【精选】第10章 波动学基础 复习思考题
大学物理第十章重点小结

) (1
2πr1
)
则
2π
r1 r2
2π
r1 r2 称为波程差(波走过的路程之差)
加强 2kπ 2π 2π r1 r2 (2k 1) π 减弱
第十章 波动
17
物理学
第五版
将合振幅加强、减弱的条件转化为干涉 的波程差条件,则有 干涉的波程差条件 当 r1 r2 k 时(半波长偶数倍) 合振幅最大
2 1
2
1
AC
]
u y A (3 10 m) cos(410s )t πm 8m 5m 9m
C B
2
1
oA
D
x
11
第十章 波动
物理学
第五版
点 D 的相位落后于点 A
AD y D (3 10 m)cos[4 s ]t 2 λ 9 2 1 (3 10 m) cos[( 4 π s )t π] 5
2 1
C D 2π
xC xD
22 2π 4.4π 10
9m
u
λ 10 m
C 8m B 5m
10m
D
oA
x
13
第十章 波动
物理学
第五版
二
平面简谐波的能量
在波动传播的介质中,任一体 积元的动能、势能、总机械能均随 x, t 作周期性变化,且变化是同相位的. 体积元在平衡位置时,动能、势能 和总机械能均最大. 体积元的位移最大时,三者均为零.
3
2π
y (2 A cos
2π
x) cos t (2 A cos
大学物理波动光学习题思考题

大学物理波动光学习题思考题(总10页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题99-1.杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一级明纹距离为2.5mm ,求入射光波长。
(2)若入射光的波长为6000A ,求相邻两明纹的间距。
解:(1)由L x k d λ=,有:xdk Lλ=,将0.2mm d =,1m L =,1 2.5mm x =,1k =代入,有:3372.5100.210 5.0101m λ---⨯⨯⨯==⨯;即波长为:500nm λ=;(2)若入射光的波长为A 6000,相邻两明纹的间距:73161030.210D x mm d λ--⨯⨯∆===⨯。
9-2.图示为用双缝干涉来测定空气折射率n 的装置。
实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。
现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。
计算空气的折射率。
解:(1)当上面的空气被抽去,它的光程减小,所以它将通过增加路程来弥补,条纹向下移动。
(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条,可列出:λN n l =-)(1 得:1+=lN n λ。
9-3.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。
已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。
解:因为油膜( 1.3n =油)在玻璃( 1.5n =玻)上,所以不考虑半波损失,由反射相消条件有:2(21)122n e k k λ=-=油,,,当12500700nm nm λλ==⎧⎪⎨⎪⎩时,11222(21)22(21)2n e k n e k λλ=⎧-=-⎪⎪⎨⎪⎪⎩油油⇒2121217215k k λλ-==-, 因为12λλ<,所以12k k >,又因为1λ与2λ之间不存在'λ以满足'2(21)2n e k λ=-油式,即不存在21'k k k <<的情形,所以1k 、2k 应为连续整数,可得:14k =,23k =;油膜的厚度为:17121 6.73104k e m n λ--==⨯油。
文档波动学

x
B O
x
(C) y A cos{[t (x / u)] 0} (D) y A cos{[t (x / u)] 0}
选择题 5 题
答案:D
提示:将-x 代入波动方程即可得 B 点的振动方程。
10-X 确定平面简谐波中一点的振动方程
6、一平面简谐波,其振幅为 A,频率为 ,波沿 x 轴正方向传播,设 t=t0 时刻波形如图所示,则 x =0 处质点振动方程为
(A) r2 r1 k ; (B)2 1 2k (C)2 1 2 (r2 r1 ) / 2k
r1
P
S1
r2
(D)2 1 2 (r2 r1 ) / 2k
S2
答案:D
提示:两列波的相位差为 =(2
1)
2
(r2
r1) 。
10-X 驻波中两个相临波节间各质点的振动
16、在驻波中,两个相临波节间各质点的振动是:
就是各质点运动方向,即可判断各点运动方向。
10-T 平面简谐波波动方程一般形式、初相
- 17 -
6、位于原点的波源产生的平面波以 u=10m/s 的波速沿 x 轴正向传播,使得 x=10m 处的 P 点振动规律
为 y=0.05cos(2t-/2),该平面波的波动方程为:________________ ________ .
与波长的关系即可求得波长,即 2 / 3 1 2 / 。
10-X 由波形图确定波长 10-X 确定平面简谐波中一点的振动方程
5、如图所示,一平面简谐波沿 x 轴正向传播,坐标原点 O 的振动规律为 y A cos(t 0 ) ,则 B
点的振动方程为
u
y
(A) y A cos[t (x / u) 0 ] (B) y A cos[t (x / u)]
基础物理学下册【韩可芳】第10章习题答案

第十章第十章第十章第十章 波动光学波动光学波动光学波动光学思考题思考题思考题思考题10-1 普通光源中原子发光有何特征?答答答:答:::因为普通光源是大量不同原子在不同时刻发的光,是自然光,因此不满足干涉条件,所以一 般普通光源观察不到干涉现象。
10-2 如何用实验检验一束光是线偏振光、部分偏振光还是自然光?答答答:答:::拿一块偏振片迎着这束光,转动偏振片,观察透射光。
(1)视场中光强有变化且有消光现象 的为线偏振光;(2)光强有变化但无消光现象的为部分偏振光;(3)光强无变化的为自然光。
10-3 自然光可以用两个独立的、相互垂直的、振幅相等的光振动表示。
那么线偏振光是否也可以用两个相互垂直的光振动表示?如果可以,则这两个相互垂直的光振动之间关系如 何?10-4 如何用实验测定不透明媒质的折射率?答答答:答:::光线入射到不透明的媒介上,改变入射角i ,并同时用偏振片测定反射光线的偏振化程度。
当反射光线为完全偏振光时,此时入射角i0 即为布儒斯特角,满足tan 可求得不透明介质的折射率n 。
10-5 如图(a)所示,一束自然光入射在方解石晶体的表面上,入射光线与光轴成一定角度;问将有几条光线从方解石透射 出来?如果把方解石切割成等厚的A 、B 两块,并平行地移 开很短一段距离,如图(b)所示,此时光线通过这两块方解石后有多少条光线射出来?如果把B 块沿沿沿沿光线转过一个角度, 此时将有几条光线从B 块射出来?为什么?i 0n ,测得 i0 即考思考思考思考题题题题10-5图图图图10-6 从普通光源获得两束相干光的一般方法是什么?在光的干涉中决定相遇点产生明纹或暗纹的因素是什么?答答答:答:::分波阵面法和分振幅法。
波源的相位差和波源到相遇点的光程差决定相遇点产生明纹或暗纹。
10-7 如图所示,设光线a 、b 从周相相同的A 、B 点传至P 点,试讨论:(1)在图中的三种情况下,光线a 、b 在相遇处P 是 否存在光程差?为什么?(2)若a 、b 为相干光,那么在相遇处的干涉情况怎 样?考题思考题思考题思考题 10-7 图图图图10-8 在杨氏双缝实验中,当作如下调节时,屏幕上的干涉条纹将如何变化?(要说明理由)(1)使两缝之间的距离逐渐减小;(2)保持双缝的间距不变,使双缝与屏幕的距离逐渐减小;(3)如图所示,把双缝中的一条狭缝遮住,并在两缝的垂直平分线上放置一块平面反射镜。
大学物理练习册习题及答案波动学基础

习题及参考答案第五章 波动学基础参考答案思考题5-1把一根十分长的绳子拉成水平,用手握其一端,维持拉力恒定,使绳端在垂直于绳子的方向上作简谐振动,则(A )振动频率越高,波长越长; (B )振动频率越低,波长越长; (C )振动频率越高,波速越大; (D )振动频率越低,波速越大。
5-2在下面几种说法中,正确的说法是(A )波源不动时,波源的振动周期与波动的周期在数值上是不同的; (B )波源振动的速度与波速相同;(C )在波传播方向上的任二质点振动位相总是比波源的位相滞后; (D )在波传播方向上的任一质点的振动位相总是比波源的位相超前 5-3一平面简谐波沿ox 正方向传播,波动方程为010cos 2242t x y ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦. (SI)该波在t =0.5s 时刻的波形图是( )5-4图示为一沿x 轴正向传播的平面简谐波在t =0时刻的波形,若振动以余弦 函数表示,且此题各点振动初相取-π到π之间的值,则()(A )1点的初位相为φ1=0(B )0点的初位相为φ0=-π/2(m)(A )(m)(m)(B )(C )(D )思考题5-3图思考题5-4图(C )2点的初位相为φ2=0 (D )3点的初位相为φ3=05-5一平面简谐波沿x 轴负方向传播。
已知x=b 处质点的振动方程为[]0cos y A t ωφ=+,波速为u ,则振动方程为( )(A)()0cos y A t b x ωφ⎡⎤=+++⎣⎦(B)(){}0cos y A t b x ωφ⎡⎤=-++⎣⎦(C)(){}0cos y A t x b ωφ⎡⎤=+-+⎣⎦ (D)(){}0cos y A t b x u ωφ⎡⎤=+-+⎣⎦ 5-6一平面简谐波,波速u =5m·s -1,t =3s 时刻的波形曲线如图所示,则0x =处的振动方程为( )(A )211210cos 22y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) (B )()2210cos y t ππ-=⨯+ (SI) (C )211210cos 22y t ππ-⎛⎫=⨯+ ⎪⎝⎭ (SI) (D )23210cos 2y t ππ-⎛⎫=⨯- ⎪⎝⎭ (SI) 5-7一平面简谐波沿x 轴正方向传播,t =0的波形曲线如图所示,则P 处质点的振动在t =0时刻的旋转矢量图是( )5-8当一平面简谐机械波在弹性媒质中传播时,下述各结论一哪个是正确的? (A )媒质质元的振动动能增大时,其弹性势能减少,总机械能守恒; (B )媒质质元的振动动能和弹性势能都作周期变化,但两者的位相不相同;(C )媒质质元的振动动能和弹性势能的位相在任一时刻都相同,但两者的数值不相等; (D )媒质质元在其平衡位置处弹性势能最大。
大学物理参考答案(白少民)第10章 波动学基础

