专题2.9 双星与天体追及相遇问题(教师版)
天体的追及与相遇问题
t t 1n T1 T2 2
[例8] 如图所示,A是地球的同步卫星。另一卫星B的圆形轨道位于赤道平面 内,离地面高度为h。已知地球半径为R,地球自转角速度为ω0,地球表面的 重力加速度为g,O为地心。 (1)求卫星B的运行周期; (2)如果卫星B绕行方向与地球自转方向相同,某时刻A、B两卫星相距最近(O、 B、A在同一直线上),则至少经过多长时间,它们再一次相距最近?
T1 T2
一、某星体的两颗卫星从相距最近到再次相距最 近遵从的规律:
内轨道卫星所转过的圆心角与外轨道卫星 所转过的圆心角之差为2π的整数倍。
二、某星体的两颗卫星从相距最近到相距最远遵 从的规律:
内轨道卫星所转过的圆心角与外轨道卫星 所转过的圆心角之差为π的奇数倍。
天体的追及与相遇问题
两天体(行星、卫星或探测器)相遇,实际上是指两天体相距最近。
绕行方向相同的两卫星和天体的连线在同一直线上,处于内轨道的卫 星周期T1小,处于外轨道的卫星周期T2大。
(1)当两卫星都在天体同侧时,那么当t满足下列式子时两卫星相距最近:
1t 2t 2n (n 1,2,3)
t t n T1 T2
(2)当两卫星在天体异侧时,那么当t满足下列式子时两卫星相距最近:
反思提升
对于天体追及问题的处理思路:
(1)根据GM r2 m=mrω2,可判断出谁的角速度大; (2)根据两星追上或相距最近时满足两星运行的角度差等于
2π 的整数倍,相距最远时,两星运行的角度 差等于 π 的奇数倍。
在与地球上物体追及时,要根据地球上
T1 T2
物体与同步卫星角速度相同的特点进行判断。
天体的追及与相遇问题
知
识
第七章专题天体的追及与相遇课件高一下学期物理人教版
卫星的追及问题
意义:离太阳近的行星角速度快,如果某时刻太阳地球火星三 者共线,到下一次共线,我们称地球又追上了火星。
分析:从这次共线到下次共线,跑的快的物体比慢的多跑了一 周
太阳
地球
地球 火星
火星
情形一:相距最近
如图,两天体的运转方向相同,且位于和中 心连线半径的同侧,此时两天体相距最近。 求经过多长时间t二者会再次相距最近? 设处于内轨道的A天体周期为T1,处于外轨道 的B天体周期为T2,当t满足下列式子时二者相 距最近:
典例分析
典例分析
典例分析
典例分析
【典例2】2020年7月23日,我国首次火星探测任务“天问一号”探测器,在中国文昌航天发 射场,应用长征五号运载火箭送入地火转移轨道。火星距离地球最远时有4亿公里,最近时大 约0.55亿公里。由于距离遥远,地球与火星之间的信号传输会有长时间的时延。当火星离我 们最远时,从地球发出一个指令,约22分钟才能到达火星。为了节省燃料,我们要等火星与 地球之间相对位置合适的时候发射探测器。 受天体运行规律的影响,这样的发射机会很少。为简化 计算,已知火星的公转周期约是地球公转周期的1.9倍, 认为地球和火星在同一平面上、沿同一方向绕太阳做匀 速圆周运动,如图所示。根据上述材料,结合所学知识, 判断下列说法正确的是( )
典例分析
A.地球的公转向心加速度小于火星的公转向心加速度 B.当火星离地球最近时,地球上发出的指令需要约3分 钟到达火星 C.如果火星运动到B点,地球恰好在A点时发射探测器, 那么探测器将沿轨迹AC运动到C点时,恰好与火星相遇 D.下一个发射时机需要再等约2.1年
【正确答案】BD
典例分析
典例分析
太阳三者依次排成一条直线,此时土星距离地球最近。土星距离太阳约14.3亿千米,
双星与天体追及相遇问题
【例3】设:每颗星的质量均为m.
(1)求第一种形式下,星体的线速度和周期;
(2)假设两种形式星体的运动周期相同,第二种形式下星体间距为 多少?
