完整的土工实验报告书
土工试验检测报告(完整)

第1页,共1页 JB021402
试验室名称:重庆特盾工程检测技术有限公司
报告编号:BG-2013-TG-001
施工/委托单位 重庆市交通工程监理咨询有限责任公司支坪总监办 委托编号
YP-2013-TGJ-003
工程名称
重庆绕城高速江津支坪连接线工程
样品编号
YP-2013-TGJ-003
7
土样定名及代号
/
检测结论:经对来样检测,所检土样满足《公路路基施工技术规范》JTGF10-2006中相关要求
备注:/
1、本报告无试验、审核、签发人签字无效,无本单位“检测专用章”无效;
单位 2、对报告有异议,应于本报告发出之日起十五天内向本单位提出,逾期不予受理; 声明 3、一般情况,委托检测仅对来样的检测结果负责;
取样位置
序号
检测项目
技术指标
检测结果
结果判定
1
天然状态 物理指标
含水率(%) 密度(g/cm3)
/ /
/ /
/ /
液限WL(%)
/
/
/
2
界限含水率
塑限WP(%)
/
/
/
塑性指数
/
/
/
稠度
/
/
/
3
天然稠度
状态描述
/
/
/
4
标准击实
最大干密度(g/cm3)
/
2.24
/
最佳含水率(%)
/
8.9
/
承载比(%)
≥3
工程部位/用途
路基填筑
样品名称
粘土
试验依据
JTGE40-2007
判定依据
土工技术实验报告

土工技术实验报告一、实验目的本实验旨在通过土工实验,使学生能够了解土的物理性质和力学性质,掌握土工试验的基本方法和操作技能,为后续土工设计和施工提供理论依据和技术支持。
二、实验原理土工实验主要包括土的物理性质试验和力学性质试验。
物理性质试验如土的颗粒分析、密度测定等,可以了解土的颗粒组成和密实程度。
力学性质试验如土的压缩试验、剪切试验等,可以测定土的压缩模量、内摩擦角和黏聚力等参数。
三、实验设备与材料1. 颗粒分析设备:筛子、天平、量筒等。
2. 密度测定设备:比重瓶、天平、量筒等。
3. 压缩试验设备:压缩仪、天平、压力传感器等。
4. 剪切试验设备:直剪仪、天平、压力传感器等。
5. 土样:根据实验要求准备不同种类的土样。
四、实验步骤1. 土的颗粒分析:将土样通过不同孔径的筛子进行筛分,称量各粒径段的土样质量,计算各粒径段的百分比。
2. 土的密度测定:使用比重瓶法测定土样的密度,记录数据并计算土的干密度。
3. 土的压缩试验:将土样放入压缩仪中,施加不同等级的荷载,记录土样的压缩量,绘制压缩曲线,求得压缩模量。
4. 土的剪切试验:将土样放入直剪仪中,施加不同的垂直压力,进行剪切试验,记录剪切应力和剪切位移,绘制剪切曲线,求得土的内摩擦角和黏聚力。
五、实验结果与分析1. 颗粒分析结果:根据筛分结果,得出土样的颗粒组成情况,分析土的分类。
2. 密度测定结果:根据比重瓶法测定的数据,得出土样的干密度,分析土的密实程度。
3. 压缩试验结果:根据压缩曲线,分析土的压缩性,求得压缩模量。
4. 剪切试验结果:根据剪切曲线,分析土的剪切特性,求得内摩擦角和黏聚力。
六、结论通过本次土工实验,我们得到了土样的物理性质和力学性质参数,为土工设计和施工提供了重要的参考数据。
实验中,学生掌握了土工试验的基本操作技能,加深了对土工理论的理解。
七、建议1. 在实验过程中,应注意实验设备的使用和维护,确保实验数据的准确性。
2. 对于土样的制备,应严格按照实验要求进行,保证土样的代表性。
土工实验报告

土工实验报告土工实验报告一、引言土工工程是土壤力学和岩土工程学的一个重要分支,研究土壤的物理力学性质以及土壤与结构物之间的相互作用。
本实验旨在通过一系列土工实验,探索土壤的力学性质和工程应用。
二、实验目的本实验的主要目的是通过以下几个方面的实验,对土壤的力学性质进行研究:1. 确定土壤的颗粒组成和颗粒分布特征;2. 测定土壤的密度和含水率;3. 研究土壤的压缩特性和固结性质。
三、实验方法1. 颗粒组成和颗粒分布特征的测定通过取样和筛分的方法,将土壤样品分为不同粒径的颗粒,并利用显微镜观察颗粒形态和组成。
2. 密度和含水率的测定采用快速湿度计测定土壤样品的含水率,然后利用密度计测定土壤的干密度和湿密度,进而计算得到土壤的相对密度和含水量。
3. 压缩特性和固结性质的研究通过压缩试验,测定土壤的压缩性和固结性。
首先对土壤样品进行标准贯入试验,得到贯入阻力曲线;然后进行固结试验,测定不同固结应力下土壤的压缩指数和固结指数。
四、实验结果与分析1. 颗粒组成和颗粒分布特征的测定结果显示,土壤样品主要由石英、长石和云母等颗粒组成,颗粒分布较为均匀。
2. 密度和含水率的测定结果表明,土壤的干密度为X g/cm³,湿密度为Y g/cm³,相对密度为Z%。
含水率为W%。
3. 压缩特性和固结性质的研究结果显示,土壤样品在不同固结应力下具有不同的压缩指数和固结指数。
通过绘制压缩曲线和固结曲线,可以得到土壤的压缩特性和固结性。
五、实验结论通过本次土工实验,我们得出以下结论:1. 土壤样品的颗粒组成主要由石英、长石和云母等颗粒组成,颗粒分布较为均匀。
2. 土壤样品的密度和含水率分别为X g/cm³和Y g/cm³,相对密度为Z%,含水率为W%。
3. 土壤样品在不同固结应力下具有不同的压缩指数和固结指数,通过压缩曲线和固结曲线可以得到土壤的压缩特性和固结性。
六、实验总结本实验通过一系列土工实验,深入研究了土壤的力学性质和工程应用。
土工实验实习报告书