3.5 u 15 = 28 cm , 进而可求得波的频率为 ν = = = 0.54 Hz π /4 λ 28 10.14 证 明 y = A cos( kx −ω t ) 可 写 成 下 列 形 式 : y = A cos k ( x − u t ) , x x 1 x y = A cos 2π ( − ν t ) , y = A cos 2π ( − ) ,以及 y = A cos ω( − t ) 。 λ T u λ ω 2πν t ) = k ( x − ut ) 证明 : kx − ω t = k ( x − t ) = k ( x − k 2π / λ 所以波函数可写为: y = A cos k ( x − ut ) 2π x x x − 2πν t = 2π ( −νt ) ,则波函数还可写为 y = A cos 2π ( −ν t ) 又 kx − ω t = λ λ λ 1 x t 由ν = 则还可得: y = A cos 2π ( − ) T λ T k x x kx − ω t = ω( x − t ) = ω( − t ) ,则波函数还可写为 y = A cos ω( − t ) ω u u 10.15 波源 做 简谐振动,位移与时间的关系为 y = ( 4.00 ×10 −3 ) cos 240π t m ,它所 激发的波以 30.0m/s 的速率沿一直线传播。求波的周期和波长,并写出波函数。 解:由波源的振动方程 y = ( 4.00 ×10 −3 ) cos 240πt m 知振动角频率 ω = 240π . 而波的频率就等于波源的振动频率,所以波的频率和周期分别为 ω 1 1 ν= = 120 Hz , T = = = 8.33 ×10 −3 s ν 120 2π u 30.0 = 0.25 m 进一步计算波长为 λ = = ν 120 x x −3 )m 最后可写出波函数为 y = A cos ω(t − ) = ( 4.00 ×10 ) cos 240π (t − u 30 10.16 沿 绳子 行进的 横 波波函数为 y =10 cos(0.01π x − 2π t ) ,式中长度的 单 位是 cm,时间的单位是 s。试求:(1)波的振幅、 频率、传播速率和波长;(2)绳上某质点的最 大横向振动速率。 解:(1)由 y = 10 cos(0.01π x − 2π t ) = 10 cos 2π (t − 5.0 ×10 −3 x ) 知: ω 2π ν= = = 1 Hz ; 波 长 振 幅 A = 10cm = 0.1m ; 频 率 2π 2π
力学第10章习题答案

x v
p max 即可测出声强。 2Z
2
10.12 若两列波不是相干波,则当相遇时相互穿过且互不影响,若为相干波则相互影响。 这句话对不对? 解:不对。因为不论两列波是否为相干波,是否相遇,都各自以原有的振幅、波长和频率独 立传播,彼此互不影响。 10.13 试举出驻波和行波不同的地方。 解: (1)行波中每个体元的能量以波速传播。驻波中没有能量的定向传播。 (2)行波波形以波速向前传播,驻波波形不变,不向前传播。 (3)行波是波,驻波不是波。 10.14 若入射平面波遇到界面而形成反射平面波和透射平面波, 问入射波和反射波的振幅 是否可能相同?试解释之。 解: 。不可能相同。`因为反射波和透射波能量都来自于入射波。 但当两媒质波阻相差悬殊时,根据反射系数= (
2pnt / = 2pn (t + 3) t/ = t +3 x y= A cos 2pn (t / + ) 计时起点提前 3 秒。
u
10.2.7 平面简谐波方程 y= 5 cos 2p (t + 解:1)描点法 x 12 31 -
c
3 ) ,试用两种方法画出 t= s 时的波形图。 (SI) 4 5
n=
[ (
x = 9m 处 振动相位 a 1 x = 10m 处 振动相位 a 2
位相差 a 2 - a 1 = 2p
)] = 2p (10 t m 9 ) = 2p (10 t m 10 )
2 2
10.2.4 写出振幅为 A,n = f 波速为 v = c ,沿 ox 轴正方向传播的平面简谐波方程.波源 在原点 O,且当 t=0时,波源的振动状态被称为零,速度沿 ox 轴正方向. 解:根据题意 波源的振动方程为
0 负最大
大物b课后题10-第十章波动学基础

习题10-5 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+⎪⎝⎭,振动周期为T.(1)这4点与振源的振动相位差各为多少(2)这4点的初相位各为多少(3)这4点开始运动的时刻比振源落后多少解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x xπϕπϕππλλ∆∆∆==∆==(2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3)1212343411,24223,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-6 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=•的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ=2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=• 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-7 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======•=•=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-•所以1max 0.0510 1.57()v m s π-=⨯=•各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-•所以22max 0.05(10)49.3()a m s π-=⨯=•10-8 设在某一时刻的横波波形曲线的一部分如图所示。
第十章 波动学基础汇总

第十章 波动学基础§10-1波动的基本概念一、常见机械波现象 1、水面波。
把一块石头投在静止的水面上,可见到石头落水处水发生振动,此处振动引起附近水的振动,附近水的振动又引起更远处水的振动,这样水的振动就从石头落点处向外传播开了,形成了水面波。
2、绳波。
绳的一端固定,另一端用手拉紧并使之上下振动,这端的振动引起邻近点振动,邻近点的振动又引起更远点的振动,这样振动就由绳的一端向另一端传播,形成了绳波。
3、声波。
当音叉振动时,它的振动引起附近空气的振动,附近空气的振动又引起更远处空气的振动,这样振动就在空气中传播,形成了声波。
二、机械波产生的条件两个条件 1、波源。
如上述水面波波源是石头落水处的水;绳波波源是手拉绳的振动端;声波波源是音叉。
2、传播介质。
如:水面波的传播介质是水;绳波的传播介质是绳;声波的传播介质是空气。
说明:波动不是物质的传播而是振动状态的传播。
三、横波与纵波1、横波:振动方向与波动传播方向垂直。
如 绳波。
2、纵波:(1)气体、液体内只能传播纵波,而固体内既能传播纵波又能传播横波。
(2)水面波是一种复杂的波,使振动质点回复到平衡位置的力不是一般弹性力,而是重力和表面张力。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧(3)一般复杂的波可以分解成横波和纵波一起研究。
四、关于波动的几个概念1、波线:沿波传播方向带箭头的线。
2、同相面(波面):振动位相相同点连成的曲面。
同一时刻,同相面有任意多个。
3、波阵面(或波前):某一时刻,波源最初振动状态传播到的各点连成的面称为波阵面或波前,显然它是同相面的一个特例,它是离波源最远的那个同相面,任一时刻只有一个波阵面。
(或:传播在最前面的那个同相面)4、平面波与球面波(1)平面波:波阵面为平面。
(2)球面波:波阵面为球面。
图10-1*:在各向同性的介质中波线与波阵面垂直。
五.波长、波的周期和频率波速波长λ波长λ:同一波线上位相差为π2的二质点间的距离(即一完整波的长度)。
马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..

