地铁盾构施工中人工测量盾构机姿态的方法

地铁盾构施工中人工测量盾构机姿态的方法
地铁盾构施工中人工测量盾构机姿态的方法

地铁盾构施工中人工测量盾构机姿态的方法

作者:徐浩;杨卓

作者机构:北京长城贝尔芬格伯格建筑工程有限公司,北京,100028;北京长城贝尔芬格伯格建筑工程有限公司,北京,100028

来源:山西建筑

ISSN:1009-6825

年:2009

卷:035

期:004

页码:355-357

页数:3

中图分类:TU198

正文语种:chi

关键词:地铁;盾构;自动导向系统

摘要:介绍了地铁建设中各种测量过程,并着重对盾构机姿态定位中的测量工作作了研究,阐述了盾构机自动导向系统姿态定位测量的原理和方法,以及如何使用人工测量的方法来检核自动导向系统的准确性,分析了盾构机姿态定位检测的情况.

地铁盾构施工技术试题

地铁盾构施工技术试题 (含选择题80道,填空题25道,简答题10道) 一、选择题:(共80题) 1、刚性挡土墙在外力作用下向填土一侧移动,使墙后土体向上挤出隆起, 则作用在墙上的水平压力称为()。 A. 水平推力 B.主动土压力C .被动土压力 2、混凝土配合比设计要经过四个步骤,其中在施工配合比设计阶段进行 配合比调整并提出施工配合比的依据是()。 A.实测砂石含水率 B .配制强度和设计强度间关系 C.施工条件差异和变化及材料质量的可能波动 3、盾构掘进控制“四要素”是指()。 A .始发控制、初始掘进控制、正常掘进控制、到达控制 B .开挖控制、一次衬砌控制、线形控制、注浆控制 C.安全控制、质量控制、进度控制、成本控制 4、盾构施工中,()保持正面土体稳定 A .可 B .易C.必须 5、土压平衡盾构施工时,控制开挖面变形的主要措施是控制:() A .出土量 B .土仓压力 C .泥水压力 6、开挖面稳定与土压的变形之间的关系,正确的描述是:() A .土压变动大,开挖面易稳定

B .土压变动小,开挖面易稳定 C. 土压变动小,开挖面不稳定 7、土压平衡式盾构排土量控制我国目前多采用()方法 A.重量控制 B.容积控制 C.监测运土车 8、隧道管片中不包含()管片 A. A型 B. B型C . C型 9、拼装隧道管片时,盾构千斤顶应() A .同时全部缩回 B .先缩回上半部C.随管片拼装分别缩回 10、向隧道管片与洞体之间间隙注浆的主要目的是() A .抑制隧道周边地层松弛,防止地层变形 B .使管片环及早安定,千斤顶推力能平滑地向地层传递 C.使作用于管片的土压力均匀,减小管片应力和管片变形,盾构的方 向容易控制 11、多采用后方注浆方式的场合是:() A .盾构直径大的 B .在砂石土中掘进 C.在自稳性好的软岩中掘进 12、当二次注浆是以()为目的,多采用化学浆液。 A .补足一次注浆未填充的部分 B .填充由浆液收缩引起的空隙

关于盾构机实时姿态测量和计算方法的研究.docx

关于盾构机实时姿态测量和计算方法的研究 随着社会经济的发展和城市建设的加快,城市规模不断扩大,人口不断增多,交通越来越来拥挤。一些地方的城市建设者为了治理交通拥堵,分散交通压力。不断寻求解决方式,修建地铁成为了一些城市建设者的主要的选择方式。但是在修建地铁的过程中,工程量非常大,施工难度相对较高。在地铁施工过程中,采用盾构技术,与传统的施工技术相比,有着许多优势,逐渐成为地铁修建过程中的主要施工方法。本文将主要分析盾构姿态的测量的原理和方法,探究盾构姿态的测量的精度分析。 盾构机姿态简介 盾构施工过程就像生活中的目标运动,先进行重心平移,然后在运动的过程中偏航,最后进行自身重心的滚动。因此,在盾构施工过程中,需要监测的数据是盾构机位置和姿态的参数。主要是三维坐标和滚动角、偏航角和俯仰角。 盾构机姿态的控制对整个工程施工意义重大,它决定着施工的质量和隧道推进方向的精度。一旦控制不好,容易导致隧道偏差过大和盾尾间隙过小而相碰。 盾构机液压系统 液压系统是盾构机的核心部分,盾构机的工作机构主要是由液压系统驱动完成,对盾构机系统的运行起着很大的作用。盾构机的液压系统主要包括两大系统,一是推进系统,二是主动铰接系统。 2.1.推进系统 盾构机的主要工作系统是推进系统,它主要是通过油缸作用于成型观片,以此来实现盾构前进。推进系统的动力单元是一台80L/min旋转柱塞泵,执行元件是24个油缸,调节和控制部分包括方向的控制、油缸电磁阀的选择、安全阀、节流阀等。盾构机工作时的最大工作压力是35MPa,液压泵最大推进流量是80L/min,推进油缸是240/180-1950(mm)。 2.1.1.推力计算 盾构机共有推进油缸24个,总推力是这24个油缸的推力之和,那么在液压系统的最大推力F最大-24×P×Sn中,P表示油缸的最大压强,S表示活塞面积,因此,F最大-24×35×106Pa ×3.14×0.122㎡≈37981t 2.1.2.推进速度计算 盾构机的最大推进速度就是油缸的最大伸长速度,S-1/T,T-V/S1,在这个公式中,S表示最大推进速度,T表示伸长1mm所需要的时间,V表示伸长1mm需要的油液体积,S1为推进流