实习报告书实习单位:XXX土工实验室实习时间:2023年XX月XX日至2023年XX月XX日实习人员:XXX一、实习背景及目的随着我国基础设施建设的快速发展,土工工程在建筑工程中的重要性日益凸显。
为了提高我对土工工程的理论知识与实践操作能力的结合,学校安排我在XXX土工实验室进行为期两周的实习。
本次实习的主要目的是了解土工实验室的基本工作流程,掌握土工试验的基本方法和技术要求,提高自己的实践操作能力。
二、实习内容与过程在实习期间,我参与了土工实验室的日常工作,主要包括土样采集、土样处理、土工试验和数据处理等方面的工作。
1. 土样采集:在实验室工作人员的带领下,我学会了如何根据工程需求进行土样的采集。
采集过程中要注意土样的代表性、完整性和避免污染。
2. 土样处理:采集回来的土样需要进行处理,包括筛分、去除杂质、调整含水率等。
我学会了使用筛网、烘箱等设备进行土样处理。
3. 土工试验:在实验室,我参与了击实试验、压缩试验、剪切试验等常见土工试验。
在试验过程中,我了解了试验设备的操作方法、试验步骤和数据记录方法。
4. 数据处理:试验完成后,需要对数据进行处理和分析。
我学会了使用Excel、Origin等软件进行数据处理,得出试验结果。
三、实习收获与反思通过本次实习,我对土工实验室的工作流程有了更深入的了解,掌握了土工试验的基本方法和技术要求,提高了自己的实践操作能力。
同时,我也认识到理论知识与实践操作相结合的重要性,为今后的学习和工作打下了良好的基础。
在实习过程中,我也发现自己在理论知识掌握方面还存在不足,需要在今后的学习中加强巩固。
同时,我还要提高自己的沟通能力和团队协作能力,为更好地适应工作环境做好准备。
四、实习总结通过本次土工实验实习,我对土工工程有了更深刻的认识,收获颇丰。
在今后的学习和工作中,我将继续努力提高自己的专业素养,将所学知识与实践相结合,为我国土工事业贡献自己的力量。
(完)。
土工试验报告

土工试验报告一、引言土工试验是土力学的重要组成部分,通过对土壤进行各种试验,可以获取土壤的力学性质和工程特性参数,为土木工程设计和施工提供可靠的依据。
本报告将介绍某土工试验的测试方法、结果分析和结论。
二、试验目的本次试验的目的是研究某种土壤在不同荷载作用下的变形和强度特性。
通过对土壤的剪切强度、压缩性和液塑性指标等进行测试,得出土壤的力学性质参数,为工程设计和施工提供参考。
三、试验方法1. 剪切强度试验采用标准的剪切强度试验方法,将土壤样品置于剪切盒中,施加垂直和水平荷载,通过测量剪切力和变形量,得出土壤的剪切强度参数。
2. 压缩试验采用标准的压缩试验方法,将土壤样品置于压缩仪中,施加垂直荷载,通过测量应变和应力,得出土壤的压缩性参数和压缩模量。
3. 液塑性试验采用标准的液塑性试验方法,将土壤样品与水混合,通过测量土壤的液塑性指标,如液限、塑限和塑性指数,来评价土壤的可塑性和液化倾向。
四、试验结果与分析1. 剪切强度试验结果通过剪切强度试验,得出土壤的剪切强度参数,如剪切强度、摩擦角等。
根据试验结果分析,土壤的剪切强度较高,表现出较好的抗剪性能。
2. 压缩试验结果通过压缩试验,得出土壤的压缩性参数和压缩模量。
根据试验结果分析,土壤具有较大的压缩性,容易发生较大的压缩变形,但压缩模量较高,具有一定的承载能力。
3. 液塑性试验结果通过液塑性试验,得出土壤的液塑性指标,如液限、塑限和塑性指数。
根据试验结果分析,土壤的液塑性较高,具有较大的可塑性,容易发生液化现象。
五、结论根据本次土工试验的结果分析,得出以下结论:1. 土壤具有较好的剪切强度,适合用于承受较大的剪切力作用。
2. 土壤具有较大的压缩性,需要考虑其压缩变形对工程的影响。
3. 土壤具有较大的液塑性,需要采取相应的措施来防止液化现象的发生。
本次土工试验对于研究土壤的力学性质和工程特性参数具有重要意义。
通过对土壤的剪切强度、压缩性和液塑性指标等进行测试,可以为土木工程设计和施工提供可靠的依据。
土工试验报告单范文

土工试验报告单范文实验目的:通过土工试验,对土壤的物理力学性质进行分析和确定。
实验原理:1.湿度试验:土壤湿度是土壤中质量含水量的测量。
水分对土壤的力学性质有着重要的影响,确定土壤湿度有助于了解土壤的含水量。
2.粒径分析:粒径分析是对土壤颗粒进行分类和测量,以了解土壤的颗粒组成。
粒径分析的结果可以用于确定土壤的颗粒大小分布和孔隙结构。
3.压实度试验:压实度试验是通过对土壤进行特定荷载下的卸荷过程观察,以获取土壤压实度等参数。
压实度试验可以为土壤的工程应用提供参考。
实验仪器和试剂:1.湿度试验:天平、烘箱、湿度计2.粒径分析:筛分仪、分析天平、浸泡罐3.压实度试验:压实仪、压实模具、试样刀、天平实验步骤:1.湿度试验1)取一定量的土壤样品,记录其质量,并放入烘箱中烘干。
2)每隔一段时间,取出一个样品,记录其质量,并使用湿度计测量其湿度。
3)重复以上步骤直至土壤样品的质量不再变化为止,得到土壤的干燥质量和湿度。
2.粒径分析1)取一定量的土壤样品,将其放入筛分仪,进行干筛。
2)依次使用不同孔径的筛网,对土壤进行筛分,记录通过每个筛网的土壤质量。
3)将未通过最细筛网的土壤放入浸泡罐中,在一定时间内浸泡。
4)取出浸泡的土壤样品,放入筛分仪,进行湿筛。
5)依次使用不同孔径的筛网,对湿筛的土壤进行筛分,记录通过每个筛网的土壤质量。
3.压实度试验1)取一定量的湿土样品,用试样刀切割成适当的形状。
2)将土样放入压实模具中,并根据要求施加一定的压力。
3)取出压实后的土样,记录其质量和体积。
4)重复以上步骤,分别使用不同的压力进行压实,记录质量和体积。
实验结果:1.湿度试验结果:根据不同时间点土壤样品的质量变化和湿度测量结果,得到土壤的干燥质量和湿度。
2.粒径分析结果:根据筛网通过的土壤质量和颗粒大小关系,绘制颗粒分布曲线,并计算平均粒径和颗粒分散度等参数。
3.压实度试验结果:根据不同压力下土壤样品的质量和体积变化,计算压实度等参数。
土工试验报告

土工试验报告一、引言土工试验是研究土壤工程性质和土壤力学行为的重要手段之一。
本报告旨在对进行的土工实验进行系统性总结和分析,为土壤力学研究和土木工程设计提供科学依据。
以下将依次介绍实验目的、实验方法、实验结果及其分析。
二、实验目的本次土工试验的目的是研究土壤的物理性质、力学性质以及水力性质,并进一步了解土壤颗粒间的相互作用与变形行为。
通过实验,我们可以对土壤的工程特性有更深入地认识,为工程设计提供较为准确的参数。
三、实验方法1. 土壤样品的采集与制备我们选择代表性的土壤样品进行试验,采用现场取样和室内制备的方法,确保样品与实际情况相符。
土壤样品经过筛网筛选,去除杂质,并进行湿燥质量的测定。
2. 基本物理性质试验测定土壤样品的含水量、容重、比表面积等基本物理性质。
通过比较不同土壤样品的差异,可以对土壤的颗粒特性和孔隙结构进行分析。
3. 一维压缩试验在一维压缩试验中,通过施加一定的应力,测量土壤的应变-应力关系。
这可以帮助我们了解土壤的压缩性和固结特性,并为土木工程中的土壤沉降计算提供数据支持。
4. 剪切强度试验在剪切强度试验中,通过施加剪切应力,测量土壤的剪切强度参数。
这对于土壤在工程施工中的承载能力和稳定性评估至关重要。
5. 渗透试验渗透试验可用于评估土壤的水力特性,包括渗透系数和渗透压等参数。
这对于水利工程、地下排水等领域具有重要意义。
四、实验结果及其分析1. 基本物理性质试验结果在对土壤样品进行基本物理性质试验后,我们得到了各样品的含水量、容重和比表面积等数据。
通过这些数据的比较和分析,可以发现不同土壤类型的差异和特点。
例如,含水量高的土壤通常具有较低的容重,而比表面积大的土壤则具有较好的水保持性能。
2. 一维压缩试验结果通过对土壤样品进行一维压缩试验,我们可以得到土壤的压缩特性曲线。
曲线上的不同阶段反映了土壤在不同应力条件下的变形行为。
通过对曲线的分析,我们可以判断土壤的可压缩性、可固结性以及孔隙水排出等情况。
土工试验实习报告书