目 录第一部分 名校考研真题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第二部分 课后习题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第三部分 章节题库第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第四部分 模拟试题马文蔚等《物理学》配套模拟试题及详解第一部分 名校考研真题第9章 振 动一、选择题一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时开始计时,则其振动方程为( ).[电子科技大学2007研]A.B .C .D.E.二、填空题一物体作简谐振动,其振动方程为(国际单位制).则此简谐振动的周期为______;当t =0.6s 时,物体的速度为______.[南京航空航天大学2008研]三、计算题1.考虑n =2摩尔的理想气体氦气,置于一垂直放置的圆柱体所缸中,如图9-1所示.水平放置的活塞可以在气缸中无摩擦上下运动.活塞质量为,气缸截面积为.活塞被一无质量的弹簧与气缸上端连接,活塞向下运动时将氦气向下压缩,活塞上方为真空.系统开始阶段活塞与氦气处于平衡状态时,弹簧处于未形变状态,氦气压强为B【答案】1.2s ;-20.9cm/s【答案】、温度为、体积为.假定弹簧弹性常数,气体常数,对于单原子氦气,热容比.活塞在平衡位置作小幅谐振动,计算其谐振频率f.[南京大学2006研]图9-1解:对弹簧,由牛顿第二定律可得: ①由于振动很快,系统来不及与外界发生热量交换,视为绝热过程,因此有:由于活塞在平衡位置作小幅谐振动,因此V0与V之间的变化很小,利用泰勒展开得: ②将②式代入①式有: ③初始时活塞处于平衡状态,有: ④将④代入③有: 整理得: 解得振动频率为: 2.质量分别为和的两个物体A、B,固定在倔强系数为的弹簧两端,竖直地放在水平桌面上,如图9-2所示.用一力垂直地压在A上,并使其静止不动.然后突然撤去,问欲使B离开桌面至少应多大?[中科院–中科大2007研]图9-2解:欲使B刚好弹起,则A到达最高点时弹簧的伸长量至少应为.假设力F作用下弹簧的压缩量为(初始位置),弹簧无变形时A的坐标为0(平衡位置).运动方程为: 当时,,则方程的解为:利用对称性,在最高点有.整理可得:又,于是:3.如图9-3所示,已知轻弹簧的劲度系数为k,定滑轮可看作质量为M,半径为R的均质圆盘,物体的质量为m,试求:(1)系统的振动周期;(2)当将m托至弹簧原长并释放时,求m的运动方程(以向下为正方向).[南京理工大学2005研]图9-3 图9-4解:(1)受力分析如图9-4所示,设平衡位置为原点,向下为正,则将物体拉至处时:对m:对: (为角加速度)解得:即: 则系统振动圆频率: 振动周期: (2)设振动方程,其中,.初始条件,当时: 解得: 求得m的运动方程为: 第10章 波 动一、选择题一平面简谐波沿x 轴正方向传播,振幅为A ,频率为.设时刻的波形曲线如图10-1所示,则x=0处质点的振动方程为( ).[电子科技大学2006研]图10-1A.B .C .D.二、填空题1.一质点沿x 轴作简谐振动,它的振幅为A ,周期为T .时,质点位于x 轴负向离平衡最大位移的一半处且向负方向运动,则质点的振动方程为x =______.在一周期内质点从初始位置运动到正方向离平衡位置为最大位移的一半处的时间为______.[南京航空航天大学2007研]2.一平面简谐机械波在弹性媒质中传播,一媒质质元在通过平衡位置时,其振动动能与弹性势能______(填相同或不同).[湖南大学2007研]B 【答案】【答案】相同【答案】3.以波速u 向x 正方向传播的平面简谐波,振幅为A ,圆频率为,设位于坐标处的质点,t =0时,位移,且向y 负方向运动,则该质点的振动方程为______,该平面简谐波的波动方程(波函数)为______.[南京理工大学2005研]三、计算题1.火车以匀速行驶而过,铁路边探测器所测得的火车汽笛最高和最低频率分别为和,设声速为,求火车的行驶速度.[南京大学2006研]解:由多普勒效应可得: ① ②①、②两式相除,得:解得火车车速为:2.一列平面简谐纵波在均匀各向同性弹性介质中传播,求单位体积介质所具有的能量?(自设相关物理量).[北京师范大学2008研]解:波动方程:振动速度: 设介质的密度为,用dV 表示体元体积,则该体积元动能:体积应变: 则势能: 因为,所以: 则有: 所以,单位体积介质所具有的能量为:【答案】3.已知一平面简谐波的表达式为y=0.25cos(125t-0.37x)(SI).(1)分别求x1=10m,x2=25m两点处质点的振动方程.(2)求x1、x2两点间的振动相位差.(3)求x1点在t=4s时的振动位移.[浙江大学2008研]解:(1),(2)由,可得: 所以: (3)时的振动位移为:4.甲火车以43.2千米/小时的速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为v1=512赫兹;当这一火车过后,听其鸣笛声的频率为v2=428赫兹.求乙火车上的人听到乙火车鸣笛的频率v0和乙火车对于地面的速度u.设空气中声波的速度为340米/秒.[中科院—中科大2009研]解:由题可得: 其中,v=340m/s,v0=43.2km/h=12m/s.解得:v0=468Hz,u=18.4m/s=66.3km/h5.如图10-2所示,一平面简谐波沿x轴正方向传播,已知振幅为A,频率为,波速为u.(1)若t=0时,原点O处质元正好由平衡位置向位移正方向运动,写出此波的波函数.(2)若该波在离原点处被竖直的墙面反射,欲使坐标原点处为波节,求满足的条件(设反射时无能量损失).[厦门大学2006研]图10-2解:(1)t=0时,y0=0,u0>0,所以初始相位,故波动方程为:(2)欲使波在x0处反射后到达y0处与原行波叠加产生波节,则原点O处两振动必须反相.即:所以有: ,k=0,1,2,…6.已知一平面余弦波振幅A=0.03m,波速u=1ms-1,波长,若以坐标原点O处质点恰好在平衡位置且向负方向运动时作为计时起点,求:(1)O点振动方程.(2)波动方程.(3)与原点相距处,t=1秒时,质点的位移、速度;(4)和两点间的相位差.[南京航空航天大学2006研]解:(1)设O点振动方程为:.其中,,由题意知:.于是: (2)波动方程为:.得:(3)与原点相距处,波动方程:得质点速度: 当t=1秒时: (4)相位差: 7.设入射波的表达式为,在处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的表达式.(2)合成的驻波的表达式.(3)波腹和波节的位置.[湖南大学2007研]解:(1)反射波的表达式为: (2)驻波的表达式为:(3)由,可得波腹位置为:由,可得波节位置为:,8.图10-3所示为一沿x轴正方向传播的平面余弦行波在t=2s时刻的波形曲线,波速u=0.5m/s,求:(1)原点o的振动方程;(2)波动方程.[电子科技大学2007研]图10-3解:(1)由已知得:.可得振动方程:(2)波动方程为: 9.一横波沿绳子传播,其波的表达式为.(1)求此波的振幅、波速、频率和波长.(2)求绳子上各质点的最大振动速度和最大振动加速度.(3)求处和处二质点振动的相位差.[宁波大学2009研]解:(1)将波的表达式与标准形式比较,得:,(2) (3),二振动反相.第11章 光 学一、选择题1.在迈克耳孙干涉仪的一条光路中,放入一折射率为n 厚度为d 的透明介质片后,两光路光程差的改变量为( ).[暨南大学2010研]A.B.C.D.【解析】迈克尔孙干涉仪的原理为光的干涉,两束光进过G1平面镜被分为两束光,这两束光发生干涉.当在其中一条光路中放入折射率为n 的厚透明介质时,被放入介质的那条光路光程将发生变化,由于需要两次穿过新加入的透明介质,故光程差的改变量为:.2.自然光从空气入射到某介质表面上,当折射角为30°时,反射光是完全偏振光,则此介质的折射率为( ).[暨南大学2010研]A.B.C.D.3.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹( ).[暨南大学2010研]C【答案】B【答案】当折射光线与反射光线垂直时反射完全偏振光,由折射公式得.【解析】A .中心暗斑变成亮斑B .间距不变C .变疏D .变密【解析】设牛顿环中某处的空气薄层厚度为e ,互相干涉的两束反射光的光程差为,若n 增大,则每个位置处的光程差增大,形成更大级数的干涉条纹,所以条纹变密.4.根据惠更斯——菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ).[暨南大学2010研]A .振动的相干叠加B .振动振幅之和C .光强之和D .振动振幅平方之和5.在单缝夫琅和费衍射实验中,波长为l 的单色光垂直入射在宽度为a=4l 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( ).[暨南大学2010研]A .2个B .6个C .4个D .8个D【答案】A【答案】由惠更斯—菲涅耳原理,统一波阵面各点发出的子波,经传播而在空间某点相遇,发生的是相干叠加.【解析】C【答案】可近似将单缝所在平面看作波阵面,则每一半波带都沿单缝方向,设总半波带【解析】得N=4.6.一束白光垂直入射在光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是( ).[暨南大学2010研]A .紫光B .黄光C .红光D .绿光【解析】根据光栅公式,同一级条纹满足,可见光中红光波长最长,故偏离中央明纹最远.7.光强为I 0的自然光依次垂直通过两个偏振片,且此两偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则透射偏振光的强度I 是( ).[暨南大学2010研]A.B.C.D.由此可得,8.一光波分别通过两种不同介质的光程相同,则( ).[暨南大学2011研]数为N ,则C【答案】A【答案】自然光经过任一偏振片后光强减半,再经过另一个偏振片,根据马吕斯定律【解析】A .光波通过这两种介质的时间不相同B .光波通过这两种介质的时间相同C .光波通过这两种介质后的位相不相同D .光波通过这两种介质后的位相相同9.在迈克耳孙干涉仪的一臂中放入一折射率为厚度为的透明介质片,同时在另一臂中放入一折射率为厚度为的透明介质片,设没有放两透明介质片时两臂的光程差为 则放入两透明介质片后两臂的光程差为( ).[暨南大学2011研]A.;B .C.D.10.关于光学仪器的分辨本领,下述表述错误的是( ).[暨南大学2011研]A .分辨本领受到衍射极限的限制B .分辨本领和光学仪器的通光口径有关C .分辨本领和照明光的波长有关D .分辨本领和照明光的强度有关B【答案】光程差公式为 L =nd ,在不同介质中光速不同,v =c/n,故传播时间为 t =d/v =L/c ,对不同的介质相同.出射光的位相与入射光有关,故不能确定.【解析】B【答案】放入介质片后,相应光路中的光两次经过此介质,光程变化为2nd ,所以放入两个介质片后,两臂的光程差变化为2(n2-n1)d【解析】D【答案】光学仪器的分辨率,与由衍射导致的像点的展宽有关,而衍射条纹与通光孔径【解析】11.自然光从空气入射到某透明介质表面上,则( ).[暨南大学2011研]A .反射光一定是完全偏振光B .反射光一定是部分偏振光C .折射光一定是部分偏振光D .折射光一定是完全偏振光12.眼镜片上的增透膜是根据光的以下什么现象做成的( ).[暨南大学2011研]A .光的干涉B .光的衍射C .光的布儒斯特定律D .光的马吕斯定律13.光强度( ).[暨南大学2011研]A .和光波的振幅成正比B .和光波的振幅的平方成正比C .和光波的位相成正比D .和光波的位相的平方成正比和波长有关,与光强无关.C【答案】根据菲涅耳反射折射公式,自然光入射产生的反射和折射光都将变成部分偏振光.但当入射角为布鲁斯特角时,反射光为完全偏振光.【解析】A【答案】增透膜的原理是通过在镜片表面镀膜,使得某波长的光在膜前后表面反射光之间光程差是半波长的奇数倍,从而使反射光相干抵消,增加透射.【解析】B【答案】光强度是单位面积单位时间内辐射光的平均能量,此平均能量与电场分量或磁场分量的振幅的平方成正比,而由于是时间平均效果,与位相无关.【解析】14.一束白光垂直入射在单缝上,在第一级夫琅和费衍射明纹中,靠近中央明纹的颜色是( ).[暨南大学2011研]A .紫光B .黄光C .红光D .绿光【解析】单缝衍射明纹满足,故条纹到中央明纹的距离与波长正相关,所以紫光一级明纹最靠近中间.15.光强为I0的自然光依次垂直通过三个偏振片,且第一和第三偏振片的偏振化方向夹角a=90°,第二和第三偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则从第三偏振片透射出的光强I 是( ).[暨南大学2011研]A.B.C.D.二、填空题1.一个平凸透镜的顶点和一平板玻璃接触,用单设光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为变为r 2,由此可知该液体的折射率为______.[南京航空航天大学2008研]A【答案】C【答案】自然光经过第一个偏振片,光强减半.第一偏振片的偏振方向与第二个,第二个与第三个,夹角都是45°,根据马吕斯定律,【解析】2.自然光入射到空气和某玻璃的分界面上,当入射角为60°时,反射光为完全偏振光,则该玻璃的折射率为______;一束强度为的自然光垂直入射于两种平行放置且透光轴方向夹角为60°的偏振片上,则透射光强度为______.[南京理工大学2005研]三、计算题1.一平凸透镜置于一平板玻璃上,波长为6700Å的红光垂直从上方入射,由透镜凸表面和平板玻璃表面反射的光形成牛顿环干涉条纹.透镜和平玻璃的接触点处为暗纹,测得第12条暗纹的半径为11mm ,求透镜的曲率半径R .[暨南大学2010研]解:牛顿环上r半径处空气层的厚度为第12条暗纹处与第一条暗纹处光程差相差11个波长,可得透镜的曲率半径为 2.(5分)将麦克耳孙干涉仪的一臂稍微调长(移动镜面),观察到有150条暗纹移过视场.若所用光的波长为480nm ,求镜面移动的距离.[暨南大学2010研]解:在迈克尔孙干涉仪中,沿两条光路的光发生干涉,它们之间光程差每变化一个波长,则有一条暗纹移过视场.设镜面移动距离为d,则得.3.在杨氏双缝实验中,两缝相距2mm ,用l =750nm 和l¢=900nm 的混合光照明,若屏幕到缝的距离为2m ,问两种波长的光的干涉明纹重合的位置到中央明纹中线的最小距离为多少?[暨南大学2010研]解:双缝干涉第k级干涉明纹满足,【答案】【答案】要想使不同波长的两束光条纹重合,需要某级条纹距离相同,即可得,k最小值为6,故4.如何利用偏振片和波晶片(1/4波片、半波片等)将一束自然光转化为圆偏振光?又如何利用波晶片将一线偏振光的偏振方向旋转90度?[暨南大学2010研]解:(1)首先将自然光通过偏振片,变成线偏光.然后使线偏光通过1/4波片,保证线偏振方向与波片光轴方向呈45°角,从而出射的o光和e光方向相同,振幅相等,相位差,从而变成圆偏振光.(2)首先将线偏光通过一个1/4波片,变成圆偏光,再经过一个与原偏振方向垂直的偏振片,变成新方向的线偏光.5.白光垂直照射到一厚度为370nm的肥皂膜(膜的两侧都为空气)上,设肥皂的折射率为1.32,试问该膜的正面呈现什么颜色?[暨南大学2011研]解:肥皂膜前后表面反射光的光程差为青色光的波长范围是476-495 nm,所以L正好是青色光波长的二倍;红色光的波长范围是 620-750 nm,所以L正好是红色光波长的3/2倍.所以前后表面反射的红光相干相消,青光相干相长,所以呈青色.6.用波长500nm的单色光垂直照射到宽0.5mm的单缝上,在缝后置一焦距为0.5m的凸透镜,用一屏来观察夫琅和费衍射条纹,求在屏上中央明纹的宽度和第一级明纹的宽度?并定性解释级次越高,明纹的强度越低的原因.[暨南大学2011研]解:(1)单缝夫琅禾费衍射产生暗纹条件为中央和第一级明纹处衍射角很小,可以近似.所以各暗纹距离中央的位置为所以中央明纹和第一级明纹的宽度分别为(2)明纹级次越高,说明单缝两个位置单色光距明纹处的光程差越大,相位差越大.根据光振幅矢量性,相同幅值的相干光相位差越大,合成振幅越小,从而光强越低.7.请解释为什么劈尖干涉条纹是等间距的直条纹而牛顿环是非等间距的圆条纹?如果看到牛顿环的中央是暗纹,解释之?[暨南大学2011研]解:(1)根据干涉原理,不论是劈尖干涉条纹还是牛顿环条纹,相邻条纹处干涉光光程差的差为.因为劈尖上到顶点的距离和厚度成正比,而厚度和光程差成正比,所以会形成等间距的直条纹;而牛顿环空气层厚度与光程差成正比,但由于棱镜下表面是球形,使得厚度与到中心的水平距离不成正比,所以形成非等间距的圆条纹.(2)中央处空气层厚度为0,棱镜底面与平面玻璃表面发射光的光程差为0.但光由光疏介质(空气)进入光密介质(平面玻璃)进行反射时会产生半波损失,使得两束相干光完全相消,出现中央暗纹.8.杨氏双缝实验中,在两缝S1和S2前分别放置两偏振片P1和P2,在两缝S1和S2后放置一偏振片P3,如图11-1所示,照明光为一自然光.问 (1) 当P1和P2偏振化方向相同,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?(2)当P1和P2偏振化方向垂直,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?[暨南大学2011研]图11-1解:(1)会出现干涉条纹.因为经过两个偏振片的光具有相同的偏振方向,都沿P3的方向偏振,所以同频率的光会产生相干叠加,出现干涉条纹.(2)会出现干涉条纹.因为虽然经过第一个偏振片的两束光具有垂直的偏振方向,但由于两束光的偏振方向都与P3偏振化方向呈45°角,根据马吕斯定律,经过P3后的两束光偏振方向相同,且振幅相等.所以依然会产生干涉条纹.9.(1)迈克尔逊干涉仪的M2镜前,当插入一薄玻璃片时,可以观察到有150条干涉条纹向一方移过.若玻璃片的折射率为n=1.632,所用单色光的波长为500nm,试求玻璃片的厚度.(2)用钠光灯(,)照明迈克尔逊干涉仪,首先调整干涉仪得到最清晰的干涉条纹,然后移动M1,干涉图样逐渐变得模糊,到第一次干涉现象消失时,M1由原来位置移动了多少距离?[南京大学2006研]解:(1)插入玻璃片后,光程差改变量为,则:解得玻璃片厚度: (2)干涉条纹消失,即、两个波长照射下的亮纹和暗纹重合,即:解得: 10.试按下列要求设计光栅:当白光垂直照射时,在30°衍射方向上观察到波长为600nm 的第二级主极大,且能分辨Δλ=0.05nm的两条谱线,同时该处不出现其他谱线的主极大.[浙江大学2008研]解:由光栅方程: .则:当时,可得: 当,.因为时,主极大,即缺级,因此有:所以有: 11.如图11-2所示,有一缝宽分别为a和2a、两缝中心相距为d的双缝衍射屏,今在缝宽为2a的左半缝前覆盖一个宽度为a的相移片.导出正入射时其夫琅禾费衍射强度分布公式.[山东大学1997研]图11-2解:x方向振幅: y方向振幅: 光强: 12.如图11-3所示,在偏振化方向夹角为60°的两偏振片和之间插入一个四分之一波片C,其光轴与两偏振片偏振化方向的夹角均为30°.一强度为的自然光先后通过偏振片、四分之一波片C和偏振片,求出射的光强度.[厦门大学2006研]图11-3解:经过P1后: ,经过四分之一波片后: ,得出射光振幅: 出射光光强: 第12章 气体动理论一、选择题若为气体分子速率分布函数,则的物理意义是( ).[电子科技大学2005研]A .速率区间内的分子数B .分子的平均速率C .速率区间内的分子数占总分子数的百分比D .速率分布在附近的单位速率区间中的分子数二、填空题1.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而最概然速率之比为,则单位体积内的内能之比为______.[南京航空航天大学2007研]2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为______.[北京工业大学2004研]3.由绝热材料包围的窗口被隔板隔为两半,左边是理想气体,右边真空,如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度______(填升高、降低或不变),气体的熵______(填增加、减小或不变).[湖南大学2007研]4.27℃的1mol 氧气分子的最概然速率为______,其物理意义为______,分子的平均平动动能为______,1mol 理想氧气的内能为______.[南京理工大学2005研]三、计算题B【答案】1∶4∶9【答案】【答案】不变;增加【答案】【答案】1.设气体分子的速率分布满足麦克斯韦分布律.(1)求气体分子速率与最可几速率相差不超过0.5%的分子占全部分子的百分之几?(2)设氦气的温度为300K,求速率在3000~3010m/s之间的分子数与速率在1500~1510m/s之间的分子数之比.(3)某种气体的温度为100K和400K时的最可几速率分别为和.在100K时与相差不超过1m/s的分子数为总数的a%,求400K时与相差不超过1m/s的分子数占总数的百分比.[南京大学2006研]解:(1)设气体分子速率与最可几速率相差不超过0.5%的分子数为,全部分子数为,则:(2)设速率在3000~3010m/s之间的分子数为,速率在1500~1510m/s之间的分子数为,则:(3)2.1摩尔双原子理想气体的某一过程的摩尔热容量,其中为定容摩尔热容量,R 为气体的普适恒量.(1)导出此过程的过程方程;(2)设初态为(,),求沿此过程膨胀到时气体的内能变化,对外做功及吸热(或放热).[北京师范大学2006研]解:(1)理想气体的状态方程为,其微分形式为:由热力学第一定律,则:由上述两式消去,得: 则由的积分可得:上式即为双原子分子理想气体的过程方程.(2)初态,其中;末态.由过程方程,可知:所以,末态为.①气体内能的变化:②对外做功: ③吸收的热量:负号表示与题设相反,即此过程向外放热 .3.0.2g氢气盛于3.0 L的容器中,测得压强为8.31×104Pa,则分子的最概然速率、平均速率和方均根速率各为多大?[浙江大学2008研]解:气体状态方程: 最概然速率:平均速率:方均根速率: 4.设有N个气体分子组成的系统,每个分子质量为m,分子的速率分布函数为求:(1)常数a.(2)分子的平均速率.(3)若分子只有平动,且忽略分子间的相互作用力,求系统的内能E.[厦门大学2006研]解:(1)由归一化条件可得:解得: (2)N个分子的平均速度:=(3)由,得:5.许多星球的温度达到108K,在这温度下原子已经不存在了,而氢核(质子)是存在的,若把氢核视为理想气体,求:(1)氢核的方均根速率是多少?(2)氢核的平均平均平动动能是多少电子伏特?[宁波大学2009研](普适气体常量,玻尔兹曼常量)解:(1)由于,而氢核,所以有:(2)第13章 热力学基础一、选择题在一定量的理想气体向真空作绝热自由膨胀,体积由增至,在此过程中气体的( ).[电子科技大学2007研]A.内能不变,熵增加B.内能不变,熵减少C.内能不变,熵不变D.内能增加,熵增加二、填空题热力学第二定律表明在自然界中与热现象有关的实际宏观过程都是不可逆的.开尔文表述指出了______的过程是不可逆的,而克劳修斯表述指出了______的过程是不可逆的.[北京工业大学2004研]三、计算题1.假设地球大气为干燥空气,导热性能不好.气流上升缓慢,可以视为准静态过程.试导出大气的垂直温度梯度dT/dz,并估算其量值的大小.[南京大学2005研]解:对于绝热过程有: 对上式两边同时求导,得:于是有: 对于大气层,气压强变化满足,再结合理想气体状态方程,得:A【答案】功变热;热传导【答案】。
第10章 波动学基础