【解析】
(1)星体运动的向心力是由另外
两星体对它的万有引力提供,则有
F1
Gm2 R2
①
F2
F1
F2
Gm2
2R2
②
R
F1
F2
m
v2 R
③
v 5GmR 2R
第六章 万有引力与航天 知识应用
章末复习 双星、三星、暗物质、 天体的追及与相遇问题
2020年4月21日(星期二)
知
1. 环绕型:
识 回
G
Mm r2
m
v2 r
m 2r
m
4 2
T2
r
mv
顾
2. 表面型:
G Mm mg即GM gR2 R2
黄金代换公式
目录 CONTENT
S
一、双星系统
二、三星系统
(2)B星体所受合力大小FB;
(3)C星体的轨道半径RC; (4)三星体做圆周运动的周期T。
多星(聚星)系统
宇宙中存在一些离其他恒星很远的四颗恒星组成的四星系统,通常可忽 略其他星体对它们的引力作用。稳定的四星系统存在多种形式,其中一种是 四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨 道做匀速圆周运动,如图左;另一种是三颗恒星始终位于正三角形的三个顶 点上,另一颗位于正三角形的中心O点,外围三颗星绕O点做匀速圆周运动, 如图右。
(2)设第二种情形下星体做圆周运动的半径为r
则相邻两星体间距离
则相邻两星体之间的万有引力 为:
F G mm Gm2 ( 3r)2 3r2
卫星变轨和追及相遇问题 双星模型(解析版)-高中物理
卫星变轨和追及相遇问题双星模型(单选基础练+多选提升练+计算综合练)一、基础练(单选题)1.神舟十六号于2023年5月30日上午9时31分在甘肃酒泉卫星发射中心发射,取得圆满成功!神舟十六号乘组有景海鹏、桂海湖、朱杨柱三位航天员,这是中国第十六次载人航天发射,是中国航天工程实现的又一个历史性突破。
此次神舟十六号还会前往空间站执行维修任务,包括加装新的天线、引导机器人等工作。
宇航员们还将会进行科学实验,比如观察天体、检测太空环境等等。
若神舟十六号与空间站核心舱在对接的最后阶段,神舟十六号与空间站处于同一轨道上同向运动,两者的运行轨道均视为圆周。
要使神舟十六号在同一轨道上追上空间站实现对接,神舟十六号喷射燃气的方向可能正确的是()A. B.C.D.【答案】A【详解】要想使神舟十六号在与空间站的同一轨道上对接,则需要加速使神舟十六号速度变大,与此同时要想不脱离原轨道,根据F =m v 2r则必须要增加向心力,即喷气时产生的推力一方面有沿轨道向前的分量,另一方面还要有指向地心的分量,而喷气产生的推力与喷气方向相反,可知,只有第一个选项符合要求。
故选A 。
2.随着科技的发展,载人飞船绕太阳运行终会实现。
如图所示,Ⅰ、Ⅲ轨道分别为地球和火星绕太阳运动的圆轨道,II 轨道假设是载人飞船的椭圆轨道,其中点A 、C 分别是近日点和远日点,B 点为轨道Ⅱ、Ⅲ的交点,若运动中只考虑太阳的万有引力,则()A.载人飞船的运动周期小于1年B.载人飞船在C 的速率小于火星绕日的速率C.载人飞船在Ⅰ轨道上A 点的速率大于在Ⅱ轨道上A 点的速率D.只要绕行时间相同,载人飞船在Ⅱ轨道扫过的面积就等于火星在Ⅲ轨道扫过的面积【答案】B【详解】A .根据开普勒第三定律a 3T 2=k 由于Ⅱ轨道的半长轴大于Ⅰ轨道的半径,则载人飞船的运动周期大于地球的公转周期,即载人飞船的运动周期大于1年,故A 错误;B .假设飞船在C 处变轨到绕太阳做匀速圆周运动的轨道上,则飞船在C 处需要点火加速;根据万有引力提供向心力可得GMm r 2=m v 2r 可得v =GM r 可知火星绕日的速率大于C 处绕太阳做匀速圆周运动的速率,则载人飞船在C 的速率小于火星绕日的速率,故B 正确;C .飞船在Ⅰ轨道上A 点需要点火加速做离心运动才能到达Ⅱ轨道上,故载人飞船在Ⅰ轨道上A 点的速率小于在Ⅱ轨道上A 点的速率,故C 错误;D .根据开普勒第二定律可知,同一轨道上的行星在相同时间内,行星与太阳连线扫过的面积相等,但不同轨道的行星,在相同时间内扫过的面积不一定相等,故D 错误。
专题 天体的追和相遇问题(课件)高中物理(人教版2019必修第二册)
C. 经过时间t T1 T2 ,两行星相距最远 2
D. 经过时间t T1T2 ,两行星相距最远
2(T2 T1 )
感谢您的耐心聆听
I'd like to finish by saying how grateful I am for your attention.
第七章 万有引力与宇宙航行
专题 天体的追和相遇问题
目录
contents
01 天体的追及相遇 02 典例分析
导入新课
问题与思考
冲日,是由地球上观察 天体与太阳的位置相差180 度,即天体与太阳各在地 球的两侧的天文现象。所 谓行星冲日,是指地外行 星运行到与太阳、地球形 成一条直线的状态。
你知道什么是冲日了吗?
r1 1
北斗卫星中轨道卫星 A 的轨道半径 r2 R h2 2.74 107 m 可得 r2 4
r3
根据开普勒第三定律 T 2
k
,从而得出二者的周期之比为Fra bibliotekT1 T2
r1 r2
r1 1 r2 8
从图示位置开始,二者转过的角度相差 n2
,得
2
T1
2
T2
t
n2
n
1,2,3
化简 t
nT2 7
卫星B绕行方向与地球自转方向相同,离地面高度为h。已知地球半径为R,地球自
转角速度为ω0,地球表面的重力加速度为g,O为地球中心。 (1)某时刻A、B两卫星相距最近(O、B、A在同一直线上),
则至少经过多长时间,它们再一次相距最近?