地铁盾构施工答题资料

地铁盾构施工答题资料 一、盾构始发掘进要点: 始发内容包括:盾构井端头加固、始发基座安装、盾构机组装调试、安装反力架、洞门凿出、安装洞门密封、盾构姿态复核、拼装负环管片、盾构贯入作业面、建立土压平衡、试掘进。 1.确保总推力及扭矩,小于反力架和始发基座承受的反力和扭矩。 2.推进建立土压过程中注意对洞门封闭,同时对基座及反力架支撑的变 形、渣土状态等情况认真观察,发现异常立即降低土压、减小推力、控制推速。 3.负环管片推出盾尾与反力架刚环要确保连接密实牢固;负环管片与基座 轨道及三角撑之间的间隙随时填塞,待洞门围护结构全部拆除后快速通过洞门进行始发掘进。 4.始发掘进50~60环时,可拆除负环及反力架(即拼装连接的管片结构 到一定长度后的摩阻力足以满足作用于管片的支撑反力时)。 5.始发前确保对盾尾钢丝刷涂抹油脂至饱和均匀(避免损坏相交帘布、扇 形折页板)。 6.严禁盾构在始发基座上滑行期间纠偏作业。 7.始发过程中严格渣土管理,严密监测防止土体沉降隆起。 8.盾尾完全进入洞门密封后,调整洞门密封及时同步注浆,封堵洞圈,防 止洞门密封处出现漏泥、漏浆。 9.始发初磨合期要注意推力、推速、扭矩的控制,同时也要注意各部位的 保养。 二、确保土压平衡采取的措施 1.拼装管片时,严控盾构后退确保掘进面土体稳定。 2.及时盾尾环形同步注浆,确保管片尽早与围岩有效支撑。 3.提前预知地质情况,遇松散或不良土层提前做好添加剂注入,以保证改 良的渣土效果,达到控制土仓压力平衡,保证掌子面稳定。 4.利用信息化施工加强动态管理,保证地面建构筑物安全。 三、如何控制盾构掘进姿态:

首先,影响盾构掘进姿态的因素有:a、开挖面地层分布情况。B、隧道覆土厚度(浅则抬头)c、盾壳周围注浆效果。d、推进油缸合力作用分布。 1.采用精准、性能良好的测量导向系统,辅以人工复核及时准确的反馈掘 进偏差,及时采取纠偏措施; 2.盾构于水平线路掘进时,使盾构保持稍向上的姿态,以纠正因盾构自重 而产生的‘栽头’现象; 3.调整分区油缸组的推速与推力进行纠偏和调向(盾构上的铰接油缸及推 进油缸组的合力作用点调整均具有调整姿态的功能) 4.确保盾壳周围注浆饱满、控制出土量、 5.掘进中出现‘蛇形、滚动’主要与地质条件有关,针对不同的地质情况 进行周密的工况分析,严格控制盾构操作减少蛇形值和滚动,如滚动时可采取正反转刀盘纠正掘进姿态。 四、土压平衡盾构开挖面稳定有哪些因素?如何控制开挖面稳定?(一)、影响掌子面稳定因素有:1、土仓压力平衡;2、螺旋机排土量;3、渣土的流塑性。 (二)、确保土压平衡采取的措施有:1、拼装管片时,严控盾构后退确保掘进面土体稳定;2、及时盾尾环形同步注浆,确保管片尽早与围岩有效支撑;3、提前预知地质情况。遇松散或不良土层,提前做好添加剂注入,以保证土仓内渣土的流塑性,达到控制土仓压力平衡以达到保证掌子面稳定; 4、利用信息化施工加强动态管理,保证地面建构筑物安全。 五、盾构通过上软下硬段的施工应采取哪些措施? 答、1、合理配置刀具,在边缘区域配置足够的重型齿刀或滚刀确保硬岩充分破碎。2、注入泡沫剂进行渣土改良以减少刀具破损防止开挖面失稳。3、合理控制掘金参数。4、合理利用盾构铰接油缸改变刀盘倾角以加强充分切割硬岩,加强掘金姿态控制能力。5、合理控制千斤顶的的合力作用点以抵消盾构‘上抛’现象(或提前预设俯视掘金姿态抵消上抛);必要时利用扩挖刀对下部岩层适量扩挖已达到控制上抛。6、检查或更换刀具时必须进行加固或带压进仓。7、加强设备的检查保养确保机械设备的良性运行。六、盾构掘进遇中硬岩层段施工应采取哪些措施? 答:1、适当加入泡沫或膨润土,遇连续掘进且地下水较少时,可是当加水以改良渣土流塑性。2、充分准备刀具特别是滚刀、合理配置刀具。3、当掘进中出现推力过大、扭矩偏小、姿态难以调整、速度缓慢或无进尺时,

盾构施工控制测量

中铁三局西南公司盾构施工作业指导书 盾构施工控制测量 中铁三局西南公司盾构工程段

1.盾构施工控制测量 1.1 目的和适用范围 为了保证盾构机准确定位始发,根据设计蓝图计算出的隧道中心线在规范偏差允许范围内掘进并准确贯通,制定本作业指导书。 本作业指导书适用于采用盾构施工的区间隧道工程。 1.2 工作内容及技术要点 盾构施工测量主要分为四部分:地面控制、联系测量、洞内控制和竣工测量,具体内容及技术要求见表1.2-1。 表1.2-1 盾构施工测量内容及技术要点 1.3 测量前准备工作 1.3.1盾构施工前,项目部应成立专门的测量组织机构,测量人员应具备相应的测量技能等级及执业资格。 1.3.2项目应配置精度满足要求的测量仪器,全站仪测角精度不低于2″,测距精度不低于Ⅱ级(5~10mm)。

