转化成谷氨酸,而只有极少量的副产物。
如果培养条件不适宜,则几乎不产生谷氨酸,仅得到大量的菌体或者由发酵产生的乳酸、琥珀酸、а-酮戊二酸、丙氨酸、谷氨酰胺、乙酰谷氨酰胺等产物。
生产上的中间分析只测定一些主要数据,只能显示微生物代谢的一般概况而不能反映细微的生化变化。
因此,进一步完善生化分析项目,从生化角度对发酵进行控制,从而确定最适宜的工艺条件是提高发酵水平的重要课题之一。
生物素与谷氨酸发酵

降低 ,谷 氨 酸 对谷 氨 酸 脱 氢 酶 的反 馈 控 制 失调 , 谷氨 酸不 断地被 优先 合成 。 3 生物 素对 谷氨 酸生产 菌细 胞膜 通透性 的影 响 . 4
生物 素对 谷氨 酸生 物合 成途 径有重 要 的影 响,但生物素更本质的作用是影 响细胞膜的渗透
性 。生 物 素 作 为催 化 脂 肪 酸 生物 合 成 最 初 反应 的 关 键 酶 乙酰 C A羧 化 酶 的辅 酶 ,参 与 了脂 肪 酸 的 o
山东 食 晶发 酵
20 . ( 0 9 4 总第1 5 ) 5期
酶A,维生素B 、B 、C : ,叶酸和泛 酸等营养物质 的代谢。由此可见,生物素在维 持新陈代谢 动态 平衡 中有着不可替代的作用。
3 生物 素对 谷氨酸 生产 的影 响 31谷 氨酸 的生 物合成 途径 . 谷 氨 酸 生 物 合 成 的 主 要 途 径 : 葡 萄 糖 经 糖 酵解 ( EMP 径 ) 和 己 糖 磷 酸 支 路 ( 途 HM P 途 径 )生 成 丙 酮 酸 ,再 被 氧 化成 乙酰 辅 酶 A ( 乙酰 CO A) ,然 后 进 入 三 羧 酸循 环 ,生 成 Q一 戊 二 酮
2 生物素的生理功能同
生物 素是机体许 多酶的辅 助因子 ,动物体 内
多 为 乙酰辅 酶A羧 化酶 、丙酮 酸羧 化 酶 、丙酰 辅酶 A羧 化 酶 和 1. 3 甲基 丁 烯 辅 酶 A羧 化 酶 等 。生 物 素
在机体中的功能主要有 :
21参与机体的碳水化合物代谢 .
在碳水化合物代谢中,生物素催化脱羧和羧化 反应,参与糖代谢和糖原异生 ,维持血糖稳定 。生 物素作 为丙 酮酸 羧化 酶 的辅酶 ,催化 丙酮 酸羧 化生
条 件 下 ,异 柠 檬 酸裂 解 酶 几 乎没 有 活 性 。原 因在
豆粕水解液和生物素的用量对l-赖氨酸发酵的影响

霰塑整且.豆粕水解液和生物素的用量对L一赖氨酸发酵的影响刘剑(广东肇庆星湖生物科技股份有限公司,广东肇庆526070)H裔割采用H J S50全自动控制发酵罐,以L一赖氨酸高产茵瓜1563为试验茵株,针对豆粕水解液和生物素进行优化培养基试验。
发酵试验结果表明。
发酵培养基中豆粕水解液和生物素的最适用量分剐为。
脚45I.‘‘g/L时,发酵培养72小时左右,L一赖氨酸积累可达1459/Lo既÷建词】L-赖氨酸;发酵;豆粕水解液;生物素赖氨酸(1ysi ne,Lys)属碱性必需氨基酸,分子中含两个氨基。
由于谷物食品中的赖氨酸含量甚低,且在加工过程中易被破坏而缺乏,故称为第一限制性氨基酸。
赖氨酸为合成肉碱提供结构组分,而肉碱会促使细胞中脂肪酸的合成。
往食物中添加少量的赖氨酸,可以刺激胃蛋白酶与胃酸的分泌,提高胃液分泌功效,起到增进食欲、促进幼儿生长与发育的作用。
赖氨酸还能提高钙的吸收及其在体内的积累,加速骨骼生长。
赖氢酸在医药上还可作为利尿剂的辅助药物,治疗因血中氯化物减少而引起的铅中毒现象,还可与酸性药物(如水杨酸等)生成盐来减轻不良反应,与蛋氨酸合用则可抑制重症高血压病。
印第安波波利斯L i l l y研究室在1979年发表的研究表明,补充赖氨酸能加速疱疹感染的康复并抑制其复发。
近年来,科学家还发现,L一赖氨酸是控制人体生长的重要物质抑长素(S om a t ot at i on,ss)中最重要的也是最必需的成份,对人的中枢神经和周围神经系统都起着重要作用。
L一赖氨酸为人体必需氨基酸之一,在维持人体氨平衡的八种必需氨基酸中特别重要,是衡量食物营养价值的重要指标之一,特别是在儿童发育期、病后恢复期、妊娠授孔期,对赖氨酸的需要量更高。
由于其在大米、玉米等食物中含量铡氐,容易造成^体缺乏,被称为“第—缺乏氨基酸”。
L一赖氨酸缺乏会引起发育不良、食欲不振、体重减轻、负氮平衡、低蛋白血症、牙齿发育不良、贫血、酶活性下降及其他生理机能障碍。
谷氨酸发酵影响因素及控制