3)振动状态传播的速度即为波速 u
x u t 2.5 0.5 1.25m
所以 t1 时刻 x1 处质元的振动状态在 t 2 时刻传到
x2 x1 x 1.45m
例2 一平面简谐波沿Ox轴正方向传播,已知振幅 A 1.0m ,
T 2.0s, 2.0m.在t 0 时坐标原点处的质点位于平衡位置
A A1 A2
振动始终加强
2)
(2k 1) π k 0,1,2,
A A1 A2
振动始终减弱
其他
A1 A2 A A1 A2
讨论
2 A A12 A2 2 A1 A2 cos
2 1 2 π
r2 r1
y A cos[ (t x0 ) ] u
初相位
0 2
x0
波线上各点的简谐振动图
x t x y A cos[ (t ) ] A cos[2 π( ) ] u T
2 当 t 一定时,波函数表示该时刻波线上各点相对其平衡位 置的位移,即此刻的波形.
球面波
平面波
惠更斯原理
介质中波动传播到的各点都可以看作是发射子波的波源, 而在其后的任意时刻,这些子波的包络就是新的波前.这就 是惠更斯原理.
平面波和球面波演示
§10-2 平面简谐波波函数
一 平面简谐波的波函数 介质中任一质点(坐标为x)相对其平衡位置的位移(坐 标为 y)随时间的变化关系,即 y( x, t ) 称为波函数.
三 描述波动过程的物理量
波长 :沿波的传播方向,两个相邻的、相位差为 2 π 的振动质点之间的距离, 即一个完整波形的长度.
第10章 振动与波动(习题与答案)讲解

第10章 振动与波动一. 基本要求1. 掌握简谐振动的基本特征,能建立弹簧振子、单摆作谐振动的微分方程。
2. 掌握振幅、周期、频率、相位等概念的物理意义。
3. 能根据初始条件写出一维谐振动的运动学方程,并能理解其物理意义。
4. 掌握描述谐振动的旋转矢量法,并用以分析和讨论有关的问题。
5. 理解同方向、同频率谐振动的合成规律以及合振幅最大和最小的条件。
6. 理解机械波产生的条件。
7. 掌握描述简谐波的各物理量的物理意义及其相互关系。
8. 了解波的能量传播特征及能流、能流密度等概念。
9. 理解惠更斯原理和波的叠加原理。
掌握波的相干条件。
能用相位差或波程差概念来分析和确定相干波叠加后振幅加强或减弱的条件。
10. 理解驻波形成的条件,了解驻波和行波的区别,了解半波损失。
二. 内容提要1. 简谐振动的动力学特征 作谐振动的物体所受到的力为线性回复力,即kx F -= 取系统的平衡位置为坐标原点,则简谐振动的动力学方程(即微分方程)为x tx 222d d ω-= 2. 简谐振动的运动学特征 作谐振动的物体的位置坐标x 与时间t 成余弦(或正弦)函数关系,即)cos(ϕ+ω=t A x由它可导出物体的振动速度 )sin(ϕ+ωω-=t A v 物体的振动加速度 )cos(ϕ+ωω-=t A a 23. 振幅A 作谐振动的物体的最大位置坐标的绝对值,振幅的大小由初始条件确定,即2v ω+=2020x A 4. 周期与频率 作谐振动的物体完成一次全振动所需的时间T 称为周期,单位时间内完成的振动次数γ称为频率。
周期与频率互为倒数,即ν=1T 或 T1=ν 5. 角频率(也称圆频率)ω 作谐振动的物体在2π秒内完成振动的次数,它与周期、频率的关系为 ωπ=2T 或 πν=ω26. 相位和初相 谐振动方程中(ϕ+ωt )项称为相位,它决定着作谐振动的物体的状态。
t=0时的相位称为初相,它由谐振动的初始条件决定,即0x v ω-=ϕtan应该注意,由此式算得的ϕ在0~2π范围内有两个可能取值,须根据t=0时刻的速度方向进行合理取舍。
普通物理学教程力学课后答案高等教育出版社第十章-波动和声

