七年级数学整式的乘法练习题
七年级数学下---整式的乘法综合练习题
七年级数学下---整式的乘法综合练习题(一)填空1.a8=(-a5)____.2.a15=(?)5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=_____.6.(-a2b)3·(-ab2)=____.7.(2x)2·x4=(?)2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x.12.m是x的六次多项式,n是x1415.{[(-1)4]m}n=______.17.一长方体的高是(a+2).5=______(a-b)n+9.n+1-8,那么x=______.2122.(8a3)m÷[(4a2)n·2a]=______.23.若24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.2+2y4)的最高次项是______.2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[???]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x?(乘法交换律)=-20(a2a3)·(x4x)??(乘法结合律)=-20a5x5.(??????)A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[???]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[??]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[???]A.(x+1)(x+4)=x2+5x+42C.(y+4)(y-5)=y2+9y-20;31.计算-a2b2·(-ab3A.a4b8;B.-a4b8;32.下列计算中错误的是[?]A.;C.[(x+y)m]n=(x+y)mn;D33.=2a16m;D.(-m)(-m)4=-m5.m-1的结果是[???].(b-a)2n+m;D.以上都不对.的值一定是?[???]D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是?[???]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[???]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[???]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[???]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[???](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,A.只有(1)与(2)正确;C.只有(1)与(4)正确;42.(-6x n y)2·3x n-1yA.18x3n-1y2;B.-36x2n-1y3;[???]B.2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;[???]A.2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[???]47.把下列各题的计算结果写成10的幂的形式,正确的是[???]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[???]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[???] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[???]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=73n222nA.833;B.2891;(三)计算52.(6×108)(7×10954.(-3ab)·(-a2c)·6ab2.55..57.(x+2y)(5a+3b).58.x n+1(x n60.(-ab)3·(-a2b)·(-a2b4c)262.2).65..68.(-4xy3)·(-xy)+(-3xy2)2..(5a3+2a-a2-3)(2-a+4a2)..72.[(-a2b)3]3·(-ab2).73、75.(-2x m y n)3·(-x2y n)·(-3xy2)2.76.(-2ab2)3·(3a2b-2ab-4b2).77.(0.2a-1.5b+1)(0.4a-4b-0.5).78.(x+3y+4)(2x-y).79.y[y-3(x-z)]+y[3z-(y-3x)].80.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简求值;81.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.82.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=83.已知ab2=-6,求-ab(a2b5-ab3-b)的值.84.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.85.已知(x-1)(x+1)(x-2)(x-4)=(x2-3x)2+a(x2-3x)+b,求a,b的值.86.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.87.比较2100与375的大小.88.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).89.已知2a=3b=6c(a,b,c90.求证:对于任意自然数n,91.已知有理数x,y,z满足-x=0.92.已知x=b+c,y=c+a,z=a+b.93.证明(a-1)(a2-3)+a294.试证代数式、=2x+5y-3=0则=44;c=533则有();C.a<c<b D.c<a<b,则x=6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6=64时,该式的值。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(含答案解析)(3)
一、选择题1.已知4,6m n x x ==,则2-m n x 的值为( )A .9B .34C .83D .432.下列运算正确的是( ) A .2222a a -= B .()32628b b -=-C .222()a b a b -=-D .()a b a b --=--3.若计算关于x 的代数式()2(1)2x x mx -++得2x 的系数为3,则m =( ) A .4- B .2- C .2 D .44.下列计算正确的是( )A .326a a a ⋅=B .()()2122a a a +-=- C .()333ab a b =D .623a a a ÷=5.23ab a ⋅的计算结果是( ) A .3abB .6abC .32a bD .33a b6.下列运算正确的是( ) A .325a a a =B .()325x x =C .824x x x ÷=D .()326a ba b =7.下列运算中正确的是( ) A .235x y xy +=B .()3253x yx y =C .826x x x ÷=D .32622x x x ⋅=8.已知a+2b-2=0,则2a ×4b ( ) A .4B .8C .24D .329.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( ) A .41a + B .43a + C .63a + D .2+1a 10.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( )A .6163m n -B .6323m n -C .383m n -D .6169m n -11.已知1x =,1y =,则代数式222x xy y ++的值为( ).A .20B .10C .D .12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是( )A .()()22-a b a b a b +-=B .()2222a b a ab b +=++ C .()2222a b a ab b -=-+D .()2222a b a ab b -=--二、填空题13.在代数式求值时,可以利用交换律,将各项交换位置后,把一个多项式化成“()222a ab b±++其他项”的形式,然后利用完全平方公式得到“()2a b ±+其他项”,最后整体代入求值.例如对于问题“已知2a b +=,1c =,求2222a c b ab +++的值”,可按以下方式求解:2222a c b ab +++2222a ab b c =+++22()a b c =++=22215+=.