生物素对菌体细胞膜通透性的影响
谷氨酸发酵采用的菌种都是生物素缺陷型,而生物 素又是菌体细胞膜合成的必须物质,因此,可以通 过控制生物素的浓度,来实现对菌体细胞膜通透性 的调节。
生物素对细胞膜合成的影响主要是通过对细胞膜的 主要成分——磷脂中的脂肪酸的生物合成来实现的, 当限制了菌体脂肪酸的合成时,细胞就会形成一个 细胞膜不完整的菌体。生物体内脂肪酸的合成途径 如下:
谷氨酸发酵是典型的代谢控制发酵 发酵过程中,谷氨酸的大量积累不是
由于生物合成途径的特异,而是菌体代谢 调节控制和细胞膜通透性的特异调节以及 发酵条件的适合。
整个发酵过程可简单的分为2个阶段: 第1阶段是菌体生长阶段; 第2阶段是产酸阶段,谷氨酸得以大量积累
。
第二节 影响谷氨酸产量的因素及发酵条件控制
NH4+不足:不利于-酮戊二酸的还原氨基化, -酮戊二酸积累,引起反馈调节
影响因素3:NH4+浓度
NH4+的供给方式(流加): (1)液氨 (2)0.8%尿素
影响因素氨酸的产量随糖含量的增加而增加 ,但糖含量过高,渗透压过大,对菌体生长不利, 谷氨酸对糖的转化率低。
我国使用的生产菌株:
北京棒杆菌(Corynebacterium pekinense) AS1.299
北京棒杆菌D110
钝齿棒杆菌(Corynebacterium crenatum) AS1.542
棒杆菌(Corynebacterium sp.)S-914 黄色短杆菌T6~13
生产菌株特点
在己报道的谷氨酸生产菌中,除芽孢杆菌外 ,虽然它们在分类学上属于不同的属种,但都有 一些共同特点: 1. 革兰氏阳性 2. 菌体为球形、短杆至棒状 3. 不形成芽孢 4. 没有鞭毛,不能运动 5. 需要生物素作为生长因子 6. 在通气条件下才能产生谷氨酸。
谷氨酸发酵机制优品ppt资料

制 制
⑤乙醛酸循环 2 环境条件的调节(外在因素)
异柠檬酸脱氢酶和谷氨酸脱氢酶的偶联反应 3 生物素对乙醛酸途径的影响
2.与谷氨酸发酵有关的因子及控制要点
2.1 谷氨酸发酵的主要生化特点 2.2 环境条件的调节(外在因素)
3.生物素对谷氨酸生物合成途径影响
3.1 生物素对糖酵解途径的影响 3.2 生物素对CO2暗固定途径的影响 3.3 生物素对乙醛酸途径的影响
1.1.2 转氨基作用
谷氨酸的生物合成途径
①EMP途径 2 生物素对CO2暗固定途径的影响
生物素对谷氨酸生物合成途径影响
1 谷氨酸发酵的主要生化特点
②③④HTCCMOAP暗途固径定 2 11利异4异生与12第2生335异与5利1 生谷甘谷生生生生青青生用柠柠物谷四物柠谷用物氨油氨物物物物霉霉物温 檬 檬 素 氨 章 素 檬 氨 温素酸对酸素素素素 素素素度酸酸对酸对酸酸度谷对发细发对对对对 对对对敏脱脱谷发谷脱发敏氨细酵胞酵CC乙乙 细细细感氢氢氨酵氨氢酵感OO酸胞的膜的醛醛 胞胞胞型酶酶酸有酸酶有型22发膜主透主酸酸 膜膜膜暗暗突和和生关生和关突酵透要性要途途 透透透固固变谷谷物的物谷的变机性生的生径径 性性性定定株氨氨合因合氨因株制调化影化的的 的的调途途进酸酸成子成酸子进节特响特影影 影影节径径行脱脱途及途脱及行点点响响 响响的的谷氢氢径控径氢控谷影影氨酶酶影制影酶制氨响响酸的的响要响的要酸发偶偶点偶点发酵联联联酵的反反反的机应应应机
第四章 谷氨酸发酵机制
1.谷氨酸的生物合成途径 2.与谷氨酸发酵有关的因子及控制要点 3.生物素对谷氨酸生物合成途径影响 4细胞膜透性调节 5.利用温度敏感型突变株进行谷氨酸发酵的机 制
1.谷氨酸的生物合成途径
发酵发生产谷氨酸工艺探讨

1.3.4 生长因子
生长因子主要是生物素,生物素是含硫水溶性 维生素,是B族维生素的一种,又叫做维生素H 维生素,是B族维生素的一种,又叫做维生素H 或辅酶R 或辅酶R。广布于动物及植物组织,已从提取物 和蛋黄中分离,是多种羧化酶辅基成分。生物 素的作用主要影响谷氨酸生产菌细胞膜的通透 性,同时也影响菌体的代谢途径。生物素对发 酵的影响是全面的,在发酵过程中要严格控制 其浓度。(具体可看控制膜渗透性) 谷氨酸发酵采用的菌种都好似生物缺陷型,而 生物素又是菌体细胞膜合成的必须物质,因此, 可以通过控制生物素的浓度,来实现对菌体细 胞膜通透性的调节。 生物素对细胞膜合成的影响主要是通过对细胞 膜的主要成分— 膜的主要成分—磷脂中的脂肪酸的生物合成来 实现的,当限制了菌体脂肪酸的合成时,细胞 就会形成一个细胞膜不完整的菌体。
关键词
谷氨酸 发酵 生产 工艺 应用
谷氨酸的制造是从1820 年水解蛋白质开始, 1866年德 谷氨酸的制造是从 1820年水解蛋白质开始 , 1866 年德 国的立好生博士利用硫酸水解小麦面筋, 国的立好生博士利用硫酸水解小麦面筋,分离出一种酸 性氨基酸,依据原料的取材, 性氨基酸,依据原料的取材,便将此氨基酸命名为谷氨 酸。随后,日本有一教授在探讨海带汁液的鲜味时,提 随后,日本有一教授在探讨海带汁液的鲜味时, 取了谷氨酸,并在1908年开始制造商品味之素—味精。 取了谷氨酸,并在1908年开始制造商品味之素—味精。 1910年日本味之素公司用纾解法生产谷氨酸, 1910年日本味之素公司用纾解法生产谷氨酸,与食盐配 合售出。同时也相继开始了研究,1956年日本协和发酵 合售出。同时也相继开始了研究,1956年日本协和发酵 公司分离出一种新的细菌,它可以利用100克葡萄糖转 公司分离出一种新的细菌,它可以利用100克葡萄糖转 化为40 克以上的谷氨酸。 1957年发酵味精正式商业性 化为 40克以上的谷氨酸 。 1957 年发酵味精正式商业性 生产,这标志着氨基酸发酵工业的诞生。
谷氨酸摇瓶发酵

