欧拉公式的证明(整理)
欧拉公式的推导
03
欧拉公式的证明
利用三角函数的性质进行证明
总结词
利用三角函数的周期性和对称性,通 过一系列的等式变换,推导出欧拉公 式。
详细描述
首先,利用三角函数的周期性和对称 性,将角函数转化为指数形式。然 后,通过一系列的等式变换,将指数 形式转化为欧拉公式。
利用复数的性质进行证明
总结词
利用复数的共轭和模的性质,通过代数运算 和等式变换,推导出欧拉公式。
快速傅里叶变换(FFT)
欧拉公式在快速傅里叶变换算法中有重要应用, 该算法用于信号处理和频谱分析等领域。
加密算法的实现
欧拉公式可以用于实现一些加密算法,例如 RSA公钥加密算法。
并行计算中的向量旋转
在并行计算中,欧拉公式可以用于实现向量的旋转操作,提高计算效率。
THANKS
感谢观看
欧拉公式的应用场景
01
在物理学中,欧拉公式被广泛应用于波动方程、电磁学、量子 力学等领域。
02
在工程学中,欧拉公式被用于信号处理、控制系统等领域。
在金融学中,欧拉公式被用于计算复利、评估风险等。
03
02
欧拉公式的推导过程
利用三角函数的性质进行推导
总结词
利用三角函数的周期性和对称性,通过一系列的恒等变换,推导出欧拉公式。
04
欧拉公式的变种和推广
欧拉恒等式
总结词
欧拉恒等式是数学中一个重要的恒等式,它 表示三角函数和指数函数之间的关系。
详细描述
欧拉恒等式是数学中一个重要的恒等式,它 表示三角函数和指数函数之间的关系。这个 恒等式在数学分析、复变函数、微分方程等 领域有着广泛的应用。通过欧拉恒等式,我 们可以将三角函数转化为指数函数,从而简
欧拉公式的几何证明
欧拉公式的几何证明
嘿呀,咱来说说欧拉公式的几何证明哈!欧拉公式那可是超级厉害的,就是e^(iθ)=cosθ+isinθ。
比如说吧,就像我们在生活中遇到一个特别复杂的迷宫,你觉得很难走出去,但是突然有了一条神奇的线索,一下子就豁然开朗啦!这欧拉公式就有点像这样神奇的线索!
我们来想想看哈,cosθ和sinθ 多熟悉啊,它们就像是我们的老朋友,在三角函数的世界里经常碰面。
然后呢,e^(iθ)就像是突然冒出来的神秘嘉宾,但它其实和我们的老朋友有着紧密的联系呢!
比如说,当θ=π的时候,e^(iπ)=-1,哇塞,这不是很神奇吗?就好像你原本以为不相干的几样东西,突然之间发现它们有着如此紧密而奇妙的关联,是不是特别有意思呀!这就是欧拉公式的魅力所在呀!你难道不觉得很惊叹吗!。
欧拉多面体公式证明
欧拉多面体公式证明欧拉多面体公式,也被称为欧拉公式,是数学中的一个重要定理,它描述了一个多面体的面数、顶点数和边数之间的关系。
这个公式被广泛应用于几何学和拓扑学领域,它的证明过程既有逻辑性又有美感,让人感叹数学的奇妙。
在开始证明之前,先来回顾一下欧拉多面体公式的表达方式。
设一个多面体的面数为F,顶点数为V,边数为E,那么根据欧拉多面体公式:F + V - E = 2证明的过程可以分为两个部分:首先是证明欧拉多面体公式对于凸多面体成立,然后是证明对于非凸多面体也成立。
对于凸多面体来说,首先我们可以通过归纳法证明一个特殊情况,即当多面体只有一个面、一个顶点和一条边时,欧拉公式成立。
接着,我们假设当多面体的面数小于等于n时,欧拉公式成立,然后考虑当多面体的面数为n+1时的情况。
假设这个多面体有m个面,n个顶点和p条边。
我们可以通过将一个面切割成三个面,增加三个顶点和三条边的方式,来构造一个新的多面体。
这样,我们得到的新多面体的面数为m+2,顶点数为n+3,边数为p+3。
根据归纳假设,原多面体满足欧拉公式,即m + n - p = 2。
而新多面体的面数、顶点数和边数分别为m+2、n+3和p+3,所以根据欧拉公式,有(m+2) + (n+3) - (p+3) = 2。
整理后得到 m + n - p = 2,即新多面体也满足欧拉公式。
这样就证明了欧拉公式对于凸多面体成立。
接下来考虑非凸多面体的情况。
非凸多面体可以看作是由多个凸多面体通过共享顶点组合而成的。
我们可以通过将非凸多面体切割成凸多面体,然后分别证明欧拉公式对于每个凸多面体都成立,最后再将它们的公式相加来证明欧拉公式对于非凸多面体成立。
总结一下,欧拉多面体公式证明的关键是通过归纳法来证明对于凸多面体和非凸多面体都成立。
通过将多面体切割成更小的多面体,然后利用归纳假设来推导出新多面体的面数、顶点数和边数之间的关系,最终得到欧拉公式成立的结论。
通过这个证明过程,我们不仅可以理解欧拉多面体公式的推导过程,还可以感受到数学中的美妙和逻辑性。
欧拉公式的三种证明
欧拉公式的三种证明欧拉公式可以用来表示一个多边形内角和与它边数之间的关系,它可以被用来确定多边形内角度数的总和。
该公式被拉普拉斯(Leonhard Euler)提出于18世纪,经历了许多历史时期,可被证明为正确性。
欧拉公式可以用来确定一个n边形内角之和是(n2)π,其中n 为边数,π是圆周率,是无穷小的值。
可以将该公式表示为V-E+F = 2,其中V是多边形的顶点数,E是多边形的边数,F是多边形的面数。
欧拉公式的证明可以通过三种方式完成:可视化证明、数学归纳法和正则多边形证明。
首先,让我们来看看可视化证明方式。
可视化证明可以通过欧拉公式来证明多边形内角和与边数之间的关系。
对于由一条边构成的多边形来说,其内角和将等于0,也就是V-E+F=2= 0。
于由两条边构成的多边形来说,其内角和将等于π,也就是V-E+F=2=。
而对于由三条边构成的多边形来说,其内角和将等于2π,也就是V-E+F=2= 2π。
样的方法可以继续用于更大的多边形,做出相应的计算,验证欧拉公式的关系是正确的。
第二种证明方式是利用数学归纳法。
数学归纳法是一种较为普遍的数学证明方式,它可以用来证明一些数学性质的正确性。
考虑到欧拉公式的关系,我们可以使用数学归纳法来证明它。
以一个多边形的内角和与边数之间的关系为例,对于由一条边构成的简单多边形,其内角和等于0,根据欧拉公式,V-E+F=2= 0,即可证明欧拉公式的正确性。
如果我们仍然考虑一个三边形,其内角和等于π,根据欧拉公式,V-E+F=2=,也可以证明欧拉公式的正确性。
同样,如果你考虑一个六边形,其内角和等于4π,那么根据欧拉公式,V-E+F=2= 4π,即可证明欧拉公式的正确性。