(2)某时刻A、B两卫星相距最近,则经过多长时间,
它们相距最远?
【答案】(1) t
如乙图所示,假设有一长度为r的太空电梯连接地球赤道上的固定基地与同步空间
(完整版)“双星”问题及天体的追及相遇问题
【答案】D
【解析】设未知的行星的周期为T,依题意有: ,则 ,根据开普勒第三定律: ,联立解得: ,D正确,ABC错误.故选:D。
【类题训练4】如图建筑是厄瓜多尔境内的“赤道纪念碑”。设某人造地球卫星在赤道上空飞行,卫星的轨道平面与地球赤道重合,飞行高度低于地球同步卫星。已知卫星轨道半径为r,飞行方向与地球的自转方向相同,设地球的自转角速度为ω0,地球半径为R,地球表面重力加速度为g,某时刻卫星通过这一赤道纪念碑的正上方,该卫星过多长时间再次经过这个位置?( )
A. B. C. D.
【答案】A
【解析】对双黑洞中的任一黑洞: 得
对另一黑洞: 得
又 联立可得:
则 即
双黑洞总质量 。故A项正确。
点睛:双星模型与卫星模型是万有引力部分的典型模型,要能熟练应用。
【类题训练1】引力波现在终于被人们用实验证实,爱因斯坦的预言成为科学真理.早在70年代有科学家发现高速转动的双星,可能由于辐射引力波而使质量缓慢变小,观测到周期在缓慢减小,则该双星间的距离将( )
A. A星的轨道半径为
B. A星和B星的线速度之比为m1:m2
C.若A星所受B星的引力可等效为位于O点处质量为 的星体对它的引力,则
D.若在O点放一个质点,它受到的合力一定为零
【答案】C
【解析】试题分析:双星系统是一个稳定的结构,它们以二者连线上的某一点为圆心做匀速圆周运动,角速度相等,万有引力提供向心力,根据牛顿第二定律列式求解.
A. B. C. D.
【答案】D
【解析】试题分析:在地球表面重力与万有引力大小相等,根据卫星的轨道半径求得卫星的角速度,所以卫星再次经过这个位置需要最短时间为卫星转动比地球转动多一周,从而求得时间
(完整版)天体运动中的追及相遇问题
天体运动中的追及相遇问题信阳高中陈庆威2013.09.17在天体运动的问题中,我们常遇到一些这样的问题。
比如,A、B两物体都绕同一中心天体做圆周运动,某时刻A、B相距最近,问A、B下一次相距最近或最远需要多少时间,或“至少”需要多少时间等问题。
而对于此类问题的解决和我们在直线运动中同一轨道上的追及相遇问题在思维有上一些相似的地方,即必须找出各相关物理量间的关系,但它也有其自身特点。
根据万有引力提供向心力,即当天体速度增加或减少时,对应的圆周轨道就会发生相应的变化,所以天体不可能在同一轨道上实现真正意义上的追及或相遇。
天体运动的追及相遇问题中往往还因伴随着多解问题而变得更加复杂,成为同学们学习中的难点。
而解决此类问题的关键是就要找好角度、角速度和时间等物理量的关系。
一、追及问题【例1】如图1所示,有A、B两颗行星绕同一颗恒星M做圆周运动,旋转方向相同,A行星的周期为T1,B行星的周期为T2,在某一时刻两行星相距最近,则①经过多长时间,两行星再次相距最近?②经过多长时间,两行星第一次相距最远?解析:A、B两颗行星做匀速圆周运动,由万有引力提供向心力,因此T1<T2。
可见当A运动完一周时,B还没有达到一周,但是要它们的相距最近,只有A、B行星和恒星M的连线再次在一条直线上,且A、B在同侧,从角度上看,在相同时间内,A比B多转了2π;如果A 、B 在异侧,则它们相距最远,从角度上看,在相同时间内,A 比B 多转了π。
所以再次相距最近的时间t 1,由;第一次相距最远的时间t 2,由。
如果在问题中把“再次”或“第一次”这样的词去掉,那么就变成了多解性问题。
【例2】如图2,地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动。
地球的轨道半径为R ,运转周期为T 。
地球和太阳中心的连线与地球和行星的连线的夹角叫地球对行星的观察视角(简称视角)。
已知该行星的最大视角为θ,当行星处于最大视角处时,是地球上天文爱好者观察该行星的最佳时期。
人教版物理高考复习:双星与天体追及相遇问题(共45张PPT)
1.双星问题求解思维引导
2020年人教版物理高考复习:双星与 天体追 及相遇 问题 (共45张PPT)高考复习课件高考复习P PT课件 高考专 题复习 训练课 件
7
2020年人教版物理高考复习:双星与 天体追 及相遇 问题 (共45张PPT)高考复习课件高考复习P PT课件 高考专 题复习 训练课 件
变式训练
1. 2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的 引力波。该双星系统以引力波的形式向外辐射能量,使得圆周运动的周期T极其缓慢地减小,双星的质量 m1与m2均不变,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈, 将两颗中子星都看做是质量均匀分布的球体,则下列关于该双星系统的说法正确的是( ) A.两颗中子星的自转角速度相同,在合并前约100 s时ω=24π rad/s B.合并过程中,双星间的万有引力逐渐增大 C.双星的线速度逐渐增大,在合并前约100 s时两颗星速率之和为9.6π×106 m/s D.合并过程中,双星系统的引力势能逐渐增大
率为 12 Hz,则公转角速度ω0=2πf=24π rad/s,而自转角速度由题中条件不能求得,A 错误;
设两颗星的轨道半径分别为
r1、r2,相距为
L,根据万有引力提供向心力可知:Gm1m2=m L2
1r
1ω2公,
GmL12m2=m2r2ω2公,又
r1+r2
=L,T=2π ,整理可得Gm1+m2=4π2L,解得
总结
2.对于天体追及问题的处理思路 (1)根据Gm1m2/r2=mrω2,可判断出谁的角速度大; (2)根据天体相距最近或最远时,满足的角度差关系进行求解.
2024高考物理一轮复习--天体运动专题--卫星的变轨问题、天体追及相遇问题
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
2020年高考物理专题精准突破 双星与天体追及相遇问题(解析版)