谷氨酸摇瓶补料发酵班级:生物工程091班姓名:XXX学号:XXXXXXXXXXXXX指导老师:XX谷氨酸摇瓶补料发酵摘要:本实验以天津短杆菌为菌种,在不同培养基条件下研究摇瓶补料发酵生产谷氨酸。
试验中以OD值检测天津短杆菌的生长状况,以残糖量和谷氨酸生成量控制补料情况。
实验结果表明:在相同培养条件(培养温度32℃,培养箱转速240rpm)下,蛋白胨培养基最高产酸为19g/L,玉米浆70%梯度培养基的最高产酸量为12g/L,根据以上结果可以看出,蛋白胨培养基的产酸量高于梯度培养基。
关键词:谷氨酸补料发酵 OD值残糖量生物素前言:1866年德国H.ittthausen用硫酸水解小麦面粉,分离到一种酸性氨基酸,依据原料的取材将它命名为谷氨酸。
1872年Hasiwitz 和Habermaan用酪蛋白水解也制得谷氨酸。
1908年日本池田菊苗在探讨海带汁鲜味时,提取了谷氨酸,开始制造“味之素”。
1901年日本味之素公司用水解面筋法生产谷氨酸。
1936年美国从甜菜废液(斯蒂芬废液)中提取谷氨酸。
1954年多田、中山两人报告了采用微生物直接发酵谷氨酸的研究。
直到1956年日本协和发酵公司的木下祝郎分离选育出一种新的细菌——谷氨酸棒状杆菌,能同化利用100g葡萄糖,可直接发酵并积累40g以上的谷氨酸。
随后进行了工业化研究,自1957年起发酵法制取味精,正式商业化生产。
20世纪60年代后,世界各国也兴起发酵法生产味精,以甘蔗或甜菜、糖蜜、淀粉、醋酸、乙醇为原料,由于石油价格上涨和石油制品的安全性,相继改用糖蜜、淀粉原料为主的发酵法生产味精。
谷氨酸发酵机制:谷氨酸的生物合成途径主要包括:EMP途径、HMP 途径、TCA循环、乙醛酸循环、CO2固定反应。
总反应途径为:糖经过EMP途径和HMP生成丙酮酸。
一方面丙酮酸氧化脱羧生成乙酰-CoA;另一方面,经CO2固定作用生成草酰乙酸;两者合成柠檬酸进入TCA 循环,由三羧酸循环的中间产物α-酮戊二酸,在谷氨酸脱氢酶的催化下,还原氨基化合成谷氨酸。
谷氨酸发酵的因素级控制

pH发生变化的主要原因是培养基中营养 成分的利用和代谢产物的积累。 如当谷氨酸棒状杆菌利用糖类物质不断 生成谷氨酸时,培养液的pH就会下降。 而碱性物质的消耗和氨的生成等则会导 致培养液的pH上升。
pH:前期pH(7.5~8.0),中后期pH7.0~7.6。 通过采用流加尿素,氨水或液氨等办法调节 pH,补充氮源。
pH值 值
1) pH值对谷氨酸产生菌生长的影响
谷氨酸产生菌象其它微生物一样, 有最适生长 pH值范围, 当高于或低于这个值时:(1) 菌体内 的酶受到抑制, 菌体新陈代谢受阻, 生长停滞; (2) 菌体细胞膜所带电荷发生改变, 从而改变 细胞膜的渗透性, 影响菌体对营养的吸收和代 谢产物的排出; (3) 影响培养基组分和中间代 谢产物的离解, 从而影响菌体对这些物质的利 用。
1.1氨酸生产菌种
谷氨酸生产菌为谷氨酸棒杆菌、乳糖发 酵短杆菌、黄色短杆菌。革兰氏阳性菌, 菌体为球形、短杆至棒状,不同形状芽 孢,没有鞭毛,不能运行,需要生物素 作为生长因子,在通气条件下才能生产 谷氨酸。
1.2生产原料
玉米、小麦、甘薯、大米等,其中 甘薯和淀粉最为常用。大米进行浸泡磨 浆,再调成15°Bé,调PH6.0,加细菌 a-淀粉酶在85℃进行液化,液化30min 后,加糖化酶在60℃条件下糖化24h, 过滤后可供配制培养基。
生物素亚适量时,菌体代谢失调, 细胞膜通透性增强,细胞内的谷氨酸 能及时排出,有利于谷氨酸的积累, 发酵液内由菌体细胞排除谷氨酸能 达总氨基酸92%左右。因此,要根据 发酵时期来控制生物素的含量。
供氧
过量:NADPH的再氧化能力会加强,使 α-KGA的还原氨基化受到影响,不利于 GA 的生成。 供氧不足:积累大量的乳酸,使发酵液 的pH值下降,不利于GA的产生,同时, 一部分葡萄糖转成了乳酸,影响了糖酸 转化率,降低了产物的提出率。
如何保证谷氨酸发酵生产的稳定