1.3.3盾构施工前,应编制测量方案,并按程序经过审查、批准后方可实施。1.4 测量作业 1.4.1 交接桩及复测 1 项目中标后,交接桩资料包括平面控制点坐标及高程以及相应的“点之记”,经业主方代表(或者业主委托的第三方测量(以下简称“业主测量队”)单位代表)、施工承包方代表签字确认后生效,并到各控制桩点现场确认。 2 施工承包方完成接桩后,应及时编写复测方案并组织实施。复测成果上报监理及业主(或业主测量队)审查。如发现有交桩控制点精度不满足要求,应在复测报告中明确申请业主测量队进行复测确认。 3 一条区间隧道交桩控制点应不少于6个,即在隧道两端各有2个以上平面控制点和1个以上水准点。 4 按照精密导线的要求进行控制导线复测,具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“3.3精密导线测量”执行。 1.4.2 地面控制点加密 1 加密导线点与交桩控制点宜形成附合导线,附合导线的边数宜少于12个,相邻的短边不宜小于长边的1/2,个别短边的边长不应小于100m。 2 受条件限制,加密导线点与交桩控制点只能形成闭合导线时,应在《城市轨道交通工程测量规范》(GB 50308-2008)要求基础上增加至少一倍的观测频率。 3 加密水准点应设置在施工影响范围之外且比较稳固的地方,至少每半年对加密水准点与交桩水准点进行一次联测。 1.4.3 平面联系测量 1 平面联系测量一般可采用一井定向(如图 1.4.3-1)、两井定向(如图 1.4.3-2),投点方式可采用钢丝或者投点仪。 2 一井定向联系三角形测量具体要求按照《城市轨道交通工程测量规范》(GB 50308-2008)“9.3联系三角形测量”执行。 3 两井定向联系测量 1)在盾构施工时,可以利用车站两个端头井或者是一个端头井和中间的出土口位置进行两井定向。 2)左右线的地下控制边可以同时测量,但应分开计算。

安徽合肥地铁考试题(答案)

合肥地铁第三方质量安全巡查项目部 考试试题 姓名:得分: 一、选择题:(共45题,每题1分,共45分) 1、为了更好做好项目开工前的准备工作,合理部署施工队伍,安排各种资源投入时间及选择施工方法,首选要做好( B) 工作。 A 项目管理交底 B 施工调查 C 图纸审核 2、购入的计量器具应是具有经计量确认取得生产许可证的厂家的产品,应有检验合格证、技术说明书和(C)标志。 A 计量检测认证 B 制造计量器具许可证 C 计量认证 3、一般混凝土浇筑完成后,应在收浆后尽快予以覆盖和洒水养护,当气温低于(C)度时,应覆盖保温,不得洒水。 A 0 B 3 C 5 4、当在使用中对水泥质量有怀疑或水泥出厂日期逾(B)个月时,必须再次进行强度试验。 A 6 B 3 C 2 5、基坑开挖断面尺寸应符合设计要求,开挖轮廓线应采用有效的( C )手段进行控制。 A 开挖 B 支护 C 测量 6、常用模板设计需要考虑设计荷载和(B)。 A 模板刚度 B 计算荷载 C 预拱度

7、施工单位在施工过程中,要严格执行内部“三检制”,其含义是指(A)。 A 自检、互检和专检 B 自检、他检和专检 C 自检、互检和监督 8、当基坑开挖较浅尚未设置支撑时,围护墙体的水平变形表现为(B)。 A 围护墙体顶部最小,底部最小向基坑方向移动坑洼洼 B 围护墙体顶部最大,向基坑方向水平位移 C 围护墙体顶部和底部较小,中间最大 9、为加强脚手架整体稳定性,双排式脚手架应设( C )。 A 剪刀撑 B 横向斜撑 C 剪刀撑、横向斜撑 10、现行规范中明确深度超过( C )的基坑称为深基坑,需要另外设计基坑围护方案。 A 2m B 3m C 5m 11、隧道、地下工程、高温、潮湿的作业区域照明电压不得大于(C)伏,特别潮湿地方不得大于()伏。 A 220伏36伏 B 54伏12伏 C 36伏12伏 12、下列那种隧道施工方法不属于钻爆法(C)。 A 全断面开挖法 B 台阶法 C 盾构法 13、钢筋焊接接头长度区段内是指( B )长度范围内,但不得小于500mm。 A 30d B 35d C 45d

地铁工程施工技术人员培训考试(试题及答案)

长沙地铁盾构及深基坑施工技术培训考试题 部门:姓名: 一、填空题(每空1分,30空,30分) 1.本次培训的主要课题有:盾构施工基础理论知识,盾构端头井(或始发和到达端头井)加固技术、哈尔滨地铁车站富水深基坑施工技术、深基坑半明挖半盖挖开挖施工技术等。 2.地层渗透系数对于盾构的选型是一个很重要的影响因素。当地层的透水系数小于 10-7m/s时,可以选用土压平衡盾构;当地层的渗水系数在 10-7m/s 和 10-4m/s之间时,既可以选用土压平衡盾构也可以选用泥水式盾构;当地层的透水系数大于 10-4m/s时,宜选用泥水盾构。 3.哈尔滨地铁车站施工时,地下水位比较高,在地面下3米处,可分为潜水、孔隙微承压水及承压水;使用的基坑降水井包括基坑内侧的疏干井和基坑外侧的降压井。 4.深基坑施工成败的关键是围护结构的选择与施工。 5.PBA(Pile柱、Beam梁、Arch拱)工法又称为“洞桩法”,它的特点是把成熟的施工工法(小导洞、边桩、纵横梁、扣拱)进行有序组合,形成的一种新的工法。 6.旋喷桩施工有单重管、二重管、三重管等几种施工方法,在地基加固、提高地基承载力、改善土质进行护壁、挡土、隔水等起到很好的作用。 7.按照建质【2009】87号关于印发《危险性较大的分部分项工程安全管理办法》通知,光达站及出入段线施工过程中,应编制深基坑和混凝土模板支撑(或混凝土模板支架)安全专项方案。按照相关规定,应由企业(或局集团公司)技术负责人审批,并由施工单位(或项目经理部)组织不少于 5 名的社会专家进行论证评审。 8.目前正在施工的预应力锚索为出入段线Z5型桩的第一排锚索,该排锚索设计长度 17 m,锚固段长度 6.5 m,自由段长度 10.5 m,设计预加力(锁定值) 110 KN,水平间距 3.0 m。 9.车站防水等级为二级,在满足使用要求前提下,结构不允许渗漏水,结构表面只允许有少量、偶见的湿渍,但其总面积不大于总防水面积的 2‰。 10.深度超过__2__ m的基坑、挖孔桩或其他洞口施工,应有临边安全防护设施和警示标志,防止人员坠落。

