四线式阻抗量测
浅谈二线法和四线法测量电阻的优缺点
浅谈二线法和四线法测量电阻的优缺点作者:戴胜岳来源:《科技资讯》2012年第34期摘要:介绍了普通两线法和开尔文(Kelvin)四线连接方式测试电阻的原理及其优缺点。
关键词:开尔文四线法中图分类号:TM934 文献标识码:A 文章编号:1672-3791(2012)12(a)-0232-02通常1Ω以下的电阻叫作低电阻。
在日常生产和实践中,很多时候要对低电阻进行测量,如电线电缆20℃导体电阻、金属热处理过程中的电阻、金属焊接后电阻率的变化,电阻值在10-4~10-8 Ω,甚至更小。
因测量电路中总是存在接触电阻和导线电阻,其数量级有时和被测电阻相同,甚至高于被测电阻,所以会对测量结果造成很大影响,甚至使测量结果完全失去正确性。
在电机类产品温升实验中,测量绕线电阻时就会遇见此类情况。
一般所用的测量仪器或设备都包含连接、激励、测量和显示单元,有时还有后期数据处理单元。
采用不同的测量方法和不同的连接方式引入的测量误差不同,得到的测量精度也不同,如何根据需要减少测量误差是测试技术的关键之一。
对这些特殊低电阻的测量,需要选择合适的电路,消除电路中导线电阻、漏电电阻、温度等的影响,才能把误差降到最小,保证测量精度。
两线法和四线法是其中比较常见的测试方法,其中四线法具有灵敏度高、测量准确加上方法巧妙,使用方便、对电源稳定性要求不高等特点,因为四引线法较好地避免了接触电阻和导线电阻的影响,已被广泛地应用于安规电阻测试中。
1 二线法测试与四线法测试的优缺点两线法是把连续被测电阻导线也接到数字多用表上,连接线的电阻也算在被测电阻值里,无法将它们分开。
四线法也称kelvin法测电阻,用一对导线接电流源,另一对线(感知线)把被测电阻上电压降引入数字多用表进行测量。
由于流过感知线的电流很小,所以测量的电阻值更接近真实值。
四线没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。
其实测量原理都一样,只是接线区别。
应该说,电流回路和电压测量回路是否分开接线的问题。
关于同轴电缆特性阻抗的测试方法
关于同轴电缆特性阻抗的测试方法同轴电缆是一种常见的电信传输线路,用于在电子设备和通信系统中传输信号。
特性阻抗是同轴电缆的一个重要参数,它决定了电缆传输性能的稳定性和功率传输的效率。
在本文中,我们将介绍几种常用的测试方法来测量同轴电缆的特性阻抗。
一、综述特性阻抗是指电缆传输线路上的电阻和电抗的比率,它是同轴电缆的一个固有特性。
特性阻抗决定了传输线路上的电压和电流之间的关系,对于确保电缆传输性能的稳定性和最大功率传输至关重要。
特性阻抗的测试是通过测量电缆上的电阻和电抗来确定的。
电缆的电阻通常通过四线-阻抗法或两线法进行测量,电抗通常使用网络分析仪进行测量。
下面将对这些测试方法进行详细介绍。
二、四线-阻抗法四线-阻抗法是一种常用的测试方法,它通过测量电缆上的电阻来确定特性阻抗。
这种方法使用四条电缆进行测量,两条电缆用于提供测试信号,另外两条电缆用于测量电压和电流。
测试步骤如下:1.将电缆连接到测试仪器,确保四条电缆正确连接。
2.向电缆发送测试信号,测量电压和电流的数值。
3.通过计算电压和电流的比值来确定电缆上的电阻。
电阻值除以电流值就是特性阻抗的值。
四线-阻抗法的优点是准确度高,可以有效地测量特性阻抗。
然而,它需要特殊的测试仪器和电缆连接,成本较高。
三、两线法两线法也是一种常用的测试方法,它通过测量电缆上的电阻来确定特性阻抗。
这种方法只需要两条电缆进行测量,其中一条用于发送测试信号,另外一条用于测量电压和电流。
测试步骤如下:1.将电缆连接到测试仪器,确保两条电缆正确连接。
2.向电缆发送测试信号,测量电压和电流的数值。
3.通过计算电压和电流的比值来确定电缆上的电阻。
电阻值除以电流值就是特性阻抗的值。
两线法的优点是测试设备简单,成本较低,但准确度相对较低,适用于一些简单的测试场景。
四、网络分析仪网络分析仪是一种常用的电缆测试仪器,可用于测量电缆的特性阻抗。
它可以测量电缆上的电压和电流,并计算电阻和电抗的数值。
接地电阻的测量方法
接地电阻的测量方法接地电阻是指在电气设备中用来保护人身安全的一种线路。
它的作用是将设备的金属外壳或其他可触及的部分连接到地面,以便在设备发生漏电时,能够迅速将电流导向地面,避免对人身造成伤害。
测量接地电阻的方法主要有以下几种:1. 四线法测量法四线法是通过分别引出接地电极的两个端点,用一个外部的电流源产生的电流经过连接线(一根为电流线,一根为电压线)进入设备的接地电极,再通过另外两根线连接接地电极的另外一个端点,并通过测量仪器对产生的电压进行测量,从而计算出接地电阻的值。
2. 三线法测量法三线法是通过将电流线和电压线通过接地电极连接到设备的接地电极上,通过测量仪器对产生的电压进行测量,从而计算出接地电阻的值。