普通物理学教程力学课后答案高等教育出版社第十章-波动和声第十章 波动和声习题解答10.2.1 频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。
0ºC 时,空气中的声速为331.5m/s,求这两种频率声波的波长。
解:mv V v V v V 58.16/,/,205.33111≈===∴=λλλ mv V 3221058.1620/5.331/-⨯≈==λ10.2.2 一平面简谐声波的振幅A=0.001m ,频率为1483Hz ,在20ºC 的水中传播,写出其波方程。
解:查表可知,波在20ºC 的水中传播,其波速V=1483m/s.设o-x 轴沿波传播方向,x 表示各体元平衡位置坐标,y 表示各体元相对平衡位置的位移,并取原点处体元的初相为零,则:)22966cos(001.0)(2cos x t t v A y V xπππ-=-=10.2.3 已知平面简谐波的振幅A=0.1cm,波长1m,周期为10-2s,写出波方程(最简形式).又距波源9m 和10m 两波面上的相位差是多少?解:取坐标原点处体元初相为零,o-x 轴沿波传播方向,则波方程的最简形式为)100(2cos 10)(2cos )(cos 3x t A t A y xT t V x -=-=-=-ππωλπππ2)10100(2)9100(2=---=∆Φt t10.2.4 写出振幅为A,频率v =f ,波速为V=C,沿o-x 轴正向传播的平面简谐波方程.波源在原点o,且当t=0时,波源的振动状态是位移为零,速度沿o-x 轴正方向。
解:设波源振动方程为)cos(φω+=t A y . ∵t=0时,2,0sin ,0cos πφφωφ-=∴>-====A u A y dt dy∴波方程])(2cos[])(2cos[22ππππ--=--=C x Vxt f A t v A y10.2.5 已知波源在原点(x=0)的平面简谐波方程为),cos(cx bt A y -=A,b,c 均为常量.试求:⑴振幅、频率、波速和波长;⑵写出在传播方向上距波源l 处一点的振动方程式,此质点振动的初相位如何?解:⑴将)cos(cx bt A y -=与标准形式)cos(kx t A y -=ω比较,ω=b,k=c,∴振幅为A,频率v =ω/2π=b/2π,波速V=ω/k=b/c,波长λ=V/v =2π/c.⑵令x=l , 则)cos(cl bt A y -=,此质点振动初相为 – c l .10.2.6 一平面简谐波逆x 轴传播,波方程为),3(2cos ++=V xt v A y π试利用改变计时起点的方法将波方程化为最简形式。
02 波动--习题解答

y0 即
v0 即
0,
或作 t=0时刻的波形图可得
4 T u 330
2 165 T
x y 0.1cos[ (t 165 ) ] 330
4、
0.5
振动动能和弹性势能表达式同
变化是同相位的.
5、
5J
6、
(1) P在S1 , S2之间
2
6、D
7、B
IA
8、B
对波动,质点在平衡点动能势能都最大
9、C
y 在平衡位置最大 x
( 2 2 r2
10、D 11、D
) (1
2 r1
) D
注意振幅是非负数
12、B
2 A cos
2 x
二、填空题 1、
125rad / s;
338m / s;
u S1
3 4.5
u S2 或:波程差
r1 r2 1.5
p
两波源具有相同的初相位
2
(r1 r2 )
2
(3 4.5 ) 3
A1 A2 A
2 A12 A2 2 A1 A2 cos 0
干涉相消
A0
3
4.5
u S2
2:图示一平面简谐波在t=0时刻的波形图。求: (1)该波的波动方程; (2)P处质点的振动方程
y ( m)
u 0.08m / s
x ( m)
O
0.20
0.04
解: 由t 0质点O的振动状态: (1) A y0 0, 0 0 2 1
由图可知:T 5s , v H z u 5
10 波 动 习题解答讲解