2020年高考物理专题精准突破 专题 双星与天体追及相遇问题【专题诠释】 一、双星问题(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2. ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2.③两颗星的半径与它们之间的距离关系为:r 1+r 2=L . (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.二、卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. 【高考领航】【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗 中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一 时刻两颗中子星( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得 Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G ,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解. 【技巧方法】1.双星问题求解思维引导2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【最新考向解码】【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。
万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题)
万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)60分钟考点序号考点 考向 题型分布考点1万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)考向1:天体质量和密度的计算 考向2:不同高度重力加速度的计算 考向3:不同轨道上卫星各物理量的比较考向4:变轨问题 考向5:双星和多星问题考向6:卫星的追及相遇问题 14单选+4多选万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)(14单选+4多选) 1.(2024·河南·模拟预测)如图所示,A 、B 、C 分别表示太阳、水星和地球,假设水星和地球在同一平面内绕太阳做匀速圆周运动,水星公转半径为r ,地球公转半径为R ,此时AB 与BC 垂直.水星的公转周期为1T ,地球的公转周期为2T ,太阳质量为M ,引力常量为G ,所有天体均可视为质点,不考虑其他天体的影响,下列说法正确的是( )故选B 。
2.(2024·山西太原·三模)宇宙中行星A B 、的半径B A 2R R =,各自相应卫星环绕行星做匀速圆周运动,卫星轨道半径与周期的关系如图所示,若不考虑其它星体对A B 、的影响及A B 、之间的作用力,下列说法正确的是( )A .行星AB 、的质量之比为1:4 B .行星A B 、的密度之比为1:2C .行星A B 、的第一宇宙速度之比为1:2D .行星A B 、的同步卫星的向心加速度之比为1:8A .a 、b 、c 三物体,都仅由万有引力提供向心力B .周期关系为ac b T T T => C .线速度的大小关系为a c b v v v << D .向心加速度的大小关系为b c a a a a >>高度为h1的圆形轨道I上,在天目星经过A点时点火实施变轨进入椭圆轨道II,最后在椭圆轨道的远地点B 点再次点火将天目星送入距地面高度为h2的圆形轨道III上,设地球半径为R,地球表面重力加速度为g,则天目星沿椭圆轨道从A点运动到B点的时间为()A.神舟十八号在轨道Ⅰ上运行时的向心加速度大于其在地面上静止时的向心加速度B.神舟十八号在轨道Ⅱ上经过P点时的向心加速度小于经过Q点时的向心加速度C.神舟十八号在轨道Ⅱ上经过P点时的速度小于在轨道Ⅰ上经过P点时的速度D.神舟十八号在轨道Ⅱ上的机械能大于在轨道Ⅲ上的机械能11.(2024·河北·三模)有两颗人造地球卫星A和B的轨道在同一平面内,A、B同向转动,轨道半径分别为r和4r,每隔时间t会发生一次“相冲”现象,即地球、卫星A和B三者位于同一条直线上,且A、B位于地球的同侧,已知万有引力常量为G,则地球质量可表示为()A.飞船A和空间站A.23S S=B.行星Ⅱ与行星Ⅲ的运行周期相等C .行星Ⅱ与行星Ⅲ在P 点时的加速度大小不相等D .2312E B v v v v <<<A .恒星Q 的质量为2mA.A星球的轨道半径为B.B星球的轨道半径为C.双星运行的周期为。
人教版物理高考复习:双星与天体追及相遇问题教学课件
16
人教版物理高考复习:双星与天体追 及相遇 问题ppt
针对训练
3.太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们 的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星 围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外 接于等边三角形的圆形轨道运行.设这三个星体的质量均为M,并设两种系统的运动周期相同,则( )
知地球的自转周期为T,地球同步卫星的轨道半径约为地球半径的6.6倍,则A城市正上方出现下一颗人
造卫星至少间隔的时间约为
()
A.0.18T
B.0.24T
C.0.32T
D.0.48T
人教版物理高考复习:双星与天体追 及相遇 问题ppt
21
人教版物理高考复习:双星与天体追 及相遇 问题ppt
解析
【答案】 A
人教版物理高考复习:双星与天体追 及相遇 问题ppt
20
人教版物理高考复习:双星与天体追 及相遇 问题ppt
针对训练
5.在赤道平面内有三颗在同一轨道上运行的卫星,三颗卫星在此轨道均匀分布,其轨道距地心的距离为
地球半径的3.3倍,三颗卫星自西向东环绕地球转动.某时刻其中一颗人造卫星处于A城市的正上方,已
双星与天体追及相遇问题
一、双星问题
(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.