相对于四线法,三线法只测量了两个点之间的电压差,需要假设接地电阻为均匀分布。
3. 直接测量法直接测量法是将测量仪器的两个测试极分别与接地电极和外壳连接起来。
然后将电源的负极与测量仪器的测试极相连,并将电源的正极与设备外壳连接起来。
通过测量仪器对电流和电压进行测量,从而计算出接地电阻的值。
4. 阻抗测量法阻抗测量法是通过测量接地电极和地面之间的电阻来间接计算接地电阻的值。
具体方法是通过在地面上插上两个参考接地电极,并将测量仪器的测试极分别与参考接地电极和接地电极相连。
然后通过测量仪器对电压进行测量,从而计算出接地电阻的值。
总结起来,测量接地电阻的方法有四线法、三线法、直接测量法和阻抗测量法。
不同的方法适用于不同的场景和要求。
在进行测量时,需要注意选择适当的仪器和测量方法,并遵守相关的安全操作规程,确保测量结果的准确性和有效性。
此外,还需要定期进行接地电阻的测量和维护,以保证设备的安全性。
2013年电设触摸板资料—四线测电阻
1引言数字万用表测量电阻是通过测量恒流源电流I流过被测电阻RX所产生的电压Vx 实现的。
通过对Vx数字化及小数点移位便可得到Rx的数字化值。
原理框图如图1:测试时,恒流源电流I通过Hi-Lo端和测量线馈送至被测电阻Rx,电压测量端S1、S2通过短路线接至Hi-Lo端。
数字万用表实际测量到的电阻值包括被测电阻Rx及馈线电阻RL1和RL2。
当测量的电阻阻值较小时,馈线电阻产生的误差就不容忽视。
如何用现有的数字万用表精确测量阻值很小的电阻是工程技术人员经常遇到的问题。
2四线测量四线测量是将恒流源电流流入被测电阻R的两根电流线和数字万用表电压测量端的两根电压线分离开,使得数字万用表测量端的电压不再是恒流源两端的直接电压,如图2所示。
从图中可以看出,四线测量法比通常的测量法多了两根馈线,断开了电压测量端与恒流源两端连线。
由于电压测量端与恒流源端断开,恒流源与被测电阻Rx、馈线RL1、RL2构成一个回路。
送至电压测量端的电压只有Rx两端的电压,馈线RL1、RL2电压没有送至电压测量端。
因此,馈线电阻RL1和RL2对测量结果没有影响。
馈线电阻RL3和RL4对测量有影响,但影响很小,由于数字万用表的输入阻抗(MΩ级)远大于馈线电阻(Ω级),所以,四线测量法测量小电阻的准确度很高。
不过,四线测量中的恒流源电流的精确度非常关键。
建议采用外加的更稳定的恒流源电流;应注意的是,外加的恒流源电流的大小要与数字万用表恒流源电流的大小相等。
我们采用的外加的恒流源电流由高精密基准电压源MAX6250、运放及扩流复合管组成,如图3所示。
电压源MAX6250的温漂≤2ppm/℃,时漂ΔVout/t=20ppm/1000h。
I取800μA~1mA,R是极低温漂线绕电阻(若取I=1mA,R=5kΩ),这时I 的温漂和时漂相当于MAX6250的水平。
3馈线电阻补偿馈线电阻补偿法通常采用三线制接法,被测电阻与接地的线相接。
原理如图4所示。
电阻测试方法4
Rx
r1r2
V
I
图1 恒流测压法
MOS FET作为开关系统,那么受
响,根本无法量测小电阻。
舌簧式继电器,在测量很小的电阻值时,
内阻的影响,会产生测试值偏高的误差,一般偏高
10欧姆,测试引线的电阻和探针与测试点的接触电阻与被测电阻相比不能忽略不计时,若仍采用两线测试方法必将导致测试误差增大。
此时可采用四线测试方式来进行测试,如图2。
I 在被测电阻上的压降,所以电压表可以准确测出 Rx
R x 的阻值。
测试结果和r 无关,有效地减小了测量误差。
按照作用和电位的高低,这四条线分别被称为高电位施加线(HF)、低电位施加线(LF)、高电位检测线(HS)和低电位检测线(LS)。
Reed Relay 开关系统在检测试小阻时,可采用
法使激励源与量测分离,从而精确的测试出Rx的值。
而以
湿度影响内阻漂移,必须都采用四线测试。
开关系统因受内阻漂移、静电、耐电流小(一般不能高于
10V),使量测范围受到限制而被淘汰!
派捷电子。
四线测试原理分析
实现了精确测量,电流供给回路与电压测定回 路完全独立,其排线阻抗,探针阻抗与接触阻 抗完全忽略,所测得的阻值就是PCB本身待测线 路位置的阻值。可精确测定被测PCB 之微小阻 值,其四线测试的测试精度可达到mΩ级。
测量精度:1Ω
测量精度:0.1mΩ
AKM CONFIDENTIAL
测试方式
1.二线制
AKM CONFIDENTIAL
实际应用
以产品中的导通孔为例子,在 实际测试中,可以将导通孔视 为一段导体,量测此导体的电 阻。 导体上存在空洞、变薄都会影 响电阻。
进行一些实际导通孔电阻的量 测,一般导通孔的电阻值为1030mΩ,使用二线测试根本没有 办法将如此精度电阻量测出来。
AKM Industrial Co. LTD.
AKM Industrial Co. LTD.