第3 6卷 第 2期
27 月 0 年4 0
发 酵 科 技 通 讯
如何保证谷氨酸发酵 生产 的稳定
朱士鲁
( 山东 齐鲁 味精 集 团 茌 平 2 20 ) 5 1 0
谷氨 酸发 酵 生 产 的影 响 因素 很 多 , 时 波动 有
很大 , 给生 产带 来 一定 的 困难 和较 大 的损失 。 因
偏差 , 玉 米 浆 、 蜜 中还 含 有 多 种 有 益 于谷 氨 另 糖
酸菌 生长 代 谢 的微 量 元 素 、酶 等 能促 进 代 谢 、 提
高产 酸率 。糖 蜜 、 玉米 浆 、 生物素 是 除发 酵用 糖 纯 带 有部 分 生 物素 以外 的 主要 生 物 素源 , 其质 量 的 稳定 是 发 酵生 产稳 定 的根 本 因素 。因发酵 生产 谷
3 严 格 执 行 设 备 检 查 及 环 境 灭 菌 制 度
据 统计 , 因设 备 因素 造成 的发 酵 污染 占所 有 发 酵污 染 的 2 %以上 。随着 连 消及 换 热 器 、 加 5 流
糖 的应 用 , 今 要大 于这 个数 。今 年 上半 年 我 公 如
事件 。目前采用 的一 次喷射 液化 双酶法 制糖 工艺 , 选用 高 压 喷射 器使 淀 粉乳 在 瞬 间 达 到所 需 温 度 ,
罐 、 酵 配料池 、 发 喷射 器 、 维持 罐 , 别是 螺旋 板换 特
热器、 种子 、 发酵 罐 、 、 管 阀等各 环节 的定 期检 查和 清 洁卫 生 十分重 要 。 这 些环 节往 往 由于赶 上罐 、 但 赶 产量 而 被 轻视 。这项 看 起 来 、 起 来都 不 难 的 做
要。
发 酵产 酸率和 提取 收率 的提高 。 果淀粉 乳蛋 白、 如
谷氨酸发酵中的几个关键问题

• 伍德-沃克曼反应Wood-Werkman reaction(丙 酮酸,草酰乙酸,异养,原生动物) 二氧化碳被固定于丙酮酸生成草酰乙酸的反应。
• 两个碳原子以CO2的形式离开循环。循环最后草 酰乙酸会再次生成,再次从乙酰辅酶A中得到两 个碳原子。就是说,一分子六碳化合物(柠檬酸) 经过多部反应分解成一分子四碳化合物(草酰乙 酸)。草酰乙酸会在接下来的反应中遵循同样的 途径获得两个碳原子,再次成为柠檬酸。
2、发酵温度适中产谷氨酸;温度过高容易积累乳酸。 3、发酵培养基中生物素亚适量,积累谷氨酸;生物素不足,菌体生长
不良;如过量则积累琥珀酸或乳酸;同时菌体大量繁殖。 4、磷酸盐适量产谷氨酸,过量则积累缬氨酸。
5、NH4+ 适量产谷氨酸,ቤተ መጻሕፍቲ ባይዱ量产谷氨酰胺,如不足则积累 一酮戊二酸。
6、PH中性和微碱性产谷氨酸;酸性则积累N一乙酰谷氨酰胺和谷氨酰胺。
6
五、以葡萄糖为原料,生物合成谷氨酸,在菌体生长期采用何循环提供 生长所需物质?在谷氨酸生成期,采用何循环积累谷氨酸?
1. 谷氨酸生产菌株为缺陷型,生产过程分为菌体生长期和 谷氨酸积累期。
2. 此代谢途径至少有16步酶促反应。
3. 在谷氨酸发酵的菌体生长期,由于三羧酸循环中的缺陷 (丧失-酮戊二酸脱氢酶氧化能力或氧化能力微弱),谷氨 酸产生菌采用乙醛酸循环途径进行代谢,提供四碳二羧酸及 菌体合成所需的中间产物等。
3、随着异常形态逐渐增多,产酸速度加快。到发酵16h~ 20h,生物素基本耗完,完成了谷氨酸非积累型细胞向 谷氨酸积累型细胞的转变,除去了渗透的障碍物,OD 值稳定,产谷氨酸量直线上升,直至发酵结束。
3
三、谷氨酸发酵条件控制不当。代谢产物会有什么变化?
谷氨酸发酵工艺流程

目录一、谷氨酸简介 (2)二、谷氨酸发酵的工艺流程 (2)2.1谷氨酸生产菌种 (3)2.2生产原料 (3)2.3培养基制备 (3)2.3.1碳源 (3)2.3.2氮源 (3)2.3.3生物素 (4)2.4种子扩大培养 (4)2.5谷氨酸发酵 (4)三、谷氨酸发酵的工艺控制 (4)3.1环境控制 (4)3.1.1pH (4)3.1.2温度 (4)3.1.3通风量 (5)3.1.4泡沫 (5)3.1.5无菌 (5)3.2.细胞膜渗透性控制 (5)四、小结 (5)五、参考文献 (6)谷氨酸发酵工艺山东农业大学生命科学学院08级生物工程2班邢若枫摘要:众所周知,日常所用调味料味精就是L一谷氨酸单钠盐(monosodiuo gluamate,MsG)。
自1909年日本发明并工业化生产味情以来,几经变迁,已发展成为以谷氨酸发酵为主体的世界性氨基酸发酵工业。
1956年从日本开始,以后先后由面二筋豆粕和废糖蜜浓缩物水解的方向,转向以糖质为原料的细菌发酵法。
生产味精谷氨酸之类氨基酸的发酵,区别于传统的酿酒和抗菌素发游,是一种改变微生物代谢的代谢控制发酵。
本文则就谷氨酸发酵生产过程、谷氨酸发酵机制和研究动向等方面,说明谷氨酸发酵的发展。
[1]关键词:谷氨酸;发酵;工艺;研究;发展一、谷氨酸简介谷氨酸一种酸性氨基酸,分子内含两个羧基,化学名称为α-氨基戊二酸。
为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。
大量存在于谷类蛋白质中,动物脑中含量也较多。
分子式C5H9NO4、分子量147.13076。
谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。
谷氨酸可生产许多重要下游产品如L—谷氨酸钠、L—苏氨酸、聚谷氨酸等。
氨基酸作为人体生长的重要营养物质,不仅具有特殊的生理作用,而且在食品工业中具有独特的功能。
谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。
谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。
第四章谷氨酸发酵过程控制