通过不断进行反复证明,可以证明欧拉公式的正确性。
最后,让我们来看一下正则多边形证明方法。
正则多边形的概念源自欧几里得的正多边形定理,它提出了一种特殊情况,即对于正则多边形,内角之和是(n-2)π。
正则多边形概念的出发点是每个内角度数都是相等的,每一条边都具有相同的长度。
欧拉公式的应用
欧拉公式的应用一、欧拉公式的证明、特点、作用欧拉公式θθθsin cos i e i +=的证明方法:极限法.证明 令()1nf z i n θ⎛⎫=+⎪⎝⎭(),R n N θ∈∈. 首先证明()lim cos sin n f z i θθ→∞=+ 因为arg 1ni narctg n n θθ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭所以22211cos sin nni i narctg i narctg n n n n θθθθ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 从而222lim 1lim 1cos sin n nn n i narctg i narctg n n n nθθθθ→∞→∞⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ (i)令222(1)nn p n θ=+,则2ln ln 12n n p n θ⎡⎤⎛⎫=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.把1nξ=视为连续变量,由洛必达法则有()2201lim ln lim ln 12n n p ξξθξ→∞→=+2220lim 01ξξθξθ→==+ 即0lim 1n n p e →∞==. (ii)令arg 1nn i n θϕ⎛⎫=+ ⎪⎝⎭narctg n θ=,则 ()0lim lim n n arctg ξξθϕθξ→∞→==. 故()lim lim 1cos sin nn n f z i i n θθθ→∞→∞⎛⎫=+=+ ⎪⎝⎭.其次证明()lim i n f z e θ→∞= 因为ln 11n n i n i e n θθ⎛⎫+ ⎪⎝⎭⎛⎫+= ⎪⎝⎭的主值支,所以ln 1arg 1ln 1lim 1lim lim nn i in i n i n n n n n n i e e n θθθθ⎡⎤⎛⎫⎛⎫++++ ⎪⎢⎥ ⎪⎝⎭⎝⎭⎣⎦→∞→∞→∞⎛⎫+== ⎪⎝⎭, 而,lim ln 10lim arg 1n n n i n i n nθθθ→∞→∞⎛⎫+=+= ⎪⎝⎭,故()lim lim 1ni n n f z i e nθθ→∞→∞⎛⎫=+= ⎪⎝⎭.于是便证得:cos sin i e i θθθ=+. 欧拉公式还可以推广到以下形式:已知欧拉公式θθθsin cos i e i +=其中θ为实数,则cos R θ∈ s i nR θ∈由()1式得cos sin i e i θθθ-=- ()2 则()()12+得:2cos cos 2i i i i e e e eθθθθθθ--++=⇒=()()12-得:2sin sin 2i i i i e e eei iθθθθθθ----=⇒=又因为()sin tan cos i i i i e e i e e θθθθθθθ---==+()3 ()cos cot sin i i i i i e e e eθθθθθθθ--+==-()4 由此便得出最重要的四个公式.这些公式具有以下特点:()1实质上,这些公式给出了三角函数的复指数形式,故代入三角变换中,便将三角运算化为指数函数的代数运算,使三角运算从多种思考方法化为单一思考方法,从而降低了三角变换的难度.()2观察这几个公式,i e θ与i e θ-互为倒数,积为1,这一过程常常在证明过程中被应用.()3在以上公式的推导过程中,分别令2,,,,22πθππππ=-- ,得到以下式子:221,1,,iiie e e i πππ==-=221,1,i iieeei πππ---==-=-.欧拉公式的桥梁作用:(1) 纯虚指数值可以通过三角函数值来计算例如 c o s 1s i n ie i=+,2cossin22iei i πππ=+=,cos sin 1ie i πππ=+=-,3233cossin 22i ei i πππ=+=-, ()2cos2sin210,1,2k i e k i k k πππ=+==±± .由欧拉公式可以看出,在复数域内,指数函数是周期函数,具有基本周期2i π.(2) 任何实数的三角函数可以用纯虚指数表示,从而通过指数函数来研究三角函数的性质.在欧拉公式中用θ-代替θ,则cos sin i e i θθθ-=-. 由cos sin i e i θθθ=+,cos sin i e i θθθ-=-得到cos ,sin 22i i i i e e e e iθθθθθθ--+-==,由上式容易看出正弦函数是奇函数,余弦函数是偶函数.(3) 引出复数的指数表示法,从而使得复数的表示法增加为代数形式、三角形式和指数形式三种形式,便于我们酌情使用.二.欧拉公式在三角函数中的应用(一) 倍角和半角的三角变换 在此类型的题目中,大都用到以下两个技巧:()2222iiii eee eθθθθ--+-=-及21i =-.例1 求证sin 21cos 2θθ-cot θ=证明:左式()2222i ii i e e i e e θθθθ---=-+2222sin 221cos 212i i i i e e i e e θθθθθθ---==+--()()()()()21i i i i i i i i i i e e e e i e e eei e eθθθθθθθθθθ------+-+==--cot θ==右式所以原式成立.