人教版五年级下册数学试题-几何图形面积计算练习二

合集下载

五年级数学几何形体周长与面积计算专题训练

五年级数学几何形体周长与面积计算专题训练

小学数学几何形体周长与面积计算公式1、长方形的周长=(长+宽)×2 C=(a+b)×22、正方形的周长=边长×4 C=4a3、长方形的面积=长×宽 S=ab4、正方形的面积=边长×边长 2.S a a a ==5、三角形的面积=底×高÷ 2 S=ah÷26、平行四边形的面积=底×高 S=ah7、梯形的面积=(上底+下底)×高÷2 S=(a +b )h÷28、直径=半径×2 d=2r 半径=直径÷2 r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2 C =πd=2πr10、圆的面积=圆周率×半径×半径 公式2S r π=11、内角和:三角形的内角和=180度。

12、长方体的体积=长×宽×高=底面积×高 公式:V=abh13、正方体的体积=棱长×棱长×棱长 公式:3V aaa a ==14、圆柱的侧面积:圆柱侧面积等于底面的周长乘高。

15、公式:S=ch=πdh =2πrh16、圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两的圆的面积。

公式:S=ch+2s=ch+22r π17、圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh18、圆锥的体积=1/3底面积×高。

公式:V=13Sh 19、训练专题1.计算下面各图形的周长..。

(图中单位:米)..和面积1r =5二、计算阴影部分面积10cm三、应用题1、玉海公园中的一个花坛,直径是6米,在它的外面铺一条小路,小路宽1米,求小路的面积?2、一张圆形桌面的直径是12分米,它的周长是多少分米?它的面积是多少平方分米?3、一辆自行车的车轮外半径是40cm,车轮每分钟转100圈。

要通过2512米的桥,大约需多少分钟?4、有两个边长都是6厘米的正方形,在其中一个正方形里画1个最大的圆,另一个正方形里画4个相等的尽量大的圆。

人教版五年级数学下册图形面积体积专项练习题

人教版五年级数学下册图形面积体积专项练习题

人教版五年级数学下册图形面积体积专项练习题1. 把一个正方体的棱长缩小4倍,表面积()A .缩小4倍B .缩小16倍C .扩大8倍2. 如果一个长方体有4个面的形状大小都相等,那么其余两个面一定是()A .正方形B .长方形C .长方形或正方形3. 班主任要统计本班期末考试语文、数学成绩中各分数段的人数情况,应制作()A .单式统计表B .复式统计图C .条形统计图D .折线统计图4. 如图,用两个完全相同的直角三角形,不能拼成()。

A .平行四边形B .长方形C .等腰三角形D .梯形5. 一个长方体(不含正方体)最多有()条棱长度相等.A .12B .8C .4D .26. 一个环形,内圆半径是3分米,外圆半径是5分米,这个环形的面积多少?列式正确的是()。

A .3.14×(5×2-3×2) ,3.14×52-3.14×32B .3.14×(5×2-3×2) , 3.14×(52-32)C .3.14÷52-3.14×32,3.14×(52-32)7. 从上面观察物体,看到的形状是( )A .B .C .8. 下面的数中,()与20.56立方分米相等.A .2056立方厘米B .0.2056立方米C .20560立方厘米9. 等腰梯形的一内角为45°,高等于上底,下底为9,那么梯形的面积为()。

A .27B .18C .36D .2410. 下面图形中,是正方体的是()A .B .C .D .11. 把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大______平方厘米。

12. 把一块正方体橡皮泥摆成长方体后,体积没变.______(判断对错)13. 瓶装牛奶一般用______作单位,桶装花生油一般用______作单位.14. 一个长方体正好可以截成两个完全一样的正方体,已知长方体的表面积是40平方厘米,那么每个正方体的表面积是______平方厘米.15. 计算组合图形的面积,一般通过______或______的方法,把它转化成基本图形后进行计算。

06-图形计算100题(提高)2023年五年级下册数学高频易错题(人教版)(含答案).doc

06-图形计算100题(提高)2023年五年级下册数学高频易错题(人教版)(含答案).doc

(期末真题精选)06-图形计算100题(提高)2023年五年级下册数学高频易错题(人教版)试卷说明:本试卷试题精选自浙江省各地市2020-2022近三年的五年级期末真题试卷,难易度均衡,适合浙江省各地市和使用人教版教材的五年级学生期末复习备考使用!一、图形计算1.求如图图形的表面积和体积。

(单位:厘米)2.求出如图中长方体的体积和表面积。

(单位:米)3.计算表面积.4.求下图形的体积和表面积。

(单位:厘米)5.分别求出下列所有立体图形的表面积和体积。

6.计算下面图形的体积。

(单位:分米)7.求下面这个石凳的体积。

8.分别计算下列图形的表面积和体积.(单位:cm)9.求下面图形的表面积和体积。

(单位:dm)10.下图是长方体相交于某一个顶点的三条棱。

求这三条棱所在长方体的表面积和体积。

11.按要求计算下列图形的表面积和体积。

12.计算下面长方体的表面积和体积。

(长=6cm,宽=5cm,高=3cm)13.计算下面图形的表面积和体积。

(1)(2)14.计算长方体的表面积和正方体的体积。

(1)(2)15.计算下面立体图形的表面积。

(单位:cm)16.计算下面立方体的表面积和体积。

(单位:cm)17.计算下面立体图形的表面积和体积.(单位:cm)18.下面是两个无盖的纸盒,求它们的表面积。

(单位:cm)19.求下面正方体的表面积。

(单位:厘米)20.求表面积,单位:分米.21.正方体的体积。

(单位:分米)22.计算下面各图形的体积.23.计算正方体的体积和表面积:(单位:分米)。

24.计算下面图形的表面积和体积。

25.求下面几何体的表面积和体积。

(单位:cm)26.计算下面图形的表面积。

(1)(2)27.求下面图形的表面积和体积.28.求下图的表面积和体积。

29.分别求下面立体图形的表面积和体积。

30.计算长方体的表面积和体积。

31.计算下面立体图形的表面积和体积。

32.求图形的表面积.33.求下面长方体和正方体的表面积和体积。

【教培专用】人教版数学小学五年级下册第十五讲期末练习《图形与几何》基础版(学生版)

【教培专用】人教版数学小学五年级下册第十五讲期末练习《图形与几何》基础版(学生版)

第15讲期末练习——图形与几何知识点一..求长方形和正方形的周长和面积知识点二:观察物体(1)从不同方向观察同一立体图形的形状要想画出观察到的图形,必须学会想象,建立空间观念,或者把图形分成几部分来逐一画出。

(2)根据给定的平面图形的形状还原立体图形,确定搭成这个立体图形所需要的小正方体的数量范围根据给定的平面图形确定搭成这个立体图形的形状时,可以通过动手操作的方法进行验证。

知识点三:作物体的三视图三视图怎么看: 1.从正面看,为主视图2.从侧面看,为左视图3.从上面看,为俯视图展开图为空间形体的表面在平面上摊平后得到的图形.综合练习一.选择题(共12小题)1.(2020春•阳信县期末)能围成长方形的是()A.B.C.2.(2020春•仪征市期末)用如图的4根小棒可以围成一个长方形,还可以围成一个()A.平行四边形B.正方形C.梯形D.等腰梯形3.(2020秋•龙口市期中)一个大正方体的底面积是另一个小正方体底面积的3倍,那大正方体的表面积是小正方体的表面积的()倍。