第十章 波 动10-1 图(a )表示t =0 时的简谐波的波形图,波沿x 轴正方向传播,图(b )为一质点的振动曲线.则图(a )中所表示的x =0 处振动的初相位与图(b )所表示的振动的初相位分别为( )题10-1 图(A) 均为零 (B) 均为2π (C) 均为2π- (D) 2π 与2π- (E) 2π-与2π 分析与解 本题给了两个很相似的曲线图,但本质却完全不同.求解本题要弄清振动图和波形图不同的物理意义.图(a )描述的是连续介质中沿波线上许许多多质点振动在t 时刻的位移状态.其中原点处质点位移为零,其运动方向由图中波形状态和波的传播方向可以知道是沿y 轴负向,利用旋转矢量法可以方便的求出该质点振动的初相位为π/2.而图(b )是一个质点的振动曲线图,该质点在t =0 时位移为0,t >0 时,由曲线形状可知,质点向y 轴正向运动,故由旋转矢量法可判知初相位为-π/2,答案为(D ).10-2 机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则( )(A) 波长为100 m (B) 波速为10 m·s-1(C) 周期为1/3 s (D) 波沿x 轴正方向传播分析与解 波动方程的一般表式为⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=ϕωu x t A y cos ,其中A 为振幅,φ为初相,u 为波速.x /u 前的“-”表示波沿x 轴正向传播,“+”表示波沿x 轴负向传播.因此将原式写为()()()m 100/π6cos 05.0x t y +=和一般式比较可知(B)、(D) 均不对.而由ω=2π/T =6πs-1 可知T =(1/3)s.则λ=uT =33.3 m ,因此(A)也不对.只有(C)正确. 10-3 一平面简谐波,沿x 轴负方向传播,角频率为ω,波速为u .设4T t =时刻的波形如图(a )所示,则该波的表达式为( )()()()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=πωπωπωπωu x t A y u x t A y u x t A y u x t A y cos B 2cos C 2cos B cos A题10-3 图分析与解 因为波沿x 轴负向传播,由上题分析知(A)、(B )表式不正确.找出(C )、(D )哪个是正确答案,可以有很多方法.这里给出两个常用方法.方法一:直接将t =T /4,x =0 代入方程,那么对(C )有y 0 =A 、对(D )有y 0 =0,可见(D )的结果与图一致.方法二:用旋转矢量法求出波动方程的初相位.由图(a )可以知道t =T /4 时原点处质点的位移为0,且向y 轴正向运动,则此时刻的旋转矢量图如图(b )所示.要求初相位,只要将该时刻的旋转矢量反转(顺时针转)Δφ=ω·Δt =ω·T /4 =π/2,如图(b )所示,即得φ0 =π.同样得(D )是正确答案.题10-4 图10-4 如图所示,两列波长为λ的相干波在点P 相遇.波在点S 1 振动的初相是φ1 ,点S 1 到点P 的距离是r 1 .波在点S 2的初相是φ2 ,点S 2 到点P 的距离是r 2 ,以k 代表零或正、负整数,则点P 是干涉极大的条件为( ) ()()()()()()πλπϕϕπλπϕϕπϕϕπk r r k r r k k r r 22A 22A 2A A 211212121212=-+-=-+-=-=-// 分析与解 P 是干涉极大的条件为两分振动的相位差π2Δk =,而两列波传到P 点时的两分振动相位差为()λr r /π2Δ1212---=,故选项(D )正确.10-5 在驻波中,两个相邻波节间各质点的振动( )(A ) 振幅相同,相位相同 (B ) 振幅不同,相位相同(C ) 振幅相同,相位不同 (D ) 振幅不同,相位不同分析与解 驻波方程为t λx A y v π2cos π2cos 2=,因此根据其特点,两波节间各点运动同相位,但振幅不同.因此正确答案为(B ).10-6 频率为υ=1.25 ×104 Hz 的平面简谐纵波沿细长的金属棒传播,棒的弹性模量为E =1.90 ×1011 N·m -2 ,棒的密度ρ =7.6 ×103 Kg·m -3 .求该纵波的波长.分析 因机械波传播速度与介质性质有关,固体中纵波传播速度ρ/E u =.而波的特征量波长λ与波速u 、频率υ之间有λ=u /υ.所以,频率一定的振动在不同介质中传播时,其波长不同.由上述关系可求得波长.解 由分析可知金属棒中传播的纵波速度ρ/E u =,因此,该纵波的波长为m 40.0//2===v v ρE u λ10-7 一横波在沿绳子传播时的波动方程为()()m 52cos 200x y ππ-=...(1) 求波的振幅、波速、频率及波长;(2) 求绳上质点振动时的最大速度;(3) 分别画出t =1s 和t =2 s 时的波形,并指出波峰和波谷.画出x =1.0 m处质点的振动曲线并讨论其与波形图的不同.分析 (1) 已知波动方程(又称波函数)求波动的特征量(波速u 、频率υ、振幅A 及波长λ等),通常采用比较法.将已知的波动方程按波动方程的一般形式⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛=0cos ϕωu x t A y 书写,然后通过比较确定各特征量(式中u x 前“-”、“+”的选取分别对应波沿x 轴正向和负向传播).比较法思路清晰、求解简便,是一种常用的解题方法.(2) 讨论波动问题,要理解振动物理量与波动物理量之间的内在联系与区别.例如区分质点的振动速度与波速的不同,振动速度是质点的运动速度,即v =d y /d t ;而波速是波线上质点运动状态的传播速度(也称相位的传播速度、波形的传播速度或能量的传播速度),其大小由介质的性质决定.介质不变,波速保持恒定.(3) 将不同时刻的t 值代入已知波动方程,便可以得到不同时刻的波形方程y =y (x ),从而作出波形图.而将确定的x 值代入波动方程,便可以得到该位置处质点的运动方程y =y (t ),从而作出振动图.解 (1) 将已知波动方程表示为()[]()m 5.2/π5.2cos 20.0x t y -=与一般表达式()[]0cos ϕω+-=u x t A y /比较,可得0s m 52m 20001=⋅==-ϕ,.,.u A则 m 0.2/,Hz 25.1π2/====v u λωv(2) 绳上质点的振动速度 ()[]()1s m 5.2/π5.2sin π5.0d /d -⋅--==x t t y v则 1max s m 57.1-⋅=v(3) t =1s 和t =2s 时的波形方程分别为()()()()m ππ5cos 20.0m ππ5.2cos 20.021x y x y -=-=波形图如图(a )所示.x =1.0m 处质点的运动方程为 ()()m π5.2cos 20.0t y -=振动图线如图(b )所示.波形图与振动图虽在图形上相似,但却有着本质的区别.前者表示某确定时刻波线上所有质点的位移情况,而后者则表示某确定位置的一个质点,其位移随时间变化的情况.题10-7 图10-8 波源作简谐运动,其运动方程为()m t πcos240100.43-⨯=y ,它所形成的波形以30m·s-1 的速度沿一直线传播.(1) 求波的周期及波长;(2) 写出波动方程.分析 已知波源运动方程求波动物理量及波动方程,可先将运动方程与其一般形式()ϕω+=t cos A y 进行比较,求出振幅A 、角频率ω及初相φ0 ,而这三个物理量与波动方程的一般形式()[]0cos ϕω+-=u x t A y /中相应的三个物理量是相同的.再利用题中已知的波速u 及公式ω=2πν =2π/T 和λ=u T 即可求解.解 (1) 由已知的运动方程可知,质点振动的角频率1s π240-=ω.根据分析中所述,波的周期就是振动的周期,故有 s 1033.8/π23-⨯==ωT波长为λ=uT =0.25 m(2) 将已知的波源运动方程与简谐运动方程的一般形式比较后可得A =4.0 ×10-3m ,1s π240-=ω,φ0 =0故以波源为原点,沿x 轴正向传播的波的波动方程为()[]()()m π8π240cos 100.4/cos 30x t u x t ωA y -⨯=+-=- 10-9 已知一波动方程为()()m 2-π10sin 05.0x t y =.(1) 求波长、频率、波速和周期;(2) 说明x =0 时方程的意义,并作图表示.题10-9 图分析 采用比较法.将题给的波动方程改写成波动方程的余弦函数形式,比较可得角频率ω、波速u ,从而求出波长、频率等.当x 确定时波动方程即为质点的运动方程y =y (t ).解 (1) 将题给的波动方程改写为()[]()m 2/ππx /5t π10cos 05.0--=y 与()[]0cos ϕω+-=u x t A y /比较后可得波速u =15.7 m·s-1 , 角频率ω=10πs-1 ,故有 m 14.3,s 2.0/1,Hz 0.5π2/======uT l v T ωv(2) 由分析知x =0 时,方程()()m 2/ππ10cos 05.0-=t y 表示位于坐标原点的质点的运动方程(如图).10-10 波源作简谐运动,周期为0.02s,若该振动以100m·s-1 的速度沿直线传播,设t =0时,波源处的质点经平衡位置向正方向运动,求:(1) 距波源15.0m 和5.0 m 两处质点的运动方程和初相;(2) 距波源为16.0 m 和17.0m 的两质点间的相位差.分析 (1) 根据题意先设法写出波动方程,然后代入确定点处的坐标,即得到质点的运动方程.并可求得振动的初相.(2) 波的传播也可以看成是相位的传播.由波长λ的物理含意,可知波线上任两点间的相位差为Δφ=2πΔx /λ.解 (1) 由题给条件1s m 100s 020-⋅==u T ,.,可得 m 2;s m π100/π21==⋅==-uT λT ω当t =0 时,波源质点经平衡位置向正方向运动,因而由旋转矢量法可得该质点的初相为φ0 =-π/2(或3π/2).若以波源为坐标原点,则波动方程为()[]2/π100π100cos --=x/t A y距波源为x 1 =15.0 m 和x 2 =5.0 m 处质点的运动方程分别为()()π5.5t π100cos π15.5t π100cos 21-=-=A y A y它们的初相分别为φ10 =-15.5π和φ10 =-5.5π(若波源初相取φ0=3π/2,则初相φ10 =-13.5π,φ10 =-3.5π.)(2) 距波源16.0m 和17.0 m 两点间的相位差()π/π2Δ1212=-=-=λx x10-11 有一平面简谐波在空间传播.已知在波线上某点B 的运动规律为()ϕ+=ωt A y cos ,就图(a )(b )(c )给出的三种坐标取法,分别列出波动方程.并用这三个方程来描述与B 相距为b 的P 点的运动规律.分析 (1) 波动方程的一般表式为()[]0cos ϕω+=u x t A y / ,式中振幅A 、角频率ω和波速u 从B 点运动方程和所给图均已知.因此只要求出原点的初相φ0 .而对(a )、(b )情况,B 点即为原点,所以φ0=φ,对情况(c ),原点比B 点超前相位Δφ=ω1 /u ,则φ0 =φ+ω1/u .(2) 写出三种情况下波动方程后只要将P 点相应的坐标代入即可写出P 点的运动规律.解 (1) 根据分析和图示波的传播方向,有 (a ) 情况下:()[]ϕω+-=u x t A y /cos (b ) 情况下:()[]ϕω++=u x t A y /cos(c ) 情况下:()⎥⎦⎤⎢⎣⎡++-=u l u x t A y ωϕω/cos题10-11图(2) 将P 点的x 坐标值分别代入上述相应的波动方程可得三种情况下均有:()[]ϕω+-=u b t A y /cos P讨论 由于三种情况下,在沿波传播方向上,P 点均落在B 点后距离为b 处,即P 点的振动均比B 点的振动落后时间b /u ,落后相位ωb /u ,因而P 点的运动方程均为()[]ϕω+-=u b t A y /cos P .10-12 图示为平面简谐波在t =0 时的波形图,设此简谐波的频率为250Hz ,且此时图中质点P 的运动方向向上.求:(1) 该波的波动方程;(2) 在距原点O 为7.5 m 处质点的运动方程与t =0 时该点的振动速度.分析 (1) 从波形曲线图获取波的特征量,从而写出波动方程是建立波动方程的又一途径.具体步骤为:1. 从波形图得出波长λ、振幅A 和波速u =λυ;2. 根据点P 的运动趋势来判断波的传播方向,从而可确定原点处质点的运动趋向,并利用旋转矢量法确定其初相φ0 .(2) 在波动方程确定后,即可得到波线上距原点O 为x 处的运动方程y =y (t ),及该质点的振动速度υ=d y /d t .解 (1) 从图中得知,波的振幅A =0.10 m ,波长λ=20.0m ,则波速u =λυ=5.0 ×103 m·s-1 .根据t =0 时点P 向上运动,可知波沿Ox 轴负向传播,并判定此时位于原点处的质点将沿Oy 轴负方向运动.利用旋转矢量法可得其初相φ0 =π/3.故波动方程为()[]()[]()m 3/π5000/π500cos 10.0/cos 0++=++=x t u x t ωA y (2) 距原点O 为x =7.5m 处质点的运动方程为 ()()m 12π13π5000.10cosy /t += t =0 时该点的振动速度为()-10s m 40.6/12πsin13π50/d d ⋅=-===t t y v题10-12 图10-13 如图所示为一平面简谐波在t =0 时刻的波形图,求(1)该波的波动方程;(2) P 处质点的运动方程.题10-13 图分析 (1) 根据波形图可得到波的波长λ、振幅A 和波速u ,因此只要求初相φ,即可写出波动方程.而由图可知t =0 时,x =0 处质点在平衡位置处,且由波的传播方向可以判断出该质点向y 轴正向运动,利用旋转矢量法可知φ=-π/2.(2) 波动方程确定后,将P 处质点的坐标x 代入波动方程即可求出其运动方程y P =y P (t ).解 (1) 由图可知振幅A =0.04 m, 波长λ=0.40 m, 波速u =0.08m·s-1 ,则ω=2π/T =2πu /λ=(2π/5)s-1 ,根据分析已知φ=-π/2,因此波动方程为()m 208.05π20.04cos y ⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=πx t(2) 距原点O 为x =0.20m 处的P 点运动方程为()m 2520.04cos y ⎥⎦⎤⎢⎣⎡+=ππ 10-14 一平面简谐波,波长为12 m ,沿O x 轴负向传播.图(a )所示为x =1.0 m 处质点的振动曲线,求此波的波动方程.题10-14图分析 该题可利用振动曲线来获取波动的特征量,从而建立波动方程.求解的关键是如何根据图(a ) 写出它所对应的运动方程.较简便的方法是旋转矢量法.解 由图(a )可知质点振动的振幅A =0.40 m,t =0 时位于x =1.0 m 处的质点在A /2 处并向Oy 轴正向移动.据此作出相应的旋转矢量图(b ),从图中可知3/π0-='.又由图(a )可知,t =5 s 时,质点第一次回到平衡位置,由图(b )可看出ωt =5π/6,因而得角频率ω=(π/6) s -1 .由上述特征量可写出x =1.0 m 处质点的运动方程为()m 3π6π0.04cos y ⎥⎦⎤⎢⎣⎡-=t 将波速1s m 0.1π2//-⋅===ωλT λu 及x =1.0 m 代入波动方程的一般形式()[]0cos ϕω++=u x t A y /中,并与上述x =1.0 m 处的运动方程作比较,可得φ0 =-π/2,则波动方程为()()m 2π10/6π0.04cos y ⎥⎦⎤⎢⎣⎡-+=x t 10-15 图中(Ⅰ)是t =0 时的波形图,(Ⅱ)是t =0.1 s 时的波形图,已知T >0.1 s ,写出波动方程的表达式.题10-15 图分析 已知波动方程的形式为()[]02cos ϕλπ+-=//x T t A y从如图所示的t =0 时的波形曲线Ⅰ,可知波的振幅A 和波长λ,利用旋转矢量法可确定原点处质点的初相φ0 .因此,确定波的周期就成为了解题的关键.从题给条件来看,周期T 只能从两个不同时刻的波形曲线之间的联系来得到.为此,可以从下面两个不同的角度来分析.(1) 由曲线(Ⅰ)可知,在t =0 时,原点处的质点处在平衡位置且向Oy 轴负向运动,而曲线(Ⅱ)则表明,经过0.1s 后,该质点已运动到Oy 轴上的-A 处.因此,可列方程kT +T /4 =0.1s ,在一般情形下,k =0,1,2,…这就是说,质点在0.1s 内,可以经历k 个周期振动后再回到-A 处,故有T =0.1/(k +0.25) s .(2) 从波形的移动来分析.因波沿Ox 轴正方向传播,波形曲线(Ⅱ)可视为曲线(Ⅰ)向右平移了Δx =u Δt =λΔt /T .由图可知,Δx =kλ+λ/4,故有kλ+λ/4 =λΔt /T ,同样也得T =0.1/(k +0.25)s .应当注意,k 的取值由题给条件T >0.1 s 所决定.解 从图中可知波长λ=2.0 m ,振幅A =0.10 m .由波形曲线(Ⅰ)得知在t =0 时,原点处质点位于平衡位置且向Oy 轴负向运动,利用旋转矢量法可得φ0 =π/2.根据上面的分析,周期为()()(),...,,./.210250s 10=+=k k T由题意知T >0.1 s ,故上式成立的条件为k =0,可得T =0.4 s .这样,波动方程可写成()[]()m 5002402cos 100ππ.././.++=x t y10-16 平面简谐波的波动方程为()()m 24cos 080πx πt y -=..求:(1) t =2.1 s 时波源及距波源0.10m 两处的相位;(2) 离波源0.80 m 及0.30 m 两处的相位差.解 (1) 将t =2.1 s 和x =0 代入题给波动方程,可得波源处的相位π4.81=将t =2.1 s 和x ′=0.10 m 代入题给波动方程,得0.10 m 处的相位为 π2.82= (2) 从波动方程可知波长λ=1.0 m .这样,x 1 =0.80 m 与x 2 =0.30 m 两点间的相位差π/Δπ2Δ=⋅=λx π10-17 为了保持波源的振动不变,需要消耗4.0 W 的功率.若波源发出的是球面波(设介质不吸收波的能量).求距离波源5.0 m 和10.0 m 处的能流密度.分析 波的传播伴随着能量的传播.由于波源在单位时间内提供的能量恒定,且介质不吸收能量,故对于球面波而言,单位时间内通过任意半径的球面的能量(即平均能流)相同,都等于波源消耗的功率P .而在同一个球面上各处的能流密度相同,因此,可求出不同位置的能流密度I =P /S .解 由分析可知,半径r 处的能流密度为2π4/r P I =当r 1 =5.0 m 、r 2 =10.0m 时,分别有22211m W 1027.1π4/--⋅⨯==r P I22222m W 1027.1π4/--⋅⨯==r P I10-18 有一波在介质中传播,其波速u =1.0 ×103m·s -1 ,振幅A =1.0 ×10-4 m ,频率ν =1.0 ×103Hz .若介质的密度为ρ =8.0×102 kg·m -3 ,求:(1) 该波的能流密度;(2) 1 min 内垂直通过4.0 ×10-4m 2 的总能量.解 (1) 由能流密度I 的表达式得 2522222m W 10581221-⋅⨯===.v uA uA I ρπωρ (2) 在时间间隔Δt =60 s 内垂直通过面积S 的能量为J 107933⨯=∆⋅=∆⋅=.t IS t P W10-19 如图所示,两振动方向相同的平面简谐波波源分别位于A 、B 两点.设它们相位相同,且频率均为υ=30Hz ,波速u =0.50 m·s -1 .求在P 点处两列波的相位差.分析 在均匀介质中,两列波相遇时的相位差Δφ一般由两部分组成,即它们的初相差φA -φB 和由它们的波程差而引起的相位差2πΔr /λ.本题因φA =φB ,故它们的相位差只取决于波程差.解 在图中的直角三角形ABP 中cm 5130sin o .==AP BP两列波在点P 处的波程差为Δr =AP -BP ,则相位差为π8.1/π2/π2Δ===u r Δλr Δv题10-19图10-20 如图所示,两相干波源分别在P 、Q 两点处,它们发出频率为ν、波长为λ,初相相同的两列相干波.设PQ =3λ/2,R 为PQ 连线上的一点.求:(1) 自P 、Q 发出的两列波在R 处的相位差;(2) 两波在R 处干涉时的合振幅.题10-20 图分析 因两波源的初相相同,两列波在点R 处的相位差Δφ仍与上题一样,由它们的波程差决定.因R 处质点同时受两列相干波的作用,其振动为这两个同频率、同振动方向的简谐运动的合成,合振幅ϕ∆++=cos 2212221A A A A A .解 (1) 两列波在R 处的相位差为πλr 3/Δπ2Δ==(2) 由于π3Δ=,则合振幅为21212221cos32A A A A A A A -=++=π10-21 两相干波波源位于同一介质中的A 、B 两点,如图(a )所示.其振幅相等、频率皆为100 Hz ,B 比A 的相位超前π.若A 、B 相距30.0m ,波速为u =400 m·s -1 ,试求AB 连线上因干涉而静止的各点的位置.题10-21 图分析 两列相干波相遇时的相位差λr Δπ2Δ12--=.因此,两列振幅相同的相干波因干涉而静止的点的位置,可根据相消条件()π12Δ+=k 获得. 解 以A 、B 两点的中点O 为原点,取坐标如图(b )所示.两波的波长均为λ=u /υ=4.0 m .在A 、B 连线上可分三个部分进行讨论.1. 位于点A 左侧部分()π14π2ΔA B A B -=---=r r 因该范围内两列波相位差恒为2π的整数倍,故干涉后质点振动处处加强,没有静止的点.2. 位于点B 右侧部分 ()π16π2ΔA B A B =---=r r显然该范围内质点振动也都是加强,无干涉静止的点.3. 在A 、B 两点的连线间,设任意一点P 距原点为x .因x r -=15B ,x r +=15A ,则两列波在点P 的相位差为()()π1/π2ΔA B A B +=---=x λr r根据分析中所述,干涉静止的点应满足方程()()π152π1+=+k x x得 ()2,...1,0,k m 2±±==k x因x ≤15 m ,故k ≤7.即在A 、B 之间的连线上共有15 个静止点.10-22 图(a )是干涉型消声器结构的原理图,利用这一结构可以消除噪声.当发动机排气噪声声波经管道到达点A 时,分成两路而在点B 相遇,声波因干涉而相消.如果要消除频率为300 Hz 的发动机排气噪声,则图中弯管与直管的长度差Δr =r 2 -r 1 至少应为多少? (设声波速度为340 m·s -1 )题10-22 图分析 一列声波被分成两束后再相遇,将形成波的干涉现象.由干涉相消条件,可确定所需的波程差,即两管的长度差Δr .解 由分析可知,声波从点A 分开到点B 相遇,两列波的波程差Δr =r 2 - r 1 ,故它们的相位差为()λr λr r /Δπ2/π2Δ12=-=由相消静止条件Δφ=(2k +1)π,(k =0,±1,±2,…)得 Δr =(2k +1)λ/2根据题中要求令k =0 得Δr 至少应为m 57022.//===∆v u r λ讨论 在实际应用中,由于噪声是由多种频率的声波混合而成,因而常将具有不同Δr 的消声单元串接起来以增加消除噪声的能力.图(b )为安装在摩托车排气系统中的干涉消声器的结构原理图.10-23 如图所示,x =0 处有一运动方程为t A y ωcos =的平面波波源,产生的波沿x 轴正、负方向传播.MN 为波密介质的反射面,距波源3λ/4.求:(1) 波源所发射的波沿波源O 左右传播的波动方程;(2) 在MN 处反射波的波动方程;(3) 在O ~MN 区域内形成的驻波方程,以及波节和波腹的位置;(4) x >0区域内合成波的波动方程.题10-23 图分析 知道波源O 点的运动方程t A y ωcos =,可以写出波沿x 轴负向和正向传播的方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2.因此可以写出y 1 在MN 反射面上P 点的运动方程.设反射波为y 3 ,它和y 1 应是同振动方向、同振幅、同频率的波,但是由于半波损失,它在P 点引起的振动和y 1 在P 点引起的振动反相.利用y 1 在P 点的运动方程可求y 3 在P 点的运动方程,从而写出反射波y 3 .在O ~MN 区域由y 1 和Y 3 两列同频率、同振动方向、同振幅沿相反方向传播的波合成形成驻波.在x >0区域是同传播方向的y 2 和y 3 合成新的行波.解 (1) 由分析已知:沿左方向和右方向传播的波动方程分别为()u x t A y /+=ωcos 1和()u x t A y /-=ωcos 2(2) y 1 在反射面MN 处引起质点P 振动的运动方程⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=2π3π2cos 43π2π2cos P 1t T A λλt TA y 因半波损失反射波y 3 在此处引起的振动为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=2ππ2cos ππ23π2cos P 3t TA t T A y 设反射波的波动方程为()/π2/π2cos 3+-=λx T t A y ,则反射波在x =-3λ/4处引起的振动为⎪⎭⎫ ⎝⎛++=π23π2cos P 3t T A y与上式比较得π2-=,故反射波的波动方程为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--=x λt TA x λt T A y π2π2cos π2π2π2cos 3 (3) 在O ~MN 区域由y 1 和y 3 合成的驻波y 4 为()⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=+=t T x λA x λt T A x λt T A y y x t y π2cos π2cos 2π2π2cos π2π2cos ,314 波节的位置:4/2/,2/ππ/π2λλk x k λx +=+=,取k =-1, -2,即x =-λ/4, -3λ/4 处为波节.波腹的位置:2/,π/π2λk x k λx ==,取k =0,-1,即x =0,-λ/2 处为波腹.(4) 在x >0 区域,由y 2 和y 3 合成的波y 5 为()⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+=x λt TA x λt T A x λt T A y y x t y π2π2cos 2π2π2cos π2π2cos ,325 这表明:x >0 区域内的合成波是振幅为2A 的平面简谐波.10-24 一弦上的驻波方程式为()()()m π550cos π6.1cos 100.32t x y -⨯=(1) 若将此驻波看成是由传播方向相反,振幅及波速均相同的两列相干波叠加而成的,求它们的振幅及波速;(2) 求相邻波节之间的距离;(3) 求t =3.0 ×10-3 s 时位于x =0.625 m 处质点的振动速度.分析 (1) 采用比较法.将本题所给的驻波方程,与驻波方程的一般形式相比较即可求得振幅、波速等.(2) 由波节位置的表达式可得相邻波节的距离.(3) 质点的振动速度可按速度定义v =d y /d t 求得.解 (1) 将已知驻波方程 ()()()m π550cos π6.1cos 100.32t x y -⨯=与驻波方程的一般形式()()t λx A y v π2cos /π2cos 2=作比较,可得两列波的振幅A =1.5 ×10-2 m ,波长λ=1.25 m ,频率υ=275 Hz ,则波速u =λυ=343.8m·s -1 .(2) 相邻波节间的距离为()[]()m625024124112k 1k .///==+-++=-=∆+λλλk k x x x (3) 在t =3.0 ×10-3 s 时,位于x =0.625 m 处质点的振动速度为 ()()1s m 2.46π550cos π6.1cos π5.16d /d -⋅-=-==t x t y v*10 -25 在下述两种情况下,求长度为0.15 m 的风琴管的基频和前四个谐频.(1) 管子两端开口;(2) 管子的一端封闭,一端开口.设声速为340m·s -1 .分析 当风琴管的某个端口封闭时,那么风琴管内形成的驻波在该端口就是波节.而当风琴管的端口开口时,就形成波腹.根据限定区域内驻波形成条件(如图所示),当管子两端为波腹时,其管长与波长有关系式L =kλk /2 成立,k 为正整数.而当管子一端为波节、另一端为波腹时,管长与波长有关系式L =(2k -1)λk /4 成立.可见取不同的k 值,得到不同的λk ,管内就出现不同频率υk 的波.对应k =1 称为基频,k =2,3,4,…称为各次谐频.题10-25 图解 (1) 根据分析由L =kλk /2 和νk =u /λk 可得υk =ku /2L (k =1,2,3,…)因此,基频:υ 1 =1133 Hz二次谐频:υ2 =2267 Hz三次谐频:υ3 =3400 Hz四次谐频:υ4 =4533 Hz五次谐频:υ5 =5667 Hz(2) 同样根据分析由L =(2k -1)λk /4 和νk =u /λk 可得υk =(2k -1)u /4L (k =1,2,3,…)因此,基频:υ1 =567 Hz二次谐频:υ2 =1700 Hz三次谐频:υ3 =2833 Hz四次谐频:υ4 =3967 Hz五次谐频:υ5 =5100 Hz10-26 一平面简谐波的频率为500 Hz ,在空气(ρ =1.3 kg·m -3 )中以u =340 m·s -1 的速度传播,到达人耳时,振幅约为A =1.0 ×10 -6 m .试求波在耳中的平均能量密度和声强.解 波在耳中的平均能量密度2622222m J 10426221--⋅⨯===.v A A ρπωρω声强就是声波的能流密度,即23m W 10182--⋅⨯==.ωu I这个声强略大于繁忙街道上的噪声,使人耳已感到不适应.一般正常谈话的声强约1.0×10-6W·m -2 左右.10-27 面积为1.0 m 2 的窗户开向街道,街中噪声在窗口的声强级为80dB .问有多少“声功率”传入窗内?分析 首先要理解声强、声强级、声功率的物理意义,并了解它们之间的相互关系.声强是声波的能流密度I ,而声强级L 是描述介质中不同声波强弱的物理量.它们之间的关系为L =lg (I /I 0 ),其中I 0 =1.0 ×10-12 W·m -2为规定声强.L 的单位是贝尔(B ),但常用的单位是分贝(dB ),且1 B =10 dB .声功率是单位时间内声波通过某面积传递的能量,由于窗户上各处的I 相同,故有P =IS .解 根据分析,由L =lg (I /I 0 )可得声强为I =10L I 0则传入窗户的声功率为P =IS =10L I 0 S =1.0 ×10-4 W10-28 若在同一介质中传播的,频率分别为1200 Hz 和400 Hz 的两声波有相同的振幅.求:(1) 它们的强度之比;(2) 两声波的声强级差.解 (1) 因声强222/ωρuA I =,则两声波声强之比9222121==ωω//I I(2) 因声强级L =lg (I /I 0 ),则两声波声强级差为()()()dB 549B 9540lg lg lg 210201..///===-=∆I I I I I I L10-29 一警车以25 m·s -1 的速度在静止的空气中行驶,假设车上警笛的频率为800 Hz .求:(1) 静止站在路边的人听到警车驶近和离去时的警笛声波频率;(2) 如果警车追赶一辆速度为15m·s -1 的客车,则客车上人听到的警笛声波的频率是多少? (设空气中的声速u =330m·s -1 )分析 由于声源与观察者之间的相对运动而产生声多普勒效应,由多普勒频率公式可解得结果.在处理这类问题时,不仅要分清观察者相对介质(空气)是静止还是运动,同时也要分清声源的运动状态.解 (1) 根据多普勒频率公式,当声源(警车)以速度v s =25 m·s -1 运动时,静止于路边的观察者所接收到的频率为sv u u v v =' 警车驶近观察者时,式中v s 前取“-”号,故有Hz 6.8651=-='sv u u v v 警车驶离观察者时,式中v s 前取“+”号,故有 Hz 7.7432=+='sv u u v v (2) 声源(警车)与客车上的观察者作同向运动时,观察者收到的频率为 Hz 7.7432=+='s v u u vv 10-30 一次军事演习中,有两艘潜艇在水中相向而行,甲的速度为50.0 km·h -1 ,乙的速度为km·h -1 ,如图所示.甲潜艇发出一个1.0×103 Hz 的声音信号,设声波在水中的传播速度为5.47×103 km·h -1 ,试求(1) 乙潜艇接收到的信号频率;(2) 甲潜艇接收到的从乙潜艇反射回来的信号频率.分析 (1) 甲潜艇是声源,发出信号频率为υ,乙潜艇是观察者,两者相向运动,利用多普勒频率公式,即可求得乙潜艇接收到的信号频率υ′.(2) 要求甲潜艇接收到的乙潜艇的信号频率,可将乙潜艇看成是声源,它发出的信号频率是υ′,将甲潜艇看成是观察者,两者相向运动,同样利用多普勒频率公式,可求出甲潜艇接收到的信号频率υ″.题10-30 图解 由题已知v 1 =50.0 km·h -1 , v 2 =70.0 km·h -1 , u =5.47 ×103 km·h -1 ,v =1000 Hz ,由分析可知:(1) Hz 102212=-+='v v v v u u (2) Hz 104521='-+=''v v v v u u *10-31 一广播电台的辐射功率是10 kW ,假定辐射场均匀分布在以电台为中心的半球面上.(1) 求距离电台为r =10 kW 处的坡印廷矢量的平均值;(2) 若在上述距离处的电磁波可看作平面波,求该处的电场强度和磁场强度的振幅.分析 坡印廷矢量是电磁波的能流密度矢量,它是随时间作周期性变化的.求其平均值,也就是指在一周期内的平均值.在忽略电磁波传播过程中的能量损耗时,按题意,波源的辐射功率就应等于单位时间通过半球面(面积A =2πr 2 )的电磁波能量,即P =S ·A ,而平均能流密度值S =EH .另外,由电磁波的性质可知,E 与H 垂直,相位相同,且有关系式H E 00με=.因此,平面电磁波的坡印廷矢量大小的平均值可表示为2m 00m m 2121H H E S εμ==,由此可求电场强度振幅m E 和磁场强度振幅m H .解 (1) 因为辐射场分布在半球面上,则坡印廷矢量的平均值为 252m W 1059.1π2/--⋅⨯==r P S(2) 根据分析,2m 00m m 212H H E EH S εμ===/ ,则磁场强度和电场强度的振幅分别为 ()142100m m A 109122--⋅⨯==.//εμS H1m m m V 10902-⋅==./H S E*10-32真空中有一平面电磁波的电场表达式如下:0x =E ()[]()0,m V /10π2cos 60.018y =⋅-⨯=-z E c x t E .求:(1) 波长,频率;(2) 该电磁 波的传播方向;(3) 磁场强度的大小和方向;(4) 坡印廷矢量. 分析 根据电磁波的特性,电场强度E 和磁场强度H 均垂直于波的传播方向.而E 和H 又互相垂直且同相位,E ×H 的方向为波速u 的方向.在数值上有关系00με//=H E 成立.因此由题中给出的电场表达式可以求磁场表达式,而坡印廷矢量可由公式S =E ×H 求出.解 (1) 由电场表达式可知,角频率ω=2π×108 s -1 ,波速u 等于光速c ,则电磁波的波长和频率分别为Hz 10π2m;3/π28=====ω/ωc cT λv(2) 由电场表达式看出,电磁波沿x 轴正方向传播,E 矢量是在Oxy 平面内偏振的.(3) 磁场强度表达式:00y x ==H H ,()[]()183y 00m A /10π2cos 106.1/--⋅-⨯⨯==c x t E μεH zH 矢量在Oxz 平面内偏振.(4) ()[]()2824m W i /10π2cos 106.9H E S --⋅-⨯⨯=⨯=c x t。
第10章 波动学基础 习题答案