2.四线制
一般二线制测试时,先会预设一 个断短路标准,低于某一参数时 即视为断路,此参数将会应用于 所有的线路电阻值,即所有线路 的判定参数为一致的。(正常产 品中,每根线路阻值都是不一样 的)
四线制测试时,先将所有线路的 电阻值测试出来,测试时,一一 对应每一根线路的电阻,以此来 判定线路是否OK。
医学资料
• 仅供参考,用药方面谨遵医嘱
用这种测试方法,排线阻抗、接触阻抗等内
部阻抗皆可忽略,因此可精确测得被测PCB
之微小阻值。
AKM CONFIDENTIAL
测试精度
1.二线制
AKM Industrial Co. LTD.
2.四线制
即使PCB待测线路的阻值很小(通常<1 Ω,或为 mΩ级),但由于所测得的阻抗为馈线电阻,探 针电阻,接触电阻和待测线路阻值之和,因而机 器要设置10 Ω以上的导通阀值才能测得过。故无 法精确测定被测PCB 之低阻值。无法作PCB线 路精密测量,线路缺口,导通孔不良等缺陷无法测 试。
【开尔文四线检测】
开尔文四线检测Kelvin Four-terminal sensing开尔文四线检测(Kelvin Four-terminal sensing)也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,使用单独的对载电流和电压检测电极,相比传统的两个终端(2T)传感能够进行更精确的测量。
开尔文四线检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。
也可用于测量薄膜的薄层电阻。
四线检测的关键优点是分离的电流和电压的电极,消除了布线和接触电阻的阻抗。
四线检测感应也被称为开尔文(Kelvin)检测,威廉·汤姆森·开尔文勋爵(William Thomson, Lord Kelvin)在1861年发明的开尔文电桥测量低电阻。
每两线连接,可以称得上是Kelvin连接。
原理假设我们希望一些组件位于一个显着的距离从我们的欧姆表测量电阻。
这种情况下会产生问题,)连接的欧姆表被测量组件因为欧姆表测量所有的电路回路中的电阻,它包括导线的电阻(Rwire):(Rsubject通常情况下,导线的电阻是非常小的(仅几欧姆的导线上的压力表(大小),主要取决于每数百英尺),但如果连接线很长,和/或待测组分有一个非常反正低电阻,引入线电阻测量误差将是巨大的。
在这样的情况下的电阻测量主体的一个巧妙的方法,涉及的电流表和电压表的使用。
我们知道,从欧姆定律,电阻等于电压除以电流(R = E / I)。
因此,我们应该能够确定电阻的主体成分,如果我们测量的电流通过,并且两端的电压下降电流在电路中的所有点相同,因为它是一个串联回路。
因为我们只测量电压下降的整个主体电阻(而不是导线的电阻)。
不过,我们的目标,是从远处来衡量这个主题性,所以我们必须位于电压某处附近电流表,由另一对含有电阻的导线跨接受阻力:起初,我们似乎已经失去了任何电阻测量这种方式的优点,因为现在电压表测量电压通过长着一双引入杂散电阻(电阻)线,再次进入测量电路。
四线测量方法
四线测量通常涉及低阻测量问题.用的是"加流测压"技术.即:两线施加电流,两线进行电压采样,排除了可达到几百毫欧的引接电阻与部分表面接触电阻的不稳定表现.简单到欧姆定律和电工原理.低阻低到什么程度呢?常看到有号称"数字微欧计"的商品广告.若真要准确测量1微欧的电阻,那就不是简单的欧姆定律问题了.也许还需要涉及材料的热电特性和电化学特性等跨学科的工程知识了.例如:1A的电流在1微欧的电阻上仅产生1微伏的压降;那我们知道不同金属之间的热电势系数是多少呢?以铜锡为例约5uV/C度(不一定记得准确,但量级是不错的;举例而已,况且还有许多其它的热电偶对呢).仅1度的温差或变化就会得到5微欧的叠加测量结果.可想而知,人体的热辐射,环境气流形成的热梯度等将对测量结果产生多么显著的影响.因此,电压采样环路(线缆,接插件等)与卡具材料的选择以及卡具的力学设计,都不是凭想当然决定的.到了这个量级就涉及到uV与nV等测量技术了.先推荐朋友们到KEITHLEI网站获得一个<低电平测量>小册子的电子版,印刷版甚或中文版看看;其次是Keithley,Ajilent,Fluke,Datron等DMM制造商的网站上会有不少关于四线测量的SEMINAR,介绍原理与实际应用技巧.我想,对涉猎测量,1 通常,DMM(数字多用表)测量电阻大都采用加流测压法.无论二线还是四线法,无论3位半还是8位半的DMM,都是用定值恒流源输出已知电流,流过被测电阻,用机内DVM(数字电压表,其基本档位:通常200mV或2V)测量被测电阻Rx的电压Vrx实现的.这里的恒流源:具有输出电流不随其负载电压变化的特点(只要负载电压保持在其开路电压范围之内).例如:在200欧姆档位,Io=1mA.当Vrx=100.0mV时,算出Rx=Vrx/1mA=100.0欧姆.100.0mV的电压显示既代表100.0欧姆.同时,mV的单位显示被欧姆显示代替了.应说明的是:DVM在200mV或2V基本档位时因其输入电阻Rin通常在1000兆欧姆以上,被等效看作成内部电阻无穷大的理想电压表.即:不会有任何电流流经DVM.这个概念很重要!