A.3B.6C.9D.18 4.(2020•浑南区)把两个棱长都是10cm的正方体拼成一个长方体后,表面积减少了()cm2.A.100B.200C.4005.(2020•古冶区)如图中,甲的表面积()乙的表面积.A.大于B.小于C.等于D.不能确定6.(2020春•高邑县期中)一根长方体木料长2米,宽和高都是2分米,把它锯成3段,表面积至少增加()平方分米.A.12B.16C.24D.367.(2019春•武安市期末)把一个长方体分成几个小长方体后,表面积()A.不变B.比原来大了C.比原来小了8.(2020秋•桓台县期中)一个汽车油箱正好能装60L汽油,那么这个油箱的()是60L。

A.体积B.表面积C.容积9.(2020春•二七区校级月考)一个长方体的体积是100立方厘米,已知它的长是10厘米,宽是2厘米,则高是()厘米.A.3B.4C.5D.6 10.(2020•合肥模拟)一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定11.(2020春•英山县期末)一个长方体的长、宽、高都扩大5倍,它的体积扩大()倍.A.5B.25C.12512.(2019•成都)如图是一个装满1立方厘米大小立方体的盒子.这个盒子的体积是()立方厘米.A.30B.24C.120D.150二.填空题(共8小题)13.(2020秋•苏州期末)长方形邻边互相,对边互相.14.(2020秋•前郭县期末)长方形有个角,每个角都是角.15.(2020春•灯塔市期末)如图中正方形被挡住的角是角.16.(2020秋•苏州期末)如图是一个长方体.(单位:cm)①面的个数+顶点的个数﹣=棱的条数②它的表面积是cm2.17.(2020•蓬溪县)一个正方体的棱长为2厘米,棱长扩大到原来的3倍后,它的表面积增加了平方厘米.18.(2020春•陕州区期末)如图,用3个体积是1cm3的正方体拼成一个长方体.这个长方体的表面积比原来3个正方体的表面积和减少了cm2.19.(2019秋•高淳区期末)小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)20.(2019春•天河区期末)小强家的书房长5米、宽4米、高3米.要在书房四面的墙壁和房顶都贴上墙纸,除去门窗面积6.5平方米,这个房间至少需要贴墙纸平方米.三.判断题(共4小题)21.(2020秋•延津县期末)在中,长方形有3个。

部编人教版小学五年级下册数学课时练习+课后练习(附答案)

部编人教版小学五年级下册数学课时练习+课后练习(附答案)

部编人教版小学五年级下册数学课时练习+课后练习(附答案)第一单元课时练习1.1 根据平面图形摆几何体1.如图,再添一个同样大小的小正方体,小明就把图1中小丽搭的积木变成了图2中六种不同的形状。

(1)从左面看,小明搭的积木中( )号和( )号的形状和小丽搭的是相同的;(2)从正面看,小明搭的积木中,形状相同的是( )号和( )号,或者是( )号和( )号。

2.一个用小正方体搭成的几何体,下面是从它的两个不同方向看到的形状,要符合这两个条件,最少需要摆( )块,最多能摆( )块,共有( )种摆法。

3.一堆同样大小的正方体拼搭图形,从不同方向看到的图形分别如图,那么至少有( )块同样的正方体。

A.5B.6C.7D.8答案提示1.(1) ①⑤ (2 )①⑤④⑥2. 8 10 93. A1.2 练习一1.由10个大小相同的正方体搭成的几何体如图所示,则下列说法中正确的是( )。

A.从正面看到的平面图形面积大B.从左面看到的平面图形面积大C.从上面看到的平面图形面积大D.从三个方向看到的平面图形面积一样大2.一个立体图形,从上面看是,从左面看是。

摆一个这样的立体图形,最少需要()个小正方体,最多需要()个小正方体。

3.下面是用小正方体搭建的一些几何体。

①②③④⑤⑥(1)( )从正面看是。

(2)从上面看是的是( )。

(3)从左面看是的是( )。

(4)如果从上面看的图形和②一样,用5个小正方体摆一摆,有( )种不同的摆法。

答案提示1.D2.5 83. (1)②④⑥;(2)③ (3) ①③⑤(4)3第二单元课时练习2.1 认识因数和倍数1.下面每一组数中,谁是谁的倍数,谁是谁的因数。

16和24和2472和820和52.下面的说法对吗?说出理由。

(1)48是6的倍数。

(2)在13÷4=3……1中,13是4的倍数。

(3)因为3×6=18,所以18是倍数,3和6是因数。

3.说出下列各式中谁是谁的因数?谁是谁的倍数?20÷4=5 6×3=18答案提示1.24是2472的因数,2472是24的倍数;5是820的因数,820是5的倍数。

五年级数学常见几何图形面积题库

五年级数学常见几何图形面积题库

五年级数学常见几何图形面积题库题目1:计算矩形的面积,已知其长为12cm,宽为8cm。

解答1:矩形的面积可以通过长乘以宽来计算。

根据已知信息,长为12cm,宽为8cm,可以用以下公式计算面积:面积 = 长 ×宽代入已知数据,得到:面积 = 12cm × 8cm = 96cm²答案1:矩形的面积为96平方厘米。

题目2:一个正方形的边长为6cm,求其面积。

解答2:正方形的边长相等,所以可以直接用任意一条边的长度计算面积。

根据已知信息,边长为6cm,可以使用以下公式计算面积:面积 = 边长 ×边长代入已知数据,得到:面积 = 6cm × 6cm = 36cm²答案2:正方形的面积为36平方厘米。

题目3:一个圆的半径为5cm,求其面积,保留π的值为3.14。

解答3:圆的面积可以通过半径的平方再乘以π来计算。

根据已知信息,半径为5cm,π的值为3.14,可以用以下公式计算面积:面积 = 半径² × π代入已知数据,得到:面积= 5cm² × 3.14 ≈ 78.5cm²答案3:圆的面积约为78.5平方厘米。

题目4:一个三角形的底边长为8cm,高为12cm,求其面积。

解答4:三角形的面积可以通过底边长乘以高再除以2来计算。

根据已知信息,底边长为8cm,高为12cm,可以使用以下公式计算面积:面积 = 底边长 ×高 ÷ 2代入已知数据,得到:面积 = 8cm × 12cm ÷ 2 = 48cm²答案4:三角形的面积为48平方厘米。

题目5:一个梯形的上底长为5cm,下底长为10cm,高为6cm,求其面积。

解答5:梯形的面积可以通过上底长、下底长和高来计算。

根据已知信息,上底长为5cm,下底长为10cm,高为6cm,可以使用以下公式计算面积:面积 = (上底长 + 下底长) ×高 ÷ 2代入已知数据,得到:面积 = (5cm + 10cm) × 6cm ÷ 2 = 45cm²答案5:梯形的面积为45平方厘米。

人教版小学五年级数学下册长方体和正方体表面积和体积 解决问题专项训练试题(含答案)