(二) 积化和差与差化积的三角变换 例2 计算:1cos cos 2cos 2s x x nx =++++解:1cos cos 2cos 2s x x nx =++++ ()()120212n xi nxi xi xi xi xi nxie e e e e e e e -----=++++++++1222ix ix nix nixe e e e --++=++()1122112211221n xi n xi nix ix nix ix ix ix ee e e e e ee⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭--⎛⎫- ⎪- ⎪⎝⎭==--=1sin 212sin 2n xx⎛⎫+ ⎪⎝⎭ (三) 求三角表达式的值 例3 已知tgx a =,求3sin sin 33cos cos3x xx x++的值:解: 原式()()()()333331223122xi xi ix ixxi xi ix ixe e e ei i e e e e -----+-=+++ ()()()()()223113()3xi xi xi xi xi xi xi xi xi xi xi xi e e e e e e i e e e e e e ------⎡⎤-+-+-⎢⎥⎣⎦=⨯⎡⎤++++-⎢⎥⎣⎦由tgx a =()xi xi xi xi e e ai e e --⇒-=+代入上式消去xi xi e e -+原式()()222xi xi xi xi a e e e e --⎡⎤++⎢⎥⎣⎦=+ 2112cos a x ⎛⎫=+ ⎪⎝⎭对2222221cos 1cos cos 1x a tg x x x a -==⇒=+ 所以原式2112a a ⎛⎫+=+ ⎪⎝⎭ (四) 证明三角恒等式 例4 证明32sin 22cos cos 2x x xtgtg x x-=+为方便计算令2x θ=,原式变为2sin 23cos 2cos 4tg tg θθθθθ-=+证明:左边()()3333i i i ii i i i e e e e i e e i e e θθθθθθθθ------=-++()()()()()()3333331ii i i i i i i iiiiee e e e e e e ieeeeθθθθθθθθθθθθ------+--+=⨯++右边22224422i ii i i ie e e e e eθθθθθθ----=+++2242242i ii i i i e e i e e e eθθθθθθ----=⨯+++=左边 例5 求证:sin 21cos tgααα=+证明: 22222iii i e etg i e e ααααα---=⎛⎫+ ⎪⎝⎭而()sin 21cos 212i ii i i i i i e e e e i e e i e e αααααααααα-----+==+++++2222222i i i i i i e e e e i e e αααααα---⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=⎛⎫+ ⎪⎝⎭2222iiii e ei e e αααα---=⎛⎫+ ⎪⎝⎭2tgα=(五) 解三角方程 例6 解方程120x y += ()1sin 2sin xy= ()2 解: 把120y x =- 代入()2得:()sin 2sin 120xx =-. 由欧拉公式得:223322i x i x ix ix ee e e iππ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭---=⨯,经整理得:222331212i i ix e e e ππ-⎛⎫-=+ ⎪⎝⎭,21xi e =-,xi e i =,cos sin x i x i +=,cos 0,sin 1x x ==.所以18090x k =+ ,代入()1式得到18030y k =-+ ,由此即得到方程的解.(六) 利用公式求三角级数的和在三角级数中,按常规方法求和常常是很麻烦的,有时甚至求不出结果.而欧拉公式:sin 2i i e e i θθθ--=,cos 2i i e e θθθ-+=很好的解决了这类问题.例7 求三角级数sin sin 2sin 3sin x x x nx ++++ 的前几项和.解: 1sin nn k s kx ==∑12ikx ikxnk e e i -=-=∑1112n n ikx ikx k k e e i -==⎡⎤=-⎢⎥⎣⎦∑∑ ()()11112121ix inx ix inxix ix e e e e i e i e----=⨯-⨯-- 22222212n n n i x i x i x ixx x x i i i e e e e i e e e --⎛⎫⨯- ⎪⎝⎭=⨯⎛⎫- ⎪⎝⎭22222212n n ni x i x i x ix x x xi i i e e e e i e e e ----⎛⎫- ⎪⎝⎭-⨯⎛⎫- ⎪⎝⎭22221122222211222222nx nx nx nx iiiin n i x i xx x x x iiiie e e e iie e iie e e e ii--++-----=⨯⨯-⨯⨯--1122sinsin 112222sin sin 22n n i x i x n n x x e e x x i i ++-=⨯⨯-⨯⨯ 1122sin22sin 2n n i x i xn x e e x i ++--=⨯1sin sin 22sin 2n n x x x +⨯=.(七) 探求一些复杂的三角关系式 例8 把2cos n θ和2sin n θ分别表示成1,cos 2,cos 4,,cos 2n θθθ 的线形组合.解:()222222201cos 22ni i ni n k nk nnk e e Ce θθθθ--=⎛⎫+== ⎪⎝⎭∑,注意到()()212222221nn i n k i n k k mnn k n m C eC e θθ----=+==∑∑,得到()()()12222222201cos 2n i n k i n k nn k n n nk C C e e θθθ----=⎡⎤=++⎢⎥⎣⎦∑故有 ()1222201cos 2cos 22n nn k n n nk C C n k θθ-=⎡⎤=+-⎢⎥⎣⎦∑ ()3在()3式中用2πθ-代替θ得到()()1222201sin 21cos 22n n k nn k n n nk C C n k θθ--=⎡⎤=+--⎢⎥⎣⎦∑ (八) 解决方程根的问题 例9 证明方程()cos arccos 0n t = ()0,1,2n = 至多有n 个根.