2
一、双星问题
(2)特点: ①各自所需的向心力由彼此间的万有引力相互提供,即Gm1m2/L2=m1ω2r1,Gm1m2/L2=m2ω2r2. ②两颗星的周期及角速度都相同,即:T1=T2,ω1=ω2. ③两颗星的半径与它们之间的距离关系为:r1+r2=L. (3)两颗星到圆心的距离r1、r2与星体质量成反比,即m1/m2=r2/r1.
万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题)教师版
专题突破卷04 万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)60分钟万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)(14单选+4多选)1.(2024·河南·模拟预测)如图所示,A 、B 、C 分别表示太阳、水星和地球,假设水星和地球在同一平面内绕太阳做匀速圆周运动,水星公转半径为r ,地球公转半径为R ,此时AB 与BC 垂直.水星的公转周期为1T ,地球的公转周期为2T ,太阳质量为M ,引力常量为G ,所有天体均可视为质点,不考虑其他天体的影响,下列说法正确的是( )A.从地球上看,太阳和水星与眼睛连线所成角度的正弦值最大为B.31rTRæö=ç÷èø年C.水星与地球公转线速度之比为、的质量之比为A.行星A B、的第一宇宙速度之比为C.行星A B【答案】C【详解】A.根据牛顿第二定律A .a 、b 、c 三物体,都仅由万有引力提供向心力B .周期关系为a c bT T T =>A.()31222h h R R gp++C.()31222h h R R gp++【答案】B【详解】根据万有引力与重力的关系A.神舟十八号在轨道B.神舟十八号在轨道C.神舟十八号在轨道D.神舟十八号在轨道【答案】AA.卫星在轨道Ⅰ上和轨道B.卫星在轨道Ⅰ上和轨道C.卫星在轨道Ⅰ上和轨道A.232321 312cg kG h k h pæö-ç÷èøæö-ç÷èø对A星体有对B、C星体,两星体各自所受引力的合力大小相等,令为éA.飞船A和空间站B.飞船A要与空间站C.飞船A与空间站A .23S S =B .行星Ⅱ与行星ⅢC .行星Ⅱ与行星ⅢA.恒星Q的质量为2B.恒星P圆周运动的角速度为C.任意时间内两星与A.A星球的轨道半径为B.B星球的轨道半径为C.双星运行的周期为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题2.9 双星与天体追及相遇问题【专题诠释】 一、双星问题(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2. ②两颗星的周期及角速度都相同,即 T 1=T 2,ω1=ω2.③两颗星的半径与它们之间的距离关系为:r 1+r 2=L . (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1.二、卫星中的“追及相遇”问题某星体的两颗卫星之间的距离有最近和最远之分,但它们都处在同一条直线上.由于它们的轨道不是重合的,因此在最近和最远的相遇问题上不能通过位移或弧长相等来处理,而是通过卫星运动的圆心角来衡量,若它们的初始位置与中心天体在同一直线上,内轨道所转过的圆心角与外轨道所转过的圆心角之差为π的整数倍时就是出现最近或最远的时刻. 【高考领航】【2018·高考全国卷Ⅰ】2017年,人类第一次直接探测到来自双中子星合并的引力波.根据科学家们复原的 过程,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈.将两颗 中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一 时刻两颗中子星( )A .质量之积B .质量之和C .速率之和D .各自的自转角速度 【答案】 BC【解析】 两颗中子星运动到某位置的示意图如图所示.每秒转动12圈,角速度已知,中子星运动时,由万有引力提供向心力得 Gm 1m 2l 2=m 1ω2r 1① Gm 1m 2l 2=m 2ω2r 2② l =r 1+r 2③由①②③式得G (m 1+m 2)l 2=ω2l ,所以m 1+m 2=ω2l 3G ,质量之和可以估算.由线速度与角速度的关系v =ωr 得 v 1=ωr 1④ v 2=ωr 2⑤由③④⑤式得v 1+v 2=ω(r 1+r 2)=ωl ,速率之和可以估算. 质量之积和各自自转的角速度无法求解. 【技巧方法】1.双星问题求解思维引导2.对于天体追及问题的处理思路(1)根据GMmr2=mrω2,可判断出谁的角速度大;(2)根据天体相距最近或最远时,满足的角度差关系进行求解. 【最新考向解码】【例1】(2019·山东恒台一中高三上学期诊断考试)2017年8月28日,中科院南极天文中心的巡天望远镜观测到一个由双中子星构成的孤立双星系统产生的引力波。