人教版小学五年级数学下册长方体和正方体表面积和体积  解决问题专项训练试题(含答案)

人教版五年级数学下册长方体和正方体表面积和体积解决问题专项训练(50道含答案)1.学校活动室长15米,宽8米,高5米,门窗面积共24平方米。

要把活动室的天花板和四周的墙刷上涂料,一共要刷多少平方米?2.一种无盖的长方体水箱,长2.5dm,宽2.5dm,高3.5dm,制作一个这样的水箱,至少需要白铁皮多少平方分米?3.如图,这是一个铝合金框组成的鱼缸,侧面的每个面都是正方形,且边长为25厘米。

这个鱼缸的侧面准备全用玻璃,那么玻璃的总面积和铝合金框的总长度各是多少?4.如图,求这个正方体的表面积.5.爸爸买了一个长为30cm、宽为20cm、高为15cm的长方体礼盒,里面装有妈妈爱吃的长方体形状的花生酥,每块花生酥长5cm,宽3cm,高2cm。

(1)礼盒用彩纸包装,需要多少彩纸?(重叠部分不计算)(2)这个礼盒最多能装多少块花生酥?6.纸盒厂生产一种正方体纸板箱,棱长为40cm,做一个纸盒要多少平方厘米的纸板?它占空间多少立方厘米?合多少立方分米?7.有一个长8厘米,宽6厘米,高5厘米的长方体零件,在每个面的正中间挖去一个棱长为2厘米的小正方体,这个零件的体积与表面积各是多少?8.一个长方体形状的游泳池,长50m,宽30m,深2m。

要给游泳池的底面和四壁抹一层水泥,如果每平方米用水泥12千克,22吨水泥够不够用?9.有一个正方体木块,把它分成两个长方体木块后,表面积增加了24cm2,这个正方体木块原来的表面积是多少平方厘米?10.用纸皮做一个长1.2米、宽20分米、高60厘米无盖的长方体箱子用来堆放同学们收聚的矿泉水空瓶,至少要用多少平方分米的纸皮?11.一个集装箱长9米,宽3.2米,高2.5 米。

(1)制作这样一个集装箱至少需要多少平方米的钢板?(2)这个集装箱的容积大约是多少立方米?(箱壁厚度忽略不计)12.用240厘米唱的铁丝做一个最大的正方体框架,然后用纸板将6个面包起来做一个正方体纸盒,至少需要多少平方厘米纸板?这个纸盒的体积是多少立方厘米?13.求下面组合图形的面积.(单位:厘米)14.一个正方体的棱长之和是48厘米,那么它的表面积是多少平方厘米?15.一个正方体的表面积是48平方米,它的一个面的面积是多少平方米?16.做一个棱长为4分米的正方体无盖纸盒,至少需要用硬纸多少平方分米?17.小亚的房间长4.2米,宽3.5米,高3米,除去门窗的面积4.5平方米,房间的墙壁和天花板都贴上墙纸,这个房间至少需要多少平方米墙纸?18.一个长方体的食品盒长10厘米,宽6厘米,高13厘米.如果围着它贴一圈商标纸(上下面不贴),这张商标纸的面积至少要多少平方厘米?19.五年级一班的教室长9米、宽7.2米,学校计划暑假把四面墙粉刷绿色的墙围,要求从地面起1.1米高,计算一下这间教室粉刷墙围的面积是多少平方米.如果每平方米的粉刷费是5元,则粉刷这间教室需要多少钱?20.把一根144厘米的铁丝焊接成一个正方体框架,再在外面糊一层纸,糊纸的面积是多少平方米?21.如图,求这个长方体的表面积.22.做一个长5厘米、宽4厘米、高3厘米的长方体纸盒,至少要用多少平方厘米的硬纸板?23.一块正方体魔方的棱长是8厘米,它的表面积是多少?24.做一个没有盖的长方体玻璃缸,长60厘米,宽60厘米,高40厘米,共需要玻璃多少平方厘米?合多少平方米?25.一间教室长10米、宽6米、高4米,门窗面积为19.6平方米,要粉刷教室的四壁和顶棚,如果每平方米用涂料0.25千克,则共需要涂料多少千克?26.有一个棱长10厘米的正方体包装盒,在它的四壁贴上商标纸,这张商标纸的面积是多少?27.一个长方体玻璃钟罩,长15厘米,宽10厘米,高16厘米,它的表面积是多少平方厘米?28.一间教室长9 米,宽7 米,高3 米。

五年级几何面积题

五年级几何面积题

五年级几何面积题一、题目。

1. 一个平行四边形的底是8厘米,高是5厘米,它的面积是多少平方厘米?- 解析:根据平行四边形面积公式S = 底×高,已知底a = 8厘米,高h=5厘米,所以面积S=8×5 = 40平方厘米。

2. 三角形的底是12分米,高是8分米,求三角形的面积。

- 解析:三角形面积公式为S=(1)/(2)×底×高,底a = 12分米,高h = 8分米,那么面积S=(1)/(2)×12×8=48平方分米。

3. 一个梯形的上底是4厘米,下底是6厘米,高是5厘米,求梯形的面积。

- 解析:梯形面积公式S=((上底 + 下底)×高)/(2),上底a = 4厘米,下底b=6厘米,高h = 5厘米,所以S=((4 + 6)×5)/(2)=25平方厘米。

4. 有一个长方形,长是10米,宽是6米,它的面积是多少平方米?- 解析:长方形面积公式S = 长×宽,长l=10米,宽w = 6米,面积S=10×6 = 60平方米。

5. 一个正方形的边长是7分米,它的面积是多少平方分米?- 解析:正方形面积公式S = 边长×边长,边长a = 7分米,所以面积S =7×7=49平方分米。

6. 平行四边形的面积是48平方厘米,底是6厘米,高是多少厘米?- 解析:由平行四边形面积公式S = 底×高可得高=(S)/(底),已知S = 48平方厘米,底a = 6厘米,所以高h=(48)/(6)=8厘米。

7. 三角形的面积是36平方米,高是9米,底是多少米?- 解析:根据三角形面积公式S=(1)/(2)×底×高,可得底=(2S)/(高),已知S = 36平方米,高h = 9米,所以底a=(2×36)/(9)=8米。

8. 梯形的面积是50平方厘米,上底是4厘米,下底是6厘米,高是多少厘米?- 解析:由梯形面积公式S=((上底 + 下底)×高)/(2)可得高=(2S)/(上底+下底),已知S = 50平方厘米,上底a = 4厘米,下底b = 6厘米,所以高h=(2×50)/(4 + 6)=10厘米。

人教版五年级下册《平面图形面积》小学数学-有答案-单元测试卷

人教版五年级下册《平面图形面积》小学数学-有答案-单元测试卷

人教版五年级下册《平面图形面积》小学数学-有答案-单元测试卷一、填空(每题3分)1. 一个平行四边形的底长8厘米,是高的2倍,它的面积是________,与它等底等高的三角形面积是________.2. 一个梯形的上底是16米,下底是24米,高30米,它的面积是________平方米。