一、实习目的通过本次土工试验实习,使学生了解土工试验的基本原理、方法和步骤,掌握土工试验仪器设备的使用,提高学生的实际操作能力和分析问题的能力,为今后从事土工工程及相关工作打下基础。
二、实习时间2021年10月15日至2021年10月21日三、实习地点XX大学土工实验室四、实习内容1. 土的基本性质试验(1)颗粒分析试验本次试验采用筛析法,测定土样的颗粒组成。
试验步骤如下:1)称取土样50g,置于试验筛中,进行筛析试验。
2)根据筛析结果,绘制颗粒分布曲线。
3)计算土样的粒径、级配等指标。
(2)密度试验本次试验采用环刀法,测定土样的干密度、孔隙比、孔隙率等指标。
试验步骤如下:1)称取土样,用环刀切取代表性试样。
2)将试样放入烘箱中,烘干至恒重。
3)称取烘干后的试样质量,计算干密度。
4)根据干密度和体积,计算孔隙比、孔隙率。
2. 土的抗剪强度试验(1)直剪试验本次试验采用直剪试验仪,测定土样的抗剪强度。
试验步骤如下:1)称取土样,制备直剪试样。
2)将试样装入直剪试验仪,施加垂直压力。
3)进行剪切试验,记录剪切过程中的位移、应力等数据。
4)根据剪切试验结果,绘制抗剪强度曲线,计算抗剪强度指标。
(2)三轴压缩试验本次试验采用三轴压缩试验仪,测定土样的抗剪强度。
试验步骤如下:1)称取土样,制备三轴压缩试样。
2)将试样装入三轴压缩试验仪,施加垂直压力。
3)进行压缩试验,记录压缩过程中的位移、应力等数据。
4)根据压缩试验结果,绘制抗剪强度曲线,计算抗剪强度指标。
3. 土的渗透试验本次试验采用渗透仪,测定土样的渗透系数。
试验步骤如下:1)称取土样,制备渗透试样。
2)将试样装入渗透仪,施加水头差。
3)记录渗透过程中的流量、时间等数据。
4)根据渗透试验结果,计算渗透系数。
五、实习心得1. 通过本次实习,我深入了解了土工试验的基本原理和方法,掌握了土工试验仪器设备的使用。
2. 实习过程中,我学会了如何制备试样、施加压力、记录数据等操作,提高了自己的实际操作能力。
土工实验报告

土工实验报告标题:土工实验报告一、实验目的本次实验的目的是研究土体的水分特性曲线,了解不同含水量对土体性质的影响。
二、实验原理土体的水分特性曲线是描述土壤含水量与土壤物理性质之间关系的曲线。
通常使用三个参数来描述土壤的水分特性曲线,即质量含水量、体积含水量和毛细吸力。
实验中我们将通过测量土壤不同含水量下的质量和体积来构建水分特性曲线。
三、实验步骤1.取一定质量的干土样进行称重,记录土样质量。
2.将取得的土样与一定质量的水混合,充分搅拌均匀。
3.为了将土样中的空气排出,将土样在试验装置中重复多次压实,直到土样不再变形为止。
4.根据土样质量和装置容量记录土样的体积含水量。
5.重复以上步骤,取不同含水量的土样进行实验。
四、实验结果与分析通过实验测量,我们得到了一系列不同含水量下的土样质量和体积数据。
根据这些数据,我们可以进一步计算出土壤的质量含水量、体积含水量和毛细吸力。
根据实验结果,我们可以得出以下结论:1.土壤的质量含水量和体积含水量随着水分含量的增加而增加,但增加的速度逐渐减慢;2.当土壤的质量含水量和体积含水量达到某一临界值时,土壤开始饱和,不能再吸收更多的水分;3.土壤的毛细吸力随着水分含量的增加而逐渐减小,当土壤饱和时毛细吸力为零。
五、实验总结通过本次实验,我们了解了土壤的水分特性曲线以及不同含水量对土壤性质的影响。
水分特性曲线的研究对土壤工程设计和管理具有重要意义。
同时,实验结果也为我们今后的土壤工程实践提供了参考和依据。
在实验中我们也发现了一些不足之处,比如实验装置的精确度有待提高。
在今后的实验中我们将努力改进这些问题,并进一步深入研究土壤的水分特性。
完整的土工实验报告书

土工测试实验报告书1.分级连续加载条件下的粘性土蠕变试验2.三轴压缩实验测土的抗剪强度参数3.Duncan-Chang模型参数的确定4.通过标准固结试验测固结系数5.剑桥模型的推导1分级连续加载条件下的粘性土蠕变试验实验目的:通过测定试样在分级连续加载条件下固结引起的变形随时间的变化,分析试样得蠕变特性及相应的模型。
实验器材:(试样采用非饱和的细粒土)固结容器:由刚性底座、护环、环刀、上环、透水板、加压上盖和密封圈组成。
(1)环刀:直径61.8mm,高度20mm,一端有刀刃,应具有一定刚度,内壁应保持较高的光洁度,宜涂一薄层硅脂和聚四氟乙烯。
(2)透水板:由氧化铝或不受腐蚀的金属材料制成。
渗透系数应大于试样的渗透系数。
试样上部透水板直径宜小于环刀内径0.2~0.5mm,厚度5mm。
(3)变形量测设备:量表,单位为0.1mm。
(4)加荷设备:砝码、杠杆加压设备。
实验步骤:1.制备土样将土块加水饱和,尽量搅拌至各处含水率均匀,备用。
用电子秤秤环刀的重量。
2.取土样用环刀切取已准备好的土样,用工具沿环刀高度切平土面,去掉多余的土、用水浸湿,将滤纸盖在土样的两边,再次称量重量。
3.安装土样将环刀和土样一起放入固结盒,在土样上下各放置一块透水石,盖上加压盖,安装到加载装置上。
4.调平将加压杠杆调平,装好量表,调至零点。
5.分级加载分为4个荷载等级加载:60KPa,120KPa,180KPa,240KPa,分别为并在每级荷载下记录0s,15s,2min15s,4min,6min15s,9min,12min15s,16min220min15s时的量表读数。
6.实验结束清理仪器,整理数据。
数据整理及实验分析:室内分级加载固结蠕变实验结果如表1及图1所示:表1 各级荷载下土的应变(mm)图1 各种荷载作用下的蠕变曲线蠕变是在恒定应力作用下变形随时间增长的现象。
图1是土样在各种荷载作用下的蠕变曲线,在各级荷载作用下,土体的蠕变曲线非常相似。
土工试验实习报告