, 周期是T。 y A cos t 2
2 , ,3 2 ,2
(1)这四点与振源的振动相位差各位多少?
(2)这四点的初相位各为多少?
0 , 2 , , 3 2
(3)这四点开始运动的时刻比振源落后多少?
T 4 , T2 ,3 T 4 , T
10-14 两相干波源分别在P,Q两处,它们相距 3 2 ,发 出频率为
2 πx y 0 . 03 cos 1 . 6 x cos 550 t m 0.03cos cos 550 t 1 . 25 1 . 25
10-5 在平面简谐波的波射线上,A,B,C,D 各点距离波
4振动方程
、波长为
的相干波。R为PQ连线上的一
点,求下列两种情况下,两波在R点的合振幅。(1)设两
波源有相同的初相位;(2)两波源的初相位差为 3 2
。
P
Q
R
x A co 2 s t (1)P点波:y P 1 x 3 2 y A cos 2 t Q点波: Q 2
相位差为 。 2 ,∴R点合振幅为 A 1 A 2
10-15 两个波在一根很长的绳子上传播,它们的方程为
y 0 . 06 cos x 4 t y 0 . 06 cos x 4 t 2 1
2 x 2 x 0 . 06 cos 4 t y 0 . 06 cos 4 t y 2 1 2 2 2 x y y y 0 . 12 c os 4 t c os 1 2 2
10-16 绳子上的驻波由下式表示
y 0 . 08 cos 2 x cos 50 t
第10章波动答案复习课程

