初一奥数提高班第01讲-有理数的巧算

合集下载

七年级奥数培训讲义 第一章有理数

七年级奥数培训讲义 第一章有理数

七年级奥数教学讲义七年级奥数讲义第一章《有理数》要求:掌握基本概念和基本运算技能会灵活应用运算律和运算法则解题。

同号相加号不差,绝对值要相加;异号相加“大”减“小”,符号跟着大的跑;(异号相加取绝大,大绝要把小绝压;)谁同0加谁当家,相反数相加0自夸。

遇到减法细观察,改变符号再相加。

乘除符号意义大,同正异负莫出差;谁同0乘0自夸,互为倒数1当家。

混合运算顺序化,乘方乘除再相加;运算律的好处大,合理运用能简化;分配侓,别漏乘,定符号,再相乘。

括号由里小中大,切记负号别拉下。

认真仔细基础打,长大当个科学家。

【注】“大”减“小”是指绝对值的大小。

1-1⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

注:“0”的9 种说法:(1)既不是正数也不是负数的数.(2)最大的非正数.(3)最小的非负数.(4)与其相反数相等的数.(5)最小的非负整数.(6)最大的非正整数.(7)最小的自然数.(8)绝对值最小的有理数.(9)没有倒数的数.4、有理数的概念【定义】:整数与分数统称为有理数(注意:所有的有限小数和无限循环小数都可以化为分数。

)⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

初中七年级数学培优有理数的巧算含答案

初中七年级数学培优有理数的巧算含答案

第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上;能根据法则、公式等正确、迅速地进行运算.不仅如此;还要善于根据题目条件;将推理与计算相结合;灵活巧妙地选择合理的简捷的算法解决问题;从而提高运算能力;发展思维的敏捷性与灵活性.1.括号的使用在代数运算中;可以根据运算法则和运算律;去掉或者添上括号;以此来改变运算的次序;使复杂的问题变得较简单.例1计算:分析中学数学中;由于负数的引入;符号“+”与“-”具有了双重涵义;它既是表示加法与减法的运算符号;也是表示正数与负数的性质符号.因此进行有理数运算时;一定要正确运用有理数的运算法则;尤其是要注意去括号时符号的变化.注意在本例中的乘除运算中;常常把小数变成分数;把带分数变成假分数;这样便于计算.例2计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很麻烦;根据运算规则;添加括号改变运算次序;可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.解原式=211×555+211×445+445×789+555×789=211×555+445+445+555×789=211×1000+1000×789=1000×211+789=1000000.说明加括号的一般思想方法是“分组求和”;它是有理数巧算中的常用技巧.例3计算:S=1-2+3-4+…+-1n+1·n.分析不难看出这个算式的规律是任何相邻两项之和或为“1”或为“-1”.如果按照将第一、第二项;第三、第四项;…;分别配对的方式计算;就能得到一系列的“-1”;于是一改“去括号”的习惯;而取“添括号”之法.解S=1-2+3-4+…+-1n+1·n.下面需对n的奇偶性进行讨论:当n为偶数时;上式是n/2个-1的和;所以有当n为奇数时;上式是n-1/2个-1的和;再加上最后一项-1n+1·n=n;所以有例4在数1;2;3;…;1998前添符号“+”和“-”;并依次运算;所得可能的最小非负数是多少分析与解因为若干个整数和的奇偶性;只与奇数的个数有关;所以在1;2;3; (1998)前任意添加符号“+”或“-”;不会改变和的奇偶性.在1;2;3;…;1998中有1998÷2个奇数;即有999个奇数;所以任意添加符号“+”或“-”之后;所得的代数和总为奇数;故最小非负数不小于1.现考虑在自然数n;n+1;n+2;n+3之间添加符号“+”或“-”;显然n-n+1-n+2+n+3=0.这启发我们将1;2;3;…;1998每连续四个数分为一组;再按上述规则添加符号;即1-2-3+4+5-6-7+8+…+1993-1994-1995+1996-1997+1998=1.所以;所求最小非负数是1.说明本例中;添括号是为了造出一系列的“零”;这种方法可使计算大大简化.有这种竞赛讲义一整套小学初中的含答案最新的需要的可以联系我46~8453~607微信13699~77~10742.用字母表示数我们先来计算100+2×100-2的值:100+2×100-2=100×100-2×100+2×100-4=1002-22.这是一个对具体数的运算;若用字母a代换100;用字母b代换2;上述运算过程变为a+ba-b=a2-ab+ab-b2=a2-b2.于是我们得到了一个重要的计算公式a+ba-b=a2-b2;①这个公式叫平方差公式;以后应用这个公式计算时;不必重复公式的证明过程;可直接利用该公式计算.例5计算3001×2999的值.解3001×2999=3000+13000-1=30002-12=8999999.例6计算103×97×10009的值.解原式=100+3100-310000+9=1002-91002+9=1004-92=99999919.例7计算:分析与解直接计算繁.仔细观察;发现分母中涉及到三个连续整数:12345;12346;12347.可设字母n=12346;那么12345=n-1;12347=n+1;于是分母变为n2-n-1n+1.应用平方差公式化简得n2-n2-12=n2-n2+1=1;即原式分母的值是1;所以原式=24690.例8计算:2+122+124+128+1216+1232+1.分析式子中2;22;24;…每一个数都是前一个数的平方;若在2+1前面有一个2-1;就可以连续递进地运用a+ba-b=a2-b2了.解原式=2-12+122+124+128+1×216+1232+1=22-122+124+128+1216+1×232+1=24-124+128+1216+1232+1=……=232-1232+1=264-1.例9计算:分析在前面的例题中;应用过公式a+ba-b=a2-b2.这个公式也可以反着使用;即a2-b2=a+ba-b.本题就是一个例子.通过以上例题可以看到;用字母表示数给我们的计算带来很大的益处.下面再看一个例题;从中可以看到用字母表示一个式子;也可使计算简化.例10计算:我们用一个字母表示它以简化计算.3.观察算式找规律例11某班20名学生的数学期末考试成绩如下;请计算他们的总分与平均分.87;91;94;88;93;91;89;87;92;86;90;92;88;90;91;86;89;92;95;88.分析与解若直接把20个数加起来;显然运算量较大;粗略地估计一下;这些数均在90上下;所以可取90为基准数;大于90的数取“正”;小于90的数取“负”;考察这20个数与90的差;这样会大大简化运算.所以总分为90×20+-3+1+4+-2+3+1+-1+-3+2+-4+0+2+-2+0+1+-4+-1+2+5+-2=1800-1=1799;平均分为90+-1÷20=89.95.例12计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中;从第二项开始;后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000;于是可有如下解法.解用字母S表示所求算式;即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①;②两式左右分别相加;得2S=1+1999+3+1997+…+1997+3+1999+1=2000+2000+…+2000+2000500个2000=2000×500.从而有S=500000.说明一般地;一列数;如果从第二项开始;后项减前项的差都相等本题3-1=5-3=7-5=…=1999-1997;都等于2;那么;这列数的求和问题;都可以用上例中的“倒写相加”的方法解决.例13计算1+5+52+53+…+599+5100的值.分析观察发现;上式从第二项起;每一项都是它前面一项的5倍.如果将和式各项都乘以5;所得新和式中除个别项外;其余与原和式中的项相同;于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100;①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1;说明如果一列数;从第二项起每一项与前一项之比都相等本例中是都等于5;那么这列数的求和问题;均可用上述“错位相减”法来解决.例14计算:分析一般情况下;分数计算是先通分.本题通分计算将很繁;所以我们不但不通分;反而利用如下一个关系式来把每一项拆成两项之差;然后再计算;这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项;这种方法在有理数巧算中很常用.练习一1.计算下列各式的值:1-1+3-5+7-9+11-…-1997+1999;211+12-13-14+15+16-17-18+…+99+100;31991×1999-1990×2000;44726342+4726352-472633×472635-472634×472636;61+4+7+ (244)2.某小组20名同学的数学测验成绩如下;试计算他们的平均分.81;72;77;83;73;85;92;84;75;63;76;97;80;90;76;91;86;78;74;85.。