便于后面的分析.2 二线法与四线法的区别是:前者,DVM的两端在DMM机壳内部以并联方式被固定连接到定值恒流源的两端进行Vrx测量;后者的DVM的两端则被连接到DMM外部,形成由操作者灵活控制的四线测量方式--两端通流+两端采样测量电压.3 无论二线还是四线法,在定值恒流源电流经过有电阻的地方都会产生电压.那电流环路上有哪些电阻存在呢? 2Ra(仪器面板的两个输出电流插孔与插头的表面接触电阻,因表面氧化,污染及弹簧张力大小形成不稳定的2*(0.1-0.4欧)量级的电阻)+2Rb(两条电缆线阻<0.1欧)+2Rc(两表笔与测量点的表面接触电阻,因表面氧化,污染及压力大小形成不稳定的2*(0.1-0.4欧)量级的电阻)+2Rd(因测量位置不同而产生约<0.1欧的引线电阻)+Rx(被测电阻).二线法对这些隐性电阻是照单全收,因Vrx的采样点被固定在仪器的内部了.测出的Rx'=Rx+2Ra+2Rb+2Rc+2Rd.4 四线法则不同.例如:对一根长2米,其直径和电阻率(1欧姆/米)均匀分布的电阻丝进行四线测量.在电阻丝两头上分别标记为A ,D两点,相距A点0.5m处标记为B点,相距D点0.5m处标记为C点.则AD=2m,AB=CD=0.5m,BC=1m长度.施加电流Io=1A,流过B和C点,Vbc=Io*Rbc=1V,因AB段和CD段电阻丝没有任何电流经过,虽各有0.5欧姆电阻(哪怕是有数百欧姆的电阻变化)但是电压为零,其只发挥将电压分别传导到A和D点的作用,于是在DVM连接到A和D点后仅测得B-C段电阻丝之间的1V电压差值.此时虽有BC 点等等的接触,引线电阻(2Ra+2Rb+2Rc)产生的电压(哪怕是明显的变化),但不会被DVM记录在案(DVM仅跟随BC段的距离发生变化).另一种情况是:施加电流Io=1A,流过A和D点,Vad=Io*Rad=2V,用DVM探针测量BC段电压,虽然探针与BC点分别有可观的接触,串联等电阻(2Ra+2Rb+2Rc+2Rd),但其间也因没有任何电流经过,依然测得Vbc=Io*Rbc=1V.两种情况均能可靠测量BC段电压,获得正确的测量结果.5 现在,让我们通过上篇文帖所举的事例对FLUUKE8508A的电流反向技术试做一番简单的分析.上帖中,1安培电流,在1微欧电阻上产生1微伏电压Vr,环路中的热电偶因1度温差产生5微伏热电势Vt,于是测得V1=Vt+Vr=6微伏.当环路测量电流反向后测得V2=Vt-Vr=4微伏.可直接看出,对两公式进行减法,代数运算,V1-V2=2Vr,于是完全排除,抵消了热电势Vt的存在与影响,Vr=(V1-V2)/2.条件是:获得电流反方向测量结果之前,Vt 不变.这也许就是洋人设计思想的精妙之处--简单(就一层窗户纸)有效.好象此法在高阻测量时,洋人也同有妙用呢.但那不是FLUKE(不太确定FLUKE也用了,得查一查).此外,以在下愚见,低阻测量时,被测电阻的功率损耗极小,由此产生的热电势影响和环境等因素相比恐也是高阶小量,可以忽略不计了吧?以本案为例,功耗只有1uW.当然,这只是初步判断.洋人有洋法,国人有国招.既然揭开了这层窗纱,似可不必花大价钱去买这个A,四线测量与四点测量是不一样的。
四线式测试技术研究
四线式测试技术研究本文详细介绍了低阻四线式测试技术的原理,以及四线式飞针、四线式针床的实际工作过程,并以飞针低阻四线式测试进行实验。
一、前言随着电子技术的迅猛发展,印制线路板(PCB)的制作层数越来越高、线路密度越来越密、焊盘尺寸越做越小,客户对板的要求越来越严。
通常情况下,PCB 的开短路测试测试参数值中的开路阻抗设为25Ω,线路阻值大于25Ω时机器判断为开路,小于25Ω时机器判断为合格,对于阻值小于25Ω的线路则无法精确测试出其实际电阻值,25Ω以下的线路成为测试盲区。
在实际生产中发现PCB的某些缺陷,如孔内无铜、空洞、铜薄、线幼、线路缺口等问题均会影响到线路阻值,当阻值小于25Ω时,用通常的开短路测试方法来测试以上缺陷板时,测试结果显示PASS,但客户经过高温焊接后阻值发生变化,导致开路问题发生,最终导致客户投诉,严重的还需向客户赔款。
二、现状经对我司某客户退回的板进行问题分析发现,在反馈的244 块开路缺陷板中,其中过孔阻值大于25Ω的板有6 块,过孔阻值小于25Ω的板有51 块,其它类型开路问题板187 块,而过孔阻值小于25Ω的51 块板退去元件上机测试后的结果显示为PASS,重新测试这51 块板的开路阻值,阻值分布在1.21Ω-23.4Ω之间(详见下表),从表中数据可以看出,被退回的244 块开路缺陷板中,阻值小于25Ω的数量共51 块,占总数的比例为20.9%,此部分板是由测试机判断测试结果为PASS 而正常出货的,现有测试机根本无法检测出,我们必须寻找一种新的测试方法,降低客户投诉。
序号阻值(Ω)序号阻值(Ω)序号阻值(Ω)序号阻值(Ω)1 3.8 14 3.8 27 10.2 40 3.52 4.8 15 22.7 28 10.4 41 2.33 4.8 16 22.4 29 14.8 42 3.24 6.8 17 23.4 30 3.2 43 4.15 10.8 18 3.6 31 3.5 44 2.66 6.8 19 7.2 32 1.25 45 1.97 7.3 20 10.8 33 2.2 46 3.08 3 21 8 34 5.6 47 2.09 2.8 22 4.9 35 2.6 48 7.410 8 23 5.6 35 1.21 49 2.611 4.6 24 8.4 37 2.5 50 9.412 6.4 25 5.8 38 4.2 51 3.613 10.8 26 4.2 39 4.8三、二线测试与四线测试原理对比1、普通二线测试原理通常的开短路测试方法即为普通二线测试,如下图所示,二线测试是目前普遍应用的一种方案。