证明: 令0ϕπ≤≤,设cos t ϕ=,则sin ϕ=()cos sin nin ei ϕϕϕ=+(nt =+,那么:()(cos cos cos Re nn naro t t ϕ==+()()222244211nn n nnt C ttC tt--=+-+-+故()cos arccos n t 是关于t 的n 次多项式,所以由代数学基本定理知:方程()cos arccos 0n t =至多有n 个根.例10 设1,2,3,,n a a a a 都是实常数,()()()()12111sin sin sin 22n n f a a a θθθθ-=++++++ ,若12,θθ是方程()0f θ=的两个根,1θ,2θ不全为零.证明:kπθθ21=-(k 为整数).证明:()()()()()()()11222222n n i a i a i a i a i a i a n e ee e e ef iiiθθθθθθθ+-++-++-+---=+++121222222222nnia ia ia ia ia ia i i nn e e e e e e i e i e θθ----⎛⎫⎛⎫=-+++++++ ⎪ ⎪⎝⎭⎝⎭令 122222nia ia ia ne e e i α⎛⎫=-+++ ⎪⎝⎭ ,122222nia ia ia n e e e i β---⎛⎫=+++ ⎪⎝⎭. 则()0f θ=化为0i i e e θθαβ-+=.由三角不等式知121222222222n nia ia ia ia ia ia n n e e e e e e α=+++≥--2111222n =---所以复常数0,α≠同理复常数0,β≠ 又12,θθ分别满足方程()0f θ=,即()1110i i f e e θθθαβ-=+=,()2220i i f e e θθθαβ-=+=.可见,αβ的系数行列式()()()1212122sin 0i i e e i θθθθθθ----=-=,从而必存在整数k 使得12k θθπ-=.(九) 欧拉公式大降幂在高等数学中常会遇到高次幂的正余弦函数,这些函数在计算上很不方便,欧拉公式可把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便.1 正弦大降幂:33sin 2ix ix e e x i -⎛⎫-= ⎪⎝⎭()322331332i x i x ix ix i x i x e e e e e e i ---⎡⎤=-⨯+⨯-⎣⎦()33213222i x i x ix ix e e e e i i i --⎡⎤--=-⎢⎥⎣⎦()()21sin3sin 2x x i =-.44sin 2ix ix e e x i -⎛⎫-= ⎪⎝⎭()432234414642i x i x ix i x i x ix i x i xe e e e e e e e i ----⎡⎤=-⨯+⨯-⨯+⎣⎦()421cos 44cos 2622x x i ⎡⎤=-+⨯⎢⎥⎣⎦.55sin 2ix ix e e x i -⎛⎫-= ⎪⎝⎭()54322345515101052i x i x ix i x i x i x i x ix i x i x e e e e e e e e e e i -----⎡⎤=-⨯+⨯-⨯+⨯-⎣⎦()[]41sin55sin310sin 2x x x i =-+.综上:正弦大降幂规则如下()1 括号前的系数视n 的奇偶而定;当2n m =时系数为22(2)mi ,当21n m =+时系数为()212m i . ()2 括号内符号正负相同; ()3当2n m=时括号内各项均为余弦,依次为()1122cos2,cos 22cos2,m m m mx C m x C x -- 212mm C . 当21n m =+时,括号内各项均为正弦,依次为()()()121212121sin 21,sin 21,sin 23,sin3m m m m m x C m x C m x C x -++++-- ,21sin m m C x +.2余弦大降幂33cos 2ix ix e e x -⎛⎫+= ⎪⎝⎭3331332i x ix ix i x e e e e --⎡⎤=+++⎣⎦[]21cos33cos 2x x =+. 44cos 2ix ix e e x -⎛⎫+= ⎪⎝⎭1244311cos 4cos 222x C x C ⎡⎤=++⨯⎢⎥⎣⎦55cos 2ix ix e e x -⎛⎫+= ⎪⎝⎭125541cos5cos3cos 2x C x C x ⎡⎤=++⎣⎦ 综上:余弦大降幂规则如下:()1括号前的系数为112n -;()2括号内全部是+号; ()3括号内各项均为余弦;当2n m =时,依次为()()12122221cos 2,cos 22,cos 24,cos 2,,2m m m m mm mx C m x C m x C x C --- 当21n m =+时,依次为()()()12212121cos 21,cos 21,cos 23,cos mm m m m x C m x C m x C x ++++-- .3 正余弦大降幂的应用 (1) 求傅里叶级数 例11 求12sin x 的傅立叶级数解:()112234561212121212121221sin cos12cos10cos8cos6cos 4cos 222x x x C x C x C x C x C i c ⎛⎫=-+-+-+ ⎪⎝⎭由于12sin x 是2π为周期的连续函数,所以它的傅立叶级数展开式唯一,即:12123412121212111111111111111sin cos12cos10cos8cos 6cos 422222x x C x C x C x C x =---+561212111111cos 222C x C -+. (2) 求n 阶导数 例12 求7cos x 的n 阶导数解 712377761cos cos 7cos5cos3cos 2x x C x C x C x ⎡⎤=+++⎣⎦ ()()()()71237776cos 1cos 7cos 