第1讲绝对值有理数的巧算专题

第1讲绝对值有理数的巧算专题

第一讲 绝对值、有理数的巧算专题一、知识梳理1.非负数一个数的绝对值是非负数,一个数的平方(四次方,六次方等偶次方)都是非负数. 即,0≥a ,02≥a ,为正整数)(其中n a n 02≥2.裂项常用到的关系式(1)ba ab b a 11+=+; (2)111)1(1+-=+a a a a ; (3)b a a b a a b +-=+11)(; (4)2)1(321n n n ⨯+=++++ .3.绝对值表示距离的应用n n a x a x a x a x a x a x -+-++-+-+-+--14321 :表示求数x 分别到数 n n a a a a a a 、、、、、、14321- 的距离和(其中n n a a a a a a 、、、、、、14321- 是数轴 上依次排列的点表示的有理数).(1)当n 为偶数时,若122+≤≤n n a x a ,则原式有最小值;(2)当n 为奇数时,若21+=n a x ,则原式有最小值.4.乘方中的计算公式(1)n n n b a b a ⨯=⨯)(; (2)⎪⎩⎪⎨⎧-=-为偶数时当,为奇数时当,n a n a a n n n)( 二、典例剖析专题一:一个数的绝对值与其本身的关系的应用——aa 例题1 用a 、b 、c 表示任意三个非零的有理数,求cc b b a a ++的值.【活学活用】1.设0<a ,且x ≤a a,则=--+21x x .2.若0≠ab ,则bb a a+的取值不可能是( ) A.0 B.1 C.2 D.-23.用a 、b 表示任意两个有理数,若0≠ab ,则abab b b a a ++的取值可能是( ) A. 0 B.1 C.3或1 D.3或-1★4.三个有理a 、b 、c 满足0,0>++<c b a abc ,当x=c cb ba a++时,代数式29219+-x x 的值为 .5.已知1-=++c c b b a a ,试求abc abc ca ca bc bc ab ab +++的值.6.已知:a 、b 、c 都不为0,且abcabc c c b b a a +++的最大值为m ,最小值为n ,则 2004)(n m += .7.已知0≠abc ,且M=abc abcc cb ba a+++,当a 、b 、c 取不同的值时,M 有( )A .惟一确定的值B .3种不同的取值C .4种不同的取值D .8种不同的取值专题二:绝对值的非负性——0≥a引例 若2)1(-a 与2+b 互为相反数,则2010)(b a += .例题2 若,,a b c 为整数,且19191a bc a -+-=,试计算c a a b b c -+-+-的值.【活学活用】1.已知:1,,____a b a b a b +=-=且为整数,则.2.如果02)31(2=-++y x ,则y x = .3.若1+=m m ,则=+2010)14(m .★4.如果,2-<x 那么x +-11等于( )A.x --2B.x +2C.xD.x -★5.若x <2,则|x -2|+ |2+x|=_____________★6.已知a 、b 、c 都是负数,且0=-+-+-c z b y a x ,则xyz 是( )A.负数B.非负数C.正数D.非正数★7.如果2-x +x -2=0,那么x 的取值范围是( )A.x >2B.x <2C.x ≥ 2D.x ≤28.已知0)3(254=++-y x ,求2010)2(y x +的值.9.计算:若2)2(-a 与88|b - 1|2003 互为相反数,则a-b a+b的值为?★10..已知55)(2+=+++b b b a ,且012=--b a ,求ab 的值.专题三:绝对值表示距离的应用解决数轴上两点之间的距离问题(数形结合的解题思想)若数轴上点A 对应的数是a ,点B 对应的数是b ,则A 、B 两点之间的距离为数a 、b 的 差的绝对值,即b a AB -=.例题3 如图,点A 、B 在数轴上对应的有理数分别为n m 、,则A 、B 间的距离是 .(用含n m 、的式子表示)【活学活用】有理数c b a 、、在数轴上的位置如图所示.m 0 nB A试化简:a b a c b c c +--++-.例题4 绝对值表距离的应用(1)51-+-x x 的最小值是 . (2)32-++x x 的最小值是 .(3)421-+-++x x x 的最小值是 .(4)试求7654321-+-+-+-+-+-+-x x x x x x x 的最小值.(5)试求2010321-++-+-+-x x x x 的最小值.(6)试求2011321-++-+-+-x x x x 的最小值.【活学活用】(★)若x 为有理数,则173++++-x x x 的最小值为_____________.专题四:乘方中的计算公式——nn n b a b a ⨯=⨯)(c b 0 a例题5 已知14400151432133333=+++++ ,求333333028642+++++ 的 值.专题五:整数的分解例题6 若d c b a 、、、是互不相等的整数(d c b a <<<),且121=⨯⨯⨯d c b a ,求 d c b a +的值.【活学活用】若d c b a 、、、是互不相等的正整数,且441=⨯⨯⨯d c b a ,求d c b a +++的值.