盾构机姿态人工测量方案

盾构机姿态人工测量方案 由于ELS靶被送往德国进行例行的检修,大汉盾构区间右线暂时无法使用SLS-T 导向系统,为保证盾构日常掘进的需要,确保盾构机按设计轴线前进,拟采用人工测量的办法测量出盾构机当前的姿态,以指导盾构机的掘进。以下对盾构机姿态的人工测量方案进行说明: §1原理 盾构机在出厂时,开发SLS-T导向系统的VMT公司就根据盾构机的设计与加工尺寸,在盾构机中体的隔板上布置了12~16个测点,所有的测点都在出厂前详细测设了每一个测点与刀盘中心的相对位置。盾构机姿态人工测量就是利用人工直接采用控制导线的测量办法详细测出这些测点中的部分点位的绝对坐标,然后根据测点与刀盘中心的空间关系,反算出刀盘中心坐标,最后根据设计线路参数与刀盘中心的绝对坐标的空间关系推算出盾构机的三维控制姿态。 §2适用范围 2.1盾构机始发姿态测量 盾构机始发姿态便是由人工测量出的盾构机姿态。盾构机始发定位时需精确测定ELS靶相对于盾构机主机的相对位置关系,其方法便是根据人工测量出的盾构机姿态,在SLS-T导向系统的微机中调整ELS靶的位置参数,以改变微机上显示的盾构机姿态,当盾构机上显示的姿态与人工测量出的盾构机姿态一致时,便可认为当前ELS靶的位置参数是正确的,ELS靶始发定位调试顺利完成。 2.2对S L S-T导向系统的复核 在掘进施工中,利用人工测量的办法测量出盾构机当前的姿态,与SLS-T导向系统显示的盾构机姿态进行比较,来复核导向系统的测量成果。 2.3盾构掘进施工测量 利用人工测量出的盾构机姿态可指导盾构机的掘进施工,保证盾构机按设计轴线前进。盾构掘进施工中,人工测量盾构机姿态的测量频率为每环1次。

地铁施工考试题库含答案

地铁考试题库 (含答案) 地铁施工技术试题(综合) (2) 地铁车站和区间暗挖工程试题 (87) 地铁车站及明挖施工技术试题 (92) 地铁盾构施工技术试题 (111) 地铁轨道工程试题 (131) (地铁车站及区间暗挖工程)项目管理考试题库 (148) 地铁试验题 (169) 盾构试验题 (184) 盾构施工安质试题 (192) 地铁车站和区间暗挖安全试题 (204) 地铁车站和区间暗挖安质试题 (213) 中国中铁整理 更多铁路专业资料请访问:https://www.360docs.net/doc/625990877.html,/yinhulsp

地铁施工技术试题(综合) (含选择题460道,填空题174道,简答题52道) 一、选择题:(共460题) 1、新奥法是( B ) A、一种施工方法 B、施工原则 C、矿山法 2、选择施工方法应根据( C ) A、隧道长度 B、工期要求 C、地质条件 3、用中线法进行洞内测量的隧道,中线点间距直线部分不宜短于( C ) A、50m B、80m C、100m 4、当洞口可能出现偏压时,应采取措施( C ) A、地表锚杆 B、喷射混凝土 C、平衡压重填土 5、在IV~VI尖围岩条件下,全断面开挖法适用于(B) A、3车道隧道 B、2车道隧道 C、2车道隧道的停车带 D、跨度大于20m的隧道 6、沿隧道设计断面轮廓线布置的周边眼间距误差不得大于( A) A、5cm B、10cm C、15cm 7、喷射混凝土材料计量,一般应以质量计算,其允许误差为:砂与石料各为( A) A、5% B、3% C、2% 8、二次衬砌的施作时间为( C ) A、初期支护完成1.5个月后 B、初期支护完成后

地铁盾构施工技术试题

地铁盾构施工技术 试题

地铁盾构施工技术试题 (含选择题80道,填空题25道,简答题10道) 一、选择题:(共80题) 1、刚性挡土墙在外力作用下向填土一侧移动,使墙后土体向上挤出隆起,则作用在墙上的水平压力称为()。 A.水平推力B.主动土压力C.被动土压力 2、混凝土配合比设计要经过四个步骤,其中在施工配合比设计阶段进行配合比调整并提出施工配合比的依据是()。 A.实测砂石含水率 B.配制强度和设计强度间关系 C.施工条件差异和变化及材料质量的可能波动 3、盾构掘进控制“四要素”是指()。 A.始发控制、初始掘进控制、正常掘进控制、到达控制 B.开挖控制、一次衬砌控制、线形控制、注浆控制 C.安全控制、质量控制、进度控制、成本控制 4、盾构施工中,()保持正面土体稳定 A.可 B.易C.必须 5、土压平衡盾构施工时,控制开挖面变形的主要措施是控制:() A.出土量B.土仓压力C.泥水压力 6、开挖面稳定与土压的变形之间的关系,正确的描述是:() A.土压变动大,开挖面易稳定 B.土压变动小,开挖面易稳定

C.土压变动小,开挖面不稳定 7、土压平衡式盾构排土量控制中国当前多采用()方法 A.重量控制B.容积控制C.监测运土车 8、隧道管片中不包含()管片 A.A型B.B型C.C型 9、拼装隧道管片时,盾构千斤顶应() A.同时全部缩回B.先缩回上半部C.随管片拼装分别缩回10、向隧道管片与洞体之间间隙注浆的主要目的是() A.抑制隧道周边地层松弛,防止地层变形 B.使管片环及早安定,千斤顶推力能平滑地向地层传递 C.使作用于管片的土压力均匀,减小管片应力和管片变形,盾构的方向容易控制 11、多采用后方注浆方式的场合是:() A.盾构直径大的B.在砂石土中掘进 C.在自稳性好的软岩中掘进 12、当二次注浆是以()为目的,多采用化学浆液。 A.补足一次注浆未填充的部分 B.填充由浆液收缩引起的空隙 C.防止周围地层松弛范围的扩大 13、盾构方向修正不会采用()的方法 A.调整盾构千斤顶使用数量 B.设定刀盘回转力矩