3. 一堆钢管,最上层有3根,最下层有13根,每相邻两层相差1根,这堆钢管一共有________根。

4. 一个直角三角形,三条边分别是10厘米、8厘米、6厘米,它的面积是________,用两个这样的三角形拼成的长方形面积是________.5. 一个三角形和一个平行四边形的底相等,面积也相等,已知三角形的高是32厘米,那么平行四边形的高是________厘米。

6. 一个平行四边形的面积是8平方分米,高是2分米,它的底是________分米。

7. 一个近似梯形的花坛,高10米,上下底之和是16米,面积是________.8. 一个三角形的面积是6平方分米,底3分米,高是________.9. 用四根硬纸条钉成一个长方形框架,将它拉成一个平行四边形后,周长________,面积________A.不变B.变大C.变小。

10. 三角形的底扩大3倍,高不变,面积会________.二、判断(每题3分)三角形面积是平行四边形的一半。

________(判断对错)两个面积相等的三角形一定可以拼成一个平行四边形。

________.(判断对错)面积相等的两个梯形,形状不一定相等。

________(判断对错)三、知识应用(每题5分)一个梯形广告牌,它的上底是8米,下底是12米,高是6米。

如果要给这个广告牌涂上油漆,按每平方米花费15元来计算,共要花多少元?张大伯靠一面墙用篱笆围成一个面积是72平方米的梯形养鸡场,至少需要多少米的篱笆?一种等腰直角三角形小旗,直角边长4分米。

现在有一块长12分米,宽6分米的长方形布料,用它最多可以剪成多少块这样的小旗?(小旗不能用边角料拼合)参考答案与试题解析人教版五年级下册《平面图形面积》小学数学-有答案-单元测试卷一、填空(每题3分)1.【答案】32平方厘米,16平方厘米【考点】平行四边形的面积三角形的周长和面积【解析】先求平行四边形的高是多少,再根据平行四边形的面积S=aℎ,三角形的面积S=aℎ÷2,据此代入数据即可求解。

五年级下册数学试题培优专题讲练:第12讲巧算面积(二)人教版

五年级下册数学试题培优专题讲练:第12讲巧算面积(二)人教版

第12讲巧算面积(二)巧点晴——方法与技巧(1)等底等高的两个三角形面积相等。

(2)两个三角形如果有相等的底(或高),且其中一个三角形的高(或底)是另一个三角形高(或底)的若干倍,那么,这个三角形的面积是另一个三角形面积的若干倍。

巧指导——例题精讲A级冲刺名校·基础点晴【例1】边长为8厘米和4厘米的两个正方形拼在一起,如下图1,求阴影部分。

分析与解1 图中阴影部分的面积可以转化成两个正方形面积的各减去两个三角形的面积来计算。

即S阴影= S正方形ABFG+ S正方形BCDE- S△ACG- S△CDE=4×4+8×8-(4+8)4÷2-8×8÷2=16+64-24-32=24(厘米2)分析与解2 连接CE、GB,GB平行于EC,S△EGC=S△EBC(等底等高的三角形的面积相等,如图2)。

S阴影= S△EGC- S△EGF= S△EBC- S△EGF=82÷2-42÷2=24分析与解3 连接CF(如图3)。

S△GFC=42÷2=8(厘米2),S△EFC=(8-4)×8÷2=24(厘米2)S阴影= S△GFC+ S =8+16=24(厘米2)。

分析与解4 延长GF,则GH与EC交于点O(如图4)。

易知S△FEO= S△CHO,把△EFO沿O点旋转,阴影面积转化为△GHC的面积。

S阴影= S△GHC=(8+4)×4÷2=24(厘米2)。

答:阴影部分的面积是24平方厘米。

做一做2 如右图,大正方形和小正方形的边长分别是4厘米和3厘米。

求阴影部分的面积。

【例2】在下图中,四边形ABCD和四边形DEFG都是正方形,已知△AFH的面积为6平方厘米,求△CDH的面积。

分析与解由于这道题没有一条线段的长度是已知的,所以我们只能通过创造“等积”来求出问题的解。

从图形中可以看出,把两个阴影三角形分别补上一个梯形DEFH得到梯形DEFA和△ECF,它们的面积相等,从而可知△CDH和△AFH的面积相等。

人教版小学数学五年级下册长方体和正方体练习

人教版小学数学五年级下册长方体和正方体练习

人教版小学数学五年级下册长方体和正方体练习1.我们学过的几何图形有三角形、矩形、圆形和平行四边形。

2.周长是指图形边界的长度。

3.面积是指图形所覆盖的平面区域的大小。

4.长方形的周长=2(长+宽)5.正方形的周长=4边长6.三角形的周长=平行四边形的周长=底边+两侧边梯形的周长=上底+下底+两侧边7.长方形的面积=长×宽=s8.正方形的面积=边长×边长=s9.长方体的表面积=2(长×宽+长×高+宽×高)=s长方体的体积=长×宽×高=v10.正方体的表面积=6边长×边长=s11.正方体的体积=边长×边长×边长=v填空题和计算题的答案不再赘述。

在几何学中,我们研究了三角形、矩形、圆形和平行四边形等几何图形。

周长是指图形边界的长度,面积是指图形所覆盖的平面区域的大小。

长方形的周长等于2倍的长加宽,正方形的周长等于4倍的边长。

三角形的周长、平行四边形的周长以及梯形的周长分别是底边加上两侧边、上底加下底再加上两侧边,以及两个底边加上两侧边。

长方形的面积等于长乘以宽,正方形的面积等于边长的平方。

长方体的表面积等于2倍的长乘以宽加上长乘以高加上宽乘以高,长方体的体积等于长乘以宽乘以高。

正方体的表面积等于6倍的边长的平方,正方体的体积等于边长的立方。

填空题和计算题的答案请参考原文。

28.一个正方体的表面积是24平方分米,把它分成两个完全相同的长方体,每个长方体的表面积是12平方分米。

9.一个长方体,如果高减少3厘米,就成为一个正方体。

这时表面积比原来减少了96平方厘米。

原来长方体的体积是270立方厘米。

10.一个长2米的长方体钢材截成三段,表面积比原来增加2.4平方分米,这根钢材原来的体积是16立方分米。

11.一个长方体的长、宽、高分别为9厘米、6厘米、(72-9-6)=57厘米,它的表面积是(2×9×6+2×9×57+2×6×57)=1512平方厘米。

五年级下册几何题

五年级下册几何题

五年级下册几何题一、长方体和正方体的表面积相关题目。

1. 一个正方体的棱长为5厘米,求它的表面积。

- 解析:正方体的表面积公式为S = 6a^2(其中S表示表面积,a表示棱长)。

已知正方体棱长a = 5厘米,那么表面积S=6×5^2=6×25 = 150平方厘米。

2. 长方体的长为8厘米,宽为6厘米,高为4厘米,求它的表面积。

- 解析:长方体表面积公式S=(ab + ah+bh)×2(其中a为长,b为宽,h为高)。

这里a = 8厘米,b = 6厘米,h = 4厘米。

则S=(8×6 + 8×4+6×4)×2=(48 +32+24)×2=(80 + 24)×2 = 104×2=208平方厘米。

3. 一个正方体的表面积是216平方厘米,求它的棱长。

- 解析:设正方体的棱长为a,由正方体表面积公式S = 6a^2,已知S = 216平方厘米,可得6a^2=216,a^2=216÷6 = 36,所以a = 6厘米。