开尔文四线检测
开尔文四线检测Kelvin Four-terminal sensing开尔文四线检测(Kelvin Four-terminal sensing)也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,使用单独的对载电流和电压检测电极,相比传统的两个终端(2T)传感能够进行更精确的测量。
开尔文四线检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。
也可用于测量薄膜的薄层电阻。
四线检测的关键优点是分离的电流和电压的电极,消除了布线和接触电阻的阻抗。
四线检测感应也被称为开尔文(Kelvin)检测,威廉·汤姆森·开尔文勋爵(William Thomson, Lord Kelvin)在1861年发明的开尔文电桥测量低电阻。
每两线连接,可以称得上是Kelvin连接。
原理假设我们希望一些组件位于一个显着的距离从我们的欧姆表测量电阻。
这种情况下会产生问题,)连接的欧姆表被测量组件因为欧姆表测量所有的电路回路中的电阻,它包括导线的电阻(Rwire(R):subject通常情况下,导线的电阻是非常小的(仅几欧姆的导线上的压力表(大小),主要取决于每数百英尺),但如果连接线很长,和/或待测组分有一个非常反正低电阻,引入线电阻测量误差将是巨大的。
在这样的情况下的电阻测量主体的一个巧妙的方法,涉及的电流表和电压表的使用。
我们知道,从欧姆定律,电阻等于电压除以电流(R = E / I)。
因此,我们应该能够确定电阻的主体成分,如果我们测量的电流通过,并且两端的电压下降电流在电路中的所有点相同,因为它是一个串联回路。
因为我们只测量电压下降的整个主体电阻(而不是导线的电阻)。
不过,我们的目标,是从远处来衡量这个主题性,所以我们必须位于电压某处附近电流表,由另一对含有电阻的导线跨接受阻力:起初,我们似乎已经失去了任何电阻测量这种方式的优点,因为现在电压表测量电压通过长着一双引入杂散电阻(电阻)线,再次进入测量电路。
四线测试原理分析经典实用
测试原理
2Hale Waihona Puke 四线测试原理,即4-wire测试AKM Industrial Co. LTD.
原理:
从图中可以看出:四线测量法是在被测PCB 线路设定四测试点,比通常的测量法多了两 根馈线,断开了电压测量端与恒流源两端连 线。其中一回路作为电流供给,另一回路作 为高阻抗测量。恒流源与被测电阻Rx、馈线 RL1 、RL2构成一个回路。送至电压测量端 的电压只有Rx 两端的电压,馈线RL1 、RL2 电压没有送至电压测量端。因此,馈线电阻 RL1和RL2对测量结果没有影响。馈线电阻 RL3和RL4对测量有影响,但影响很小,由于电 压测量回路的输入阻抗(MΩ 级) 远大于馈线 电阻(Ω级) ,所以,四线测量法测量小电阻的准 确度很高。
AKM CONFIDENTIAL
实际应用
以产品中的导通孔为例子,在 实际测试中,可以将导通孔视 为一段导体,量测此导体的电 阻。 导体上存在空洞、变薄都会影 响电阻。
进行一些实际导通孔电阻的量 测,一般导通孔的电阻值为1030mΩ,使用二线测试根本没有 办法将如此精度电阻量测出来。
AKM Industrial Co. LTD.
OK
NG
实际测试电阻 值15.06mΩ
AKM CONFIDENTIAL
AKM Industrial Co. LTD.
总结
根据目前产品的实际状况来看,二线测试已经 无法将线路电阻的微量变化测试出来,只有选 择使用四线测试才能将线路的细微差异判定出 来,进而对产品进行电性能测试。
AKM CONFIDENTIAL
用这种测试方法,排线阻抗、接触阻抗等内
部阻抗皆可忽略,因此可精确测得被测PCB
用“四线”和“馈线补偿法”精确测量小电阻
用数字万用表精确测量小电阻摘要:提出用“四线”和“馈线补偿法”精确测量小电阻的方法,并给出了实验结果。
关键词:四线测量;馈线补偿;恒流1引言数字万用表测量电阻是通过测量恒流源电流I流过被测电阻RX所产生的电压Vx实现的。
通过对Vx数字化及小数点移位便可得到Rx的数字化值。
原理框图如图1:测试时,恒流源电流I通过Hi-Lo端和测量线馈送至被测电阻Rx,电压测量端S1、S2通过短路线接至Hi-Lo端。
数字万用表实际测量到的电阻值包括被测电阻Rx及馈线电阻RL1和RL2。
当测量的电阻阻值较小时,馈线电阻产生的误差就不容忽视。
如何用现有的数字万用表精确测量阻值很小的电阻是工程技术人员经常遇到的问题。
2 四线测量四线测量是将恒流源电流流入被测电阻R的两根电流线和数字万用表电压测量端的两根电压线分离开,使得数字万用表测量端的电压不再是恒流源两端的直接电压,如图2所示。
从图中可以看出,四线测量法比通常的测量法多了两根馈线,断开了电压测量端与恒流源两端连线。
由于电压测量端与恒流源端断开,恒流源与被测电阻Rx、馈线RL1、RL2构成一个回路。
送至电压测量端的电压只有Rx两端的电压,馈线RL1、RL2电压没有送至电压测量端。
因此,馈线电阻RL1和RL2对测量结果没有影响。