[施工技术,地铁]地铁施工盾构法的施工技术研究

地铁施工盾构法的施工技术研究 引言 随着我国现代化建设进程的逐步加快,城市建设水平逐步提高,与之相对应的庞大的城市人群给城市交通带来巨大压力。为了缓解城市交通压力,保障人们出行正常,各级政府千方百计寻找新的交通解决方案。地下铁路就是其中重要一项内容。地铁以其低碳环保、高效便捷的优点有效缓解了大型城市人群出行交通困难的问题,广泛应用于世界各国大型都市中,已经成为城市现代化水平的一个重要标志。我国第一条地铁于上世纪70 年代初期在北京投入使用,至今已有四十多年。目前,各地大中城市都已经或正在实施地铁工程,地铁建设已经成为我国城市建设的一项重要组成部分,受到社会各界的普遍关注。由于地铁工程大部分工程都在地面以下,地下施工的特殊性给地铁项目工程建设带来很多与其它交通工程截然不同的特点和问题。作为地铁工程中的关键部分,隧道施工目前普遍使用盾构法进行施工。该技术相对成熟,其以盾构机为主要施工设备,在土层中实施迅速的挖掘作业。在盾构机外壳强大的支护作用和千斤顶等其它设备的配合下,盾构挖掘作业施工速度快,安全系数高,受到世界各地地铁工程建设单位的普遍欢迎,进而广泛应用于地下工程隧道挖掘施工中。我国地铁事业正处于高速发展阶段,加强盾构施工技术研究,深入把握盾构施工技术特点,对于改进我国地铁工程建设质量,提高施工水平,保障施工安全,降低工程 成本,促进地铁事业顺畅健康发展具有极为有利的促进作用。 1 地铁工程盾构施工技术的施工原理 盾构施工技术,顾名思义,其以盾构机为主要施工设备进行施工。盾构机具有坚强的盾构钢壳,可以为地下挖掘施工提供极为可靠的安全保障。在盾构机挖掘行进过程中,盾构机的尾部同步进行持续的注浆作业。注浆作业可以最大限度降低盾构机挖掘过程中对周围土层的扰动,从而保障隧道的稳定。盾构机由刀盘、压力舱、盾型钢壳、管片和注浆体等部分组成,各部分各有作用,又相互配合,协调运转,使得盾构机挖掘作业得以顺利实施。盾构机在土层中的挖掘作业实际上包括三方面内容,一是确保开挖面稳定,二是挖掘并排出土壤,三是进行补砌和注浆作业。 2 地铁工程盾构施工技术的施工特点 盾构施工技术属于较为先进的隧道挖掘技术,和传统地铁隧道施工技术相比,盾构施工技术在施工过程中具有如下特点:一是盾构施工大部分过程位于地下,对施工地点周边环境影响很小,非常适合建筑密集、人群活动频繁的城市环境施工。在采用盾构机进行地铁隧道施工时,施工活动位于地面以下,施工过程中产生的噪音非常微弱,对周围土层的振动也小,不必像其它工程施工那样需要线路沿线施工现场进行特殊的布置安排,对地面活动,特别是交通运输和周边环境影响微弱。二是施工精度要求高。地铁工程对于施工质量和工程安全可靠性有着很高的要求,为了达到这个目标,在工程施工时必须严格控制施工精度。在使用盾构机进行施工时,由于盾构机管片制作精度很高,从而保障了施工误差能够控制在一个极小的范围内。此外,盾构机发掘作业时,只能向前行进,无法做出后退动作,一旦施工过程中出现后退现象,必然会造成盾构装置受到严重损伤,从而产生不可预估的后果,严重影响工程进度和施工安全。为确保施工安全,在施工前期,施工人员一定要做好充分准备,防止任

地铁车站及明挖施工技术试题

地铁车站及明挖施工技术试题 (含选择题125道,填空题40道,简答题15道) 一、选择题:(共125题) 1、实施性施工组织设计由该工程项目的(A)负责编制。 A 项目经理 B 项目总工程师 C 项目工程部长 2、为了更好做好项目开工前的准备工作,合理部署施工队伍,安排各种资源投入时间及选择施工方法,首选要做好( B) 工作。 A 项目管理交底 B 施工调查 C 图纸审核 3、为加强隐蔽工程施工过程中的质量控制,施工现场应严格执行(B )。 A 三检制度 B 内部旁站监理制度 C 抽查制度 4、施工过程不合格的标识一般不能由(C)等记录来实现。 A 进货检验 B 测试记录 C 质量评定表 5、施工组织设计的核心内容是(B)。 A 施工组织机构设置 B 施工方案的确定 C 施工机械设备配置 6、购入的计量器具应是具有经计量确认取得生产许可证的厂家的产品,应有检验合格证、技术说明书和(C)标志。 A 计量检测认证 B 制造计量器具许可证 C 计量认证 7、一般混凝土浇筑完成后,应在收浆后尽快予以覆盖和洒水养护,当气温低于(C)度时,应覆盖保温,不得洒水。 A 0 B 3 C 5

8、当在使用中对水泥质量有怀疑或水泥出厂日期逾(B)个月时,必须再次进行强度试验。 A 6 B 3 C 2 9、对大体积混凝土的养护,应采取控温措施,保证表面和内部温差不宜超过(C)度。 A 10 B 15 C 25 10、基坑开挖断面尺寸应符合设计要求,开挖轮廓线应采用有效的( C )手段进行控制。 A 开挖 B 支护 C 测量 11、大体积墩台基础混凝土浇筑时,可分块进行浇筑,各分块平均面积不宜小于( B )平方米。 A 30 B 50 C 80 12、常用模板设计需要考虑设计荷载和(B)。 A 模板刚度 B 计算荷载 C 预拱度 13、在计算支架或拱架的强度和刚度时,除了考虑在支架或拱架的设计荷载外,还应计入(B)。 A 风力 B 温度变化力 C 冲击力 14、墩台混凝土表面裂缝宽度不得大于(B)mm。 A 0.1 B 0.2 C 0.3 15、隧道洞内平面控制测量不宜使用( A )进行测量。 A GPS B 全站仪 C