5cos 3cos 2n n n n n n d x x C x C x C x dx ⎡⎤=+++⎣⎦ 123777617cos 75cos 53cos 3cos 22222n n n n n n n x C x C x C x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++++ ⎪⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(3) 求积分 例13 求11sin xdx ⎰ 解: ()()11123451111111111101sin sin11sin9sin 7sin5sin3sin 2x x Cx C x C x C x C x i =-+-+-()123451111111111101sin11sin 9sin 7sin 5sin 3sin 2x C x C x C x C x C x =--+-+- 原式()123451111111111101sin11sin 9sin 7sin 5sin 3sin 2x Cx C x C x C x C x dx =--+-+-⎰123451111111111101cos11cos9cos7cos5cos3cos 2119753x x x x x C C C C C x c ⎛⎫=-+-+-+ ⎪⎝⎭例14 求0⎰解: 令sin x a t =,则:x a →,2t π→,662cos a tdtπ=⎰⎰612226665011cos6cos 4cos 222at C t C t C dt π⎛⎫=+++ ⎪⎝⎭⎰612665sin 6sin 4sin 2102642a t t t C C t ⎡⎤=+++⎢⎥⎣⎦在0,2π⎛⎫ ⎪⎝⎭上的值, 6100322a π⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦6532a π=(十)三角函数的求积 例15 不查表,计算cos 20cos 40cos80P =解 24cos coscos 999P πππ=2244999999222ii i i i i e eee ee ππππππ---+++=⨯⨯7533579999999918ii i i i i i i e e e e e e e e ππππππππ----⎛⎫=+++++++ ⎪⎝⎭72799929181i i i i e e e e ππππ-⎛⎫⨯- ⎪= ⎪ ⎪-⎝⎭29291181i i i e e e πππ-⎛⎫--⨯ ⎪⎝⎭=⨯- 18=. (十一)条件等式的证明 例16 已知,αβ均为锐角且223sin 2sin 1αβ+=,3sin 22sin 20αβ-=.求证 22παβ+=.证明 由223sin 2sin 1αβ+=,得到2231222i i i i e e e e i i ααββ--⎛⎫⎛⎫--=- ⎪ ⎪⎝⎭⎝⎭()2221322i i i i e e e e i ααββ--⎛⎫-⇒=+ ⎪⎝⎭()122223sin 22sin 203222i i i ie e e e i iααββαβ-----=⇒⨯-⨯0=()()2232ii i i i ie e e e e e iiααααββ---+--⇒⨯=()2 ()()12÷得:()()2222i i i ii i i ii e e e e e e i e e ββααββαα----+-=-+. 由三角变换得:2tg ctg αβ=,因为,αβ均为锐角,所以2β也为锐角,即知22πβα+=,所以原式得证.结束语欧拉公式将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的相关运算及其性质架起了一座桥梁.在求三角表达式的值、证明三角恒等式、解决一些方程根的问题、求三角级数的和、解决高次幂的三角函数时,都应用到了欧拉公式,从而避免了复杂的三角变换,在三角中的应用能够利用较为直观代数运算使得问题得到解决.在探求一些复杂的三角关系时,如果不借助欧拉公式,而试图通过纯三角运算直接推导这些关系是相当麻烦的.本文在介绍欧拉公式时给出了欧拉公式的证明,应用到了极限的方法,不同于其它的定义复变指数函数和复变三角函数进行证明的方法. 但不可避免的是:欧拉公式在证明某些恒等式时,却相对增加了计算量.因此,在证明三角恒等式时,要具体问题具体分析.。
欧拉公式
在数学历史上有很多公式都是欧拉(Leonhard Euler 公元1707-1783年)发现的,它们都叫做欧拉公式,它们分散在各个数学分支之中。
(1)分式里的欧拉公式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b) 当r=0,1时式子的值为0 当r=2时值为1 当r=3时值为a+b+c(2)2)复变函数论里的欧拉公式:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2. 这两个也叫做欧拉公式。
将e^ix=cosx+isinx中的x取作∏就得到:e^i∏+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。
数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
(3)(3)三角形中的欧拉公式:设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr(4)(4)拓扑学里的欧拉公式:V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
如果P可以同胚于一个球面(可以通俗地理解为能吹胀成一个球面),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
X(P)叫做P的拓扑不变量,是拓扑学研究的范围。
(5)(5)初等数论里的欧拉公式:欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。
n是一个正整数。
简单多面体欧拉公式证明
我们要证明简单多面体的欧拉公式。