馈线电阻RL3和RL4对测量有影响,但影响很小,由于数字万用表的输入阻抗(MΩ级)远大于馈线电阻(Ω级),所以,四线测量法测量小电阻的准确度很高。
不过,四线测量中的恒流源电流的精确度非常关键。
建议采用外加的更稳定的恒流源电流;应注意的是,外加的恒流源电流的大小要与数字万用表恒流源电流的大小相等。
我们采用的外加的恒流源电流由高精密基准电压源MAX6250、运放及扩流复合管组成,如图3所示。
电压源MAX6250的温漂≤2ppm/℃,时漂ΔVout/t=20ppm/1000h。
I取800μA~1mA,R是极低温漂线绕电阻(若取I=1mA,R=5kΩ),这时I的温漂和时漂相当于MAX6250的水平。
四线电阻原理
四线电阻原理
四线电阻原理是一种测量电阻的方法,它通过使用四根导线来减小导线电阻的影响,从而提高测量的准确性。
四线电阻测量利用了欧姆定律,即电流等于电压除以电阻。
通常,电阻测量时电流的通过会引起导线电阻的影响,这会导致测量结果的偏差。
而四线电阻测量则通过使用两根导线传递电流,另外两根导线测量电压,有效地消除了导线电阻的影响。
具体而言,四线电阻测量的电路由一个电流源、一个电压测量仪和待测电阻组成。
电流源通过两根导线传递电流,而电压测量仪则通过另外两根导线测量电压。
这样,测量仪可以准确地测量到电压降,而不会受到导线电阻的影响。
在测量过程中,测量仪会自动计算出电阻大小,并显示在仪器上。
这种测量方法常用于实验室中对精度要求较高的电阻值测量,例如用于校准和验证标准电阻箱。
总的来说,四线电阻原理通过减小导线电阻的影响,提高了电阻测量的准确性。
它广泛应用于各个领域的电阻测量中,提供了更可靠和精确的测量数据。
开尔文测试法
开尔文四线检测Kelvin Four-terminal sensing开尔文四线检测(Kelvin Four-terminal sensing)也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,使用单独的对载电流和电压检测电极,相比传统的两个终端(2T)传感能够进行更精确的测量。
开尔文四线检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。
也可用于测量薄膜的薄层电阻。
四线检测的关键优点是分离的电流和电压的电极,消除了布线和接触电阻的阻抗。
四线检测感应也被称为开尔文(Kelvin)检测,威廉·汤姆森·开尔文勋爵(William Thomson, Lord Kelvin)在1861年发明的开尔文电桥测量低电阻。
每两线连接,可以称得上是Kelvin连接。
原理假设我们希望一些组件位于一个显着的距离从我们的欧姆表测量电阻。
这种情况下会产生问题,因为欧姆表测量所有的电路回路中的电阻,它包括导线的电阻(R wire)连接的欧姆表被测量组件(R subject):通常情况下,导线的电阻是非常小的(仅几欧姆的导线上的压力表(大小),主要取决于每数百英尺),但如果连接线很长,和/或待测组分有一个非常反正低电阻,引入线电阻测量误差将是巨大的。
在这样的情况下的电阻测量主体的一个巧妙的方法,涉及的电流表和电压表的使用。
我们知道,从欧姆定律,电阻等于电压除以电流(R = E / I)。
因此,我们应该能够确定电阻的主体成分,如果我们测量的电流通过,并且两端的电压下降电流在电路中的所有点相同,因为它是一个串联回路。
因为我们只测量电压下降的整个主体电阻(而不是导线的电阻)。
不过,我们的目标,是从远处来衡量这个主题性,所以我们必须位于电压某处附近电流表,由另一对含有电阻的导线跨接受阻力:起初,我们似乎已经失去了任何电阻测量这种方式的优点,因为现在电压表测量电压通过长着一双引入杂散电阻(电阻)线,再次进入测量电路。
低阻四线测试原理
1、普通二线测试原理
通常的开短路测试方法即为普通二线测试,如下图所示,二线测试是目前普遍应用的一种方案。
二线测试只有一个回路,所测得的阻抗为R1+R2+Rpcb,即所测得的阻抗为馈线电阻和待测线路阻值之和,故无法精确测定被测PCB 之低阻值。
但因为开路测试的条件一般为20Ω,故馈线电阻影响不大,可以忽略不计。
二线测试的精度虽然不高,但是用来判断线路的开短路已经能满足绝大部分的印制线路板的需要。
但仅适用于完全断线、完全孔断之测试,对于低阻值测试则无能为力。
2、低阻四线测试原理
开尔文连接方式(或称四线测试方式)如下图所示,开尔文连接有两个要求:对于每个测试点都有一条激励线和一条检测线,二者严格分开,各自构成独立回路;同时要求检测线必须接到一个有极高输入阻抗的测试回路上,使流过检测线的电流极小,近似为零。
激励线即是电流供给回路,检测线即是电压测定回路,电流、电压两回路各自独立。
电流供给回路两端子与电压测定回路两端子共计四端子,故称四线测试。
V≒I1 x Rpcb(因I2 (小电流)再乘上小电阻得到更小的压降),因电压表的内部阻抗非常高(MΩ级),远远大于电压测定回路的馈线电阻R3 和R4(Ω级),使得几乎全部的电流流经过Rpcb,流经电压表的电流I2 几乎为零,故所量到的电压也几乎是Rpcb 本身的压降,馈线电阻完全可以忽略,使所测得的Rpcb 几乎近似于Rpcb 本身,由此可精确测定被测PCB 之微小阻值,其四线测试的测试精度可达到mΩ级。
【开尔文四线检测】