姿态测量方法

盾构机姿态测量实例 德国VMT公司制造的盾构机掘进姿态测量方法。 1,德国VMT公司制造的盾构机。在盾构机主机横向截面上有18个由螺母构成的测量标志点,这些点在盾构机构建之时就已经定位,每个点相对于盾构机的轴线有一定的几何关系,并在由盾构机轴线构成的坐标系中有坐标数据。盾构机轴线坐标数据如下图:

2 测量标志点 对于德国VMT公司制造的盾构机上有18个点,单只要测出其中任意3个点(最好取左中右3个点)的实际三维坐标,就可以计算出盾构机的姿态,在进行测量时,当盾首中心为坐标原点,其三维坐标为(0,0,0)盾首与盾尾的距离为4.34m,盾尾中心的三维坐标为(—4.34,0,0)。同样在该坐标系中,从表中可以查出3,8,15三个点的三维坐标分别为(X1,Y1,Z1),(X2,Y2,Z2),(X3,Y3,Z3,) .由此可以列出利用该三个点计算盾首中心的三维坐标 (X首,Y首,Z首)和盾尾中心三维坐标(X尾Y尾Z尾)的两组三元二次方程组的数学表达方式。 计算盾首中心三维坐标数学方程组为: (X1?X首)2 +(Y1?Y首)2+(Z1?Z首)2 =(?3.9567)2+(?1.9917)2+(1.6565)2 (X2?X首)2 +(Y2?Y首)2+(Z2?Z首)2 =(?3.9701)2+(?0.3638)2+(2.8150)2

(X3?X首)2 +(Y3?Y首)2+(Z3?Z首)2 =(?3.9560)2+(2.3056)2+(1.1695)2计算盾尾中心三维坐标数学方程组为: (X1?X尾)2 +(Y1?Y尾)2+(Z1?Z尾)2 =(?3.9567+4.34)2+(?1.9917)2+(1.6565)2 (X2?X尾)2 +(Y2?Y尾)2+(Z2?Z尾)2 =(?3.9701+4.34)2+(?0.3638)2+(2.8150)2 (X3?X尾)2 +(Y3?Y尾)2+(Z3?Z尾)2 =(?3.9560+4.34)2+(2.3056)2+(1.1695)2 上述3.8.15三个点是在以盾构机轴线构成的坐标系中,盾首中心为坐标原点(0,0,0)盾尾为(-34.4,0,0)的条件下的坐标系。当盾构掘进过程中实测出该三个点的某一里程的大地坐标非别为 X1=45336.775,X2=45336.610,X3=45336.461 Y1=29534.236,Y2=29535.846,Y3=29538.525 Z1=-1.434 Z2=-0.236 Z3=-1.885 把以上数据代入第一组方程组,可解算出盾首中心在某一里程的大地三维坐标: X首=45340.608,Y首=29536.538,Z首=-2.975 在该里程上盾首中心的设计大地三维坐标为: X首=45340.610,Y首=29536.520,Z首=-2.945 由此得到三维坐标较差: △X=-2mm,△Y=18mm, △Z=-30mm 则可计算出盾首中心左右上下偏差,其分别为:

盾构姿态实时监控原理与方法

盾构姿态实时监控原理与方法 摘要:本文着重介绍盾构姿态自动监测与控制的原理与方法,并对系统软、硬件组成及运行界面进行简略说明。 关键词:盾构姿态自动监控 1引言 盾构姿态的良好保持是盾构法施工的重要控制目标,它直接关系到隧道质量与施工成败,如何实现高水平的盾构姿态实时监控一直是盾构施工人员关心的工程难题,盾构姿态实时监控技术的重要性不言而喻。 完整的盾构姿态实时监控系统包括盾构姿态偏差自动监测和自动控制两方面内容。国内使用的盾构姿态监测系统多为国外产品,主要有德国VMT公司的SLS-T系统、英国的ZED系统和日本TOKIMEC的TMG-32B(陀螺仪)系统等,许多地方还在使用人工测量;国内使用的盾构姿态控制系统大多取之于国外盾构生产厂家成套盾构产品中提供的控制功能(注:目前国内也有较成熟的盾构引导控制系统,如我公司使用的上海米度与上海力信两家公司研制生产盾构导向、顶管导向系统、隧道精灵软件等均已较成熟,本人现在使用中,欢迎探讨交流)。由于盾构控制系统富含PLC可编程控制器控制代码及上位控制计算机控制程序,又与具体的控制器件和动力设备的关系极为密切,因而具有一定的技术含量和非标准性。 国外有全自动盾构的研究,但少有成功应用的实例。在科学技术突飞猛进的今天,研究先进、自主的盾构姿态实时监控技术,建立盾构姿态实时监控理论、方法,对改善盾构施工水平有着深刻的现实意义。介绍盾构姿态自动监测与控制的原理与方法。 2盾构姿态监测系统原理 根据公路、轨道交通设计规范,公路、轨道交通的设计路线由平曲线和竖曲线组成,平曲线一般包括直线、缓曲线、圆曲线三种,竖曲线一般包括直线、圆曲线(凸曲线、凹曲线)两种。盾构根据公路、地铁隧道设计路线向前推进,盾