4. 有一个无盖的长方体鱼缸,长5分米,宽4分米,高3分米,制作这个鱼缸需要多少平方分米的玻璃?- 解析:因为鱼缸无盖,所以求的是5个面的面积之和。

S=ab+(ah + bh)×2,其中a = 5分米,b = 4分米,h = 3分米。

则S = 5×4+(5×3+4×3)×2=20+(15 +12)×2=20+(27×2)=20 + 54 = 74平方分米。

二、长方体和正方体的体积相关题目。

5. 正方体的棱长为3分米,求它的体积。

- 解析:正方体体积公式V=a^3(其中V表示体积,a表示棱长)。

这里a = 3分米,所以V = 3^3=27立方分米。

6. 长方体的长是8米,宽是5米,高是3米,求它的体积。

- 解析:长方体体积公式V=abh。

五年级 图形题面积计算(必练题题库)

五年级 图形题面积计算(必练题题库)

五年级图形题必练题知识要点:组合图形是由两个或两个以上的简单的几何图形组合而成的。

组合的形式分为两种:一是拼合组合,二是重叠组合。

由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。

要正确解答组合图形的面积,应该注意以下几点:1.切实掌握有关简单图形的概念、公式,牢固建立空间观念;2.仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;3.适当采用增加辅助线等方法帮助解题;4,采用割、补、分解、代换等方法,可将复杂问题变得简单。

基础练习:1、 求下面图形的面积。

(单位:cm )152、计算下面图形中阴影部分的面积。

2010643482 1032 201230dm12dm 5m25dm 5m3、求下列阴影部分的面积。

① ②已知S 平=48dm 2,求S 阴。

③已知:阴影部分的面积为24④求S 阴。

平方厘米,求梯形的面积。

4、求下面各图形的面积。

(单位:分米)3m13cm 16cm8dm3dm12cm 7cm4dm8dm5、“实践操作”显身手:10分6、已知右面的两个正方形边长分别为6分米和4分米,求图中阴影部分的面积。

7、右图是两个相同的直角三角形叠在一起,求阴影部分的面积。

(单位:厘米)8、如图,这个长方形的长是9厘米,宽是8厘米,A 和B 是宽的中点,求长方形内阴影部分的面积。

9、在右图中,三角形EDF 的面积比三角形ABE 的面积大6平方厘米,已知长方形ABDC 的长和宽分别为6厘米、4厘米,DF 的长是多少厘米?16cm12cm14cm 24m10m8m1、求下面图形中阴影部分的面积。

2、求下面图形的面积。

10、右图是一块长方形公园绿地,绿地长24米,宽16米,中间有一条宽为2米的道路,求草地(阴影部分)的面积。

11、如图,三角形ABC的面积是24平方厘米,且DC=2AD,E、F分别是AF、BC的中点,那么阴影部分的面积是多少?12、如图,三角形ABC的面积是90平方厘米,EF平行于BC,AB=3AE,那么三角形甲、乙、丙的面积各是多少平方厘米?13、如图长方形,长18厘米,宽12厘米,AE、AF两条线段把长方形面积三等分,求三角形AEF的面积。

【小学数学】人教版五年级数学下册图形与几何专项练习及答案

【小学数学】人教版五年级数学下册图形与几何专项练习及答案

五年级下册“图形与几何”专项练习(一)一、填空1. 钟面上3时30分;时针与分针组成的角是( )角;9时30分;时针与分针组成的角是( )角。

2. 把一个长、宽分别是15厘米和10厘米的长方形;拉成一个一条高为12厘米的平行四边形;它的面积是( )平方厘米。

3. 一个长方体水箱;从里面量长是45厘米;宽是20厘米;里面的水面高度为12厘米;把一块石头放入水中;水面高度上升了2厘米;这块石头的体积是( )立方厘米。

4.用72cm 长的铁丝焊成一个正方体框架(接口处不计);这个正方体框架的棱长是( )cm ;体积是( )cm 3;表面积是( )cm 2。

5.用两个相同的正方体木块拼成一个长方体;长方体的表面积比两个正方体的表面积的和少16平方厘米;一个正方体的表面积是( )平方厘米。

6.如图;已知大正方形的边长是a 厘米;小正方形的边长是b 厘米。

用字母表示阴影部分的面积是(7.右图是由( )个棱长为1厘米的 正方体搭成的。

将这个立体图形的表面涂上蓝色;其中只有三个面涂上蓝色的正方体有( )个;只有四个面涂上蓝色正方体有( )个。

8. 一个底面是正方形的长方体模型;如果它的侧面展开;可以得到一个边长是1米的正方形;这个模型的体积是( )cm ³。

9. 如左图;在一个棱长是3锭上;挖去一个棱长是1剩下的部分表面积是()10.一个长方体的高如果增加2cm ;就成为一个正方体;这时表面积就比原来增加了48cm ²。

原来长方体的体积是( )二、选择1. 用一根木条给一个长方形加固;若只考虑加固效果的话;采用( )最好。

① ②③④2. 下图中;甲和乙两部分面积的关系是( )。

① 甲面积大 ② 一样大 ③ 乙面积大 ④ 无法判断3.用一条长16厘米的铁丝围成一个长方形;如果长和宽都是质数;它的面积是( )平方厘米。

① 6 ② 10 ③ 15 ④ 214. 一个用立方块搭成的立体图形;淘气从前面和上面看到的都是 那么搭成这样一个立体图形最少要( )个小立方块。

五年级数学 平面几何图形的面积训练题 带详细答案

五年级数学 平面几何图形的面积训练题 带详细答案

平面几何图形的面积板块一:基础巩固1、一个三角形的面积比与他等底等高的平行四边形的面积少12平方分米,则平行四边形的面积是()平方分米,三角形的面积是()平方分米。

2、李叔叔在院子里靠着墙边围城了一个鸡笼,围鸡笼的网子长20.5米,求这个鸡笼的占地面积是多少平方米?3、有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的是是多少平方米?324、如图是由边长分别为4厘米、8厘米的两个正方形组成的图形,求阴影部分面积。

5、如图是由边长分别为4、8、6厘米的三个正方形组成的图形,求阴影部分面积。

板块二:拓展提高【例题1】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.【例题2】右图中甲的面积比乙的面积大__________平方厘米.6厘米8厘米4厘米【例3】右图中,矩形ABCD 的边AB 为4厘米,BC 为6厘米,三角形ABF 比三角形EDF 的面积大9平方厘米,求ED 的长.A BC DEF【巩固】如图所示,CA=AB=4厘米,△ABE 比△CDE 的面积小2平方厘米,求CD 的长为多少厘米?A BECD【例4】一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?1215222【巩固】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?5×225【例5】下面图形中,长方形ABCD的面积是32平方厘米,EF都是所在边的中点,求三角形AEF的面积。