该双星系统以引力波的形式向外辐射能量,使得圆周运动的周期T 极其缓慢地减小,双星的质量m 1与m 2均不变,在两颗中子星合并前约100 s 时,它们相距约400 km ,绕二者连线上的某点每秒转动12圈,将两颗中子星都看做是质量均匀分布的球体,则下列关于该双星系统的说法正确的是( )A .两颗中子星的自转角速度相同,在合并前约100 s 时ω=24π rad/sB .合并过程中,双星间的万有引力逐渐增大C .双星的线速度逐渐增大,在合并前约100 s 时两颗星速率之和为9.6π×106 m/sD .合并过程中,双星系统的引力势能逐渐增大 【答案】 BC【解析】 由题可知,两颗中子星的公转角速度相同,在合并前约100 s 时,双星的转动频率为12 Hz ,则公转角速度ω0=2πf =24π rad/s ,而自转角速度由题中条件不能求得,A 错误;设两颗星的轨道半径分别为r 1、r 2,相距为L ,根据万有引力提供向心力可知:Gm 1m 2L 2=m 1r 1ω2公,Gm 1m 2L 2=m 2r 2ω2公,又r 1+r 2=L ,T =2πω公,整理可得G (m 1+m 2)L 2=4π2LT2,解得T =4π2L 3G (m 1+m 2),由此可知,周期变小,双星间的距离变小,双星间的万有引力F =Gm 1m 2L 2逐渐增大,B 正确;设两颗星的线速度分别为v 1、v 2,则G m 1m 2L 2=m 1v 21r 1,G m 1m 2L 2=m 2v 22r 2,又r 1+r 2=L ,r 1r 2=m 2m 1,解得v 1=Gm 22(m 1+m 2)L ,v 2=Gm 21(m 1+m 2)L,L 减小,双星的线速度逐渐增大,根据v =rω可知:v 1=r 1ω公,v 2=r 2ω公,解得v 1+v 2=(r 1+r 2)ω公=Lω公,代入数据可知在合并前约100 s 时两颗星的速率之和为9.6π×106 m/s ,C 正确;合并过程中,双星间的引力做正功,所以引力势能逐渐减小,D 错误。
【例2 】(2019·河南洛阳尖子生一联)设金星和地球绕太阳中心的运动是公转方向相同且轨道共面的匀速圆 周运动,金星在地球轨道的内侧(称为地内行星),在某特殊时刻,地球、金星和太阳会出现在一条直线上, 这时候从地球上观测,金星像镶嵌在太阳脸上的小黑痣缓慢走过太阳表面,天文学称这种现象为“金星凌日”, 假设地球公转轨道半径为R ,“金星凌日”每隔t 0年出现一次,则金星的公转轨道半径为( )A.t 01+t 0R B .R(t 01+t 0)3 C .R3(1+t 0t 0)2D .R3(t 01+t 0)2【答案】D【解析】根据开普勒第三定律有R 3金R 3=T 2金T 2地,“金星凌日”每隔t 0年出现一次,故(2πT 金-2πT 地)t 0=2π,已知T 地=1年,联立解得R 金R =3(t 01+t 0)2,因此金星的公转轨道半径R 金=R 3(t 01+t 0)2,故D 正确.【微专题精练】1.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( ) A .n 3k 2T B .n 3kT C.n 2kT D .n kT 【答案】B.【解析】设两恒星中一个恒星的质量为m ,围绕其连线上的某一点做匀速圆周运动的半径为r ,两星总质量为M ,两星之间的距离为R ,由G m (M -m )R 2=mr 4π2T 2,G m (M -m )R 2=(M -m )(R -r )4π2T 2,联立解得:T =2πR 3GM.经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为T ′=2π(nR )3G (kM )=n 3kT .选项B 正确. 2.双星系统由两颗绕着它们中心连线上的某点旋转的恒星组成.假设两颗恒星质量相等,理论计算它们绕连 线中点做圆周运动,理论周期与实际观测周期有出入,且T 理论T 观测=n1(n >1),科学家推测,在以两星球中心连线为直径的球体空间中均匀分布着暗物质,设两星球中心连线长度为L ,两星球质量均为m ,据此推测,暗 物质的质量为( ) A .(n -1)m B .(2n -1)m C.n -14mD.n -28m【答案】C【解析】双星运动过程中万有引力提供向心力:G m 2L 2=m L 2(2πT 理论)2,解得T 理论=2π2L 3Gm;设暗物质的质量为M ′,对星球由万有引力提供向心力G m 2L 2+G M ′m (L 2)2=m L 2(2πT 观测)2,解得T 观测=2π2L 3G (m +4M ′).