请仿照以上过程,解决问题:若3m n t +=-,7n k t -=-,则22244241m n k mn mk nk +++--+=______.14.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=________.15.如果2(1)(2)x x mx m --+的乘积中不含2x 项,则m 的值为____. 16.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________.17.若21202x y ⎛⎫++-= ⎪⎝⎭,则20202021x y 的值为_________. 18.已知a +b =5,且ab =3,则a 3+b 3=_____.19.如图为杨辉三角表,它可以帮助我们按规律写出()n a b +(其中n 为正整数)展开式的系数,请仔细观察表中规律可得:1()a b a b +=+;222()2a b a ab b +=++; ……;如果55432345()10105y a b a xa b a b a b ab b +=+++++…….那么x y + =________.20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.计算题 (1)32(2)(5)x xy -(2)()(2)x y x y -+22.如图,将一张长方形铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为acm 的大正方形,两块是边长都为bcm 的小正方形,五块是长、宽分别是acm bcm 、的全等小长方形,且a b >.(1)用含a b 、的代数式表示切痕的总长为_ cm ;(2)若每块小长方形的面积为212cm ,四块正方形的面积和为280cm ,试求+a b 的值. 23.计算:(1)2031(2021)|13|(2)4; (2)2222()()ab a abb ab a abb .24.先化简,再求值()()()()()21231132x x x x x ----+-+,其中23x =-.25.已知a +b =7,ab =11,求代数式211()22a ab b --的值. 26.计算 (1)(65x 2y -4xy 2)•13xy (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据幂的乘方,可得要求形式,根据同底数幂的除法,可得答案. 【详解】解:∵4,6m n x x ==,2-m n x =2m n x x ÷=2()m n x x ÷,∴原式=246=83; 故选:C . 【点睛】本题考查了幂的乘方,同底数幂的除法,熟练掌握公式,灵活逆向使用公式是解题的关键.2.B解析:B 【分析】A.根据合并同类项解题;B.根据积的乘方解题;C.根据完全平方公式;D.根据去括号法则,判断即可. 【详解】解:A. 2222a a a -=,原选项计算错误,不符合题意; B. ()32628b b -=-,原选项计算正确,符合题意;C. 222()2a b a ab b -=-+,原选项计算错误,不符合题意;D. ()a b a b --=-+,原选项计算错误,不符合题意; 故选:B . 【点睛】本题考查合并同类项、积的乘方、完全平方公式、去括号法则等.熟记法则能分别计算是解题关键.3.B解析:B 【分析】利用多项式乘以多项式法则将原式化简,根据2x 的系数为3即可求出m 的值; 【详解】原式=()()2322322=122x mx x mx x m x m x x ++----+-+- ,∵ 2x 的系数为3, ∴ 1-m=3, 解得m=-2, 故选:B . 【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.4.C解析:C 【分析】分别用同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式来进行判断即可; 【详解】A 、325a a a = ,故该选项错误;B 、()()2212222a a a a a a a +-=-+-=-- ,故该选项错误;C 、()333ab a b = ,故该选项正确; D 、624a a a ÷= ,故该选项错误; 故选:C . 【点睛】本题考查了同底数幂的乘法法则、多项式与多项式的乘法、积的乘方以及同底数幂的除法公式,正确掌握公式是解题的关键;5.D解析:D 【分析】直接利用单项式乘单项式计算得出答案. 【详解】 解:3ab•a 2=3a 3b . 故选:D . 【点睛】本题主要考查了单项式乘单项式,正确掌握相关运算法则是解题的关键.6.A解析:A 【分析】根据幂的运算性质判断即可; 【详解】325a a a =,故A 正确;()326x x =,故B 错误;826x x x ÷=,故C 错误;()3263a b a b =,故D 错误;故答案选A . 【点睛】本题主要考查了幂的运算性质,准确分析判断是解题的关键.7.C解析:C 【分析】按照合并同类项,幂的运算法则计算判断即可. 【详解】∵2x 与3y 不是同类项, ∴无法计算, ∴选项A 错误; ∵()3263x yx y =,∴选项B 错误; ∵88262x x x x -==÷, ∴选项C 正确;∵32325222x x x x +⋅==, ∴选项D 错误; 故选C. 【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键.8.A解析:A 【分析】把a+2b-2=0变形为a+2b=2,再将2a ×4b 变形为22a b +,然后整体代入求值即可. 【详解】 解:∵a+2b-2=0, ∴a+2b=2, ∴2a ×4b =222=2=4a b + 故选:A . 【点睛】此题主要考查了同底数幂的逆运算,熟练掌握运算法则是解答此题的关键.9.C解析:C 【分析】根据题意列出关系式,化简即可得到结果; 【详解】 根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C . 【点睛】本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.10.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.11.A解析:A 【分析】利用完全平方公式计算即可得到答案. 【详解】 ∵1x =,1y =,∴x+y=∴222x xy y ++ =2()x y +=2 =20, 故选:A . 【点睛】此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.12.C解析:C 【分析】根据阴影部分的面积的不同表示方法,即可求出答案. 【详解】解:如图所示,根据图中的阴影部分面积可以表示为:(a-b )2 图中的阴影部分面积也可以表示为:a 2-2ab+b 2 可得:(a-b )2=a 2-2ab+b 2故选:C【点睛】本题考查了完全平方公式的几何背景,解决问题的关键是能用算式表示出阴影部分的面积二、填空题13.17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4再两边平方展开最后整体代入即可【详解】解:∵m+n=3-tn-k=t-7∴(m+n)+(n-k)=3-t+t-7即m+2n-k=-4解析:17【分析】由m+n=3-t与n-k=t-7可得m+2n-k=-4,再两边平方展开,最后整体代入即可.【详解】解:∵m+n=3-t,n-k=t-7,∴(m+n)+(n-k)=3-t+t-7,即m+2n-k=-4,∴(m+2n-k)2=(-4)2,∴m2+4n2+k2+4mn-2mk-4nk=16,∴m2+4n2+k2+4mn-2mk-4nk+1=16+1=17,故答案为:17.【点睛】本题考查代数式求值,将原代数式进行适当的变形是得出正确答案的关键.14.【分析】由新规定的运算可得3a=53b=6m=32a-b再将32a-b转化为后再代入求值即可【详解】解:由于(35)=a(36)=b(3m)=2a-b根据新规定的运算可得3a=53b=6m=32a-解析:25 6【分析】由新规定的运算可得3a=5,3b=6,m=32a-b,再将32a-b,转化为2(3)3ab后,再代入求值即可.【详解】解:由于(3,5)=a,(3,6)=b,(3,m)=2a-b,根据新规定的运算可得,3a =5,3b =6,m=32a-b , ∴222(3)5253366a a bb m -====, 故答案为:256. 【点睛】本题考查了幂的乘方,同底数幂的除法,掌握幂的乘方和同底数幂的除法的计算方法是正确计算的前提,理解新规定运算的意义是解决问题的关键.15.【分析】按照多项式乘以多项式的法则展开化简合并同类项令项的系数为零即可【详解】解:∵==又∵的乘积中不含项∴-(2m+1)=0解得m=故答案为:【点睛】本题考查了整式的乘法熟练掌握多项式乘以多项式的解析:12-. 