专题六:有理数运算的技巧——裂项、凑整、换元例题7 已知|321(2)0x y -+-=,求111(1)(1)(2008)(2008)xy x y x y +++++++……的 值.【活学活用】1.已知|321(2)0x y -+-=,求111(1)(1)(2008)(2008)xy x y x y +++++++……的值.2.201220091141111181851521⨯++⨯+⨯+⨯+⨯ 计算.3.计算1111131517192153042567290110-+-+-+例题8 计算:1+211++3211+++…+100993211+++++例题9 计算8989889988999889999833333++++【活学活用】1.计算2005×0.5-2006×2.5-2007÷12.5.2.计算89-899+8999-89999+…+89999999得( )A.-818181810B.-81818189C.81818189D.818181810三、家庭作业★1.已知ab 2c 3d 4e 5<0,下列判断正确的是 ( )A .abcde<0 B.ab 2cd 4e<0 C.ab 2cde<0 D.abcd 4e<02.(-2)2004+3×(-2)2003的值为( )A.-22003B.22003C.-22004D.22004 3.已知,则当1=a 时,=2A __________,当1-=a 时, A=_______.4.若一个数的绝对值是8,另一个数的绝对值是4,这两个数的乘积为负数,则这两个数 中,大数除以小数的商是 .5.(2008佛山)若20072008a =,20082009b =,则a ,b 的大小关系是a b .6.计算:2010120071200712008120081200912009120101---+-+-.7.11(23++…11)(120102+⨯++…11)(120092+-++…111)(201023+⨯++…1).2009+8.求)2009120101()2008120091()4151()3141()2131()121(-+-++-+-+-+- 的 值.9.已知a 与b 互为相反数,x 与y 互为倒数,c 的绝对值等于2,求c xy b a 312-++的值.10.已知a 、b 、m 、n 、x 是有理数,且a 、b 互为相反数,m 、n 互为倒数,x 的绝 对值等于3.求201020092)()()(mn b a mn b a x -+++++-的值.11.有理数综合运算 020********)1()2(}375.0)161(]212)75.0(81[2)2(3{)21(2)(-+-⨯----÷+--⨯--⨯-----π。

初一奥数-有理数的巧算42页PPT

初一奥数-有理数的巧算42页PPT
敢地 走到底 ,决不 回头。 ——左
初一奥数-有理数的巧算
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

第一讲 七年级有理数的巧算

第一讲   七年级有理数的巧算

第一讲 有理数(1)一、知识提要1、 整数和分数统称为有理数。

2、 有理数还可以这样定义:形如mp(其中m 、p 均为整数,且m ≠0)的数是有理数。

这种表达形式常被用来证明或判断某个数是不是有理数。

3、 有理数的数系表:正整数 正整数 整数 零 正有理数负整数 正分数 有理数 正有限小数 或 有理数 零正分数 负整数 正无限循环小数 负有理数分数 负分数负有限小数负分数负无限循环小数 4、 有理数可以用数轴上的点表示。

5、 零是正数和负数的分界点;零不是正数也不是负数。

6、 如果两个数的和为0,则称这两个数互为相反数。

如果两个数的积为1,则称这两个数互为倒数。

7、 有理数的运算法则: (1)、加法:两数相加,同号的取原来的符号,并把绝对值相加;异号的取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,绝对值相等时,和为0;一个数与0相加,仍得这个数。

(2)、减法:减去一个数等于加上这个数的相反数。

(3)、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;一个数与0相乘, 积为0. 乘方:求n 个相同因数a 的积的运算称为乘方,记为na 。

(4)、除法:除以一个数等于乘以这个数的倒数。

8、有理数的运算律:加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++; 乘法交换律:c b b a ⨯=⨯;乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯; 乘法分配律:c b c a c b a ⨯+⨯=⨯+)(;9、有理数具有以下性质①对于任意两个有理数a , b ,在a < b , a = b ,a > b 三种关系中,有且只有一种成立。

②如果a < b , 那么b > a 。

③如果a < b , b < c , 那么 a < c ④如果a = b , b = c , 那么 a = c ⑤如果a = b , 那么 b = a⑥任意一对有理数,对应的和、差、积、商(除数不为零)仍是有理数。