根据T 理论T 观测=n 1,联立以上可得:M ′=n -14m ,选项C 正确.3.(2019·广州执信中学期中)太空中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常 可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位 于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形 的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设这三个星体的质量均为M ,并设两种系统的运 动周期相同,则( )A .直线三星系统中甲星和丙星的线速度相同B .直线三星系统的运动周期T =4πR R 5GMC .三角形三星系统中星体间的距离L = 3125RD .三角形三星系统的线速度大小为125GMR【答案】 BC【解析】 直线三星系统中甲星和丙星的线速度大小相同,方向相反,选项A 错误;三星系统中,对直线三星系统有G M 2R 2+G M 2(2R )2=M 4π2T 2R ,解得T =4πRR5GM,选项B 正确;对三角形三星系统根据万有引力和牛顿第二定律可得2G M 2L 2cos 30°=M 4π2T 2·L2cos 30°,联立解得L =3125R ,选项C 正确;三角形三星系统的线速度大小为v =2πr T =2πL 2cos 30°T ,代入解得v =36·3125·5GMR,选项D 错误. 4.(2019·聊城模拟)如图所示,甲、乙、丙是位于同一直线上的离其他恒星较远的三颗恒星,甲、丙围绕乙 在半径为R 的圆轨道上运行,若三颗星质量均为M ,万有引力常量为G ,则( )A .甲星所受合外力为5GM 24R 2B .乙星所受合外力为5GM 24R 2C .甲星和丙星的线速度相同D .甲星和丙星的角速度相同 【答案】AD【解析】甲星所受合外力为乙、丙对甲星的万有引力的合力,F 甲=GM 2R 2+GM 2(2R )2=5GM 24R 2,选项A 正确;由对称性可知,甲、丙对乙星的万有引力等大反向,乙星所受合力为零,选项B 错误;由于甲、丙位于同一轨道上,甲、丙的角速度相同,由v =ωR 可知,甲、丙两星的线速度大小相同,但方向相反,故选项C 错误,D 正确.5.在赤道平面内有三颗在同一轨道上运行的卫星,三颗卫星在此轨道均匀分布,其轨道距地心的距离为地球 半径的3.3倍,三颗卫星自西向东环绕地球转动.某时刻其中一颗人造卫星处于A 城市的正上方,已知地球 的自转周期为T ,地球同步卫星的轨道半径约为地球半径的6.6倍,则A 城市正上方出现下一颗人造卫星至 少间隔的时间约为( ) A .0.18T B .0.24T C .0.32T D .0.48T【答案】 A【解析】 地球的自转周期为T ,即地球同步卫星的周期为T ,根据开普勒第三定律得: (6.6r )3T 2=(3.3r )3T 21 解得:T 1=18T 下一颗人造卫星出现在A 城市的正上方,相对A 城市转过的角度为2π3,则有(2πT 1-2πT )t =2π3解得:t ≈0.18T ,故应选A.6.如图所示,甲、乙两卫星在某行星的球心的同一平面内做圆周运动,某时刻恰好处于行星上A 点的正上方, 从该时刻算起,在同一段时间内,甲卫星恰好又有5次经过A 点的正上方,乙卫星恰好又有3次经过A 点 的正上方,不计行星自转的影响,下列关于这两颗卫星的说法正确的是( )A .甲、乙两卫星的周期之比为2∶3B .甲、乙两卫星的角速度之比为3∶5C .甲、乙两卫星的轨道半径之比为 3925D .若甲、乙两卫星质量相同,则甲的机械能大于乙的机械能【答案】C【解析】设所用时间为t ,则甲卫星的周期为T 甲=t 5,T 乙=t 3,则T 甲T 乙=35,故A 错误;由ω=2πT ,可知ω甲ω乙=T 乙T 甲=53,故B 错误;由万有引力提供向心力可知,GMm r 2=m 4π2T 2r ,可知r =3GMT 24π2,则r 甲r 乙=3T 2甲T 2乙=3925,故C 正确;要将卫星发射较高的轨道,发射时需要更多的能量,故卫星高度越大,机械能越大,甲的机械能小于乙的机械能,故D 错误.7.太阳系各行星几乎在同一平面内沿同一方向绕太阳做圆周运动.当地球恰好运行到某地外行星和太阳之间,且三者几乎排成一条直线的现象,天文学称为“行星冲日”.据报道,2014年各行星冲日时间分别是:1月6日木星冲日;4月9日火星冲日;5月11日土星冲日;8月29日海王星冲日;10月8日天王星冲日.已知地球及各地外行星绕太阳运动的轨道半径如下表所示.