【分析】按照多项式乘以多项式的法则,展开化简,合并同类项,令2x 项的系数为零即可. 【详解】解:∵2(1)(2)x x mx m --+=32222x mx mx x mx m -+-+- =32(21)3x m x mx m -++-,又∵2(1)(2)x x mx m --+的乘积中不含2x 项,∴-(2m+1)=0, 解得 m=12-. 故答案为:12-. 【点睛】本题考查了整式的乘法,熟练掌握多项式乘以多项式的基本法则,并准确理解不含某项的意义是解题的关键.16.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键 解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案. 【详解】 ∵222(2)444x x x x bx ±±=+=++,∴b=4±, 故答案为:4±. 【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.17.【分析】根据绝对值和平方式的非负性求出x 和y 的值再由幂的运算法则进行计算【详解】解:∵且∴即∴故答案是:【点睛】本题考查幂的运算解题的关键是掌握幂的运算法则 解析:12【分析】根据绝对值和平方式的非负性求出x 和y 的值,再由幂的运算法则进行计算. 【详解】解:∵20x +≥,2102y ⎛⎫-≥ ⎪⎝⎭,且21202x y ⎛⎫++-= ⎪⎝⎭,∴20x +=,102y -=,即2x =-,12y =, ∴()202120202020202020211111222222xy⎛⎫⎛⎫=-=-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. 故答案是:12. 【点睛】本题考查幂的运算,解题的关键是掌握幂的运算法则.18.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80 【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可. 【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=, ∴2222()353316a b ab a b ab +-=+-=-⨯=, ∴3322()()51680a b a b a ab b +=+-+=⨯= 故答案为:80. 【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.19.7【分析】根据题意写出杨辉三角表的第六行的数从而可以得到x 和y 的值即可求出结果【详解】解:根据杨辉三角表第六行的数依次是15101051∴∴即∴故答案是:7【点睛】本题考查找规律解题的关键是理解杨辉解析:7【分析】根据题意写出杨辉三角表的第六行的数,从而可以得到x 和y 的值,即可求出结果.【详解】解:根据杨辉三角表,第六行的数依次是1、5、10、10、5、1,∴5x =,∴35y +=,即2y =,∴527x y +=+=.故答案是:7.【点睛】本题考查找规律,解题的关键是理解杨辉三角表,按照规律写出第六行的数. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.(1)4240x y ;(2)222x xy y --【分析】(1)首先进行积的乘方运算,然后再进行单项式乘以单项式运算即可得到答案; (2)根据整式多项式乘以多项式运算法则计算可得.【详解】解:(1)32(2)(5)x xy -328(5)x xy =--4240x y =;(2)()(2)x y x y -+222+2x xy xy y =--22=2x xy y --【点睛】本题主要考查整式的乘法运算,解题的关键是熟练掌握整式的乘法运算顺序和法则. 22.(1)()66a b +;(2)8【分析】(1)根据切痕长有两横两纵列出算式,再根据合并同类项法则整理即可;(2)根据小矩形的面积和正方形的面积列出算式,再利用完全平方公式整理求出a+b 的值,即可得到结论.【详解】解:(1)切痕总长=2[(b+2a )+(2b+a )],=6a+6b ;故答案为:()66a b +;(2)依题意得,222280,12a b ab +==,2240,a b ∴+=()2222,a b a ab b +=++()24021264a b ∴+=+⨯=,0,a b +>8a b +=.【点睛】本题考查对完全平方公式几何意义的理解,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形周长和面积展开分析.23.(1)7;(2)32a .【分析】(1)根据绝对值、零指数幂、负整数指数幂、立方的运算分别进行计算,然后根据实数的运算法则求得计算结果;(2)先根据多项式乘以多项式的法则进行计算,再合并同类项即可.【详解】解:(1)2031(2021)|13|(2)416128=+--7=(2)2222()()a b a ab b a b a ab b322223a a b ab a b ab b =-++-++322223a a b ab a b ab b ++---3333a b a b =++-32a =.【点睛】考查了整式的混合运算以及负整数指数幂、零指数幂、立方、绝对值运算等知识,熟练运用这些法则是解题关键.24.13718【分析】先根据多形式的乘法法则、平方差公式、完全平方公式计算,再去括号合并同类项即可.【详解】解:()()()()()21231132x x x x x ----+-+ =()()22213261692x x x x x x --+---++ =222193261322x x x x x x --+-+--- =215822x x --+, 当23x =-时, 原式=2122582332⎛⎫⎛⎫-⨯--⨯-+ ⎪ ⎪⎝⎭⎝⎭ =2165932-++ =13718. 【点睛】 本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,多项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.25.8【分析】由完全平方公式的变形,先把代数式进行化简,然后把a +b =7,ab =11,代入计算,即可得到答案.【详解】 解:211()22a a b b -- =22111222a ab b -+=221)1(22ab b a -+ =223(2221)ab b a ab ++- =23)1(22ab b a -+, ∵a +b =7,ab =11, ∴原式=214933711822223⨯-⨯=-=. 【点睛】 本题考查了整式的加减,完全平方公式的变形求值,解题的关键是熟练掌握运算法则,正确的进行化简.26.(1)25x 3y 2-43x 2y 3;(2)5y -x 【分析】(1)按照多项式乘单项式的计算法则进行计算求解;(2)整式的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)(65x 2y -4xy 2)•13xy =25x 3y 2-43x 2y 3 (2)[(x +3y )•(x -3y )-(x -y )2]÷(-2y )=[x 2-9y 2-(x 2-2xy +y 2)]÷(-2y )=(x 2-9y 2-x 2+2xy-y 2)÷(-2y )=(-10y 2+2xy )÷(-2y )=5y -x【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.。
专题05 整式的乘法综合(五大题型,60题)(原卷版) 七年级数学下册
原创精品资源学科网独家享有版权,侵权必究!1专题05整式的乘法综合(多考点特训,60题)目录一、多项式乘积不含某项,10题,难度两星........................................................................................................1二、整式乘法混合运算,10题,难度两星............................................................................................................2三、化简求值,10题,难度三星.............................................................................................................................4四、(x+p)(x+q)型多项式乘法,15题,难度三星............................................................................................5五、多项式乘多项式,15题,难度四星. (7)一、多项式乘积不含某项,10题,难度两星1.