开尔文四线检测Kelvin Four-terminal sensing开尔文四线检测(Kelvin Four-terminal sensing)也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,使用单独的对载电流和电压检测电极,相比传统的两个终端(2T)传感能够进行更精确的测量。
开尔文四线检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。
也可用于测量薄膜的薄层电阻。
四线检测的关键优点是分离的电流和电压的电极,消除了布线和接触电阻的阻抗。
四线检测感应也被称为开尔文(Kelvin)检测,威廉·汤姆森·开尔文勋爵(William Thomson, Lord Kelvin)在1861年发明的开尔文电桥测量低电阻。
每两线连接,可以称得上是Kelvin连接。
原理假设我们希望一些组件位于一个显着的距离从我们的欧姆表测量电阻。
这种情况下会产生问题,)连接的欧姆表被测量组件因为欧姆表测量所有的电路回路中的电阻,它包括导线的电阻(Rwire):(Rsubject通常情况下,导线的电阻是非常小的(仅几欧姆的导线上的压力表(大小),主要取决于每数百英尺),但如果连接线很长,和/或待测组分有一个非常反正低电阻,引入线电阻测量误差将是巨大的。
在这样的情况下的电阻测量主体的一个巧妙的方法,涉及的电流表和电压表的使用。
我们知道,从欧姆定律,电阻等于电压除以电流(R = E / I)。
因此,我们应该能够确定电阻的主体成分,如果我们测量的电流通过,并且两端的电压下降电流在电路中的所有点相同,因为它是一个串联回路。
因为我们只测量电压下降的整个主体电阻(而不是导线的电阻)。
不过,我们的目标,是从远处来衡量这个主题性,所以我们必须位于电压某处附近电流表,由另一对含有电阻的导线跨接受阻力:起初,我们似乎已经失去了任何电阻测量这种方式的优点,因为现在电压表测量电压通过长着一双引入杂散电阻(电阻)线,再次进入测量电路。
电阻的四线制接法(开尔文四线检测)
开尔文四线检测Kelvin Four-terminal sensing开尔文四线检测(Kelvin Four-terminal sensing)也被称之为四端子检测(4T检测,4T sensing)、四线检测或4点探针法,它是一种电阻抗测量技术,使用单独的对载电流和电压检测电极,相比传统的两个终端(2T)传感能够进行更精确的测量。
开尔文四线检测被用于一些欧姆表和阻抗分析仪,并在精密应变计和电阻温度计的接线配置。
也可用于测量薄膜的薄层电阻。
四线检测的关键优点是分离的电流和电压的电极,消除了布线和接触电阻的阻抗。
四线检测感应也被称为开尔文(Kelvin)检测,威廉·汤姆森·开尔文勋爵(William Thomson, Lord Kelvin)在1861年发明的开尔文电桥测量低电阻。
每两线连接,可以称得上是Kelvin连接。
原理假设我们希望一些组件位于一个显着的距离从我们的欧姆表测量电阻。
这种情况下会产生问题,因为欧姆表测量所有的电路回路中的电阻,它包括导线的电阻(R wire)连接的欧姆表被测量组件(R subject):通常情况下,导线的电阻是非常小的(仅几欧姆的导线上的压力表(大小),主要取决于每数百英尺),但如果连接线很长,和/或待测组分有一个非常反正低电阻,引入线电阻测量误差将是巨大的。
在这样的情况下的电阻测量主体的一个巧妙的方法,涉及的电流表和电压表的使用。
我们知道,从欧姆定律,电阻等于电压除以电流(R = E / I)。
因此,我们应该能够确定电阻的主体成分,如果我们测量的电流通过,并且两端的电压下降电流在电路中的所有点相同,因为它是一个串联回路。
因为我们只测量电压下降的整个主体电阻(而不是导线的电阻)。
不过,我们的目标,是从远处来衡量这个主题性,所以我们必须位于电压某处附近电流表,由另一对含有电阻的导线跨接受阻力:起初,我们似乎已经失去了任何电阻测量这种方式的优点,因为现在电压表测量电压通过长着一双引入杂散电阻(电阻)线,再次进入测量电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Presented By Victory 2009/03
2016/8/3 1
四線式阻抗量測說明
接觸阻抗(Contact Resistance)為連接器產業在可 靠度測試中,一項最常進行也是最基本的電氣特性 需求之ㄧ‧ 目前整個產業所使用的接觸阻抗測試機(微歐姆計) 大都為四線式量測的機台,但是在進行測試的時候, 卻都局限於夾具或是產品過小的關係而無法完全發 揮機台本身的功能!造成測試結果的不穩定或是重現 性不佳,甚至因為本身治具製程的問題,造成結果 的誤判‧
PCB設計
PCB設計 母端PCB DUT銲板
銲線 or 銲pin
公端PCB
進行測試
2016/8/3
14
四線式量測方法的應用
銲線 or 銲pin
2016/8/3
15
四線式量測方法的應用
H(CUR)
進行測試
自製快速測試治具
H(POT)
L(POT) L(CUR)
2016/8/3
Note: 此程序僅以PCB板端來說明!!
各式夾具介紹(2)
H(CUR) H(POT)
勾線式測試治具: 適合使用在Cable端的CR量測‧亦可與其他 夾具混合使用‧ Ex. : 含Cable之產品(USB Series Cable ...)