初一奥赛培训《有理数的巧算》重点

初一奥赛培训《有理数的巧算》重点

A普通股每股市价 B普通股每股股利 C每股市场利得 D普通股每股股利与每股市场利得之和108.利润表上半部分反映经营活动,下半部分反映非经营活动,其分界点是( BA净利润 B营业利润 C利润总额 D主营业务利润109.企业管理者将其特有的现金投资于”现金等价物”项目,其目的在于( C )A企业长期规划 B控制其他企业 C利用暂时闲置的资金赚取超过持有现金的收益D谋求高于利息流入的风险报酬110.利润分配表中未分配利润的计算方法是( D )A年初未分配利润-本年净利润 B本年净利润-本年利润分配C年初未分配利润+本年净利润 D年初未分配利润+本年净利润-本年利润分配111下旬各项指标中,能够反映收益质量的指标是A每股经营现金流量B市盈率C营运指数D 每股收益112.财务报表分析是对象是A企业的投资活动B企业的筹资活动C企业的各项基本活动D企业的经营活动113.如果企业速动比率很小,下列结论成立的是( A )A企业短期偿债风险很大B企业资产流动性很强C企业流动资金占用过多D企业短期偿债能力很强114产权比率的分母是( C 。

A负债总额 B资产总额 C所有者权益总额 D资产与负债之和115下列各项中,不属于投资活动结果的是() A应收帐款B存货C长期投资D股本116投资报酬分析最主要的分析主体是( B ) A上级主管部门B投资人C长期债权人D短期债权人117下列各项中,属于经营活动结果的是( D )A补贴收入B营业外收入C投资收益D主营业务利润118ABC公司2009年度的净资产收益率目标为20%,资产负债率调整为45%,则其资产净利率应达到( A )A11% B55% C9%D 20%119如果企业速动比率很小,下列结论成立的是( C )A企业流动资金站用过多B企业短期偿债能力很强 C企业短期偿债风险很大 D企业资产流动性很强120经营者分析资产运用效率的目的是( C )A判断财务的安全性 B评价偿债能力 C发现和处置闲置资产 D评价获利能力121从营业利润率的计算公式可以得知,当主营业务收入一定时,影响该指标高低的关键因素是( B )A主营业务利润 B营业利润 C利润总额 D净利润二.多选题1. 比较分析法按照比较的对象分类,包括(ABD )P15A历史比较 B同业比较 C 总量指标比较 D预算比较 E财务比率比较2. 下列各项中,决定息税前经营利润的因素包括(ABCD)P54A主营业务利润 B其他业务利润 C营业费用 D管理费用 E财务费用3. 下列各项中属于股东权益的有(ABCDE)P48 01A股本 B资本公积 C盈余公积 DE法定公益金4. 依据杜邦分析法,当权益乘数一定时,影响资产净利率的指标有(AC )P157A销售净利率 B资产负债率 C资产周转率产权比率一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46C投资收益2 E管理费用3、计算:S=1﹣2+3,却不能偿还到期债务,n+1?n.4、在数1,2,3,,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?5、计算3001×2999的值.6、计算103×97×10 009的值.7、计算:8、计算:(2+1)(使销售收入增长高于成本和费用的增加幅度2+1)(24+1)(28+1D16E 提高销售净利率32+1).9、计算:(1﹣)(1),(1﹣)(1﹣)下列各项活动中,_________10、计算:11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91C94,88,93,91,89,10. ,92,86,90,92,88,90,91,86,89,92,95,88.12、计算1+3+5+7+,+1997+1999的值.13、计算1+5+52+53+,+599+5100属于筹资活动结果的有(14、计算:)++,+.15、计算下列各式的值:()﹣D应收账款E9+11﹣,12.财务报表初步分析的内容有(ABCD)P36 17﹣18+,+99+100;(3)1991×1999﹣1990×2000;(4)47263413.2﹣472 633×472 635﹣472 634×472 636;(5)(6)1+4+7+,+244;(7)1+(8)114.财务报表附注中应披露的会计政策有16、某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83所得税的处理方法 D.存货的计价方法 E.固定资产的使用年限84,,76,97,80,90,76,91,86,78,74,85E.现金流动分析答案与评分标准一、解答题(共16小题,满分150分)A(1)[47﹣(18.75﹣1÷)×2]÷0.46(2.)考点)P132专题:计算题。

竞赛推免第一讲:巧算有理数

竞赛推免第一讲:巧算有理数

第一讲:巧算有理数一、巧用运算律进行有理数运算时注意符号的处理,再看是否可以用运算律简化运算。

例1 计算:(1)719998-×16;(2)11311()()63641248--+-÷-解析(1)原式=1 (2000)8--×16=-(3200-2) =-31998(2)原式=-1131()48636412--+-⨯=-(-8-43+36-4)=-2223.点评:(1)像719998、2003等数字在参与运算时,往往将其写成120008-、2000+3的形式;(2)利用乘法对加法的分配律时,应注意符号的处理技巧,尽量以免错误。