【例6】四边形ABCD是直角梯形,AD=12厘米,AB=8厘米,BC=15厘米,且三角形ADE,四边形DEBF,三角形CDF的面积相等,求阴影三角形的面积是多少平方厘米?【例7】一块长方形,用垂直于长和宽的两条线分成四块,其中三块面积分别为15、18、30平方米。

第四块面积是多少平方米?【巩固】如图有9个小长方形,其中的5个小长方形的面积分别为4、8、12、16、20平方米,其余4个长方形的面积分别是多少平方米?【例8】如下图,在一个之间三角形铁皮上剪下一个正方形,并且使正方形的面积尽可能的大,正方形的面积最大是多少?【巩固】如图,直角三角形ABC套住了一个正方形CDEF,E恰好在AB边上,直角边AC长40厘米,BC长12厘米,求正方形的边长是多少?【例9】如图,长方形ABCD 长是8厘米,宽是7厘米,点E 、F 、G 分别是长方形ABCD 边上的中点,H 为AD 边上的任意一点,求阴影部分的面积.E【巩固】如图,三角形ABC 的面积是24,D 、E 和F 分别是BC 、AC 和AD 的中点.求三角形DEF 的面积.FE DC BA【例10】如图,三角形ABC 中,DC=2BD ,CE=3AE ,三角形ADE 的面积是20平方厘米,三角形ABC 的面积是多少?ED CB A【巩固】图中三角形ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE 长的3倍,EF 的长是BF 长的3倍.那么三角形AEF 的面积是多少平方厘米?C B【答案】板块一:1、24 122、上底+下底=20.5-8.5=12(米)梯形面积=12×8.5÷2=51(平方米)3、原长方形的长:24÷2=12(米)原长方形的宽:24÷3=8(米)原来长方形的面积:12×8=96(平方米)4、方法一:可以分割成两个钝角三角形第一个钝角三角形的底是4,高是4,第二个钝角三角形的高是8,底是8-4=4,所以总共的面积是:4×4÷2+8×(8-4)÷2=24(平方厘米)方法二:两个正方形的面积-2处空白的面积=4×4+8×8-8×8÷2-4×(4+8)÷2=24(平方厘米)方法一:可以分割成三个钝角三角形第一个钝角三角形的底是4,高是4,面积是:4×4÷2=8(平方厘米)第二个钝角三角形的高是8,底是(8-4),面积:8×(8-4)÷2=16(平方厘米)第三个钝角三角形的高是8,底是6,面积是:6×8÷2=24(平方厘米)一共的面积:8+16+24=48(平方厘米)方法二:把右上角补起来阴影面积=三个正方形的面积+小长方形面积-两处空白的面积=4×4+8×8+6×6+6×(8-6)-(8+4)×4÷2-8×(6+8)÷2=48(平方厘米)板块二:拓展提高【例题1】、阴影部分+中间空白=中间空白+下面空白所以阴影部分=下面空白20-5=15(厘米)(15+20)×8÷2=140(平方厘米)【例题2】、利用同增同减差不变甲-乙=(甲+空白)-(乙+空白)=大三角形面积-小三角形面积=6×8÷2-4×8÷2=24-16=8(平方厘米)【例题3】、利用同增同减差不变三角形ABF-三角形EDF的面积=9平方厘米同时增加梯形BCDF的面积,则:长方形ABCD-三角形BCE=9长方形ABCD的面积=4×6=24(平方厘米)则三角形BCE的面积=24-9=15(平方厘米)EC=15×2÷6=5(厘米)ED=5-4=1(厘米)【巩固】、利用同增同减差不变三角形CDE-三角形ABE的面积=2平方厘米同时增加三角形BCE的面积,则:三角形BCD-三角形ABC=2三角形ABC的面积=4×4÷2=8(平方厘米)则三角形BCD的面积=8+2=10(平方厘米)CD=10×2÷4=5(厘米)【例题4】原来的面积=15×12=180(平方分米)现在的的面积=(15-2)×(12-2)=130(平方厘米)减少的面积:180-130=50(平方厘米)【巩固】66-2×5=56(平方厘米)设剩下的部分正方形的边长为x厘米5x+2x=56X=8原来长方形的长:8+5=13(厘米)原来长方形的宽:8+2=10(厘米)原来长方形的面积:13×10=130(平方厘米)【例题5】三角形ADF的面积:32÷2÷2=8(平方厘米)三角形ABE的面积:32÷2÷2=8(平方厘米)三角形CEF的面积:32÷2÷2÷2=4(平方厘米)三角形AEF的面积:32-8-8-4=12(平方厘米)【例题6】梯形的面积:(12+15)×8÷2=108(平方厘米)三角形ADE的面积:108÷3=36(平方厘米)AE 的长:36×2÷12=6(厘米)三角形ACF 的面积:108÷3=36(平方厘米)CF 的长:36×2÷8=9(厘米)BE 的长:8-6=2(厘米)BF 的长:15-9=6(厘米)阴影部分面积=2×6÷2=6(平方厘米)【例题7】15×30÷18=25(平方米)【巩固】A 面积:4×16÷8=8(平方米)B 面积:16×12÷8=24(平方米)D 面积:20×24÷16=30(平方米)C 面积:8×20÷16=10(平方米)【例题8】连接DB ,把大三角形分成两个小三角形,正方形的边长就是这两个三角形的高大三角形ABC 的面积是:40×10÷2=200(平方厘米)设正方形的边长为x 厘米40x÷2+10x÷2=20025x=200 X=8正方形面积=8×8=64(平方厘米)【巩固】连接CE ,把大三角形分成两个小三角形,正方形的边长就是这两个三角形的高大三角形ABC 的面积是:40×12÷2=240(平方厘米)设正方形的边长为x 厘米40x÷2+12x÷2=24026x=240X=120/13【例题9】长方形的面积:8×7=56(平方厘米) A B C D阴影部分面积:56÷2=28(平方厘米)【巩固】24÷2÷2÷2=3【例题10】三角形CDE的面积:20×3=60(平方厘米)三角形ADC的面积:20+60=80(平方厘米)三角形ABD的面积:80÷2=40(平方厘米)三角形ABC的面积:40+80=120(平方厘米)【巩固】三角形ABD的面积:180÷2=90(平方厘米)三角形ABE的面积:90÷3=30(平方厘米)三角形AEF的面积:30÷4×3=22.5(平方厘米)。

人教版五年级数学下册图形与几何、统计专项复习卷(含答案)

人教版五年级数学下册图形与几何、统计专项复习卷(含答案)

人教版五年级数学下册图形与几何专项复习卷(含答案)满分:100分试卷整洁分:2分(72分)一、用心思考,正确填写。

(第1、2小题各4分,其余每空2分,共30分)1.[旋转](1)放( )kg的物品,指针顺时针旋转45°。

(2)放( )kg的物体,指针顺时针旋转90°。

(3)放4 kg物品,指针( )时针旋转( )°。

2.[单位换算]在括号里填上合适的数。

2.8 m3=( )dm3 1.05 dm3=( )cm31800 mL=( )L 540 L=( )dm33.[长方体的体积]一根长2 m的长方体钢材,沿横截面截成两段后,表面积增加了0.6 dm2,这根长方体钢材的体积是( )dm3。