(2023下·陕西西安·七年级校考阶段练习)已知将()()3221x mx n x x +--+乘开的结果不含3x 和2x 项,则()m nn m --的值是()A .27B .27-C .127D .127-2.(2023下·七年级课时练习)若32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭的积不含3x 项,则=a .3.(2024·陕西西安·七年级西安市曲江第一中学校考期末)多项式22336x kxy y xy +--不含xy 项,则k 的值为.4.(2023·山东济宁·七年级统考期中)已知关于x 的多项式()()()432211a b x a x b x abx +--++-+不含3x 项和2x 项,则当=1x -时,这个多项式的值为.5.(2024·四川成都·七年级成都嘉祥外国语学校校考期末)若()22133x px x x q ⎛⎫+--+ ⎪⎝⎭的积中不含x 项与3x 项.(1)求p 、q 的值;(2)求代数式()()2122003200423p q pq p q --++的值.6.(2024·四川成都·七年级四川省成都市石室联合中学校考期末)解决下列有关幂的问题(1)若179273x ⨯=,求x 的值.(2)若27193a b =,则23b a -的值.(3)若1528162n n ⨯⨯=,且()()2mx y x y +-展开式中不含xy 项,求n m -的值.7.(2023·广东广州·七年级广州市天河区汇景实验学校校考期中)(1)已知:关于x 、y 的多项式323232mx nxy x xy y +--+中不含三次项,求23m n -值.(2)当2022x =时,代数式535ax bx cx ++-的值为m ,求当2022x =-时,代数式535ax bx cx ++-的值.8.(2023·重庆·七年级校联考期中)小马虎做一道数学题“两个多项式A ,B ,已知2236B x x -=+,试求2A B -的值”.小马虎将2A B -看成2A B +,结果答案(计算正确)为2529x x -+.(1)当3x =-时,求多项式A 的值;(2)若多项式21C mx nx =-+,且满足A C -的结果不含2x 项和x 项,求m ,n 的值.9.(2023·上海松江·七年级校考阶段练习)若()()2233x nx x x m -+++的展开式中不含2x 和3x 项,求m 、n 得值.10.(2023下·广东深圳·七年级校联考期末)已知关于x 的三次三项式3221A x x =-+及关于x 的二次三项式2B x mx n =++(m ,n 均为非零常数).(1)当A B +为关于x 的三次三项式时,n =_______.(2)当多项式A 与B 的乘积中不含4x 项时,m =________.(3)若3221A x x =-+写成32(1)(1)(1)A a x b x c x d =-+-+-+(其中a ,b ,c ,d 均为常数),求a b c ++的值.(4)若B 能被1x -整除,求m n +的值.13.(2023·山东青岛·七年级统考期中)如图①,正方形原创精品资源学科网独家享有版权,侵权必究!3(1)如图②,延长AB 到1A ,使1A B BA =,延长BC 到1B ,使1B C CB =,求四边形(2)如图③,延长AB 到2A ,使2A B b =,延长BC 到2B ,使2B C b =,求四边形14.(2023下·江苏无锡·七年级校联考期中)若56m =,65n =,则(23m m n -15.(2023下·重庆江北·七年级校考期中)计算:(1)371488⎛⎫-÷-⎪⎝⎭(2)()22321a b a bc⨯-三、化简求值,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!5四、(x+p)(x+q)型多项式乘法,15题,难度三星31.(2023下·浙江嘉兴·七年级统考期末)18世纪数学家欧拉就引进了求和符号“∑”、如记()11231n k k n n ==++++-+∑ ,()()()()334n k x k x x x n =+=+++++∑ ;已知()()221nk x x k axbx c =++=++⎡⎤⎣⎦∑,则b c -=()A .2n -B .n 1-C .nD .1n +32.(2023下·四川雅安·七年级统考期末)已知()()245x m x n x x +-=--,则m n -的值为()A .1B .4-C .5-D .433.(2023下·湖南娄底·七年级统考阶段练习)若2()()54x a x b x x ++=-+,则a b +的值为()原创精品资源学科网独家享有版权,侵权必究!7五、多项式乘多项式,15题,难度四星46.(2023下·安徽宿州·七年级安徽省泗县中学校联考阶段练习)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如:记1123(1)nk k n n ==+++⋅⋅⋅+-+∑;1()(1)(2)()n k x k x x x n =+=++++⋅⋅⋅++∑.已知:[]21()(1)44nk x k x k xx m =+-+=++∑,则m 的值是()A .40B .70-C .40-D .20-47.(2023下·安徽淮北·七年级校联考期末)关于x 的多项式:12212210n n n n n n a x a x a x a x a x a ----++++++ ,其中n 为正整数,若各项系数各不相同且均不为0,我们称这样的多项式为“亲缘多项式”.①()221x -是“亲缘多项式”.②若多项式323210a x a x a x a +++和43243210b x b x b x b b ++++均为“亲缘多项式”,则32432321043210a x a x a x a b x b x b x b b ++++++++也是“亲缘多项式”.③多项式()44324321021x b x b x b x b x b -=++++是“亲缘多项式”且42041b b b ++=.④关于x 的多项式()nax b +,若a b ¹,0ab ≠,n 为正整数,则()nax b +为“亲缘多项式”.以上说法中正确的个数是()A .1B .2C .3D .448.(2023下·重庆北碚·七年级西南大学附中校考期中)给定一个正整数m ,任意两个整数a 与b 分别除以原创精品资源学科网独家享有版权,侵权必究!960.(2023下·福建三明·七年级校考阶段练习)已知关于x 的代数式()22x mx +与()3x -的乘积中,不含有2x 项,求m 的值.。
七年级数学上册综合算式专项练习题整式的乘法运算
七年级数学上册综合算式专项练习题整式的乘法运算在七年级数学上册中,综合算式的学习是一个重要的环节。
而其中,整式的乘法运算更是需要我们掌握的基础技能之一。
本文将对七年级数学上册综合算式专项练习题中的整式的乘法运算进行详细的讲解和例题演练。
为了更好地理解整式的乘法运算,我们首先需要明确整式的概念。
整式是由常数、字母及其系数相乘然后相加减而得到的代数式。
在整式的乘法运算中,我们需要处理系数的相乘,字母的相乘,以及整式的相加减等内容。
接下来,我们通过例题来逐步说明整式的乘法运算。
例题1:计算下列整式的积(2a+3b)(4a-5b)解析:在解题前,我们首先要将括号内的各项分别与括号外的各项进行乘法运算。
根据分配律,我们可以将上述整式转化为两个多项式的乘法运算:2a * 4a + 2a * (-5b) + 3b * 4a + 3b * (-5b)然后,我们根据乘法运算的基本法则,计算每一项的结果:8a^2 - 10ab + 12ab - 15b^2最后,合并同类项,得到整式的最简形式:8a^2 + 2ab - 15b^2通过这个例题,我们可以发现整式乘法运算的关键点在于分配律的应用和合并同类项的处理。
同时,我们也要注意细心计算,避免出错。
例题2:计算下列整式的积(3x-2y)(5x+4y)解析:同样地,我们将括号内的各项分别与括号外的各项进行乘法运算,根据分配律:3x * 5x + 3x * 4y - 2y * 5x - 2y * 4y然后,我们根据乘法运算的基本法则,计算每一项的结果:15x^2 + 12xy - 10xy - 8y^2最后,合并同类项,得到整式的最简形式:15x^2 + 2xy - 8y^2通过这个例题,我们可以看到整式的乘法运算是一个依靠熟练的运算能力和仔细的计算过程得出结果的过程。
除了以上的例题演练外,我们还可以通过综合算式专项练习题来巩固和拓展对整式的乘法运算的掌握。
通过大量的练习,我们可以熟练掌握整式的乘法运算的技巧和方法,提高解题的速度和准确度。
七年极下数学课本习题第1章整式的乘除
第一章整式的乘除第1节同底数幂的乘法1. P3-例1计算:(1)(-3)7×(-3)6(2)(1111)3 ×1111(3)-x3·x5(4)b2m·b2m+12. P3-例2光在真空中的速度约为3×108m/s,太阳光射到地球上大约需要5×102s。