X 答:波函数y ACO S t(A )波是横波(C )波从波疏介质入射到波密介质4.在简谐波传播过程中,沿传播方向相距为A.大小相同,而方向相反C.大小不同,方向相同 5. 平面简谐波的波动方程为此文档来源于网络,如有侵权请联系网站删除CV —、简答题1. 惠更斯原理的内容是什么?利用惠更斯原理可以定性解释哪些物理现象?答案:介质中任一波振面上的各点,都可以看做发射子波的波源,其后任一时刻,这些子波的包络 面就是该时刻的波振面。
利用惠更斯原理可以定性解释波的干涉、衍射反射和折射现象。
1.平面简谐波传播过程中的能量特点是什么?在什么位置能量为最大?答案:能量从波源向外传播,波传播时某一体元的能量不守桓,波的传播方向与能量的传播方向一 致,量值按正弦或余弦函数形式变化,介质中某一体元的波动动能和势能相同,处于平衡位置处的 质点,速度最大,其动能最大,在平衡位置附近介质发生的形变也最大,势能也为最大。
3 •简述波动方程的物理意义。
,是波程x 和时间t 的函数,描写某一时刻任意位置处质点 振动位移。
(1 )当X d 时,y f(t),为距离波源为 d 处一点的振动方程。
(2)当t c 时(c 为常数),y f (x),为某一时刻各质点的振动位移,波形的 拍照 4.驻波是如何形成的?驻波的相位特点什么? 答案:驻波是两列频率、振幅相同的相干波在同一直线上沿相反方向传播时叠加而成。
驻波的相位 特点是:相邻波节之间各质点的相位相同,波节两边质点的振动有 的相位差。
、选择题1.在下面几种说法中,正确的说法是 (C )。
(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的;(B) 波源振动的速度与波速相同;(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后;(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.2. 一横波以速度u 沿x 轴负方向传播,t 时刻波形图如图所 示,则该时刻(B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
O 1m 2m
Bx
16.(10-11) 一波源作简谐振动,周期为0.01s,经平衡 位置向正方向运动时为计时起点。设此振动以400ms-1 的速度沿直线传播。(1)写出波动方程;(2)求距波 源16m处和20m处的质元的振动方程和初相位;(3) 求距波源15m处和16m处的两质元的相位差是多少?
(A) 2 和 a b 2
(B) 2 和 2
ba
(C)
a 和a
2 b
(D)
b和 b
a 2
5.两个等幅波的波动方程分别为 y 6cos 2 (5t 0.1x) cm和
y 6cos 2 (5t 0.01x) cm,则两波的波长1 和 2应为:
(A)1 100cm, 2 10 cm (B)1 10 cm, 2 100cm
(1)B 和A 两点之间
y
400 2
的振动相位差为
A
Bx
Δ B A
O 1m 2m
[200 (t xB ) 3 ] [200 (t xA ) 3 ]
400 2
400 2
2
xB xA
2
21 4
2
(2)B 点振动的初相
B
B
0
2
7. (4) 。
8. 200 cm , 0.2
, 1000 cms1
9. D 。 10. A 0.20m , u 2.5m s1 , 1.25m s1Hz , 2.0m 。
11. y 2103 cos[2 (t x ) ]m ,
30 3
12.答:不是。波速是波在传播过程中相位传播的速度,而质 元振动的速度是质元在自己平衡位置附近来回运动的速度
,波速为
,频率
为
,波长为
。
11.波源作简谐运动,其运动方程为 y 2103 cos(2t )m ,
3
它所形成的波以 30ms1 的速度沿x轴负方向传播,其
波动方程为
。
12.波速和质元振动的速度是不是一回事?
13.平面简谐波的波动方程 y
表示什么? 0 表示什么?
A
cos[(t
(C)1 5 cm, 2 50 cm
(D) 1 50 cm, 2 5 cm
6.波在介质中传播,任一质元的动能和势能都随时间变化,动
能和势能
为零,
达到最大值,且具有
的
相位。
7.当一平面简谐机械波在弹性媒质中传播时,下述各结论正 确的是______
(1)媒质质元的振动动能增大时,其弹性势能减小,总机械能 守恒.
π xB
点的振动方程
3 2 2
2 42
y 0.01cos[200 π t
]
以B 为坐标原点时的波动方程为
y 0.01cos[200 π(t
2 x
) ]
400 2
16(10-11)
解:角频率
2 2 200 s1
T 0.01
t 0时,波源振动位移 y0 Acos 0 0.1cos 0 0
(2) 媒质质元的振动动能和弹性势能都作周期性变化,但二者 的相位不相同
(3) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同, 但二者的数值不相等
(4) 媒质质元在其平衡位置处弹性势能最大.
8.设某列波的波动方程为 y 10cos(10t x ) cm,则该波动的波
100
长为
,周期为
17.(10-14) 两相干波源分别在P、Q两处,他们相距 3λ/2,如题10-14图所示,由P、Q发出频率为ν,波长为 λ的相干波。R为PQ连线上的一点。求下面两种情况两 波在R点的合振幅:(1)设两波源有相同的初相位; (2)两波源初相位为π。
P3
Q
R
2
答案
1.D 2.B 3.C 4.A 5.B 6. 同时 , 同时 , 相同 。
s ,波速为
.
9 . 两个相干波源的相差为2, 则两波相遇的某点的振幅 为
A .一定为两波源振幅之和; B .一定为两波源振幅之差; C. 无衰减传播波时为两波源振幅之和; D. 条件不足,无法确定。
10.已知一平面简谐波的波动方程 y 0.20cos(2.5t x)m ,
则波的振幅为
第10章 波动学基础 复习思考题 1.已知波动方程为 y A cos(Bt Cx) 其中A、B、C为正常数,则
(A)波速为C/B (B)周期为1/B
(C)波长为C/2π (D)角频率为B
2.一平面简谐波动在弹性媒质中传播时,在传播方向上媒质中 某质元在负的最大位移处,则它的能量是
(A) 动能为零,势能最大 (B) 动能为零,势能为零 (C) 动能最大,势能最大 (D) 动能最大,势能为零
x u
)
0
]
中
x u
14.满足什么条件的两列波在空间相遇时可以产生相干叠加?
15. 如图所示,一平面简谐波以400 m·s-1的波速在均匀媒质中 沿x 轴正向传播.已知波源在O 点,波源的振动周期为0.01s 、 振幅为0.01m. 设以波源振动经过平衡位置且向y 轴正向运动 作为计时起点,求:(1)B 和A 两点之间的振动相位差;(2) 以B 为坐标原点写出波动方程.
3.波产生干涉的条件是 (A) 波源的频率相同、振幅相同、波的传播方向相同; (B) 波源的频率相同、位相差恒定、波的传播方向相同; (C) 波源的频率相同、位相差恒定、振动方向相同; (D) 波源的位相差恒定、振幅相等、振动方向相同。
4.已知一波长方程为y Acos(at bx) , 则该波的波长和频率为:
Bx
uT 400 0.01 4m
y0 A cos 0 0
cos 0 0
0Biblioteka 2,3
2
v0 Asin0 0 sin0 0
波源的振动方程
y 0.01cos[200t 3 ]
0
3
2
2
波动方程
y 0.01cos[200 (t x ) 3 ]
13答:
x u
表示原点处质元的振动状态传播到 x
处的质元
时所需要的时间. 0 表示原点处质元振动的初相位.
14.答:根据波的干涉条件,在空间相遇的两列波满足频率 相同、振动方向相同、相位差恒定的条件才能产生干涉。
y
15. 解 根据题意
2 2 200
T 0.01
A
O 1m 2m