地铁盾构法施工新技术要点解析

地铁盾构法施工新技术要点解析 随着社会经济、科学技术的发展进步,我国交通事业也得到了良好的发展,地铁成为了目前缓解城市交通压力的重要交通工具。而地铁建设环境比较特殊,绝大部分施工环境处于地下,施工极为复杂,盾构法作为地铁建设一项重要的施工技术,大多数用于隧道地铁施工中。本文围绕地铁盾构法施工新技术要点进行探讨分析。 标签:地铁;盾构法;施工;新技术;要点 1、工程实例 某城市在地铁建设过程中合理应用了盾构法。施工中存在以下几方面问题:一是建设城市地铁的时候盾构机需要穿过老旧房区,经过相关部门的鉴定,这些拥有几十年历史的房屋属于CU级危楼;二是建设地铁隧道的时候,近距离的位置就存在河道,并且需要通过数百米范围;三是地铁隧道需要穿过城市繁华地段,存在很多管线,施工困难比较大。 2、盾构施工技术的特点 (1)对城市地面建筑物和周围环境影响小。除了在盾构竖井或基坑处需要一定的施工场地外,地铁隧道沿线不需要施工场地,施工无噪音、无振动公害,对地面交通基本无干扰。适用于埋深较大、不宜明挖的松散地层。(2)施工精度要求高。管片的制作精度几乎相当于机械制造的程度,误差范围要求控制在0.5mm以内;盾构前进过程中要求严格控制对隧道轴线的偏差。(3)盾构施工过程有单行前进、不可后退的强制性,具有较大的风险。盾构施工开始便无法后退,一旦盾构本身出现致命故障,则可能产生灾难性的后果;所以,盾构施工的前期准备工作非常重要。(4)盾构机是适合于某一特定区间的专用设备,如需根据施工隧道的断面大小、埋深、地质条件等进行设计、制造或者改造。 3、地铁盾构法施工新技术 3.1地铁盾构法施工新技术要点 地铁盾构法施工新技术要点包括:控制特殊条件沉降;制造耐久性、高强度管片;比较错缝、通缝拼装,分析总线形变;砂质粉土、流砂给设备带来的危害和影响;进出工作难题和措施;纠偏;施工中如果发现大石块、高压水、桩、超浅覆土等存在灾难性的实际地质情况解决措施。 3.2阐述地铁盾构法施工新技术 3.2.1特殊断面盾构施工技术

成都地铁盾构施工管理规定

成都地铁有限责任公司文件 成地铁〔2015〕126号 成都地铁有限责任公司关于印发 《成都地铁盾构施工管理规定》(暂行)的通知 成都地铁各参建单位: 为进一步提高成都地铁各盾构施工监理单位的管理水平,增强质量安全意识,我公司结合成都地铁盾构施工情况,特制订《成都地铁盾构施工管理规定》(暂行),现印发给你们,请严格按照本规定贯彻执行。 特此通知。 成都地铁有限责任公司 2015年5月15日

成都地铁盾构施工管理规定(暂行) 第一章总则 第一条为提升盾构施工专业化、规范化、标准化水平,降低盾构施工安全风险,杜绝发生盾构施工重大安全事故,提高盾构施工质量,确保盾构施工安全、优质、高效、有序,特制定本规定。 第二条本规定适用于成都地铁所有新建、在建盾构项目。 第三条本规定是根据《盾构法隧道施工及验收规范》(GB50446--2008)、住建部《危险性较大的分部分项工程安全管理办法》(建质〔2009〕87号)、成都地铁有限责任公司(以下简称地铁公司)以及地铁公司建设分公司(以下简称建设分公司)下发的相关盾构施工管理规定、办法、通知等编写。 第二章组织机构及人员管理 第四条含有盾构区间的标段,施工单位应单独设置盾构项目部,并配置盾构项目部经理、总工及安全总监等人员。 第五条含有盾构区间的标段主要人员的资质须满足以下要求: (一)盾构项目经理须具有盾构施工经验,且在含有盾构区

间的施工标段中担任过项目总工或盾构副经理及以上职务。 (二)盾构项目总工须具有盾构施工经验,且在含有盾构区间的标段中担任过技术部门负责人及以上职务。 (三)盾构副经理须具有盾构施工经验,且在含有盾构区间的标段中至少担任过盾构施工现场负责人。 (四)盾构总监代表和专业监理工程师须具有盾构区间施工技术、管理经验。 第六条含有盾构区间标段的项目经理、项目总工、盾构副经理、盾构操作司机及盾构施工管理技术人员和总监、总监代表、专监须经盾构施工相关培训后方可上岗。 第三章设备管理 第七条盾构施工单位负责建立本标段范围内所有盾构的管理台账,台账内容至少包括:设备制造厂商及盾构编号、主要技术参数、已使用年限、累计掘进隧道长度、主要穿越地层情况及设备运行维修状况等,并报监理单位和建设分公司盾构技术部备案。 第八条盾构设备进场前需完成盾构设备适应性、可靠性的自评估和专家评估。新购盾构设备在签定盾构购买合同前完成评估,旧盾构设备在盾构维修改造前完成评估。详见附表1:盾构