实习报告实习单位:XX土工试验室实习时间:2023年7月1日至2023年7月31日实习内容:土工试验一、实习目的通过本次土工试验实习,了解和掌握土工试验的基本原理、方法和技术,提高自己的实践操作能力,为今后从事土木工程设计和施工打下坚实基础。
二、实习原理土工试验是对土体进行物理、力学性能测试的过程,通过试验结果分析土体的性质和规律。
主要包括土的密度、含水率、抗剪强度、压缩性、渗透性等指标的测定。
三、实习内容1. 土的密度试验:采用蜡封法、环刀法、灌砂法等方法测定土的密度,了解土的密实程度。
2. 含水率试验:采用烘干法、酒精法等方法测定土的含水率,了解土的湿度状况。
3. 抗剪强度试验:采用直接剪切法、三轴剪切法等方法测定土的抗剪强度,了解土的抗变形能力。
4. 压缩性试验:采用压缩试验仪测定土的压缩性,了解土的压缩性能。
5. 渗透性试验:采用变水头法、恒水头法等方法测定土的渗透性,了解土的防渗性能。
6. 土粒径分布试验:采用筛分法、密度计法等方法测定土的粒径分布,了解土的级配状况。
四、实习过程1. 实习前期,导师对我们进行了安全教育,讲解了试验室的基本规章制度,使我们对试验室的安全有了深入了解。
2. 实习期间,我们在导师的指导下,按照试验规程进行操作,严格控制试验条件,确保试验结果的准确性。
3. 实习后期,我们学习了试验数据处理和报告撰写,提高了自己的数据分析和表达能力。
五、实习收获1. 掌握了土工试验的基本原理、方法和技术,提高了自己的实践操作能力。
2. 了解了土体的性质和规律,为今后从事土木工程设计和施工打下了坚实基础。
3. 学会了与同事沟通交流,培养了团队合作精神。
4. 提高了自己的安全意识,了解了试验室的安全防护措施。
六、实习感想通过本次土工试验实习,我对土工试验有了更加深刻的认识,明白了试验是土木工程的重要基础工作。
在实习过程中,我学到了很多实用技能,为今后的工作打下了良好基础。
同时,我也认识到自己在实践操作中还存在不足,需要继续努力提高。
土工实验报告

土工实验报告引言:土工工程是土木工程的重要分支,通过对土壤和岩石的力学性质和行为进行研究,为土壤的工程应用提供科学依据。
本文通过进行一系列的土工实验,以深入了解土壤的性质以及其在工程中的应用。
一、实验目的1. 初步了解土壤的物理性质,如颗粒组成、密实度等;2. 研究土壤的水分特性,包括含水量与液限、塑限、固限等关系;3. 深入了解土壤的力学性质,如压缩性、剪切性、抗剪强度等;4. 分析土壤的渗透性质,确定渗透系数和持水能力。
二、实验方法本实验采用标准实验室方法进行,具体实验步骤如下:1. 取土样品:从现场获取土样,并进行样品编号和记录;2. 密实度测定:采用密度瓶法或野外堆密法等方法,测定土样的容重和干重;3. 水分特性曲线绘制:通过采用干燥法、悬置法或压滤法等方法,测定土样的含水量与液限、塑限、固限之间的关系;4. 压缩性实验:采用压缩仪等设备,对土样进行压缩试验,测定其压缩指数和压缩模量;5. 剪切性和抗剪强度测定:采用剪切试验,测定土样的剪切强度和角内摩擦角;6. 渗透性实验:采用渗透法或渗透仪等设备,测定土样的渗透系数和持水能力。
三、实验结果与分析1. 密实度测定:根据密度瓶法测得的结果,我们可以计算土样的干重和容重,从而得到土样的密实度;2. 水分特性曲线绘制:通过绘制土样的含水量与液限、塑限、固限之间的关系曲线,我们可以清晰地了解土壤的水分特性;3. 压缩性实验:通过压缩试验,我们可以得到土样的压缩指数和压缩模量,进而判断土壤的压缩性及变形特性;4. 剪切性和抗剪强度测定:通过剪切试验,我们可以测定土样的剪切强度和角内摩擦角,从而评估土壤的稳定性;5. 渗透性实验:通过渗透试验,我们可以确定土样的渗透系数和持水能力,从而预测土壤的排水性以及在建筑工程中的应用。
四、实验结论通过本次土工实验,我们深入了解了土壤的物理性质、水分特性、力学性质和渗透性质等方面。
通过实验结果的分析,我们可以得出以下结论:1. 土壤的物理性质与土壤中颗粒的组成和排列方式密切相关,不同颗粒组成和排列方式的土壤具有不同的密实度和孔隙特征;2. 土壤的水分特性与土壤的孔隙结构和水分含量有关,土壤的含水量与液限、塑限、固限之间存在一定的关系;3. 土壤的压缩性与土壤的孔隙结构和力学性质密切相关,土壤在受到外力作用时会发生压缩和变形现象;4. 土壤的剪切性和抗剪强度与土壤的内摩擦特性和剪切裂隙有关,土壤的稳定性和强度会影响工程设计和施工安全;5. 土壤的渗透性与土壤的孔隙结构和渗透系数有关,土壤的渗透性能直接影响水分的排泄和持水能力,并决定了土壤在排水工程中的应用。
铁建土工实验报告(3篇)

第1篇一、实验目的本次实验旨在通过土工试验,了解土的基本工程性质,掌握土的物理性质、力学性质及其工程应用。
通过实验,提高学生对土工基本理论的实践应用能力,为后续土力学课程的学习和工程实践打下基础。
二、实验原理土工试验主要包括物理性质试验、力学性质试验和渗透性试验。
物理性质试验主要包括含水率、密度、颗粒分析等;力学性质试验主要包括抗剪强度、压缩性等;渗透性试验主要包括渗透系数、渗透速度等。
三、实验仪器与材料1. 仪器:- 土样筛- 量筒- 天平- 抗剪仪- 压缩仪- 渗透仪- 滤纸- 滤框- 滤头- 水泵- 计时器2. 材料:- 土样- 水四、实验步骤1. 物理性质试验(1)含水率试验:称取一定量的土样,放入烘箱中烘干至恒重,计算含水率。
(2)密度试验:称取一定量的土样,放入量筒中,加水至溢出,读出体积,计算密度。
(3)颗粒分析试验:将土样过筛,称取各粒级的土样,计算颗粒含量。
2. 力学性质试验(1)抗剪强度试验:将土样制备成三轴试样,进行抗剪强度试验,得到抗剪强度指标。
(2)压缩性试验:将土样制备成环刀试样,进行压缩试验,得到压缩性指标。
3. 渗透性试验(1)渗透系数试验:将土样制备成滤纸试样,放入渗透仪中,加水进行渗透试验,计算渗透系数。
(2)渗透速度试验:将土样制备成滤纸试样,放入渗透仪中,加水进行渗透试验,记录渗透时间,计算渗透速度。
五、实验结果与分析1. 物理性质试验结果- 含水率:20.5%- 密度:1.6g/cm³- 颗粒分析:小于0.075mm的颗粒含量为80%2. 力学性质试验结果- 抗剪强度:C=30kPa,φ=16.5°- 压缩性:e=0.5,压缩系数a=0.1MPa⁻¹3. 渗透性试验结果- 渗透系数:K=0.5cm/s- 渗透速度:v=0.3cm/s根据实验结果,可以得出以下结论:1. 该土样为粉质黏土,具有良好的透水性,但抗剪强度较低。
2. 该土样的压缩性较好,适用于基础处理。
土工实验报告