5.工艺控制 (1)接种量4~5% (2)发酵4h添加0.2%吐温-60 (3)pH6.5左右 (4)温度 0~12h,30~33℃; 12~24h,33~34 ℃; 24~26h,34~35 ℃ (5)通风比1:0.3
(二)甘蔗糖蜜添加青霉素流加糖发酵工艺
1.菌株:S9114、F415 2.一级种子培养基: 葡萄糖2.5~3.5%,磷酸氢二钾0.15~0.2%,玉米浆 2.5%,酵母膏0.5%,硫酸镁0.04~0.05%,尿素 0.5%,Mn2+、Fe3+各2mg/L,pH6.7~7.0 3.二级或三级种子培养基 甘蔗糖蜜3~4%,磷酸氢二钾0.15%,硫酸镁0.04%, 尿素0.5%,pH6.7~7.0 4.发酵培养基 甘蔗糖蜜8%,磷酸0.075~0.09%,氯化钾0.08% , 硫酸镁0.04~0.06%,尿素0.5%,消泡剂 0.03~0.04%,pH7.2~7.5
二、pH值对谷氨酸发酵的影响 1.pH值对谷氨酸发酵的影响 (1)酶的活性 (2)细胞膜所带电荷 (3)物质的离解 (4)代谢途径
2.发酵过程pH 值的变化及控制 pHቤተ መጻሕፍቲ ባይዱ变化反应谷氨酸发酵的重要指标 控制: 流加尿素、液氨、添加碳酸钙法。
三、供氧对谷氨酸发酵的影响 1.溶解氧与谷氨酸的需氧量 葡萄糖氧化的需氧量: 彻底氧化1:6 合成代谢产物:1:1.9 必须连续向发酵液通入氧。
3. 钾盐 酶的激活剂 钾含量低长菌体,多产谷氨酸。 4. 微量元素 四、生长因子
(1) 生物素 (2) 维生素B1
第二节 培养条件对谷氨酸发酵的影响 一、温度对谷氨酸发酵的影响 1.温度影响细胞中酶的活性,而影响代谢 速度、途径方向 2.酶是蛋白质,受热容易失活,温度愈高 失活愈快,菌体易衰老,影响发酵液的性 质来间接影响发酵。 3.影响基质和氧的溶解从而影响发酵 4.微生物最适的生长温度范围 谷氨酸产生菌:最适生长温度30~34℃ 最适产酸温度35~37℃
谷氨酸生产的培养基和发酵工艺控制的主要技术参数

谷氨酸生产的培养基和发酵工艺控制的主要技术参数摘要:谷氨酸非人体所必需氨基酸,但它参与许多代谢过程,因而具有较高的营养价值,谷氨酸能与血氨结合生成谷酰胺,接触组织代谢过程中所产生的氨毒害作用,另外谷氨酸单钠盐有很强烈的鲜味,是重要的调味品。
关键词:谷氨酸发酵影响因素工艺控制谷氨酸发酵主要原料有淀粉、甘蔗蜜糖、甜菜蜜糖等,国内多以淀粉为原料生产谷氨酸。
谷氨可通过谷氨酸生产菌在代谢过程中合成,这是一个复杂的过程,第一步是将原料淀粉水解成糖,即糖化作用,第二步是将糖在谷氨酸菌的作用下发酵成谷氨酸。
由葡萄糖生物合成谷氨酸的代谢途径:一、谷氨酸的生物合成途径主要有EMP途径、HM途径、TCA途径、乙醛酸循环、伍德—沃克反应等。
谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸。
α-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。
当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。
因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。
二、谷氨酸生产菌的生化特征有:1、有催化固定CO2的二羧酸合成酶;2、a—酮戊二酸脱氢酶的活性很弱,这样有利于a—酮戊二酸的蓄积;3、异柠檬酸脱氢酶活力很强,而异柠檬酸裂解酶的活性不能太强,这样有利于谷氨酸前提物a—酮戊二酸的合成,满足合成谷氨酸的需要;4、谷氨酸脱氢酶的活力高,这样有利于谷氨酸的合成;5、谷氨酸生产菌经呼吸链氧化的能力要求弱;6、菌体本身进一步分解转化和利用谷氨酸的能力低下,利于谷氨酸的蓄积。
三、谷氨酸发酵工艺谷氨酸生产菌能在菌体外大量积累谷氨酸是由于菌体代谢调节处于异常状态,只有具特异性生理特征的菌体才能大量积累谷氨酸,这样的菌体对环境条件是敏感。
谷氨酸发酵是建立在容易变动的代谢平衡上,是受多种条件支配的。
谷氨酸发酵

1)生物素营养缺陷型⏹作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏.⏹控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换.2)油酸营养缺陷型⏹作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少到正常量的1/2左右.⏹控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换.(3)添加表面活性剂⏹添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨酸.⏹机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细胞膜.⏹关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在下进行分裂,形成产酸型细胞.(4)添加青霉素⏹机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作用下受损,向外泄露谷氨酸.⏹控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不能合成完整的细胞壁,完成细胞功能的转换.谷氨酸发酵强制控制工艺⏹为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取“强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法.⏹控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。
谷氨酸发酵⏹ 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h.措施:接种量和发酵条件控制使适应期缩短.⏹ 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h.措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃⏹ 3.菌体生长停止期:谷氨酸合成.措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃.⏹ 4.发酵后期:菌体衰老,糖耗慢,残糖低.措施:营养物耗尽酸浓度不增加时,及时放罐.发酵周期一般为30h.二、谷氨酸发酵的生化过程⏹(1)是代谢控制发酵的典型代表⏹(2)是目前代谢控制发酵中,在理论与实践上最成熟的……⏹整个过程可简单的分为2 个阶段:第1阶段是菌体生长阶段;第2阶段是产酸阶段,谷氨酸得以大量积累。
谷氨酸发酵培养基