则下列判断正确的是( )A.各地外行星每年都会出现冲日现象 B .在2015年内一定会出现木星冲日C .天王星相邻两次冲日的时间间隔为土星的一半D .地外行星中,海王星相邻两次冲日的时间间隔最短 【答案】BD【解析】.由开普勒第三定律r 3T2=k 可知T 行=⎝ ⎛⎭⎪⎫r 行r 地3·T 地=r 3行年,根据相遇时转过的角度之差Δθ=2n π及ω=Δθt 可知相邻冲日时间间隔为t ,则⎝⎛⎭⎫2πT 地-2πT 行t =2π,即t =T 行T 地T 行-T 地=T 行T 行-1,又T 火= 1.53年,T 木= 5.23年,T 土=9.53年,T 天=193年,T 海=303年,代入上式得t >1年,故选项A 错误;木星冲日时间间隔t木=5.235.23-1年<2年,所以选项B 正确;由以上公式计算t 土≠2t 天,t 海最小,选项C 错误,选项D 正确. 8.2017年三名美国科学家获本年度诺贝尔物理学奖,用以表彰他们在引力波研究方面的贡献.人类首次发 现了引力波来源于距地球之外13亿光年的两个黑洞(质量分别为26个和39个太阳质量)互相绕转最后合并 的过程.设两个黑洞A 、B 绕其连线上的O 点做匀速圆周运动,如图所示.黑洞A 的轨道半径大于黑洞B 的轨道半径,两个黑洞的总质量为M ,两个黑洞间的距离为L ,其运动周期为T ,则( )A .黑洞A 的质量一定大于黑洞B 的质量 B .黑洞A 的线速度一定大于黑洞B 的线速度C .两个黑洞间的距离L 一定,M 越大,T 越大D .两个黑洞的总质量M 一定,L 越大,T 越大 【答案】BD【解析】设两个黑洞质量分别为m A 、m B ,轨道半径分别为R A 、R B ,角速度为ω,由万有引力定律可知:Gm A m BL 2=m A ω2R A ,Gm A m B L 2=m B ω2R B ,R A +R B =L ,得m A m B =R BR A ,而AO >OB ,黑洞A 的质量小于黑洞B 的质量,选项A 错误;v A =ωR A ,v B =ωR B ,选项B 正确;GM =ω2L 3,又因为T =2πω,故T =2πL 3GM,选项C 错误,D 正确.9.2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角, 这是一个划时代的发现.在如图所示的双星系统中,A 、B 两个恒星靠着相互之间的引力正在做匀速圆周运 动,已知恒星A 的质量为太阳质量的29倍,恒星B 的质量为太阳质量的36倍,两星之间的距离L =2×105 m , 太阳质量M =2×1030 kg ,万有引力常量G =6.67×10-11N·m 2/kg 2.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级 是( )A .102 HzB .104 HzC .106 HzD .108 Hz【答案】A【解析】A 、B 的周期相同,角速度相等,靠相互的引力提供向心力,由牛顿第二定律得,对A 有G m A m BL 2=m A 4π2r A T 2,对B 有G m A m B L 2=m B 4π2r BT 2,又有r A +r B =L ,解得T =4π2L 3G (m A +m B ),则f =1T =G (m A +m B )4π2L 3≈1.66×102 Hz ,故选项A 正确.10.(2019·衡水调研卷)军用卫星指的是用于各种军事目的的人造地球卫星,在现代战争中大显身手,作用越 来越重要,一颗军事卫星在距离地面高度为地球半径的圆形轨道上运行,卫星轨道平面与赤道平面重合, 侦察信息通过无线电传输方式发送到位于赤道上的地面接收站,已知人造地球卫星的最小周期约为85 min , 则下列判断正确的是( )A .该军事卫星的周期约480 minB .该军事卫星的运行速度约为7 km/sC .该军事卫星连续两次通过接收站正上方的时间间隔约为576 minD .地面接收站能连续接收的信息的时间约为96 min【答案】D【解析】对于该军事卫星和近地卫星,由开普勒第三定律可知(2R 0R 0)3=(T T min )2,解得T =22T min ≈240 min ,A错误;军事卫星运行的速度v =GM2R 0=12×GM R 0=7.9 km/s2≈5.6 km/s ,B 错误;该军事卫星连续2次通过接收站正上方,由几何关系可知2πT t 1-2πT 0t 1=2π,解得t 1=288 min ,C 错误;卫星与接收站的关系如图所示.设卫星在A 1、A 2位置接收站恰好能接收到信息,由几何关系可知∠A 1OB 1=∠A 2OB 2=π3,2π3+t 2T 0·2π=t 2T ·2π,解得t 2=TT 03(T 0-T )=96 min ,D 正确.。