二密度试验2.1基本原理:土(体)的密度是指土的单位体积的质量,单位是g/cm3或kg/m3,土的密度可分为天然密度(湿密度)和干密度两种。
2.2试验方法及适用范围⑴环刀法:一般适用于原状样中的细粒土,未受扰动的砂土,以及形状规则的土体。
⑵蜡封法:适用于具有不规则形状的易碎裂的难以切割的土体。
⑶灌砂法,灌水法:用于对粗粒土密度的测试,主要用于施工现场的测试。
2.3 仪器设备⑴环刀法:环刀,天平,切土刀,钢丝锯,凡士林等⑵蜡封法:架盘天平(最大称量500克,感量0.01克),蜡,烧杯,细线,针,切土刀等⑶灌水法:台称(最大称量20千克,感量1克,最大称量50千克,感量5克),水平尺,铁铲,塑料薄膜,盛水桶,装土器具等2.4试验步骤 (环刀法)⑴称量所使用环刀的质量和体积。
⑵取待测试的土样,整平其两端,在环刀内壁均匀地涂上一薄层凡士林,然后将环刀刀口向下放在土样上。
⑶将土样削成略大于环刀直径的土柱,然后将环刀向下压,边压边削,至土样露出环刀为止,将两端余土削平修平,并取剩余代表土样测定含水率。
⑷擦干环刀外壁,称量环刀和土的总质量。
⑸计算ρ0 = m /v ρd = ρ0/(1+0.01w)⑹本试验需进行两次平行测定,其平行差值应不大于0.03g/cm3,否则应重新测定,取两次的平均值作为该土样的密度值。
实验数据的计算过程环刀号:315 环刀质量:42.92g 环刀+土重:160.98g环刀体积 60cm3 密度:(160.98g-42.92g)/60cm=1.97g/cm3 环刀号:280 环刀质量:42.91g 环刀+土重:164.19g环刀体积60cm3密度:(164.19g-42.91g)/60cm=2.02g/cm3 平均密度:(1.97+2.02)/2=1.995g/cm3指标应用:(1)密度是土的基本物理指标之一,可用来计算土的干密度,孔隙比指标等。
(2) 用来计算土的自重应力。
(3) 用来计算地基稳定性和地基承载力。
土工实验报告范文

土工实验报告范文实验名称:土工实验实验目的:1.了解土壤的物理和力学特性;2.掌握土工实验的基本操作方法;3.分析土壤的工程性质。
实验原理:土工实验是通过对土壤进行一系列试验来了解土壤的物理和力学特性。
常用的土工实验包括含水量试验、比重试验、颗粒组成试验、压缩试验、剪切试验等。
通过这些试验可以获得土壤的各项物理和力学指标,对土工工程设计和土力学研究有重要意义。
实验材料和设备:1.土壤样品2.秤3.烘箱4.比重瓶5.天平6.压缩仪7.剪切仪实验步骤:1.求取土壤样品2.确定土壤的含水量试验步骤:a.取一定质量的土壤样品b.将土壤样品放入烘箱中烘干c.称取烘干后的土壤样品质量,并称取湿土壤样品质量d.根据质量差值计算土壤的含水量3.比重试验步骤:a.取一定体积的土壤样品b.将土壤样品放入比重瓶c.称取比重瓶的质量,并记录d.加入适量水,使土壤悬浮在水中e.将比重瓶放入天平上,称取总质量f.根据总质量和瓶质量计算土壤的比重4.压缩试验步骤:a.取一定体积的土壤样品b.将土壤样品放入压缩仪c.施加一定的压力,测量土壤的变形d.根据变形和压力计算土壤的压缩性指标5.剪切试验步骤:a.取一定体积的土壤样品b.将土壤样品放入剪切仪c.施加剪切力,测量土壤的抗剪强度d.根据剪切力和土壤样品的面积计算土壤的抗剪强度指标实验结果分析:通过以上实验,我们获取了土壤的含水量、比重、压缩性和抗剪强度等指标。
根据这些指标,可以评估土壤的工程性质和适用性。
例如,含水量可以影响土壤的密实度和承载能力;比重可以衡量土壤的颗粒结构和孔隙结构;压缩性和抗剪强度可以评估土壤的变形和稳定性。
结论:通过土工实验,我们了解了土壤的物理和力学特性,并掌握了相应的实验操作方法。
通过分析土壤的工程性质,可以为土工工程设计和土力学研究提供依据。
同时,实验结果也为土壤的选择和使用提供了重要参考。
1.刘丰,杜金福,邱延青.土工实验[M].郑州:郑州大学出版社。
土工实验报告

实验一 土的三项基本物理指标测试土的基本物理指标是指土的含水率、密度和土颗粒比重三项, 它既是表示土的三个物理特性, 又是计算土的孔隙比、孔隙率、饱和度和干容重指标的基本依据。
其中, 含水率、容重二项指标又是控制施工质量的指标。
一、密度试验:土的密度是指土的单位体积质量。
(一)试验目的测定土的密度, 以了解土的疏密和干湿状态, 供换算土的其它物理性质指标和工程设计以及控制施工质量之用。
(二)试验方法常用的测定方法有环刀法、蜡封法、灌砂法等。
环刀法操作简便而准确, 在室内和野外普遍应用。
对易碎裂或含有粗颗粒、难以切削的土样可用蜡封法——取一块试样称其质量后浸入融化的石腊中, 使试样表面包上一层腊膜, 分别称腊加土在空气中及水中的质量, 已知腊的比重, 通过计算便可求得土的密度。
对难取原状试样的砂土、砂砾石和砾质土在现场可用灌砂法或灌水法求土的密度。
以下仅介绍环刀法。
(三)仪器及工具1. 环刀: 内径6.18厘米, 高2厘米, 体积为60立方厘米。
2. 天平:感量0.1克。
3. 其它工具:钢丝锯、刮土刀、玻璃片、凡士林油等。
(四)试验步骤(环刀法)1. 将环刀内壁涂一薄层凡士林油, 并将其刃口向下放在土样上;2. 切土时用钢丝锯(硬土用刮土刀), 沿环刀外壁将土样削成略大于环刀外径的土柱, 然后将环刀垂直下压, 边压边削, 直至试样凸出环刀为止;3.用钢丝锯将环刀两端余土削去, 再用刮土刀刮平两端, 将试样两端余土留作含水率试验用;4.擦净环刀外壁, 称环刀和试样合质量, 准确至0.1克。
5. 按下式计算土的湿度及干密度;Vm 00=ρ0001.01w d +=ρρ式中: ——试样湿度密度(g/cm3)m 0——湿土质量(g )V ——环刀体积(cm 3)d ρ——试样干密度(g/cm 3)w 0——含水率(%)计算至0.01g/cm 3。
(五)操作注意事项用环刀切取试样, 应尽量防止扰动, 为避免环刀下压时挤压四周土样, 要边压边削, 直至土样伸出环刀, 然后用刮土刀一次校平, 严禁用刮土刀在土面上来回抹平, 如遇石子等其它杂物空洞要尽量避开, 如无法避开视情况酌情补土。
土工实习报告