二、有理数大小的比较有理数大小比较的一般规律:正数>零>负数;两个负数比较大小,绝对值大的反而小;两个正数比较大小,倒数大的反而小、在进行有理数大小比较时,往往利用到作差、作商、倒数比较、平方比较以及运用一些熟知的规律进行比较.例 2 把199191199292,,,199292199393----四个分数按从小到大的顺序排列是.解析:1992192119931931 1,1,1,1, 199119919191199219929292 =+=+=+=+ 1111199319929392,, 199219919291199219919291 199219919291199219919291,. 199319929392199319929392 <<<∴<<<∴>>>∴-<-<-<-而点评:比较分数的大小通常可以将分子化成相同或分母化成相同,再进行比较,除了通分外,倒数法也是经常用到的方法.实际上,此类习题具有一般规律;11n nn n-<+(n是正整数),如12342345<<<<⋅⋅⋅三、有理数巧算的几种特殊方法有理数运算时,经常会出现一些较大或较多的数求和的问题,仔细观察它们的特点,探求其中的规律,往往可以为解题开辟新的途径.1.倒序相加法例3计算:(1)1+2+3+…+2003+2004;(2)1-2+3-4+…+2003-2004.解析(1)设S=1+2+3+…+2003+2004 ①则S=2004+2003+…+3+2+1 ②①+②,得2S =(1+2004)+(2+2003)+…+(2004+1)=2005+2005+…+2005 (共2004个2005)=2005×2004,∴S =200520042⨯=2009010, 即原式=2009010.(2)原式=(1-2)+(3-4)+…+(2003一2004)=-1-1-…-1(共1002个-1)=-1002.点评:(1)式的特点是:后一项减去前一项的差都相等,这样的一列数称为等差数列,第一项叫首项,通常用a 1表示;最后一项叫末项,通常用a n 表示;相等的差叫公差,通常用d 表示。

新初一提升课程(1) 有理数的运算

新初一提升课程(1)  有理数的运算

新初一提升课程(1) 有理数的运算【思维解析】1. 有理数加法法则:1)相反数相加= . 如:(-3)+3= . 2)一个数加0,大小 . 如:(-4)+0= . 3)其他不管同号异号,先定符号3+4符号为 ; (-3)+(-4)符号为 ; (-4)+3,符号为 ; (-3)+4符号为 ;2. 有理数减法法则:减去一个数,等于加这个数的 .即a-b= . 实操技巧:减正数就是加 ,减负数就是加 数.3.有理数的乘法法则:1)两数相乘,同号得 ,异号得 ,并把绝对值相乘. 2)任何数与0相乘,都得 .4.有理数的除法: 先定符号,再算数值(-15)÷(-3)= ; 15÷(32-)= .【思维训练】1、-52+(-27)-(-45)+Ⅰ-34Ⅰ-27-Ⅰ-23Ⅰ= .2、(-541)-397-(-541)+(-492)= .3、(-14)+(-11)-(+33)-(-78)= .4、(-7143)-3197+(-51912)-(-7143)= .5、计算:1+2-3-4+5+6-7-8+9+10-11-12+…+2017+2018-2019-2020+20216、记录时,以每袋100千克为标准,重量超出标准数部分记为正数,不足部分记为负数,六袋大米称重的记录如下(单位:千克)-3.2,0.5,-0.4,-2.3,1.4,-1.5,则这六袋大米的总重量为( )7、一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米) +5,-3,+10,-8,-6,+12,-10(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?8、世界杯比赛中,根据场上攻守形势,守门员会在门前来回跑动,如果以球门线为基准,向前跑记作正数,返回记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):(假定开始记时时,守门员正好在球门线上)+10,-2,+5,-6,+12,-9,+4,-14(1)守门员最后是否回到球门线上?(2)守门员离开球门线的最远距离达多少米?(3)如果守门员离开球门线的距离超过10米(不包括10米),则对方球员挑射极可能造成破门,请问在这一时间段内,对方球员有几次挑射破门的机会?9、电子跳蚤落在数轴上的某点k0处,第一步从k0向左跳1个单位到k1,第二步由k 1向右跳2个单位到k2,第三步由中k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4,…,按以上规律跳了100步时,电子跳蚤落在数轴上的点k100所表示的数恰是51,试问电子跳蚤的初始位置点k表示的数是多少?10、如果a+b>0,且ab<0,那么( )A.a>0,b>0B.a<0,b<0C.a 、b 异号D.a 、b 异号且负数得绝对值较小 11、计算-1÷(-22)×221结果是( ) A.-1 B.1 C.4841D.-48412、计算-7÷(-97)×(-79)得结果是( )A .-7 B.7 C.-781 D.781 13、(-169)÷1413×1314÷(-196)= .14、阅读下列材料:计算:)(12141-31241+÷ 解法一:原式=2411122414241-324112124141241-31241=⨯+⨯⨯=÷+÷÷解法二:原式=416241122241121123-124241=⨯=÷=+÷)( 解法三:原式的倒数=24112141-31÷+)( =2412141-31⨯+)( =241212441-2431⨯+⨯⨯ =8-6+2 =4所以,原式=41(1)上述得到的结果不同,你认为解法 是错误的;(2)请你根据解法三计算:=+÷)()(71-32143-61421-15、-12×)(6543-311+16、-8×(-2914)+12×(-2914)-4×(-2914)= .17、计算:3×(-75)-(-75)×121-75×(-21)= .18、观察下列各式:⋅⋅⋅=⨯=⨯=⨯41-3143131-2132121-1211,, (1)根据以上式子填空: ①=⨯981 ; ②=+⨯)1n (n 1(n 是正整数) (2)根据以上式子及你所发现的规律计算:202120201202020191431321211⨯+⨯+⋅⋅⋅+⨯+⨯+⨯19、观察式子:311⨯=21(1-31),531⨯=21(31-51),751⨯=21(51-71),….由此计算:311⨯+531⨯+751⨯+…+202120191⨯=20、规定:正整数n 的“H 运算”是①当n 为奇数时,H=3n+13;②当n 为偶数时,H=n ×21×21×…(其中H 为奇数). 如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果是11,经过3次“H 运算”的结果是46.请解答:(1)数257经过57次“H 运算”得到的结果. (2)若“H 运算”②的结果总数常数a ,求a 的值。