4.[长方体的体积]一个长方体包装箱,相交于一个顶点的三条棱的长度分别是5 dm、3 dm、4 dm,这个包装箱的占地面积最大是( )dm2,体积是( )dm3。

5.[长方体体积公式的应用]一个长方体容器,从里面量长4 dm,宽3 dm,能容纳30 L水。

这个长方体容器的高是( )dm。

6.[旋转]从8时55分到9时15分,分针旋转了( )°。

7.[长方体的表面积和体积]一个长方体的长、宽、高都扩大到原来的2倍,这个长方体的表面积扩大到原来的( )倍,体积扩大到原来的( )倍。

8.[探索图形]右图是用小正方体拼成的大正方体,在它的表面涂色。

三面涂色的小正方体有( )个,没有涂色的小正方体有( )个。

9.[观察物体]一个立体图形从正面看到的形状是,从左面看到的形状是,搭这个立体图形至少要( )个小正方体,最多要( )个小正方体。

二、认真辨析,合理选择。

(将正确答案的序号填在括号里)(10分)1.[旋转]图形绕点O旋转以后,得到的图形可能是( )。

A. B. C. D.2.[表面积]右图是由同样大小的正方体组成的两个图形,它们的表面积相比较,( )。

A.一样大B.①大C.②大D.无法比较3.[观察物体]小明搭的积木从上面看到的形状是,上面的数字表示在这个位置上所用正方体的个数。

五年级数学图形面积计算题目

五年级数学图形面积计算题目
3. **三角形面积计算**:三角形的面积计算公式是底乘以高除以2。这涉及到学生对三角形性质的理解,以及如何应用公式进行计算。
4. **平行四边形面积计算**:平行四边形的面积计算公式是底乘以高。这考查了学生对平行四边形性质的理解,以及如何应用公式进行计算。
5. **梯形面积计算**:梯形的面积计算公式是上底加下底的和乘以高除以2。这涉及到学生对梯形性质的理解,以及如何应用公式进行计算。
-应用:计算三角形的面积
####平行四边形面积计算
-公式:底×高
-应用:计算平行四边形的面积
####梯形面积计算
-公式:(上底+下底)×高÷2
-应用:计算梯形的面积
####图形转换与组合
-应用:在实际问题中,图形可能需要进行转换或组合,理解这些转换对面积计算的影响。
####灵活运用数学知识
-应用:在案例分析和思考题中,灵活运用所学的面积计算知识来解决问题。
3.一个三角形的底是10厘米,高是6厘米,求它的面积。
4.一个平行四边形的底是8厘米,高是7厘米,求它的面积。
5.一个梯形的上底是3厘米,下底是6厘米,高是5厘米,求它的面积。
##六、作图题(每题5分,共10分)
1.根据给定的数据,画出一个半径为5厘米的圆形。
2.根据给定的数据,画出一个底为8厘米,高为4厘米的三角形。
五年级数学图形面积计算题目
#五年级数学图形面积计算题目
##一、选择题(每题2分,共20分)
1.下列哪个图形的面积计算公式是:底×高?
A.正方形
B.三角形
C.圆形
D.长方形
2.两个完全一样的三角形可以拼成一个什么图形?
A.正方形
B.平行四边形
C.梯形

【竞赛题】人教版小学五年级下册数学第09讲《立体几何》竞赛试题(含详解)

【竞赛题】人教版小学五年级下册数学第09讲《立体几何》竞赛试题(含详解)

第九讲立体几何- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -首先,我们来学习一下长方体、正方体的体积与表面积的计算方法.练一练.1.一个正方体的棱长总和是72厘米,它的一个面是边长_______厘米的正方形,它的表面积是_______平方厘米,体积是_______立方厘米.2.一个长方体的长是5分米,宽是45厘米,高是24厘米,它的表面积是_______平方厘米,体积是_______立方厘米.3.做一个长8分米,宽4分米,高6分米的长方体玻璃鱼缸,至少需要_______平方分米的玻璃.4.有一块棱长是10厘米的正方体的铁块,现在要把它熔铸成一个横截面积是20平方厘米的长方体,这个长方体的长是_______厘米.如果要求这个长方体每条棱的长度都是整数厘米,它的表面积最小是_______平方厘米.相信同学们对于这些公式都很熟悉,但是对于较复杂的立体图形,往往我们并不能直接应用公式进行计算,这个时候又该怎么办呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.有30个边长为1米的正方体,如图所示堆成一个四层的立体图形.请问:该立体图形的表面积等于多少平方米?分析:所谓表面积,就是立体图形露在外面的总面积.我们可以从上、下、左、右、前、后6个不同的方向去考虑这个立体图形,把每个方向露出的面积加在一起就行了.练习1.用14个棱长是1厘米的立方块拼成如右图所示的立体图形,问该图形的表面积是多少平方厘米?在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积.例题2.一个正方体被切成24个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为162平方厘米,那么原正方体的体积是多少立方厘米?分析:我们先来分析一下切成小块的过程中,图形的表面积是如何变化的.同学们请看下图:一刀下去,正方体被一分为二.表面积和原来比,正好多出了A,B两个面.不难看出,这两个面的面积都等于原正方体6个面中1个面的面积.按这种方法,每切一刀,增加的都是两个面的面积.同学们可以计算一下,按如图的方式切了6刀后,表面积究竟增加了多少?练习2.一个正方体被切成36个大小形状相同的小长方体(见下图),这些小长方体的表面积之和为500平方厘米,那么原正方体的体积是多少立方厘米?例题3.如图,有一个边长为30厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为5496平方厘米,那么挖掉的小正方体的棱长是多少厘米?分析:挖去小正方体后,表面积会发生变化.如果挖的位置,最终结果会有区别吗?练习3.一个正方体棱长10厘米,在它的表面上挖去一个棱长3厘米的小正方体.请求出剩下立体图形表面积的所有可能.除了长方体、正方体之外,圆柱和圆锥在我们的生活中也特别常见.如图,圆柱的两个圆面叫做底面;周围的面叫做侧面;两个底面之间的距离叫做高. 圆锥的圆面叫做底面;尖点叫做顶点;顶点到底面的距离叫做高,顶点到底面圆周上任意一点的连线叫做母线.关于圆锥的内容,我们不作深入的学习,同学们只需要学会如何计算它的体积即可.大家可以把圆柱想象成一个底面是圆形的柱子,那其他柱体也就是底面是其他图形的柱子.如图,所有“上下一般粗”的图形都称为柱体,图中的两个图形分别叫做三棱柱和四棱柱,它们的体积计算公式都是:V =⨯底面积高例题4.(1)如下左图,是长为8,宽为4的长方形,以长方形的长为轴旋转一周,求所形成的立体图形的体积和表面积是多少. (2)如下右图,是直角边分别为3和4的直角三角形,以边长为4的直角边为轴旋转一周,求所形成的立体图形的体积.分析:圆柱体的底面半径和高与长方形的长和高有什么关系?圆锥体呢?练习4.有一个圆柱和一个圆锥,它们的高和底面直径如图所示.圆柱体积及表面积分别是多少?圆锥的体积是多少?(π取3.14)6例题5.下图是一个棱长为4厘米的正方体,分别在前、后、左、右、上、下各面的中心位置挖去一个棱长1厘米的正方体,做成一种玩具.该玩具的表面积是多少平方厘米?如果把这些洞都打穿,表面积又变成了多少平方厘米?分析:打穿以后,表面积的计算有点复杂.想想都有哪些面是露在外面的?例题6.如图,一个底面长20分米,宽8分米,高15分米的长方形水池,存有三分之二池水.将一个高50分米,体积400立方分米的长方体竖直放入池中,那么长方体被水浸湿的部分有几分米高?分析:很明显长方体没有被水浸没,还有一部分在外面.水的体积没有变化过,但是形状发生了变化.原来是一个长方体,后来是什么样的形状?-正多面体正多面体,指各面都是全等的正多边形且每一个顶点所接的面数都是一样的凸多面体.一共有五种正多面体,分别是正四面体、正六面体(正方体)、正八面体、正十二面体和正二十面体.这些正多面体的作法都收录在了《几何原本》的第13卷中.柏拉图认为世界万物都是由火、气、水、土四元素构成的,其形状如正多面体中的四个.➢火的热令人感到尖锐和刺痛,好像小小的正四面体.➢空气是用正八面体制的,可以粗略感受到,它极细小的结合体十分顺滑.➢当水放到人的手上,它会自然流出,那它就应该是由很多小球所组成,好像正二十面体.➢土与其他的元素相异,因为它可以被堆栈,正如立方体.剩下没有用的正多面体——正十二面体,柏拉图以不清晰的语调写道:“神使用正十二面体以整理整个天空旳星座.”柏拉图的学生亚里士多德添加了第五个元素——以太,并认为天空是用此组成,但他没有将以太和正十二面体联系起来.约翰内斯·开普勒依随文艺复兴建立数学对应的传统,将五个正多面体对应五个行星——水星、金星、火星、木星和土星,同时它们本身亦对应了五个古典元素.在立体图形中,正多面体非常对称.除了正多面体之外,还有很多图形也具有非常漂亮的对称性.下面就是一些例子,不过要注意,它们可不是正多面体哦.作业1.如图所示,一个正方体被切成16个大小形状相同的小长方体,这些小长方体的表面积之和为256平方厘米,那么原正方体的体积是多少?作业2.一个正方体棱长8厘米,在它的表面上挖去一个棱长为2厘米的小正方体.则剩下的立体图形表面积可能是多少?作业3.如图,有一个边长为20厘米的大正方体,分别在它的角上、棱上、面上各挖掉一个大小相同的小正方体后,表面积变为2454平方厘米,那么挖掉的小正方体的边长是多少?作业4.图中的立体图形中,每个小正方形的边长都是1.那么这个立体图形的表面积和体积分别是多少?作业5.正方形的边长为4,按照图中所示的方式旋转,那么得到的旋转体的体积和表面积分别是多少?(π取3)俗话说,兴趣是最好的老师。