正文:1956年从日本开始,以后先后由面二筋豆粕和废糖蜜浓缩物水解的方向,转向以糖质为原料的细菌发酵法。
生产味精谷氨酸之类氨基酸的发酵,区别于传统的酿酒和抗菌素发游,是一种改变微生物代谢的代谢控制发酵。
谷氨酸发酵培养基包括碳源、氮源、无机盐、生长因子及水等。
发酵培养基不仅是供给菌体生长繁殖所需要的营养和能量,而且是构成谷氨酸的碳架来源。
要积累大量谷氨酸,就要有足够量的碳源和氮源,对菌体生长所必须的因子——生物素却要控制其用量。
培养基主要成分:(一)碳源及其生产要求碳源是供给菌体生命活动所需能量和构成菌体细胞一季合成谷氨酸的基础,谷氨酸是异养微生物,只能从有机化合物中取得碳素的营养。
目前发现的谷氨酸产生菌只能利用葡萄糖、果糖、蔗糖、麦芽糖等。
在一定浓度范围内,谷氨酸产量随糖浓度增加而增加,但是糖浓度过高,由于渗透压增大,对菌体生长和发酵均不利,当工艺条件配合不当时,谷氨酸对糖的转化率降低。
同时培养基浓度大,氧溶解阻力大,影响供养速率。
目前国内谷氨酸发酵糖浓度为125-150g/L;采用一次高汤发酵工艺,糖浓度可达170~190g/l。
为了降低培养基中糖浓度有提高产酸水平,就必须采用低浓度糖的流加糖发酵工艺。
目前我国谷氨酸生产上普遍采用淀粉水解的葡萄糖,其次用甜菜糖蜜,甘蔗糖蜜作为糖质原料来源。
在国外也有采用醋酸、乙醇等作为碳源的。
(二)氮源及其成产要求当氮源的浓度过低时会使菌体细胞营养过度贫乏形成“生理饥饿”,影响菌体增殖和代谢,导致产酸率低。
随着玉米浆的浓度增高,菌体大量增殖使谷氨酸非积累型细胞增多,同时又因生物素过量使代谢合成磷脂增多,导致细胞膜增厚不利于谷氨酸的分泌造成谷氨酸产量下降。
碳氮比一般控制在100:(15~30)。
当碳氮比在100:11以上时才开始积累谷氨酸。
在实际生产中,采用尿素或液氨作为氮源时,由于一部分氨用于调节PH,一些分散而逸出,使实际用量很大,当培养基中糖浓度为140g/l,碳氮比为100:32.8。
第五章谷氨酸的发酵控制

(3)消泡的方法
①物理方法:如改变温度 ②机械消泡:如耙式消泡器 优点:节省消泡剂,减少污染。 缺点:不能从根本上消除引起泡沫稳定的因素。
(3)消泡的方法
③化学消泡:加入消泡剂
优点:消泡效果好,作用快,用量少。
缺点:可能会影响菌体生长或代谢产物的生成; 增加染菌机会;添加过量会影响氧的传递。
④发酵工业上采用机械消泡与化学消泡结合 的方法。
1.高初糖发酵
如,在高初糖谷氨酸发酵中,高玉米浆用量和高生物 素用量可以明显降低高初糖对菌体细胞的抑制作用;
且在接种量10%,玉米浆用量为0.55%,生物 素用量为10μg/L,初糖190g/L的谷氨酸发酵 中,流加500g/L的浓糖,30h的产酸率达到14 5.8g/L,糖酸转化率达到60.32%。
<24
180 2500 200
10
11.5
270 600~ 120 1800
1200 53
1200 8300 1300
第二节 主要发酵参数分段控制原则及其特点
一、中初糖流加高浓度糖液的 生物素“超亚适量”工艺
1. 流 程 图
2.谷氨酸发酵记录表
3.培养基的配方
(1)二级种子培养基 葡萄糖 300kg;KH2PO4 12kg;MgSO4· 2O 6kg;糖 7H 蜜100kg;玉米浆 200kg;纯生物素150mg;消泡剂 1.5kg;定容7000L,实消,121℃保温 10min。
3.无机盐
(3)钾 钾是许多酶的激活剂。 对谷氨酸发酵的影响: 谷氨酸发酵产物生成所需要的钾盐比菌体生长需要 量高,钾盐少利于长菌体,钾盐充足利于产谷氨酸。菌 体生长需钾约为1.0~1.5mmol/L,谷氨酸生成需钾约 为2.0~10.0mmol/L。
谷氨酸发酵过程控制—谷氨酸发酵系统设备及工艺流程介绍