地球距离太阳大约有多远?3. P3-随堂练习-1计算:(1)52×57(2)7×73×72(3)-x2·x3(4)(- c)3·(- c)m4. P3-随堂练习-2一种电子计算机每秒可做4×109次运算,它工作5×102 s可做多少次运算?5. P3-随堂练习-3光在真空中的速度大约是3×108m/s。
太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年,一年以3×107s计算,比邻星与地球的距离约为多少?6. P4-习题1.1-1计算:(1)c·c11(2)104×102×10 (3)(-b)3·(-b)2(4)-b3·b2(5)x m-1·x m+1(m>1)(6)a·a3·a n7. P4-习题1.1-2已知a m=2,a n=8,求a m+n。
8. P4-习题1.1-3下面的计算是否正确?如有错误请改正。
(1)a3·a2=a6(2)b4·b4=2b4(3)x5+x5=x10(4)y7·y=y89. P4-习题1.1-4在我国,平均每平方千米的土地一年从太阳得到的能量,相当于燃烧1.3×108kg的煤所产生的能量。
我国960万km2的土地上,一年从太阳得到的能量相当于燃烧多少千克的煤所产生的能量?(结果用科学记数法表示)。
10. P4-习题1.1-5某种细菌每分由1个分裂成2个。
初一数学上册综合算式专项练习题整式的加减乘除练习
初一数学上册综合算式专项练习题整式的加减乘除练习练习一:整式的加法1. 计算:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和。
解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$3a^2 - 4ab + 2b^2 + 5a - 3b + 1 + 4a^2 + 2ab - 3b^2 - 2a + 4b - 5$合并同类项得:$7a^2 - 2ab - b^2 + 3a + b - 4$所以,$3a^2 - 4ab + 2b^2 + 5a - 3b + 1$ 与 $4a^2 + 2ab - 3b^2 - 2a + 4b - 5$ 的和为 $7a^2 - 2ab - b^2 + 3a + b - 4$。
2. 计算:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和。
解答:按照指数的大小顺序排列各项,然后按照相同项进行合并:$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1 + (-3x^3) + 4xy^2 + (-2x) + (-5y) + 1$合并同类项得:$2x^3 + 2x^2y + xy^2 + 2x - 3y$所以,$5x^3 + 2x^2y - 3xy^2 + 4x + 2y - 1$ 与 $-3x^3 + 4xy^2 - 2x - 5y + 1$ 的和为 $2x^3 + 2x^2y + xy^2 + 2x - 3y$。
练习二:整式的减法1. 计算:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$。
解答:首先按照指数的大小顺序排列各项,然后按照相同项进行合并:$4x^2 - 3xy + 2y^2 - 5x + 2y - 1 - (2x^2 - xy + y^2 + 3x - 3y - 2)$合并同类项得:$2x^2 - 2y^2 - 8x + 5y + 1$所以,$4x^2 - 3xy + 2y^2 - 5x + 2y - 1$ 减去 $2x^2 - xy + y^2 + 3x - 3y - 2$ 的差为 $2x^2 - 2y^2 - 8x + 5y + 1$。
初一数学整式的乘法试题
初一数学整式的乘法试题1.计算:(m3n)2的结果是()A.m6n B.m6n2C.m5n2D.m3n2【答案】B【解析】根据幂的乘方的性质和积的乘方的性质进行计算即可.解:(m3n)2=m6n2.故选:B.2.计算(ab)2的结果是()A.2ab B.a2b C.a2b2D.ab2【答案】C【解析】根据幂的乘方法则:底数不变,指数相乘,进行计算即可.解:原式=a2b2.故选C.3.若x n=5,y n=3,则(xy)2n的值为()A.15B.45C.75D.225【答案】D【解析】把(xy)2n化成(x n)2(y n)2,代入求出即可.解:∵x n=5,y n=3,∴(xy)2n=x2n y2n=(x n)2(y n)2=52×32=25×9=225.故选D.4.计算(a2b3)3的结果是()A.a2b3B.a5b6C.a6b6D.a6b9【答案】D【解析】根据积的乘方:把积的每一个因式分别乘方,再把所得的幂相乘,进行计算即可.解:原式=a2×3b3×3=a6b9.故选D.5.电子显微镜下观察一个微小的正方体,测得它的边长是2×10﹣5mm,这个正方体的体积是()(单位:mm3)A.2×10﹣15B.2×10﹣8C.8×10﹣15D.8×10﹣5【答案】C【解析】根据题意列出算式(2×10﹣5)×(2×10﹣5)×(2×10﹣5),根据乘法法则求出即可.解:(2×10﹣5)×(2×10﹣5)×(2×10﹣5)=8×10﹣15,故选C.6.计算(﹣3a2)2的结果是()A.3a4B.﹣3a4C.9a4D.﹣9a4【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘计算即可.解:(﹣3a2)2=32a4=9a4.故选C.7.计算(﹣3a2b)4的结果正确的是()A.﹣12a8b4B.12a8b4C.81a8b4D.81a6b8【答案】C【解析】根据积的乘方与幂的乘方计算.解:(﹣3a2b)4=(﹣3)4•(a2)4•b4=81a8b4.故选C.8.计算﹣(﹣3a2b3)4的结果是()A.81a8b12B.12a6b7C.﹣12a6b7D.﹣81a8b12【答案】D【解析】根据积的乘方的性质:积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘,计算后直接选取答案.解:﹣(﹣3a2b3)4=﹣34a8b12=﹣81a8b12.故选D.9.计算:(a2b)3=.【答案】a6b3【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘计算.解:(a2b)3=(a2)3b3=a6b3.10.计算:(xy2)2=.【答案】x2y4【解析】根据幂的乘方与积的乘方的运算法则进行计算即可.解:原式=(xy2)2=x2y2×2=x2y4.11.已知a=75,b=57,则下列式子中正确的是()A.ab=1212B.ab=3535C.a7b5=1212D.a7b5=3535【答案】D【解析】根据幂的乘方和积的乘方求出ab和a7b5的值,再进行判断即可.解:∵a=75,b=57,∴ab=75×57≠1212,ab≠3535,a7b5=(75)7×(57)5=735×535=(7×5)35=3535,而a7b5≠1212,∴选项A、B、C都不正确;只有选项D正确;故选D.12.(23)4=[4()]3,小括号里应填的数是()A.2B.3C.4D.6【答案】A【解析】根据幂的乘方的性质分别进行计算,即可得出答案.解:(23)4=212═[4(2)]3,小括号里应填的数是2;13.已知32+m=27•3n,当m=4时,n等于()A.0B.3C.4D.﹣4【答案】B【解析】根据同底数幂的乘法运算法则得出27•3n=33+n,进而求出即可.解:∵32+m=27•3n,m=4,∴36=33+n,则3+n=6,解得:n=3.故选:B.14.下列各式中,计算结果不为a14的是()A.(a7)7B.a5•(a3)3C.(a2)7D.(a7)2【答案】A【解析】分别对各选项进行幂的乘方与积的乘方运算,选出正确答案即可.解:A、(a7)7=a49,计算结果不为a14,故本选项正确;B、a5•(a3)3=a14,计算结果为a14,故本选项错误;C、(a2)7=a14,计算结果为a14,故本选项错误;D、(a7)2=a14,计算结果为a14,故本选项错误;故选A.15. a12不能写成()A.(a3)4B.(a6)2C.(a2)10D.a2•a10【答案】C【解析】根据幂的乘方、积的乘方、同底数幂的乘法法则判断即可.解:a12=(a3)4=(a6)2=a2•a10,a12≠(a2)10,即选项A、B、D正确,只有选项C错误;故选C.16.计算:(x n+1)2•(x2)n﹣1所得结果是()A.x4n+2B.x4n﹣1C.x4n D.x4n+1【答案】C【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘计算.解:(x n+1)2•(x2)n﹣1=x2n+2•x2n﹣2=x4n.故选:C.17.如果(a3)6=86,则a等于()A.2B.﹣2C.±2D.以上都不对【答案】A【解析】由于指数相同,令底数相同即可进行计算.解:∵(a3)6=86,∴a3=8,故选A.18.计算:(3a3)2=.【答案】9a6【解析】利用积的乘方的性质:积的乘方,等于把每一个因式分别乘方,再把所得的幂相乘,首先计算积的乘方,再利用幂的乘方乘方性质:底数不变,指数相乘,计算(a3)2可得答案.解:(3a3)2=32•(a3)2=9•a3×2=9a6.故答案为:9a6.19.化简(2x3)2=.【答案】4x6【解析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,进行计算即可.解:(2x3)2=22(x2)3=4x6.故答案为:4x6.20.计算:﹣3101×(﹣)100=.【答案】﹣3【解析】先根据同底数幂的乘法展开,再根据积的乘方的逆运用得出=﹣3×[3×(﹣)]100,求出即可.解:原式=﹣3×3100×(﹣)100=﹣3×[3×(﹣)]100=﹣3×(﹣1)100=﹣3×1=﹣3.故答案为:﹣3.。