初一奥数提高班第01讲-有理数的巧算

初一奥数提高班第01讲-有理数的巧算

初一奥数提高班第01讲-有理数的巧算第一篇:初一奥数提高班第01讲-有理数的巧算金苹果文化培训学校奥数学提高班第一讲有理数的巧算有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.1.括号的使用在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1 计算下式的值:211×555+445×789+555×789+211×445.例2 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?2.用字母表示数我们先来计算(100+2)×(100-2)的值:这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=___________ 于是我们得到了一个重要的计算公式____________________________ 这个公式叫――___________公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.金苹果文化培训学校奥数学提高班3.观察算式找规律例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.例5 计算1+3+5+7+…+1997+1999的值.2399100例6 计算1+5+5+5+…+5+5的值.例7 计算:金苹果文化培训学校奥数学提高班(6)1+4+7+ (244)1111(7)1++2+3+⋅⋅⋅⋅⋅⋅+2000333***9-+-+⋅⋅⋅⋅⋅⋅+-(8)1-+***99002.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.金苹果文化培训学校奥数学提高班再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.例6 计算1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.99100 解设S=1+5+52+…+5+5,①所以231001015S=5+5+5+…+5+5.②②—①得1014S=5-1,例7 计算:分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.第二篇:初一奥数提高班第03讲-绝对值_金苹果文化培训学校奥数学提高班第3讲绝对值(1)一主要知识点回顾1.有理数:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零2.数轴的三要素——原点、正方向和单位长度,缺一不可.相反数:只有符号不同的两个数叫做互为相反数(符号相反且绝对值相等的两数)绝对值一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零.即绝对值的几何意义可以借助于数轴来认识,它与距离的概念密切相关.在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.结合相反数的概念可知,除零外,绝对值相等的数有两个,它们恰好互为相反数.反之,相反数的绝对值相等也成立.由此还可得到一个常用的结论:任何一个实数的绝对值是非负数二典型例题分析:例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.例2 设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.三.专项练习(一).填空题:1.a>0时,|2a|=________;(2)当a>1时,|a-1|=________;2.已知a++b-3=0,则a____b______3.如果a>0,b<0,a<b,则a,b,—a,—b这4个数从小到大的顺序是______________________(用大于号连接起来)4.若xy>0,z<0,那么xyz=______0.5.上山的速度为a千米/时,下山的速度为b千米/时,则此人上山下山的整个路程的平均速度是_______________千米/时(二).选择题:6.值大于3且小于5的所有整数的和是()A.7B.-7C.0D.57.知字母a、b表示有理数,如果a+b=0,则下列说法正确的是()A.a、b中一定有一个是负数B.a、b都为0C.a与b不可能相等D.a与b的绝对值相等8.下列说法中不正确的是()A.0既不是正数,也不是负数B.0不是自然数C.0的相反数是零D.0的绝对值是09.列说法中正确的是()A、-a是正数B、—a是负数C、-a是负数D、-a不是负数10.x=3,y=2,且x>y,则x+y的值为()A、5B、1C、5或1D、—5或—111.<0时,化简aa等于()A、1B、—1C、0D、±112.若ab=ab,则必有()A、a>0,b<0B、a<0,b<0C、ab>0D、ab≥013.已知:x=3,y=2,且x>y,则x+y的值为()A、5B、1C、5或1D、—5或—1(三).解答题:14.a+b<0,化简|a+b-1|-|3-a-b|.15..若x-y+y-3=0,求2x+y的值.16.当b为何值时,5-2b-有最大值,最大值是多少?17.已知a是最小的正整数,b、c是有理数,并且有|2+b|+(3a+2c)2=0.4ab+c求式子的值.22-a+c+418.若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.《春雨的色彩》说课稿一、教材内容分析:春天里万物复苏,百花争艳、绿草如荫、一派迷人的景色。

初一奥赛培训01:有理数的巧算 甄选

初一奥赛培训01:有理数的巧算   甄选

初一奥赛培训01:有理数的巧算(优选.)一、解答题(共16小初一奥赛培训01:有理数的巧算题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)2、计算下式的值:211×555+445×789+555×789+211×445.3、计算:S=1﹣2+3﹣4+…+(﹣1)n+1•n.4、在数1,2,3,…,1998前添符号“+”和“﹣”,并依次运算,所得可能的最小非负数是多少?5、计算3001×2999的值.6、计算103×97×10 009的值.7、计算:8、计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).9、计算:(1﹣)(1﹣)…(1﹣)(1﹣)=_________10、计算:11、某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.12、计算1+3+5+7+…+1997+1999的值.13、计算1+5+52+53+…+599+5100的值.14、计算:+++…+.15、计算下列各式的值:(1)﹣1+3﹣5+7﹣9+11﹣…﹣1997+1999;(2)11+12﹣13﹣14+15+16﹣17﹣18+…+99+100;(3)1991×1999﹣1990×2000;(4)4726342+472 6352﹣472 633×472 635﹣472 634×472 636;(5)(6)1+4+7+ (244)(7)1+(8)116、某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.答案与评分标准一、解答题(共16小题,满分150分)1、计算:(1)[47﹣(18.75﹣1÷)×2]÷0.46(2)考点:有理数的混合运算。

第一讲-七年级有理数的巧算

第一讲-七年级有理数的巧算

第一讲 有理数(1)一、知识提要1、 整数和分数统称为有理数。

2、 有理数还可以这样定义: 形如mp (其中m 、p 均为整数,且m ≠0)的数是有理数。

这种表达形式常被用来证明或判断某个数是不是有理数。

3、 有理数的数系表:正整数 正整数 整数 零 正有理数负整数 正分数 有理数 正有限小数 或 有理数 零正分数 负整数 正无限循环小数 负有理数分数 负分数负有限小数负分数负无限循环小数4、 有理数可以用数轴上的点表示。