2016/8/3 8
一般量測方式
各式夾具介紹(3)
H(POT)
H(CUR)
探棒式測試頭 適合使用在平面可施加壓力的測試點上‧ Ex. : PCB端的測試點‧
2016/8/3
5
接觸阻抗量測原理
2016/8/3
6
一般量測方式
各式夾具介紹(1)
H(CUR)
H(POT)
挾持式測試治具: 一般常用CR測試夾頭,直接夾持較大型的測試點, 也是較通用的測試夾頭‧ Ex. : Audio Jack Series、USB Series…..
2016/8/3 7
一般量測方式
接觸阻抗量測原理
以HP4338B機型來說:
在連接器測量接觸電阻時,標準四線式測量是將恆流源電流流入待測連接器相接端子 R(CONN.),並將兩根電流線和電壓端的兩根電壓線分離開,使得電壓測量端的電壓 不在是恆流源兩端的直接電壓。 從圖中細部來解說,四線式測量法比通常的二線式測量法多了兩根導線,分開了電壓 測量端與恆流源兩端連線。由於電壓測量端與恆流源端為各自獨立迴路,恆流源與待 測電阻R(CONN.)、導線H(CUR)、L(CUR)構成一個迴路。送至電壓測量端的電壓只 有R(CONN.)兩端的電壓,導線H(CUR)、L(CUR)電壓沒有送至電壓端。因此,導線 電阻H(CUR) 和L(CUR)對測量結果沒有影響。導線電阻H(POT) 和L(POT)對測量有 影響,但影響很小,由於電壓測試迴路的輸入阻抗(MΩ級)遠大於導線電阻(Ω 級),因此四線測量法測量小電阻的準確度很高,這是對量測阻值性能測試的最精確 的方法。
r1 r3
r2 r4
開爾文連接有兩個要求:對於每個測試點都有一條激勵線F和一條檢測線S,二者嚴格分 開,各自構成獨立回路;同時要求S線必須接到一個有極高輸入阻抗的測試回路上,使流 過檢測線S的電流極小,近似為零。 上圖中r表示引線電阻和探針與測試點的接觸電阻之和。由於流過測試回路的電流為零, 在 r3,r4上的壓降也為零,而激勵電流 I在r1、r2上的壓降不影響I在被測電阻上的壓降, 所以電壓表可以準確測出 Rt兩端的電壓值,從而準確測量出R t的阻值。測試結果和r無關, 有效地減小了測量誤差。 按照作用和電位的高低,這四條線分別被稱為高電位施加線(HF)、低電位施加線 4 (LF2016/8/3 )、高電位檢測線(HS)和低電位檢測線(LS)。
H(CUR)-1 H(POT)-1 H(POT)-4 & 5 H(CUR)-4 & 5 H(CUR)-2 & 3 H(POT)-2 & 3
18
2016/8/3
四線式量測方法的應用
優點:
• 測試值準確且穩定 • 量測速度快、提高測試效率 • 後續可直接進行震動、衝擊..等需要串接迴路的測試 • 適合微小型或是規格嚴謹之產品
2016/8/3
2
四線式阻抗量測說明 •接觸阻抗量測原理
•一般量測方式 •四線式量測方式的應用
2016/8/3
3
接觸阻抗量測原理
開爾文連接測試技術 當被測電阻阻值小於幾歐, 測試引線的電阻和探針與測試點的接觸 電阻與被測電阻相比已不能忽略不計時, 若仍採用兩線測試方法必將導致測試誤 差增大。此時可採用開爾文連接方式 (或稱四線測試方式)來進行測試,
1
Line 4
Line 3 Line 1
BBR SERIES為例:
DUT的實際CR值應為 機台實測值-(Line1+ Line2 + Line 3 + Line 4)
2016/8/3
11
一般量測方式
Line 2 Line 1 銲接點
Line 3 銲接點 Line 4 一般量測方法之示意圖
可能影響的樣品實際CR值的因素: 1. Line1 & 3–此部份有可能會因會PCB製程的不穩定造成每一片 PCB在相同的位置,會有不同的CR值‧ 2. Line 2 & 4 – 會因為夾持的位置不同而且些微的差異!!
3. 銲點的部份 – 不注意的空銲會造成CR值的偏高!!
2016/8/3
12
一般量測方式
優點:
• 夾持方便、快速 • 適用大部分的待測樣品
缺點: •當產品規格要求較嚴謹無法忽略細部阻抗時 •產品端子間距較小時 •當測試板的線長不統一時,扣除線阻的時候容易 出錯
2016/8/3
13
四線式量測方法的應用
16
四線式量測方法的應用
電路跑法
H(CUR) H(POT)
L(CUR)
L(POT)
2016/8/31 : BBR SERIES
四線式量測夾持方式:
Pin1 CR = H(CUR)-1 & H(POT)-1 +L(HUR)-1 & L(POT)-1 以此類推!!!
L(CUR)-1 & 2 L(POT)-1 & 2 L(CUR)-3 & 4 L(POT)-3 & 4
2016/8/3
9
一般量測方式
各式夾具介紹(4)
H(POT)
H(CUR)
四線式測試治具: 此夾具可將測試起始點移至待測物的端子腳, 故可真實的呈現產品的CR值‧適合用於產品測 試點過小或是規格較嚴謹時使用‧ Ex. : BBR Series ……產品‧
2016/8/3 10
一般量測方式
Line 2
缺點: •前端PCB的設計需事先將四線式量測概念納入 •不適合單純且規格較寬鬆之產品 •若PCB沒有回路設計,則前置作業需花費較多時 間
2016/8/3 19
Q&A
2016/8/3
20