盾构施工人工测量与自动测量技术探讨

盾构施工人工测量与自动测量技术探讨 发表时间:2018-09-17T09:47:03.810Z 来源:《基层建设》2018年第20期作者:王强1 毛俊涛2 [导读] 摘要:随着城市建设的飞速发展,我国在各大城市都开展了地铁建设,为了满足盾构掘进按设计要求贯通(贯通误差必须小于 ±50mm),必须研究每一步测量工作所带来的误差,包括地面控制测量,竖井联系测量,地下导线测量,盾构机姿态定位测量4个阶段。 1浙江省大成建设集团有限公司 310012;2杭州市地铁集团有限责任公司运营分公司 310014 摘要:随着城市建设的飞速发展,我国在各大城市都开展了地铁建设,为了满足盾构掘进按设计要求贯通(贯通误差必须小于 ±50mm),必须研究每一步测量工作所带来的误差,包括地面控制测量,竖井联系测量,地下导线测量,盾构机姿态定位测量4个阶段。 关键词:盾构施工;人工测量;自动测量技术 盾构法具有施工速度快、机械化程度高、人员配备少、不影响地面交通等优点,所以在地铁区间施工中得到广泛应用。盾构施工测量是盾构施工中最重要的环节之一。 1工程概况 上海市轨道交通12号线顾戴路站~东兰路站区间:区间出顾戴路站端头井后下穿顾戴路北侧规划公园,自顾戴路折向万源路,然后沿万源路下向北进行,下穿万源路地块后,线路左、右线分离,分别从东西侧绕僻万源路桥桩基,下穿漕河泾港。过东兰路后进入东兰路站。本段区间较长,里程范围为SK+411.527~SK5+080.520,长度为1668.993。上行线有5段曲线,曲线半径依次为370m、1200m、650m、 1000m、1000m。线路纵断面最小坡度2‰,最大坡度25‰。隧道覆土最小为10.0m,最大为22.2m。本区间为双线单圆盾构区间,在最低点设置旁通道(兼排水泵站)1座。 2盾构掘进测量 2.1人工测量 (1)盾构测量标志的安装及测定测量标志由前靶、后靶、横向坡度、纵向坡度组成,具体实物为前后测量徕卡反射贴片和坡度板(纵向和横向坡度都可测),进行安装时,先测量出盾构的轴线,并把贴片和坡度板固定在盾构中心线上,前标后标应具有足够的长度,前靶距切口越近越好。测量出前靶、后靶到盾构中心线的距离以及前靶到切口的距离、后靶到盾尾距离,以确定前后靶与切口盾尾坐标归算的几何关系。为确保整个施工期间不被破坏,设置保护记号,此项工作应有原始记录和校核记录,以免盾构标志数据中存在系统误差。初次测量时,用仪器照准前、后占牌各测量一个测回,再根据坡度板的数值确定盾构的初始姿态,方便盾构始发及时纠正。(2)人工测量的相关计算确定好前后靶与切口盾尾坐标归算的几何关系后,编制相关计算器程序,人工测量主要测设前标水平角,后标水平角,前标垂直角,后标垂直角,坡度和转角。人工测量仪器为经纬仪和坡度板。测设完相关数据后进行计算。①盾构计算:坡度W和转角U在坡度板上直接读出;设W=2.546m为前标至盾构中心轴线的距离,Z=2.391为后标至盾构中心轴线的距离;G、H为经纬仪所在测站X、Y坐标,L为测站到后标方位角,R为经纬仪棱镜高程;I=1.2×T-x:I为经纬仪所在测站到前标的平距,T为当前环号,根据所测当前环号,反算得x,x是测站到第一环的距离。每次转站都要更新。N=1.2×T-y:N为经纬仪所在测站到后标的平距,原理同上;K=测站里程+I+5.308:K为切口里程,5.308是前标到切口的距离。测站的里程,是从第一个测站开始累加起来,每次加上新测站到上一测站的平距;E=X-arcsin ((sinU×Z)÷N)+L-180:X为后标水平角,E为修正过的测站到后标的水平方位角;F=Y-arcsin((sinU×W)÷I)+L-180:Y为前标水平角,F为修正过的测站到前标的水平角;A=G+I×cosF:B=H+I×sinF:C=G+N×cosE:D=H+N×sinE;"QKZ"=R+I×cosQ+(1-cosU)×W-W+5.3082"DWZ"=R+I×cosQ+(1-cosU)×W-W-3.8252Q为前标垂直角;POL(C-A,D-B): E=J+180"QKX"=A+5.308×cosE"QKY"=B+5.308×cosE"DWX"=C+1.326×cosE"DWY"=D+1.326×cosE得出三维坐标与设计轴线比较即可得出偏差。②管片姿态测量管片姿态=盾构轴线上管片拼装位置的偏离值计算+管片偏离盾构轴线计算的叠加。A、B、C、D分别为管片拼装完成后上右下左与盾壳之间间隙;E、O为切口平偏和高偏,G、Q为盾尾平偏和高偏;K=测站里程+I+5.308-6.73;K为管片里程,6.73为切口至当前环拼装好的管片的距离;"SPZJ"=5550-A-C;为水平直径"CZZJ"=5550-B-D;为垂直直径"GPC"=(L-S) ÷L×G+S÷L×E+(C-A)÷2000"GGC"=S÷L×O+(L-S)÷L×Q+(B-D)÷2000L为盾构长度,S为管片前端至盾尾的距离。 2.2自动测量 为了做到对盾构机姿态的实时控制,盾构机掘进中采用盾构姿态自动监测系统。该系统是盾构机自动导向测量系统,采用ROBOTEC 隧道导向系统,具有国际先进水平,适用于隧道工程施工控制的自动测量系统。采用该系统能够确保实时、准确地控制隧道掘进,保证贯通的精度。(1)自动测量导向系统本自动测量系统安装了3个棱镜,前靶一个,后靶两个(只用一个,一个备用),安装测定与人工测量相同。在盾构始发前,对整条隧道每一米的三维坐标计算出来,输入自动测量系统,方便实测数据与其对比计算偏差。(2)自动测量盾构姿态计算原理盾构机作为一个近似的圆柱体,在开挖掘进过程中我们不能直接测量其刀盘及盾尾的中心坐标,只能用间接法来推算出中心的坐标。A点是盾构机刀盘中心,E点是盾构机盾尾断面中心点,即AE连线为盾构机的中心轴线,布置三个自动棱镜B、C、D。由A、B、C、D、四点构成一个四面体,在盾构始发前测量出B、C、D三个角点的三维坐标(xi,yi,zi)和刀盘盾尾中心的三维坐标,建立几何关系。根据三个点的三维坐标(xi,yi,zi)分别计算出LAB,LAC,LAD,LBC,LBD,LCD,四面体中的6条边长,作为以后计算的初始值,在盾构机掘进过程中Li是不变的常量,通过对B、C、D三点的三维坐标测量来计算出A点的三维坐标。同理,B、C、D、E四点也构成一个四面体,相应地求得E点的三维坐标。由A、E两点的三维坐标就能计算出盾构机刀盘中心的水平偏航,垂直偏航,由B、C、D三点的三维坐标就能确定盾构机的仰俯角和滚动角,从而达到检测盾构机姿态的目的。 3两套测量控制技术的比较 两套测量系统、相互校核,不断修正,主要相互验证测量数据计算的准确性和测量仪器的误差。通过比较两者最大相差在2厘米左右,在规定的容许范围之内。依据自动测量系统提供的数据进行推进,管片脱出盾尾后对管环进行复测,可发现偏差基本都在5cm之内,所以本工程大部分数据依据自动测量系统,节省大量劳动力。 4总结 上海市轨道交通12号线顾戴路站~东兰路站区间区间长度为1668.993m,是一般隧道的2倍左右,且曲线多、部分曲线急且长,导致导线边数多且部分导线长度较短,而这些导线又不能闭合,直接导致盾构贯通误差的增大。在半径为350m的小曲线推进时,由于隧道曲率大,前方可视距离短,导致自动与人工测量移站频繁。在本工程中,在R=350m的圆曲线隧道上,平均要20环(24m)换站一次。每次换站

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

相关文档
最新文档