5、 零是正数和负数的分界点;零不是正数也不是负数。

6、 如果两个数的和为0,则称这两个数互为相反数。

如果两个数的积为1,则称这两个数互为倒数。

7、 有理数的运算法则:(1)、加法:两数相加,同号的取原来的符号,并把绝对值相加;异号的取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,绝对值相等时,和为0;一个数与0相加,仍得这个数。

(2)、减法:减去一个数等于加上这个数的相反数。

(3)、乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;一个数与0相乘, 积为0. 乘方:求n 个相同因数a 的积的运算称为乘方,记为na 。

(4)、除法:除以一个数等于乘以这个数的倒数。

8、有理数的运算律:加法交换律:a b b a +=+;加法结合律:)()(c b a c b a ++=++;乘法交换律:c b b a ⨯=⨯;乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯;乘法分配律:c b c a c b a ⨯+⨯=⨯+)(;9、有理数具有以下性质①对于任意两个有理数a , b ,在a < b , a = b ,a > b 三种关系中,有且只有一种成立。

②如果a < b , 那么b > a 。

③如果a < b , b < c , 那么 a < c④如果a = b , b = c , 那么 a = c⑤如果a = b , 那么 b = a⑥任意一对有理数,对应的和、差、积、商(除数不为零)仍是有理数。

七年级王牌竞赛 第一讲 有理数的巧算

七年级王牌竞赛  第一讲  有理数的巧算

第一讲有理数的巧算【趣题引路】(第6届“希望杯”竞赛试题改编)计算:2004×20032003+2005×20042004-2003×20042004-2004×20052005解析原式=2004×20032003-2003×20042004+2005×20042004-2004×20052005=(2004×2003×10001-2003×2004×10001)+(2005×2004×10001-2004×2005×10001)=0点评:abcabc型式子通常将它化成abc×1001型式子,有的问题还利用到1001=7×11×13这一特点来进行考查,有理数的运算有许多技巧和方法,是中考和竞赛的热点。

【知识延伸】一、巧用运算律进行有理数运算时注意符号的处理,再看是否可以用运算律简化运算。

例1 计算:(1)719998-×16;(2)11311()()63641248--+-÷-解析(1)原式=1 (2000)8--×16=-(3200-2) =-31998(2)原式=-1131()48 636412--+-⨯=-(-8-43+36-4)=-2 223.点评:(1)像719998、2003等数字在参与运算时,往往将其写成120008-、2000+3的形式;(2)利用乘法对加法的分配律时,应注意符号的处理技巧,尽量以免错误。

二、有理数大小的比较有理数大小比较的一般规律:正数>零>负数;两个负数比较大小,绝对值大的反而小;两个正数比较大小,倒数大的反而小、在进行有理数大小比较时,往往利用到作差、作商、倒数比较、平方比较以及运用一些熟知的规律进行比较.例 2 (1992年“缙云杯”初中数学邀请赛试题)把199191199292,,,199292199393----四个分数按从小到大的顺序排列是.解析:1992192119931931 1,1,1,1, 199119919191199219929292 =+=+=+=+ 1111199319929392,, 199219919291199219919291 199219919291199219919291,. 199319929392199319929392 <<<∴<<<∴>>>∴-<-<-<-而是经常用到的方法.实际上,此类习题具有一般规律;11n n n n -<+(n 是正整数),如12342345<<<<⋅⋅⋅。

奥数-有理数-(1)整数与学

奥数-有理数-(1)整数与学

第一讲整数与有理数整数属于有理数,但两者所考的知识点各有侧重,所以我们分成两部分来讲解。

整数部分一、基础知识复习整数的考点大部分在小学奥数中都已经学过,在初中竞赛中会有一些涉及。

所不同的是,初中的题目更强调一般性证明。

所以我们在这里给大家做一个简单的回顾和提高,所选的例题比较杂,难度也比较高。

我们这部分所讲的整数主要指自然数。

自然数有两种常见的分类:偶数与奇数、质数与合数;常考的还有按余数分类。

二、难点回顾难点:1,设未知数,进行一般性证明2,利用奇偶性解题三、典型例题A 偶数与奇数例1有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。

小红由1枚1分硬币和1枚5分硬币开始,反复将硬币塞入机器,能否在某一时刻,小红手中1分的硬币刚好比1角的硬币少10枚?B 质数与合数例2 三个质数a、b、c的乘积等于这三个质数和的5倍,则a2+b2+c2= (1996年“希望杯”初二试题)C 余数与整除例3从自然数1,2,3,…,1000中,最多可取出多少个数使得所取出的数中任意三个数之和能被18整除?D 整数的表示例4 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

结果小明发现,无论白色卡片上是什么数字,计算结果都是1998。

问:红、黄、蓝3张卡片上各是什么数字?例5 有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是E 找规律、构造、其他例6(1999,天津市)有两副扑克牌,每副牌的排列顺序均按头两张是大王、小王,然后是黑桃、红桃、方块、梅花四种花色排列,每种花色的牌又按1,2,3,4,…,J ,Q ,K 顺序排列。

某人按上述排列的两副扑克牌上下叠放在一起,然后把第一张丢掉,把第二张放在最底层,再把第三张丢掉,把第四张放在最底层……如此进行下去,直至最后只剩下一张牌。

初一奥数培训教材(1—8讲)

初一奥数培训教材(1—8讲)