实习报告一、实习背景及目的随着我国基础设施建设的快速发展,土工技术在工程建设中的应用日益广泛。
为了更好地了解土工技术在实际工程中的应用,提高自己的实践能力,我参加了为期两周的土工实习。
本次实习主要在实验室进行,通过实际操作,掌握了土工试验的基本方法及原理,对土体的性质有了更深入的了解。
二、实习内容与过程实习期间,我们学习了土工试验的基本方法,包括土的颗分试验、密度试验、含水率试验、抗剪强度试验等。
在实验室指导下,我们亲自操作,记录试验数据,并对试验结果进行分析。
1. 土的颗分试验土的颗分试验是确定土粒级配的重要方法。
通过筛分法,我们可以得到土样各粒级的质量分数,从而判断土的类型。
在试验中,我们学会了如何正确使用筛子、如何进行快速筛分、如何计算各粒级的质量分数等。
2. 密度试验密度试验是测定土体密度的重要方法,包括最大密度试验、浮密度试验和有效密度试验。
通过这些试验,我们可以得到土体的最大密度、浮密度和有效密度,从而为计算土体的体积和质量提供依据。
在实习过程中,我们学会了如何进行最大密度试验和有效密度试验,并掌握了相应的计算方法。
3. 含水率试验含水率试验是测定土体含水量的方法。
通过试验,我们可以得到土体的质量含水率和体积含水率,这对于计算土体的饱和度和判断土的工程性质具有重要意义。
在实习中,我们学会了如何进行含水率试验,并掌握了如何计算含水率。
4. 抗剪强度试验抗剪强度试验是测定土体抗剪强度的重要方法。
通过三轴剪切试验和直接剪切试验,我们可以得到土体的抗剪强度参数,从而为工程设计提供依据。
在实习过程中,我们学会了如何进行三轴剪切试验和直接剪切试验,并掌握了抗剪强度参数的计算方法。
三、实习收获与体会通过本次土工实习,我对土工试验的基本方法及原理有了更深入的了解,实践操作能力得到了提高。
同时,我也认识到土工试验在工程中的应用价值,增强了自己对土工技术的兴趣。
实习期间,我深刻体会到理论与实践相结合的重要性。
土工试验报告

土工试验指导书及试验报告实验一含水量、密度、相对密度测定A 实验要求(1)由实验室提供扰动土样,或由学生现场取样,要求学生测定该土样的含水量、密度和相对密度;(2)根据实验结果要求学生确定该土的孔隙比(e)孔隙率(n)、饱和度(S r)、干土密度(ρd)和饱和密度(ρsat)等物理指标;(3)观察原状土样。
B 实验方法一、含水量试验土的含水量是土在100℃~105℃下烘至恒重时所失去的水份质量与土颗粒质量的比值,用百分数表示。
本试验采用烘干法或酒精燃烧法,烘干法为室内试验的标准方法。
(一)仪器设备:1、恒温电烘箱2、无水酒精3、天平(感量0.01g)4、称量盒(又叫烘土盒)5、干燥器(用无水氯化钙作干燥剂)(二)试验步骤:1、选取有代表性的试样不少于20g(砂土或不均匀的土应不少于50g),酒精燃烧法的试样大约5~6 g放入称量盒内立即盖紧,称称量盒和湿土质量(m1)并准确至0.01g。
记录称量盒号码、称量盒质量(m3)和m。
2、打开称量盒,放入电烘箱中在100℃~105℃温度下烘至恒重。
(烘干时间一般自温度达到100℃~105℃算起不少于6小时)。
然后取出称量盒,加盖后放进干燥器内,使冷却至室温。
3、从干燥器中取出称量盒,称取称量盒加干土的质量(m2),准确至0.01g,并将此质量记入表格内。
4、本试验须进行二次平行测定。
(三)计算:按下式计算含水量:W(%)=(m1-m2)/(m2-m3) ×100% 计算至0.1%式中:m1-m2 试样中所含水的质量;m2-m3 试样土颗粒的质量。
(四)有关问题说明:1、含水量试验用的土应在打开土样包装后立即采取(或直接现场取土),以免水份改变,影响结果。
2、本试验须进行平行测定,每组学生取两次试样测定含水量,取其算术平均值作为最后成果。
但两次试验的平行差值不得大于下列规定:含水量(%)允许平行差值(%)<40 1≥40 23、称量盒中的湿试样质量称取后由实验室负责烘干,同学们在24小时以后抽时间来实验室称干试样的质量。
土工试验报告

土工试验报告一、引言。
土工试验是土木工程中非常重要的一项工作,通过试验可以了解土壤的物理力学性质和工程性质,为工程设计和施工提供可靠的依据。
本报告旨在对某工程项目中进行的土工试验进行详细记录和分析,以期为工程施工提供参考和指导。
二、试验目的。
本次试验的主要目的是对工程用土的物理力学性质进行测试,包括土壤的密实度、含水量、抗剪强度等指标的测定,以评估土壤的工程性质,为工程设计和施工提供依据。
三、试验方法。
1. 土壤密实度测试,采用重量法和容重法测定土壤的干容重和湿容重,再根据公式计算得到土壤的相对密实度。
2. 含水量测试,采用干燥法和速效法测定土壤的含水量,以确定土壤的含水量。
3. 抗剪强度测试,采用直剪法和三轴剪切法测定土壤的抗剪强度,以评估土壤的抗剪性能。
四、试验结果。
1. 土壤密实度测试结果如下:干容重,1.85g/cm³。
湿容重,2.10g/cm³。
相对密实度,85%。
2. 含水量测试结果如下:干燥法含水量,8.5%。
速效法含水量,9.2%。
3. 抗剪强度测试结果如下:直剪法抗剪强度,12.5kPa。
三轴剪切法抗剪强度,15.8kPa。
五、试验分析。
根据试验结果分析,本工程用土的密实度较高,含水量适中,抗剪强度较好,具有较好的工程性质,适合用于承载和支撑工程结构。
但在实际施工中,仍需根据具体工程要求进行合理的处理和加固,以确保工程的安全和稳定。
六、结论。
本次土工试验结果表明,工程用土具有较好的物理力学性质和工程性质,适合用于工程施工。
但在实际应用中,仍需根据具体工程要求进行合理处理和加固,以确保工程的安全可靠。
同时,本次试验结果也为后续工程设计和施工提供了重要的参考和依据。
七、建议。
在后续工程施工中,应根据本次试验结果合理选择施工方法和工程材料,加强对土壤的处理和加固,并严格按照相关规范和标准进行施工,以确保工程的安全和稳定。
八、致谢。
在本次试验过程中,得到了相关专家和同事的大力支持和帮助,在此表示诚挚的感谢。
土工试验检测实习报告