七年级数学下册整式的乘法综合练习题
七年级数学下册整式的乘法综合练习题整式的乘法是数学中的重要概念之一,它在解决实际问题和推导其他数学知识上都具有重要作用。
在七年级数学下册中,整式的乘法是一个重点难点内容,需要我们深入理解和熟练掌握。
为了帮助同学们更好地掌握整式的乘法,本文将为大家提供一些综合练习题,并加以详解,希望能对大家的学习有所帮助。
1. 计算下列各题:(1) $(2a + 3b)(4a - 5b)$(2) $(3x^2 - 5y)(x + 2y)$(3) $(4m - 2n)(3m + n)$(4) $(5p - 2q)(3p + 4q)$解答:(1) 将每一个项分别乘以另一个多项式的每一项,然后将结果相加。
$(2a + 3b)(4a - 5b) = 2a \cdot 4a + 2a \cdot (-5b) + 3b \cdot 4a + 3b\cdot (-5b)$$ = 8a^2 - 10ab + 12ab - 15b^2$$ = 8a^2 + 2ab - 15b^2$(2) 同样地,将每一个项分别乘以另一个多项式的每一项,然后将结果相加。
$(3x^2 - 5y)(x + 2y) = 3x^2 \cdot x + 3x^2 \cdot 2y - 5y \cdot x - 5y\cdot 2y$$ = 3x^3 + 6x^2y - 5xy - 10y^2$(3)$(4m - 2n)(3m + n) = 4m \cdot 3m + 4m \cdot n - 2n \cdot 3m - 2n \cdot n$$ = 12m^2 + 4mn - 6mn - 2n^2$$ = 12m^2 - 2n^2 - 2mn$(4)$(5p - 2q)(3p + 4q) = 5p \cdot 3p + 5p \cdot 4q - 2q \cdot 3p - 2q \cdot 4q $$ = 15p^2 + 20pq - 6pq - 8q^2$$ = 15p^2 + 14pq - 8q^2$2. 练习运用整式的乘法计算下列各题:(1) $(x + 2)(x + 3)$(2) $(2a + 3b + 4c)(a - b + c)$(3) $(3x - y)(2x + y)(x - y)$(4) $(-2a + 3b)(-3a - 4b)$解答:(1)$(x + 2)(x + 3) = x \cdot x + x \cdot 3 + 2 \cdot x + 2 \cdot 3$$ = x^2 + 3x + 2x + 6$$ = x^2 + 5x + 6$(2)$(2a + 3b + 4c)(a - b + c) = 2a \cdot a + 2a \cdot (-b) + 2a \cdot c + 3b \cdot a + 3b \cdot (-b) + 3b \cdot c + 4c \cdot a + 4c \cdot (-b) + 4c \cdot c$$ = 2a^2 - 2ab + 2ac + 3ab - 3b^2 + 3bc + 4ac - 4bc + 4c^2$$ = 2a^2 + ab - 3b^2 + 5ac - ab + bc + 4c^2$$ = 2a^2 - 3b^2 + 5ac + bc + 4c^2$(3)$(3x - y)(2x + y)(x - y) = (3x - y) \cdot (2x + y) \cdot (x - y)$$ = (3x)^2 - y^2$$ = 9x^2 - y^2$(4)$(-2a + 3b)(-3a - 4b) = (-2a) \cdot (-3a) + (-2a) \cdot (-4b) + 3b \cdot (-3a) + 3b \cdot (-4b)$$ = 6a^2 + 8ab - 9ab - 12b^2$$ = 6a^2 - ab - 12b^2$通过以上练习题的计算与解答,我们可以看出,整式的乘法是通过将每一个项分别乘以另一个多项式的每一项,并将结果相加得出的。
整式的乘法公式练习题
整式的乘法公式练习题在代数学中,整式的乘法是一项基本的运算,它在解决各种代数问题中起着重要的作用。
本文将为大家提供一些整式的乘法公式练习题,通过练习巩固并加深对整式乘法的理解。
练习题一:将下列整式相乘,并将结果化简。
1. (2x + 3)(x + 4)解析:首先使用分配律,将前一项的每个项与后一项的每个项相乘:= 2x * (x + 4) + 3 * (x + 4)接下来使用分配律将每个相乘得到的结果进行合并并化简:= 2x^2 + 8x + 3x + 12最终结果为:2x^2 + 11x + 122. (3x - 5)(2x + 7)解析:同样地,使用分配律将每个项相乘:= 3x * (2x + 7) - 5 * (2x + 7)然后合并并化简结果:= 6x^2 + 21x - 10x - 35最终结果为:6x^2 + 11x - 35练习题二:将下列整式相乘,并将结果化简。
1. (a + 5)(a - 2)解析:使用分配律将每一项相乘:= a * (a - 2) + 5 * (a - 2)合并并化简结果:= a^2 - 2a + 5a - 10最终结果为:a^2 + 3a - 102. (2x + 3)(2x - 3)解析:应用分配律进行乘法运算:= 2x * (2x - 3) + 3 * (2x - 3)合并并化简结果:= 4x^2 - 6x + 6x - 9最终结果为:4x^2 - 9练习题三:将下列整式相乘,并将结果化简。
1. (3a - 2b)(4a + 5b)解析:通过使用分配律进行乘法运算:= 3a * (4a + 5b) - 2b * (4a + 5b)合并并化简结果:= 12a^2 + 15ab - 8ab - 10b^2最终结果为:12a^2 + 7ab - 10b^2 2. (2x - 3y)(x + 4y)解析:使用分配律将每一项相乘:= 2x * (x + 4y) - 3y * (x + 4y)合并并化简结果:= 2x^2 + 8xy - 3xy - 12y^2最终结果为:2x^2 + 5xy - 12y^2通过以上的练习题,我们可以对整式乘法公式进行更好的掌握。
整式的乘法练习题含解析答案
北师大版数学七年级下册第一章1.4整式的乘法课时练习一、选择题2b)·(-3a)等于(1.(-5a )3232b -8a DC.-15a.b 15a b B.-15a b A.答案:A23b,故A项正确15a. b)·(-3a)解析:解答:(-5a=分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.32)等于()-5b.(2a)·(233232ba D.-40a40b B.-40a b C.A.10a-b答案:B3232,故B项正确.b )=-40a解析:解答:(2a)b·(-533,再由单项式乘单项式法则可完成此题a). =8分析:先由积的乘方法则得(2a322c)等于(ab)b)·(-3.(2a564747474c bD.C .-20a20bacA.-20a b c B.10a b c答案:C32274c,故C项正确20a.)b·(-5ab c)=-解析:解答:(2ab3262,再由单项式乘单项式法则与同底数幂的乘法=-4aab)b分析:先由积的乘方法则得(2可完成此题.3227 等于())·2xxy)·(5xy4.(6y4y474144 y20 D20x.yx B.10x y C.-20A.-x答案:D3227 144,故D项正确y.)·x =-解析:解答:(2x20y)·(5xyx3262,再由单项式乘单项式法则与同底数幂的乘法y=-4分析:先由积的乘方法则得(2xxy)法则可完成此题.32-5ac)等于(a)·(b 5.26252324744c 0ac .Da.10a2b c C.a-1bb-10acaA.-20Bbc答案:C32324c,故C项正确.2ab -10解答:解析:2aa·(b-5ac)=分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.32 等于()(xy)+zx6. y·4333144 433yz y.+x yz Czxy+x xD.xyB xA.y+xyz .答案:D32 433yz ,故D项正确xz(x解析:解答:y·xy+)=y+x.分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题.1 / 4723 等于()x)y+7.