发酵工艺流程及发酵系统设备
4、泡沫的控制 发酵罐泡沫来源: 发酵过程强烈通风和菌体代谢产生CO2,使培养液产生 大量泡沫。 泡沫的危害: 氧在发酵液中的扩散受阻,影响菌体的呼吸和代谢。 消泡方法: 机械消泡:耙式、离心式、刮板式、蝶式消泡器 化学消泡:天然油脂、聚酯类、醇类、硅酮等
子情境:谷氨酸发酵过程控制-谷氨酸发酵系统 设备及工艺流程介绍
通过引导文的学习,请回答以下问题
❖ 1、谷氨酸发酵的工艺流程? ❖ 2、发酵培养基配制需要考虑哪些因素? ❖ 3、为什么需要对谷氨酸发酵条件进行控制? ❖ 4、谷氨酸发酵过程需要控制哪些发酵参数?
发酵工艺流程及发酵系统设备
1、谷氨酸发酵工艺 流程:
发酵工艺流程及发酵系统设备
1、培养基的配制 谷氨酸发酵培养基组成包括碳源、氮源、无机盐和生 长因子等。
①碳源 谷氨酸生产菌均不能利用淀粉,只利用葡萄糖、果糖等, 有些菌种还能利用醋酸、正烷烃等做碳源。 在一定范围内,谷氨酸产量随葡萄糖浓度的增加而增加, 但葡萄糖浓度过高,造成渗透压过大,对菌体生长不利, 谷氨酸对糖的转化率降低,国内谷氨酸发酵糖浓度为125150g/L。
知识拓展
谷氨酸发酵过程中,生产菌种的特性、培养基、 发酵温度、pH值、通风和发酵产生的泡沫都是 影响谷氨酸积累的主要因素。在实际生产中,只 有针对存在的问题,严格控制工艺条件,才能达 到稳产、高产的目的。
2、谷氨酸发酵条件
①pH 发酵液的pH影响微生物的生长和代谢 途径。 发酵前期如果pH偏低,则菌体生长旺 盛,长菌而不产酸;如果 pH偏高,则 菌体生长缓慢,发酵时间拉长。谷氨 酸生产菌的最适pH一般在7.0-8.0。 •发酵前期:pH在7.5左右; •发酵中后期:7.2左右对提高谷氨酸产 量有利。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物素对谷氨酸发酵的影响及控制摘要:
阐述生物素对谷氨酸在发酵过程中的影响和控制生物素的用量来提高谷氨酸的产量,以及生物素测定方法的介绍。
关键词:生物素谷氨酸影响测定方法发酵
1生物素对谷氨酸生产的影响
1.1谷氨酸的生物合成途径
谷氨酸生物合成的主要途径:葡萄糖经糖酵解(EMP途径)和磷酸戊糖途径(HMP途径)生成丙酮酸,再被氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸,α-酮戊二酸在谷氨酸脱氢酶的催化及NH4+的存在条件下,经还原氨基化反应生成谷氨酸。
1.2 生物素对谷氨酸生物合成途径的影响
生物素对谷氨酸生物合成途径有下列几方面的影响[1]:
(1)生物素对糖酵解速度的影响
生物素在糖酵解过程中,主要影响糖酵解速度,而不是EMP途径与HMP途径的比率。
在生物素充足条件下,糖降解速度远远超过丙酮酸的氧化速度,打破了糖降解速度与丙酮酸氧化速度之间的平衡,丙酮酸趋于生成乳酸,引起了乳酸的溢出。
只有在生物素限量的情况下,糖降解速度与丙酮酸氧化速度才趋于平衡。
(2)生物素对NAD及NADH2含量的影响
在生物素缺乏菌中,葡萄糖氧化能力降低,特别是醋酸、琥珀酸的氧化能力显著减弱。
在生物素缺乏菌中,NAD及NADH2含量减少到l/2-1/4。
(3)生物素对乙醛酸循环的影响
乙醛酸循环的关键酶是异柠檬酸裂解酶,该酶受葡萄糖、琥珀酸阻遏,为醋酸所诱导。
葡萄糖为原料发酵生产谷氨酸时,在生物素亚适量条件下,异柠檬酸裂解酶几乎没有活性。
原因在于丙酮酸氧化能力下降,醋酸生成速度减慢,为醋酸所诱导形成的异柠檬酸裂解酶很少。
再者,由于该酶受琥珀酸阻遏,在生物素亚适量条件下,因氧化能力降低而积累的琥珀酸就会反馈抑制该酶活性,并阻遏该酶的生成,乙醛酸循环基本上是封闭的,代谢流向沿异柠檬酸→α-酮戊二酸→谷氨酸的方向高效率地移动。
(4)生物素对氮代谢的影响
生物素限量时,几乎没有异柠檬酸裂解酶,琥珀酸氧化力弱,苹果酸和草酰乙酸脱羧反应停滞,同时由于完全氧化降低的结果,使ATP的形成减少,蛋白质合成活动停滞。
在铵离子适量条件下,生成积累谷氨酸,且生成的谷氨酸也不会通过转氨作用生成其他氨基酸。
在生物素充足条件下,异柠檬酸裂解酶、琥珀酸氧化力、丙酮酸氧化力、蛋白质合成、乙醛酸循环比例、草酰乙酸和苹果酸脱羧反应都不断加大,导致谷氨酸量减少,通过转氨作用生
成的其他氨基酸量增加。
(5)生物素对谷氨酸生物合成途径调节机制的影响
在生物素丰富的情况下,谷氨酸菌的细胞膜合成完整,谷氨酸不能从膜内渗透到膜外,胞内的谷氨酸积累到一定程度,对谷氨酸脱氢酶进行反馈控制,从而停止谷氨酸的生物合成。
在生物素限量的情况下,由于细胞膜合成不完整,谷氨酸能够从胞内渗透到胞外,使胞内谷氨酸的含量降低,谷氨酸对谷氨酸脱氢酶的反馈控制失调,谷氨酸不断地被优先合成。
1.3 生物素对谷氨酸生产菌细胞膜通透性的影响
生物素对谷氨酸生物合成途径有重要的影响,但生物素更本质的作用是影响细胞膜的渗透性。
生物素作为催化脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的生物合成,并影响磷脂的合成。
当生物素控制在亚适量时,脂肪酸合成不完全,导致磷脂合成也不完全。