土工试验检测实习报告一、前言随着我国基础设施建设的快速发展,土工材料在土木工程中的应用越来越广泛。
为了保证工程质量,土工材料的性能必须经过严格的试验检测。
本实习报告围绕土工试验检测展开,详细记录了我在实习期间的学习和实践过程。
二、实习单位与实习内容1. 实习单位:某土工试验检测中心2. 实习内容:主要包括土工击实试验、复合地基静载荷试验、土工筛分试验等。
三、实习过程及收获1. 土工击实试验土工击实试验是用来确定土工材料在最优含水率下的最大干密度。
实习期间,我参与了试验的操作和数据处理。
首先,根据试验标准准备试样,然后将试样放入击实仪中进行击实,最后根据击实后的试样高度和原始高度计算干密度。
通过这个试验,我了解了击实试验的操作流程和数据处理方法,并掌握了如何根据试验结果确定最优含水率和最大干密度。
2. 复合地基静载荷试验复合地基静载荷试验是用来检验复合地基承载力的。
在这次实习中,我负责了试验的现场检测和数据记录。
试验采用单桩复合压板试验,承压板尺寸为 1.0m×1.0m。
试验过程中,我学会了如何正确放置承压板,如何进行慢速维持荷载法加载,以及如何记录试验数据。
通过这个试验,我了解了复合地基静载荷试验的原理和操作方法。
3. 土工筛分试验土工筛分试验是用来分析土粒径分布的。
在实习中,我学会了如何准备试样,如何使用筛分仪进行筛分,以及如何根据筛分结果绘制粒径分布曲线。
通过这个试验,我掌握了土工筛分试验的操作技巧和数据分析方法。
四、实习总结通过这次实习,我深入了解了土工试验检测的基本原理和操作方法,提高了自己的实践能力。
同时,我也认识到了试验检测在工程质量控制中的重要性。
在今后的学习和工作中,我将不断努力,为我国土木工程事业贡献自己的力量。
五、实习感悟1. 严谨的工作态度:试验检测工作对数据准确性和试验过程的严谨性要求极高,只有做到细致入微,才能保证试验结果的可靠性。
2. 团队协作:在实习过程中,我深刻体会到了团队协作的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土工测试实验报告书1.分级连续加载条件下的粘性土蠕变试验2.三轴压缩实验测土的抗剪强度参数3.Duncan-Chang模型参数的确定4.通过标准固结试验测固结系数5.剑桥模型的推导1分级连续加载条件下的粘性土蠕变试验实验目的:通过测定试样在分级连续加载条件下固结引起的变形随时间的变化,分析试样得蠕变特性及相应的模型。
实验器材:(试样采用非饱和的细粒土)固结容器:由刚性底座、护环、环刀、上环、透水板、加压上盖和密封圈组成。
(1)环刀:直径61.8mm,高度20mm,一端有刀刃,应具有一定刚度,内壁应保持较高的光洁度,宜涂一薄层硅脂和聚四氟乙烯。
(2)透水板:由氧化铝或不受腐蚀的金属材料制成。
渗透系数应大于试样的渗透系数。
试样上部透水板直径宜小于环刀内径0.2~0.5mm,厚度5mm。
(3)变形量测设备:量表,单位为0.1mm。
(4)加荷设备:砝码、杠杆加压设备。
实验步骤:1.制备土样将土块加水饱和,尽量搅拌至各处含水率均匀,备用。
用电子秤秤环刀的重量。
2.取土样用环刀切取已准备好的土样,用工具沿环刀高度切平土面,去掉多余的土、用水浸湿,将滤纸盖在土样的两边,再次称量重量。
3.安装土样将环刀和土样一起放入固结盒,在土样上下各放置一块透水石,盖上加压盖,安装到加载装置上。
4.调平将加压杠杆调平,装好量表,调至零点。
5.分级加载分为4个荷载等级加载:60KPa,120KPa,180KPa,240KPa,分别为并在每级荷载下记录0s,15s,2min15s,4min,6min15s,9min,12min15s,16min220min15s时的量表读数。
6.实验结束清理仪器,整理数据。
数据整理及实验分析:室内分级加载固结蠕变实验结果如表1及图1所示:表1 各级荷载下土的应变(mm)图1 各种荷载作用下的蠕变曲线蠕变是在恒定应力作用下变形随时间增长的现象。
图1是土样在各种荷载作用下的蠕变曲线,在各级荷载作用下,土体的蠕变曲线非常相似。
经历了加载时的瞬时变形、随时间急剧的变形,如果时间够长,还可以观察到随时间缓慢增加并趋于稳定的阶段,且荷载越大,变形越大,达到稳定的时间越长。
从而粘性土的蠕变ε、应力σ与时间t的关系:ε=f(σ,t)且为非线性蠕变关系。
基本流变元件有虎克弹簧、牛顿粘壶及圣维南刚塑体三种,计算模型都是由以上三种线性基本元件组合而成。
由于应变随时间最后达到稳定状态,则可以用麦钦特(Merchant)模型来描述,该模型由虎克弹簧和伏埃脱体串联而成,如图2所示。
在常应力作用下,有如下关系:ε=σ/E0 +σ(1-exp(-E1t/k1))/E1 图2 Merchant模型2三轴压缩实验测土的抗剪强度参数试验目的:三轴压缩实验是测定土的抗剪强度的一种比较完善的室内试验方法,通过本试验主要是让我们熟悉重塑土样的制作方法以及熟练掌握应变式控制三轴仪的操作规程,再利用摩尔—库伦破坏准则确定土的抗剪强度参数。
试验原理:本试验采用一个圆柱形试样,分别在不同的围压下进行固结不排水剪切,分别测得三个不同围压下测得土的抗剪强度,利用摩尔—库伦破坏准则确定土的抗剪强度参数。
试验仪器:应变控制式三轴剪切仪,三轴压力室、轴向加荷系统,轴向压力量测系统、周围压力稳定系统、孔隙水压力量测系统、轴向变形量测系统,反压力体变系统组成。
附属设备:(1)变形量测设备:量表,单位为0.01mm。
(2)固结容器。
由环刀、护环、透水石、加压上盖等组成,土样面积12cm2,高度8cm。
(3)其它:如击实筒、承膜筒、乳膜薄膜、橡皮膜、橡皮筋、吸水球、滤纸、钢丝锯、饱和器、对开圆模、不透水板和2mm筛。
试验步骤:1、用击实器制备重塑土样,分五层击实,每一层之间应当刮毛,这样能保证重塑土样的连续性和完整性。
2、试样安装①把已检查过的乳膜薄膜套在承膜筒上,两端翻起,用吸水球从气嘴不断吸气使乳膜薄膜紧贴于筒壁,小心将它套在试样外面;然后让气嘴放气,使橡皮膜紧贴试样周围,翻起橡皮膜两端,用橡皮筋圈将橡皮膜下端紧扎在底座上。
②打开与试样帽连通的阀门,让量水管中的水流入试样帽,并连同透水石,滤纸放在试样的上端,排尽试样上端及量管系统的气泡后关闭阀门,将橡皮膜上端翻贴在试样帽上并用橡皮筋圈扎紧。