(-xz)·(1714331714 173yz xy+x z yx+z B.-xyx+xDyz C.-xA.x.y+答案:A723 1714z ,故xA项正确y+z.)=x 解析:解答:(-xy)+·(x7214,再由单项式乘多项式法则与同底数幂的乘法法则可-x=)x分析:先由幂的乘方法则得(完成此题.34 2-ac)等于(.(b8.[(-6))]1222521221244c -bac ac -b c C.6DbA.-6.b--bc B.10a6答案:C34 212212ac ,故C项正确6ac)=.b解析:解答:[(-6)]-.(b6-3412,再由单项式乘多项式法则与同底数幂的乘法法)=]6分析:先由幂的乘方法则得[(-6则可完成此题.33y+z)等于()(2x).(x9.6146363 63yz x D..8x8y+8xxz 8A.x y+xyz B.-8xy+x+yz C 答案:C3363z,故C项正确.x y+x)8.(xxy+z)=8解析:解答:(233,再由单项式乘多项式法则与同底数幂的乘法法则可=8先由积的乘方法则得(2x)x分析:完成此题.222+z]等于((-y ))10.(2x).[4242242 242z +4xD.4xxz C.2x yy+2xz xA.4xyxz+B.-4 y +4答案:D222242z ,故D项正确.]=4x y4解析:解答:(2x).[(-y+)x+z22224再由单项式乘多项y=x))=4xy,由幂的乘方法则得(-分析:先由积的乘方法则得(2式法则与同底数幂的乘法法则可完成此题.254+z)等于().x .(yx11.747242242 242z +4xD.4x4xy2+4xz C.x yy+2xz .Ax y+xz B.-答案:A254747z ,故A项正确=z)x.y 解析:解答:x+.x.(yx+257,再由单项式乘多项式法则可完成此题xx. x分析:先由同底数幂的乘法法则得=.22x+z)等于(x)·(y 12.242322 242zy+.Cxxy+xz .Dx xB +.Axyxz .-y+xz答案:C22322x z ,故C项正确x)(解答:解析:x.y+z=y+x.分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.2 / 432)·(-5acb)等于()13.(a +625232442c 5aabc - c D-b.c C.5a-b5-10A.-5aabc-B.5a 答案:D3242c,故D项正确-5ab.(-5ac)=-5a 解析:解答:(ac+b )·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.252+z)等于(·(y14.(x)+y )2227522252225 2275z y D.xy++xyz +y zxz +y +y z B.2xyy+x+z +y z C.Ax.yx+答案:A25222275z ,故A项正确+y(y.+z)=x+yy+x 解析:解答:(xz+y.)分析:由多项式乘多项式法则与同底数幂的乘法法则可完成此题.252等于()·(aa+b )15.225452452 42+ba D C.a.+2b2A.aac+bac B.2a+2b a答案:B252452,故B项正确.+2ab+b )·aa=2a解析:解答:2(分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题.二、填空题22+z)等于16.5x ·(xy;322z xy +5答案:5x22222322zxx+yxy+5x5·x解析:解答:5z·(xy=+z)=5x5·分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+4c)等于·(ab ;17.2a322c +8答案:2aab22222322c +c=2a)=2a8·abb+2aa·2解析:解答:a4·(abc+4分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题22+7c)等于.182a ·(3ab;322c 14aab +答案:622222322cab +a=·7c6a解答:2a·(3abc+7=2a14·3ab+2解析:分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3a+c)等于(-19.2a ;32c 2a答案:-6a -22232c -6·)c=-6a2a(+·(3ac)=-2a)·3+(-aaa-解析:解答:2分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题2)·(3x+1)等于x(-20.4 ;32 412答案:-x-x3 / 422232 4xxx-)·1=-+1)=(-4x12)·3x+(-4解析:解答:(-4x3)·(x分析:由单项式乘多项式法则与同底数幂的乘法法则可完成此题三、计算题24z)(210xxyy)·21.(-35 z20 x y答案:-242+14+135 z 20 x·y y··(2xyzz)= -20 x=-解析:解答:解:(-10x)y分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题224)·(- x y3 x)y22.(-2 x y )·(-47y-答案:6 x2241+2+12+4+147y=-6 x)·(- x y)= -6 x解析:解答:解:(-2 x y()·-3 xyy·分析:由单项式乘单项式法则与同底数幂的乘法法则可完成此题22-1) (a 23a- 2)+a·23.2a(a+1)- a(42+4a3a答案:2a -22224242+4aa2a a+2a- -2a3)(3a-2+2a= (a-1) =2a+2a - 3a+2)(解答:解:解析:2a·a+1- a分析:先由单项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.22- ab b+ ab)ab24.3·(a322322- b3a abb+3 a 3 答案:2222322322--- b ab ab·ab =3a 3b a+a(解答:解:解析:3ab·a+b ab= ab )3ab·3b+ab·ab3 3分析:由单项式乘多项式法则与同底数幂的乘法法则计算可完成题.25.(x-8y)·(x-y)22y89xy +答案:x-1+11+122y+8xy x8xy- x)yx·y-(解析:解答:解:x8)(- =-xy8+y=-9分析:先由多项式乘多项式法则与同底数幂的乘法法则计算,再合并同类项可完成此题.4 / 4。
七年级数学整式的乘法练习
●方法点拨[例1]计算(1)(-3.5x2y2)·(0.6xy4z)(2)(-ab3)2·(-a2b)点拨:先确定运算顺序,再利用单项式乘单项式的法那么进行计算.(1)直接作乘法即可,〔2〕先作乘方运算,再作乘法运算.解:(1)(-3.5x2y2)·(0.6xy4z)〔系数相乘〕〔相同字母相乘〕〔不同字母相乘〕〔在x2·x中,x的指数是1,不要漏掉〕=-2.1x3y6z(2)(-ab3)2·(-a2b)=a2b6·(-a2b)——先算乘方=-(a2·a2)(b6·b)——再算乘法=-a4b7[例2]计算(1)a m(a m-a3+9)(2)(4x3)2·[x3-x·(2x2-1)]点拨:先确定运算顺序,再运用相应的公式进行计算.(2)中用到了幂的乘方,单乘多及去括号几种运算公式及方法,要一步步进行.解:[例3]计算(1)(2a+3b)(3a+2b) (2)(3m-n)2点拨:这两题都需运用多项式相乘的法那么进行计算,能合并同类项的要将结果化到最简的形式.注意第〔2〕题要化为多乘多的形式.解:(2)(3m-n)2注意乘方的意义=(3m-n)(3m-n)=3m·3m-3m·n-n·3m+n·n=9m 2-3mn -3mn +n 2=9m 2-6mn +n 2[例4]〔1〕(-31xy 2)2·[xy (2x -y )+xy 2] (2)(-3x )2-2(x -5)(x -2)点拨:对于混合运算,一定要注意运算顺序,尤其是乘方运算,每次运算后的结果要打上括号才能进行下一步运算.解:(1)(-31xy 2)2·[xy (2x -y )+xy 2] =91x 2y 4·[2x 2y -xy 2+xy 2] =91x 2y 4·(2x 2y ) =92x 4y 5 (2)(-3x )2-2(x -5)(x -2)=9x 2-2(x 2-2x -5x +10)=9x 2-2(x 2-7x +10)=9x 2-2x 2+14x -20=7x 2+14x -20说明:一般来说,为了简化运算,能合并同类项的可先合并同类项,减少项数,再进行下一步的运算.[例5]解以下方程8x 2-(2x -3)(4x +2)=14点拨:利用多乘多法那么将方程左边局部化简,再运用解方程的方法求出x .解:8x 2-(2x -3)(4x +2)=148x 2-(8x 2+4x -12x -6)=148x 2-(8x 2-8x -6)=148x 2-8x 2+8x +6=148x =8x =1[例6]长方形的一边长3m +2n ,另一边比它大m -n ,求长方形的面积.点拨:先分别求出长和宽,再根据“长方形的面积=长×宽〞求出面积.列式的时候,表示每条边的多项式都要用括号括起来.解:长方形的宽:3m +2n长方形的长=(3m +2n )+(m -n )=4m +n长方形的面积:(3m +2n )·(4m +n )=3m ·4m +3m ·n +2n ·4m +2n ·n=12m 2+3mn +8mn +2n 2=12m 2+11mn +2n 2答:长方形的面积是12m 2+11mn +2n 2.。