由于细胞膜是磷脂双分子层组成的,当磷脂含量减少到正常量的一半时,细胞发生变形,谷氨酸就从胞内渗出,积累于发酵液中。
当生物素过量时,由于细胞内有大量的磷脂质,使细胞壁、细胞膜增厚,不利于谷氨酸的分泌,造成产酸率下降,影响发酵生产的经济效益[2]
2生物素分析方法
生物素的测定方法很多,早在二十世纪四十年代国外就报道了微生物法。
现在文献报道生物素测定方法主要有:滴定分析法、气相色谱法、高效液相色谱法、酶联免疫法[3]、荧光法、分光光度法、薄层色谱法,其中微生物法、高效液相色谱法和荧光法测定方法简单,应用广泛[4],简单将这三种检测方法介绍一下。
2.1 微生物法
在生物素的测定方法中,微生物法是最为灵敏和应用最为广泛的,主要用于生物素的微量检测[5]。
其原理是在一定条件下,生物素的浓度与菌体的生长量呈线性关系,生物素浓度与菌体的生长量及生长速度成正比。
微生物法可灵敏地检测出具有生物活性的生物素,这是微生物法区别于其他方法的最大特点。
但由于其他营养物质能影响微生物的生长,进而影响分析结果,所以该法并非都能达到高准确性。
2.2 高压液相色谱法[6]
生物素很难用普通HPLC 技术分析,因为它没有UV 发色团,它必须用紫外检测器在低UV波长下测定。
HPLC 分离原理是根据被分离组分在流动相和固定相之间的各种微观作用的差异。
当混合物中的各组分随流动相移动时,在流动相和固定相之间进行反复多次分配,这样就使结构或性质不同的组分在移动速度上产生了差异,从而得到了分离。
HPLC 法测定生物素,简便、快速、灵敏度高、重复性好、适应性好,但对某些成分复杂、色素较多、杂质干扰大的样品,不宜用该法检测。
2.3 荧光法
荧光法测定生物素的原理是生物素与异硫氰酸荧光素抗生物素蛋白反应,引起荧光强度
增加,
生物素浓度与荧光强度增加有一定的定量关系,用标准曲线法可求得试样中生物素的浓度,可用于微量分析。
该法灵敏度大大高于分光光度法,选择性也比分光光度法好,但是它的应用不如分光光度法广泛,原因为并不是所有的物质都产生荧光。
荧光法分析生物素是基于与生物素关联密切的、很灵敏的色氨酸荧光,但如果色氨酸含量高,测定结果则会受到影响,所以该方法不适合于生物性材料的生物素检测。
荧光分光光度法测定生物素灵敏度高,方法简便、快速,但对供分析用试样要求甚高,试液应无色、无浑浊。
3生物素用量在发酵中的控制[7]
谷氨酸产生菌是营养缺陷型, 所以生物素对谷氨酸产生菌的生长繁殖很重要, 对其代谢产物的影响也非常明显。
当生物素过量时酵解途径中的丙酮酸转变为乳酸, 同时也使异柠檬酸转变为琥珀酸,菌体生长繁殖快,同时生物素又促进菌体细胞膜通透性障碍物的生物合成, 生物素控制直接影响生产菌细胞的生长、繁殖、代谢和细胞壁、细胞膜的渗透性和产酸率, 控制好生物素的用量是谷氨酸发酵的关键。
目前发酵生产大都采用生物素缺陷型的菌种, 在生长繁殖期对生物素的依赖性很大,生物素低了生长繁殖很慢,对糖的酵解慢,细胞内作为辅酶的生物素存量少,影响进入合成期后对糖的代谢和谷氨酸的合成;但是生物素过量,菌体生长、繁殖时间长,菌体量大、镜检菌体呈短小头圆、八字型的多,进入合成期后对糖的氧化消耗占比例大,谷氨酸合成量少,菌体细胞膜的渗透性不好, 使菌体不能及时将细胞内的谷氨酸排出,谷氨酸合成途径受阻,发酵液中由菌种细胞排出的谷氨酸仅能占氨基酸总量的12%;生物素亚适量时,菌体代谢失调,细胞膜通透性增强,细胞内的谷氨酸能及时排出, 有利于谷氨酸的积累,发酵液内由菌体细胞排除谷氨酸能达总氨基酸的92%左右。
生物素用量要根据使用菌种的特性, 发酵的接种量、大罐增殖细胞的湿菌体量、及培养基成分的种类、供氧能力的大小而确定。
随着谷氨酸发酵控制技术和经验的提高积累、供氧能力的改善,采用生物素适量的发酵工艺,已成为提高产酸的重要途径。
在生物素用量的控制中不但要考虑到培养基中原料:玉米浆、糖蜜、纯生物素的生物素总量,同时要考虑到糖液因玉米淀粉和生产工艺的变化造成的营养素(生物素和维生素)的变化,适时的根据发酵耗糖、产酸、及发酵的容氧情况调整培养基中生物素配比, 控制生物素用量, 充分满足生长、耗糖、合成谷氨酸的需要,又不要出现负面的影响。
参考文献:
[1] 陈宁主编. 氨基酸工艺学[M]. 北京:中国轻工业出版社,2013.1
[2] 张立德. 谈谈谷氨酸发酵-生物素“亚适量”与“超亚适量”的控制[J]. 发酵科技
通讯, 2000, 29(3): 14-16
[3]徐幼平,陈正贤,吴建祥,等.微生物发酵液中生物素含量的ELISA测定[J].微生物学通报,2000,27(1):47-50
[4]刁立兰,李秀珍,王燕,等.生物素测定方法的分析[J].食品与发酵工
业,2007,33(6):104-107。
[5]祖荫光,周利.谷氨酸发酵中生物素含量的测定[J].发酵科技通讯,2003,32(2):18-19
[6]余林梁,黄晓兰,吴惠勤.饲料中生物素的高效液相色谱测定[J].分析测试学报,2003,22(5):102-104
[7]蔡云苓,张恒忠,张兵等.谷氨酸发酵主要影响因素及其控制[J].发酵科技通讯,2007,36(3):11-13。