③装上压力室罩,此时,活塞应放在最高位置,以免和试样碰撞,拧紧压力室罩密封螺帽,并使传压活塞于土样帽接触3、试样固结向压力室内施加试样的周围压力,周围压力的大小一般应等于和大于覆盖压力,但由于受仪器本身的限制,最大周围压力一般不超过0.6Mpa(低压三轴仪)4、试样剪切转动细档手轮使试样帽与活塞及测力计接触,装上轴向变形指示计,调整量测轴向变行的位移计的初读数和轴向压力测力计的初读数。
开动电机,剪切应变速率为0.5mm/min。
在试样的剪切过程中记录测力计读数和轴向变形指示计的读数。
当第一级加载完毕后,卸除围压,重新施加下一级围压,进行排水固结,固结完成后继续剪切;第二级加载完毕后,再施加第三级围压进行固结不排水剪切,直到试验结束。
5、 试验结束,关电动机,卸除周围压力并取出试样,描述试样破坏时的形状。
6、 成果整理① 计算固结后的高度和面积013(1)(1)(1)3c o o o O OV Vh h h h V V ε∆∆=-=-≈-22232(1)(1)(1)443c o o o o O OV VA d d A V V ππε∆∆=-=-≈-式中:O V ,o h ,o d -----试样固结前的体积,高度和直径V ∆ ----------试样固结后的体积改变量c A ,c h -----------试样固结后的平均断面积和高度② 计算试样剪切过程中的平均断面积和应变值1chh ε∆=∑11ca A A ε=- 式中:1ε------ 试样剪切过程中的轴向应变(﹪)h ∆∑-----试样剪切时的轴向变形(mm)a A --------试样剪切过程中的平均断面积(cm 2)③ 计算主应力差: 113(1)1010a cCR CRA A εσσ--== 式中:C-------测力计率定系数(8.789N/0.01mm ) R--------测力计读数(0.01mm ) 10-------单位换算系数④ 以主应力差13σσ-为纵坐标,以轴向应变1ε为横坐标,绘制主应力差与轴向应变关系曲线。
⑤ 以剪应力ι为纵坐标,以法向应力σ为横坐标,在横坐标轴以破坏时的132f fσσ+为圆心,以132f fσσ-为半径,绘制破坏总应力圆,并绘制不同围压下诸破坏总应力圆的包线,即计算出内包线的倾角为内摩擦角cu ϕ,包线在纵坐标上的截距为粘聚力cu C数据处理:本次试验采用固结不排水剪切,所测得的应力-应变曲线见图1,测得的围压与轴向偏差应力结果见表1。
根据图1和表1绘制其总应力摩尔圆及强度包络线图,见图2。
表1试样的固结不排水剪切试验结果图1 多级荷载作用下试样轴向应变与偏应力关系图50100150200250300350400450500550501001502000σ(kPa)τ(kPa)图2 试样总应力摩尔圆与强度包络线图由图中可测得该重塑土试样的抗剪强度指标cu c =26.13kPa, 12cu ϕ=︒实验总结(1)由于设备仪器所限,本实验无法测定孔隙水压力和计算孔隙压力系数,因此所得到的是三轴剪切试验的总应力变化曲线,所绘制的是图样的破坏总应力摩尔圆,得到的强度指标是总应力抗剪强度指标cu c 、cu ϕ,而不是有效应力指标c '和ϕ'。
(2)实验时间有限,无法满足标准实验所需的固结时间要求,因此得到数据存在一定的误差。
(3)通过对本实验的学习与操作,我们更加深入地了解了三轴实验的原理和操作方法,对于土样的三轴应力状态有了更为细致的认识,学会了如何绘制强度包络线从而得出土的两个基本剪切强度参数,这是研究土的物理力学性质的基础,对进一步深入了解土的工程性质有重要的意义。
aab a εσσ+=-31 (3-1)渐近线σ3=常量E iE tσ1-σ3(σ1-σ3)uεa0εa /(σ1-σ3)uεaba()()线斜率。
这样的模量叫做切线弹性模量,可用t E 表示,见图3-1。
将式(3-1)代入式(3-7),得到:()2a tb a aE ε+= (3-8)由式(3-2)可得:ba a --=311σσε (3-9)式(3-9)代入式(3-8),得: ()[]23111σσ--=b a E t (3-10)由式(3-2)可得:当0→a ε时31→⎪⎪⎭⎫⎝⎛-=a aa εσσε(3-11)而双曲线的初始切线模量i E 为: 031→⎪⎪⎭⎫⎝⎛-=a a i E εεσσ (3-12) 见图3-1。
因此:iE a 1= (3-13) 这里表示a 是初始切线模量的倒数。
由式(3-2)还可见,当∞→a ε时 ()()uab 313111σσσσε-=-=∞→ (3-14)试验破坏时的偏应力为()f 31σσ-,则:()()uff R 3131σσσσ--=(3-15)f R 叫破坏比将式(3-13),式(3-14),式(3-15)代入式(3-10)得:()i f f t E R E 231311⎥⎥⎦⎤⎢⎢⎣⎡---=σσσσ (3-16)实验仪器:应变控制式三轴仪(由压力室,轴向加压设备,周围压力系统,反压力系统,孔隙水压力量测系统,轴向变形和体积变化量测系统组成)。
附属设备包括:扳手,剪刀,滤纸,透水石(直径与试样直径相等其渗透系数宜大于试样的 渗透系数,使用前在水中煮沸并泡于水中),土样,击样器,切土器,原状土分样器,切土盘,橡皮模(具有弹性的乳胶膜),吸球,承膜筒和对开圆膜。
实验步骤:本实验采用的土样为直径为39.1mm,高度为80mm的圆柱土样。
1.制备试样:(1)到土样中心采集土样,经过初步筛分,分散放置在切图盘中待用。
(2)将对开圆膜组合拼装完好,在圆膜内侧涂抹凡士林,然后将准备好的土样分三层装入对开圆膜中,每一层都要用击实器充分击实,并将圆膜贴壁的土样松开,和下一次的土样一起击实,如此反复至土样高出圆膜约1cm。
(3)将圆膜和底座放置在切土盘中,对于较软的土样用钢丝锯或切土刀紧靠侧板由上往下细心切削,边切削边转动圆摸,直至土样被削成规定的直径为止,试样切削时应避免扰动,当试样表面遇有砾石或凹坑时允许用削下的余土填补;对较硬的土样先用钢丝锯切取一稍大于规定尺寸的土柱放在切土盘,然后用切土器切削土样边削边压切土器直至切削成规定试样。
2.抽气饱和:(1)选用叠式或框式饱和器和真空饱和装置,在叠式饱和器下夹板的正中依次放置透水板,滤纸,带试样的圆摸,滤纸,透水板,如此顺序重复,由下向上重叠到拉杆高度,将饱和器上夹板盖好后拧紧拉杆上端的螺母,将各个环刀在上下夹板间夹紧。