欧拉公式是关于多面体顶点数、面数和边数的数学关系。
简单多面体是指没有洞的多面体。
欧拉公式是:对于一个简单多面体,其顶点数V、面数F和边数E满足:V - E + F = 2。
假设多面体的顶点数为V,面数为F,边数为E。
为了证明欧拉公式,我们可以考虑多面体的结构。
1.每个顶点连接3条边,所以顶点数V = 3 ×E / 2(因为每条边被两个顶点共享)。
2.每个面有3条边,所以F = 3 ×E / 2(因为每条边属于两个面)。
根据上述关系,我们可以得到:
V - E + F = (3 ×E / 2) - E + (3 ×E / 2) = 2 ×E / 2 = E = 2。
通过上述数学模型和推导,我们证明了简单多面体的欧拉公式:V - E + F = 2。
欧拉公式19种证明
欧拉公式19种证明欧拉公式是数学中的一个重要公式,它的表达式为e^(ix)=cos(x)+i*sin(x),其中e表示自然对数的底数2.71828…,i表示虚数单位。
欧拉公式有多种证明方法,下面我们将介绍其中19种常见的证明方法。
1. 泰勒级数证明法:利用泰勒级数展开式展开e^(ix)和cos(x)+i*sin(x),然后将它们相等的系数进行比较,即可得出欧拉公式。
2. 复合函数证明法:将e^(ix)看作复数函数f(x)=e^x,将cos(x)和sin(x)看作f(x)的实部和虚部,则有f(ix)=cos(x)+i*sin(x),即e^(ix)=cos(x)+i*sin(x)。
3. 微积分证明法:将欧拉公式两边分别对x求导,得到ie^(ix)=-sin(x)+i*cos(x),再将其两边同时乘以i,即可得到欧拉公式。
4. 积分证明法:将欧拉公式两边同时积分,得到e^(ix)/i=-sin(x)/i+cos(x),再将其两边同时乘以i,即可得到欧拉公式。
5. 欧拉级数证明法:将e^(ix)和cos(x)+i*sin(x)的泰勒级数展开式进行对比,即可得到欧拉公式。
6. 幂级数证明法:将e^(ix)和cos(x)+i*sin(x)的幂级数展开式进行对比,即可得到欧拉公式。
7. 矩阵证明法:构造一个2x2矩阵,使其特征值为e^(ix)和e^(-ix),然后求解该矩阵的本征向量,即可得到欧拉公式。
8. 矩阵幂证明法:将e^(ix)表示为矩阵的形式,然后对该矩阵进行幂运算,即可得到欧拉公式。
9. 极限证明法:将e^(ix)表示为极限的形式,然后通过极限的性质推导出欧拉公式。
10. 解微分方程证明法:将e^(ix)看作微分方程y'=iy的解,并利用欧拉公式将其转化为y=cos(x)+i*sin(x),即可得到欧拉公式。
11. 解偏微分方程证明法:将e^(ix)看作偏微分方程u_t+iu_x=0的解,并利用欧拉公式将其转化为u=cos(x-t)+i*sin(x-t),即可得到欧拉公式。
证明欧拉公式
证明欧拉公式欧拉公式简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2这个公式叫欧拉公式。
公式描述了简单多面体顶点数、面数、棱数特有的规律。
认识欧拉欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。
彼得堡科学院为了整理他的著作,整整用了47年。
欧拉著作惊人的高产并不是偶然的。
他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。
即使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。
当他写出了计算天王星轨道的计算要领后离开了人世。
欧拉永远是我们可敬的老师。
欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉写的数学教材在当时一直被当作标准教程。
19世纪伟大的数学家高斯(Gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。
欧拉还是数学符号发明者,他创设的许多数学符号,例如π,i,e,sin,cos,tg,∑,f (x)等等,至今沿用。
欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。
对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。
欧拉发现,不论什么形状的凸多面体,其顶点数V、棱数E、面数F之间总有关系V+F-E=2,此式称为欧拉公式。
V+F-E即欧拉示性数,已成为“拓扑学”的基础概念。
那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......欧拉定理的意义(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。
欧拉公式
欧拉公式e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。
它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
e^ix=cosx+isinx的证明:因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=∓i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!∓x^3/3!+x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。
将e^ix=cosx+isinx中的x 取作π就得到:e^iπ+1=0.这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π,两个单位:虚数单位i和自然数的单位1,以及被称为人类伟大发现之一的0。
数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
编辑本段(3)三角形中的欧拉公式设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr 编辑本段(4)拓扑学里的欧拉公式V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