2021年人教版小学五年级数学下册全册各单元试卷及答案

2021年人教版小学五年级数学下册全册各单元试卷及答案

2021年人教版小学五年级数学下册全册各单元试卷及答案试题1:第1单元观察物体(三)试题2:第2单元因数与倍数试题3:第3单元长方体和正方体试题4:第4单元分数的意义和性质试题5:第5单元图形的运动(三)试题6:第6单元分数的加法和减法试题7:第7单元折线统计图试题8:第8单元数学广角——找次品第1单元观察物体(三)一、画出下面的几何体从正面、上面和左面看到的图形。

(本题共10分)二、解决问题。

(本题共10分)1.在下图中添一个相同的正方体(添加的正方体与其他正方体至少有一个面重合),使从正面看到的形状不改变,共有几种方法?2.如图,有甲、乙两个立体图形,从正面、左面和上面看这两个立体图形,哪些面看到的图形是一样的?甲乙3.有一个立体图形是由小正方体拼成的,从上面看到的是,从左面看到的是,那么这个立体图形最多有多少个小正方体?最少有多少个小正方体?4.请动手摆一摆,然后解决下面的问题。

(1)一个几何体,从不同方向看到的形状分别是:如果用7个小正方体摆,第7个小正方体可以放在哪个位置?(图中的序号是位置号)(2)如果再增加一个小正方体,从上面看到的图形不变,从左面看到的图形是,第8个小正方体可以放在什么位置?(图中的序号是位置号)三、解决问题。

(本题共10分)1.一个几何体从左面看到的图形是,从上面看到的图形是。

这个几何体至少由多少个小正方体组成?2.一个几何体从三个方向观察得到的图形如下各图所示,先猜想,再画出这个几何体。

3.如果从正面和侧面看到的几何体的形状是,用5个小正方体可以怎样搭?四、解决问题。

(本题共10分)1.用同样大小的正方体搭出了下面的几个几何体。

(1)从正面看是的有。

(2)从左面看是的有。

(3)从上面看是的有。

2.小明搭了一个几何体,从上面看到的图形是图①,从正面看到的图形是图②,搭一个这样的几何体,小明最少需要多少个小正方体?最多呢?3.观察右图,回答问题。

(1)这个几何体是由多少个小正方体搭成的?(2)取走哪个小正方体后,从正面、上面、左面看到的图形仍然保持不变?请你把那个取走的小正方体涂成红色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边形内画一个最大的三角形,三角形的面积不超
过平行四边形面积的一半。( )
4、平行四边形有无数条高,且长度都相等。(

5、一个平行四边形的一条底和其对应的高分别是 12 厘米和
10 厘米,这个平行四边形的周长一定大于 44 厘米。(
) 三、精打细算 求下面图形的面积。(单位:厘米)
)对面积相等的三角形。
四、走进生活 1、一块三角形的果园,底是 280 米,高是 26 米,共栽了 910 棵果树,平均每棵果树占地多少平方米?
15 下面几句话中,正确的一句是(

A 三角形的面积是平行四边形形面积的一半。
B 一个平行四边形的两条邻边长分别是 6 厘米和 4 厘米,它
的一条底边上的高是 5 厘米,这个平行四边形的面积是
几何图形面积计算(二)
一、慎重选择
1、把一个三角形的底扩大 4 倍,高不变,其面积扩大了(
)倍。
A 不变 B 4 倍
C 2倍
2、两个三角形面积相等,则它们( A 一定 B 不一定 C 不可能
)等底等高。
13、两个( A 完全一样
)的三角形一定可以平成一个平行四边形。 B 面积相等 C 等底等高
14、如右图所示,有( A1 B2 C3
6×5÷2=15(平方厘米)。
C 腰长 20 厘米的等腰直角三角形的面积是 20 平方厘米。
2、一块平行四边形的麦地,底是 50 米,高是 40 米,这块地 的面积有多大?如果每平方米可收小麦 700 克,这块地一共可 收小麦多少千克?
二、明辨是非
1、梯形的面积是平行四边形的面积的一半。(

2、两个完全一样的直角梯形既可以拼成一个长方形也可以拼
3、一个三角形和一个平行四边形面积相等。已知三角形底是 6 厘米,高是 5 厘米,平行四边形底是 15 厘米,高是多少厘 米?
求下列阴影部分的面积(单位:m)
相关文档
最新文档