第1讲有理数的加减【例1】有理数加法计算:(1)12()()33-+-;(2)(10.8)(10.7)-++;(3)(6)0-+;(4)4452(52)77+-.【例2】有理数减法计算:(1)6(3)--;(2)0(2)--;(3)(7)(5)---;(4)(2)0--【例3】有理数混合计算:(1)263(59.8)()(12.8)55+--+-+;(2)311(2)(2)38(3)843-+---++.【例4】有理数混合计算:(1)3212()(31)()(31)4545-++-+-;(2)2253(7)(4)(2)(5)7575++-++-.【例5】在数23456789,,,,,,,1010101010101010的前面分别添上加“+”或“-”,使它们的和为1.你能想出多少种方法?(开放性题)【例6】一个水井,下面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.5米后又往下滑了0.1米;第二次往上爬了0.42米,却又下滑了0.15米;第三次往上爬了0.7米,却又下滑了0.15米;第四次往上爬了0.75米,却又下滑了0.1米;第五次往上爬了0.55米,却又下滑了0.48米.问蜗牛有没有爬出井口?课后练习: 1、计算:(1)3.2( 4.2)+-;(2)23()()55-+-;(3)(382.4)(382.4)-++;(4)0(24.1)+-;(5)11 ()() 36 -+-2、计算:(1)(3)(5)---;(2)(7)5--;(3)0 4.2-;(4)( 4.2)0--;(3)(20)3(30)5-----;(6)03(4)5(6)-----.3、计算:(1)0.2(0.3)(0.4)(0.5)-+---+-;(2)10(8)(6)(4)(2)--+---+-;(3)111()326---;(4)1110()5210--+-.4、潜水艇原来在水下200米处,若它下潜50米,接着又上浮130米,问这里潜水艇在水下多少米处?5、判断题:(1)若两个数的和为负数,则这两个数都是负数. ()(2)若两个数的差为正数,则这两个数都是正数. ()(3)零减去一个有理数,差必为负数. ()(4)如果两个数互为相反数,则它们的差为0. ()6、计算:(1)(1)2(3)4(5)6(7)8-++-++-++-+;(2)3313 04()(1)17575-+---+;(3)3232(1)4(2)(2)7373-+--+-;(4)511(3)(3)24(1)635-+---+-.7、请在数1,2,…,2006,2007前适当添加上“+”或“-”号,使它们的和的绝对值最小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲有理数的巧算
有理数运算是中学数学中一切运算的基础.它要求同学们在理解有理数的有关概念、法则的基础上,能根据法则、公式等正确、迅速地进行运算.不仅如此,还要善于根据题目条件,将推理与计算相结合,灵活巧妙地选择合理的简捷的算法解决问题,从而提高运算能力,发展思维的敏捷性与灵活性.
1.括号的使用
在代数运算中,可以根据运算法则和运算律,去掉或者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.
例1计算下式的值:
211×555+445×789+555×789+211×445.
例2在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?
2.用字母表示数
我们先来计算(100+2)×(100-2)的值:
这是一个对具体数的运算,若用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=___________
于是我们得到了一个重要的计算公式____________________________
这个公式叫――___________公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.
例3 计算3001×2999的值.
练习1 计算103×97×10009的值.练习2 计算:练习3 计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).
练习4 计算:

3.观察算式找规律
例4某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.
例5 计算1+3+5+7+…+1997+1999的值.
例6计算 1+5+52+53+…+599+5100的值.
例7 计算:
练习一
1.计算下列各式的值:
(1)-1+3-5+7-9+11-…-2009+2011;
(2)11+12-13-14+15+16-17-18+…+99+100;
(3)1991×1999-1990×2000;
(4)4726342+4726352-472633×472635-472634×472636;
(5)2010
20091751531311⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯
(6)1+4+7+ (244)
(7)2000323
13131311+⋅⋅⋅⋅⋅⋅++++
(8)9900
19997081975615-42133011-209127-311-+⋅⋅⋅⋅⋅⋅+++
2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.
81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.
第一讲有理数的巧算答案
例1 计算下式的值:
211×555+445×789+555×789+211×445.
分析直接计算很麻烦,根据运算规则,添加括号改变运算次序,可使计算简单.本题可将第一、第四项和第二、第三项分别结合起来计算.
解原式=(211×555+211×445)+(445×789+555×789)
=211×(555+445)+(445+555)×789
=211×1000+1000×789
=1000×(211+789)
=1 000 000.
说明加括号的一般思想方法是“分组求和”,它是有理数巧算中的常用技巧.
例2 在数1,2,3,…,1998前添符号“+”和“-”,并依次运算,所得可能的最小非负数是多少?
分析与解因为若干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,…,1998之前任意添加符号“+”或“-”,不会改变和的奇偶性.在1,2,3,…,1998中有1998÷2个奇数,即有999个奇数,所以任意添加符号“+”或“-”之后,所得的代数和总为奇数,故最小非负数不小于1.
现考虑在自然数n,n+1,n+2,n+3之间添加符号“+”或“-”,显然
n-(n+1)-(n+2)+(n+3)=0.
这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规则添加符号,即
(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.
所以,所求最小非负数是1.
说明本例中,添括号是为了造出一系列的“零”,这种方法可使计算大大简化.
例3 计算 3001×2999的值.
解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.
例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解若直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正”,小于90的数取“负”,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)
=1800-1=1799,
平均分为 90+(-1)÷20=89.95.
例5 计算1+3+5+7+…+1997+1999的值.
分析观察发现:首先算式中,从第二项开始,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等距离的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即
S=1+3+5+…+1997+1999.①
再将S各项倒过来写为
S=1999+1997+1995+…+3+1.②
将①,②两式左右分别相加,得
2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)
=2000+2000+…+2000+2000(500个2000)
=2000×500.
从而有 S=500 000.
例6 计算 1+5+52+53+…+599+5100的值.
分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.如果将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项相同,于是两式相减将使差易于计算.
解设S=1+5+52+…+599+5100,①
所以
5S=5+52+53+…+5100+5101.②
②—①得
4S=5101-1,
例7 计算:
分析一般情况下,分数计算是先通分.本题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式
来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.
解由于
所以
说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.。

相关文档
最新文档