欧拉定理公式
欧拉定理公式
在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理。
它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。
第一个欧拉公式的严格证明,由20岁的柯x给出,大致如下:从多面体去掉一面,通过把去掉的面的边互相拉远,把所有剩下的面变成点和曲线的平面网络。
不失一般性,可以假设变形的边继续保持为直线段。
正常的面不再是正常的多边形即使开始的时候它们是正常的。
但是,点,边和面的个数保持不变,和给定多面体的一样(移去的面对应网络的外部。
)
重复一系列可以简化网络却不改变其欧拉数(也是欧拉示性数)的额外变换。
欧拉公式的证明(整理)
欧拉公式的证明著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。
原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。
特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i,e,π,绝妙地联系在一起方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)再抄一遍:???设z=x+iy这样e^z=e^(x+iy)=e^x*e^(iy),就是e^z/e^x=e^(iy)把e^(iy)由于所以即方法二:见复变函数第2章,在整个负数域内重新定义了sinzcosz而后根据关系推导出了欧拉公式。
着个才是根基。
由来缘于此。
方法一是不严格的。
再请看这2个积分∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;上式左边相当于下式左边乘以i于是上式右边相当于下式右边乘以i然后化简就得到欧拉公式这个证明方法不太严密但很有启发性历史上先是有人用上述方法得到了对数函数和反三角函数的关系然后被欧拉看到了,才得到了欧拉公式设atθЄR,ρЄR+,a^(it)Єz有:a^(it)=ρ(cosθ+isinθ)1因共轭解适合方程,用-i替换i有:a^(-it)=ρ(cosθ-isinθ)2由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为:设4取积分有θ→0a^(iΨ)=1Ψ=066代入5有7代入3有。
(完整版)欧拉公式证明
多面体欧拉定理:
定理简单多面体的顶点数V、棱数E及面数F间有关系对于简单多面体,有著名的欧拉公式:V—E+F=2简单多面体即表面经过连续变形可以变为球面的多面体。
欧拉定理:
定理简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2;
公式描述了简单多面体中顶点数、面数、棱数之间特有的规律。
定理的证明:
分析:以四面体ABCD为例.
将它的一个面BCD去掉,再使它变为平面图形,四面体的顶点数V、棱数E 与剩下的面数F1变形后都没有变(这里F1=F-1)。
因此,要研究V、E 和F的关系,只要去掉一个面,将它变形为平面图形即可。
只需平面图形证明:V+F1-E=1;
(1)去掉一条棱,就减少一个面,V+F1-E的值不变。
例如去掉BC,就减少一个面ABC。
同理,去掉棱CD、BD,也就各减少一个面ACD、ABD,由于V、F1—E的值都不变,因此V+F1-E的值不变;
(2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点,V+F1-E的值不变.例如去掉CA,就减少一个顶点C.同理去AD就减少一个顶点D,最后剩下AB.
在以上变化过程中,V+F1—E的值不变,V+F1-E=2—0—1=1,所以 V+F—E= V+F1-E+1=2。
对任意的简单多面体,运用这样的方法,都是只剩下一条线段。
公式对任意简单多面体都是正确的。
欧拉定理又一证法:
多面体,设顶点数V,面数F,棱数E。
剪掉一个面,将其余的面拉平,使它变为平面图形, 我们在两个图中求所有面的内角总和Σα。
一方面,利用面求内角总和.。
欧拉定理 高中证明
欧拉定理高中证明
欧拉定理(Euler's theorem)是基于欧拉公式(Euler's formula)而得出的。
欧拉定理表达了在连通的平面图中,将图的顶点数(V)、边数(E)和面数(F)联系起来的关系。
下面是欧拉定理的高中证明步骤:
1.首先,画出一个连通的平面图,确保没有自环和重边。
2.假设图的顶点数为V,边数为E,面数为F。
3.每个面至少有三条边,而每条边至多被两个面共享。
因此,
可以得到每个面的边数不小于3,每条边的面数不大于2。
4.根据上述推理,可以得出以下不等式关系式:3F ≤ 2E
(每个面至少有3条边,每条边至多被两个面共享)2E ≤
3F (每条边的面数不大于2)其中E ≤ 3V - 6 (由平面图
的特性知,E ≤ 3V - 6)
5.将E ≤ 3V - 6 代入3F ≤ 2E,可得到3F ≤ 2(3V - 6),即3F ≤ 6V
- 12。
6.通过对于每个面至少有3条边的假设,可以得出F ≥ V - 2
(通过对每个面的边数进行累加得到)。
7.结合3F ≤ 6V - 12 和F ≥ V - 2,我们可以得到以下形式的不
等式: V - 2 ≤ F ≤ 2V - 4
8.通过观察不等式 V - 2 ≤ F ≤ 2V - 4,我们可以发现:当V ≥ 3
时,不等式一定成立。
因此,由上述证明可以得出结论:对于任意连通的平面图,其
顶点数(V)、边数(E)和面数(F)满足 V - 2 ≤ F ≤ 2V - 4,这就是欧拉定理的高中证明。
欧拉公式的证明(整理)
欧拉公式的证明
着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。
原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。
特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i,e,π,绝妙地联系在一起
方法二:见复变函数第2章,在整个负数域内重新定义了sinzcosz而后根据关系推导出了欧拉公式。
着个才是根基。
由来缘于此。
方法一是不严格的。
来源:网络转载
再请看这2个积分
∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2
∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;
上式左边相当于下式左边乘以i
于是上式右边相当于下式右边乘以i
然后化简就得到欧拉公式
这个证明方法不太严密
但很有启发性
历史上先是有人用上述方法得到了对数函数和反三角函数的关系然后被欧拉看到了,才得到了欧拉公式
来源:网络转载。
欧拉方程证明
欧拉方程证明欧拉方程是由莱昂哈德·欧拉于1736年提出的,它是一种特殊的数学方程式,描述了一个复杂的函数与自身导数之间的关系。
欧拉方程的形式为:f(x)+f'(x)=0,其中f'(x)表示f(x)的导数。
欧拉方程的证明过程并不复杂,可以通过将欧拉方程代入欧拉公式(e^{ix}=cos(x)+isin(x))中得到。
具体证明过程如下:首先,将欧拉方程代入欧拉公式中,得到:e^{ix}=cos(x)+isin(x)将这个式子对x求导,得到:ie^{ix}=-sin(x)+icos(x)然后,将上面这个式子乘以i,并将欧拉方程代入其中,得到: if(x)=-f'(x)将上面这个式子两边同时乘以e^{ix},得到:ie^{ix}f(x)=-ie^{ix}f'(x)左边的式子可以化简为:ie^{ix}f(x)=if(x)e^{ix}将这个式子两边同时积分,得到:∫ie^{ix}f(x)dx=∫if(x)e^{ix}dx左边的式子可以用分部积分法进行求解,得到:ie^{ix}f(x)-∫e^{ix}f'(x)dx=if(x)e^{ix}-∫f'(x)ie^{ix}dx由于欧拉方程表明f(x)+f'(x)=0,所以上面这个式子可以继续化简为:ie^{ix}f(x)=-if(x)e^{ix}将上面这个式子代入右边积分中,得到:ie^{ix}f(x)-∫e^{ix}f'(x)dx=-ie^{ix}f(x) 移项化简后得到:∫e^{ix}f'(x)dx=2ie^{ix}f(x)再将这个式子代回到左边积分中,得到:ie^{ix}f(x)-2ie^{ix}f(x)=C化简后得到:f(x)=Ce^{-ix}其中C为任意常数。
因此,欧拉方程的解为f(x)=Ce^{-ix}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*
欧拉公式的证明
著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。
原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。
特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起
方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的)
再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy)
用牛顿幂级数展开式
e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+......
把 e^(iy) 展开,就得到
e^z/e^x = e^(iy)
=1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-.....
=(1-y^2/2!+y^4/4!-y^6/6!+.....)
+i(y-y^3/3!+y^5/5!-....)
由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,
siny = y-y^3/3!+y^5/5!-....
所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny)
即 e^(iy) = (cosy+isiny)
方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。
着个才是根基。
由来缘于此。
方法一是不严格的。
再请看这2个积分
∫sqr t(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2
∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2;
上式左边相当于下式左边乘以i
于是上式右边相当于下式右边乘以i
然后化简就得到欧拉公式
这个证明方法不太严密
但很有启发性
历史上先是有人用上述方法得到了对数函数和反三角函数的关系然后被欧拉看到了,才得到了欧拉公式
设a t θ ЄR,ρЄR+,a^(it)Єz有:
a^(it)=ρ(cosθ+isinθ) 1
因共轭解适合方程,用-i替换i有:
a^(-it)=ρ(cosθ-isinθ) 2
由1,2得ρ=1,点P[a^(it)]在单位圆上,a^(it)可表达为:
a^(it)=cosθ+isinθ 3
设t=u(θ),对3微商有:
[a^(it)]*(lna)*u'(θ)*i=-sinθ+icosθ 整理有:
[a^(it)]*(lna)*u'(θ)*i=(cosθ+isinθ)(cosπ/2+isinπ/2)约去a^(it)有:
u'(θ)=logae 4
4取积分有:
T=(l ogae)*θ+Ψ 5
θ→0时,t=limt=Ψ,带入3有:
a^(iΨ)=1 即:
Ψ=0 6
6代入5有:
T=(logae)*θ 7
7代入3有:
[a^(logae)]^(iθ)=cosθ+isinθ 化简得欧拉公式:
e^(iθ)=cosθ+isinθ
(后两者才是真正让我震惊的!!!!)
创作编号:
GB8878185555334563BT9125XW
创作者:凤呜大王*。