人教版七年级数学整式的乘法测试试卷及参考答案
人教版七年级数学整式的乘法测试试卷基础巩固1.下列计算:①a 2n ·a n =a 3n ;②22·33=65;③32÷32=1;④a 3÷a 2=5a ;⑤(-a )2·(-a )3=a 5.其中正确的式子有( )A .4个B .3个C .2个D .1个2.若(2x -1)0=1,则( )A .12x ≥-B .12x ≠-C .12x ≤-D .12x ≠ 3.下列计算错误的是( )A .(-2x )3=-2x 3B .-a 2·a =-a 3C .(-x )9+(-x )9=-2x 9D .(-2a 3)2=4a 64.化简(-a 2)5+(-a 5)2的结果是( )A .0B .-2a 7C .a 10D .-2a 105.下列各式的积结果是-3x 4y 6的是( )A .2231(3)3x xy -⋅- B .2231(3)3x xy ⎛⎫-⋅- ⎪⎝⎭C .22321(3)3x x y -⋅- D .2321(3)3x xy ⎛⎫-⋅- ⎪⎝⎭6.下列运算正确的是( )A .a 2·a 3=a 6B .(-3x )3=-3x 3C .2x 3·5x 2=7x 5D .(-2a 2)(3ab 2-5ab 3)=-6a 3b 2+10a 3b 37.计算(-a 4)3÷[(-a )3]4的结果是( )A .-1B .1C .0D .-a8.下列计算正确的是( )A .3222233x b xb x b ÷=B .663422122m n m n m n m ÷⋅=C .32211·(0.5)24xy a b a y xa ÷= D .(ax 2+x )÷x =ax9.计算(14a 2b 2-21ab 2)÷7ab 2等于( )A .2a 2-3B .2a -3C .2a 2-3bD .2a 2b -310.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( )A .2m 2n -3mn +n 2B .2m 2-3mn 2+n 2C .2m 2-3mn +n 2D .2m 2-3mn +n11.(1)(a 2)5=__________;(2)(-2a )2=__________;(3)(xy 2)2=__________.12.与单项式-3a 2b 的积是6a 3b 2-2a 2b 2+9a 2b 的多项式是__________.13.计算:(1)(-5a 2b 3)(-3a );(2)2ab (5ab 2+3a 2b );(3)(3x +1)(x +2).14.计算:(1)412÷43; (2)421122⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭; (3)32m +1÷3m -1.能力提升15.如果a 2m -1·a m +2=a 7,则m 的值是( )A .2B .3C .4D .516.210+(-2)10所得的结果是( )A .211B .-211C .-2D .217.(x -4)(x +8)=x 2+mx +n ,则m ,n 的值分别是( )A .4,32B .4,-32C .-4,32D .-4,-3218.已知(a n b m +1)3=a 9b 15,则m n =__________.19.若a m +2÷a 3=a 5,则m =__________;若a x =5,a y =3,则a y -x =__________.20.计算:-a 11÷(-a )6·(-a )5.21.计算:(1)()2232223(2)(2)3a b ab a b a ab ab ⎛⎫-+-+- ⎪⎝⎭; (2)112213233y y y y ⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭; (3)2221[(2)]3xy xy x y xy ⎛⎫-⋅-+ ⎪⎝⎭; (4)(a +2b )(a -2b )(a 2+4b 2).22.小明在进行两个多项式的乘法运算时(其中的一个多项式是b -1),把“乘以(b -1)”错看成“除以(b -1)”,结果得到(2a -b ),请你帮小明算算,另一个多项式是多少?23.已知(x +a )(x 2-x +c )的积中不含x 2项和x 项,求(x +a )(x 2-x +c )的值是多少?参考答案1.C 2.D 3.A 4.A 5.D 6.D7.A 点拨:原式=-a 12÷a 12=-1.8.A 点拨:本题易错选D ,D 的正确结果为ax +1,在实际运算中,“1”这一项经常被看作0而忽视,应引起特别的重视.9.B 点拨:原式=14a 2b 2÷7ab 2-21ab 2÷7ab 2=2a -3.10.C 点拨:原式=8m 4n ÷4m 2n -12m 3n 2÷4m 2n +4m 2n 3÷4m 2n =2m 2-3mn +n 2.11.(1)a 10 (2)4a 2 (3)x 2y 412.2233ab b -+- 点拨:由题意列式(6a 3b 2-2a 2b 2+9a 2b )÷(-3a 2b )计算即得. 13.解:(1)原式=[(-5)×(-3)](a 2·a )·b 3=15a 3b 3.(2)原式=10a 2b 3+6a 3b 2.(3)原式=3x 2+6x +x +2=3x 2+7x +2.14.解:(1)412÷43=412-3=49; (2)424211112224-⎛⎫⎛⎫⎛⎫-÷-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)32m +1÷3m -1=3(2m+1)-(m -1)=3m +2. 15.A 点拨:a 2m -1·a m +2=a 2m-1+m +2=a 7,所以2m -1+m +2=7,解得m =2. 16.A 17.B 18.64 19.63520.解:原式=-a 11÷a 6·(-a )5=-a 5·(-a 5)=a 10. 或者,原式=(-a )11÷(-a )6·(-a )5=(-a )11-6+5=a 10.21.解:(1)原式=-a 3b 3-4a 3b 3+4a 3b 3=-a 3b 3.(2)原式=y 2-2y -y 2-2y =-4y .(3)242224512(2)99x y x y xy xy x y ⎛⎫=⋅-+= ⎪⎝⎭原式. (4)原式=(a 2-2ab +2ab -4b 2)(a 2+4b 2)=(a 2-4b 2)(a 2+4b 2)=a 4+4a 2b 2-4a 2b 2-16b 4=a 4-16b 4.22.解:设所求的多项式是M ,则M =(2a -b )(b -1)=2ab -2a -b 2+b .23.解:∵(x+a)(x2-x+c)=x3-x2+cx+ax2-ax+ac=x3+(a-1)x2+(c-a)x+ac,又∵积中不含x2项和x项,∴a-1=0,c-a=0,解得a=1,c=1.又∵a=c=1,∴(x+a)(x2-x+c)=x3+1.。
七年级数学下册综合算式专项练习题整式的乘法练习
七年级数学下册综合算式专项练习题整式的乘法练习综合算式专项练习题——整式的乘法练习在七年级数学下册中,我们学习了很多关于整式的知识,其中一项重要的内容就是整式的乘法。
整式的乘法是数学中的基础操作,掌握好整式的乘法是我们巩固和提高数学能力的关键。
下面是一些综合算式专项练习题,旨在帮助同学们加深对整式的乘法的理解,并提升解题能力。
1. 计算下列整式的乘积:(2x + 3)(4x + 5)解析:我们可以使用分配律将两个括号里的项依次相乘,再将结果相加。
(2x + 3)(4x + 5) = 2x * 4x + 2x * 5 + 3 * 4x + 3 * 5= 8x² + 10x + 12x + 15= 8x² + 22x + 15答案:8x² + 22x + 152. 计算下列整式的乘积:(3a - 2b)(5a + 4b)解析:同样地,我们应用分配律将两个括号里的项相乘,再将结果相加。
(3a - 2b)(5a + 4b) = 3a * 5a + 3a * 4b - 2b * 5a - 2b * 4b= 15a² + 12ab - 10ab - 8b²= 15a² + 2ab - 8b²答案:15a² + 2ab - 8b²3. 计算下列整式的乘积:(4x² + 2x + 1)(3x - 2)解析:这次我们需要将一个括号内的三项依次与另一个括号内的项相乘,并将结果相加。
(4x² + 2x + 1)(3x - 2) = (4x² + 2x + 1) * 3x + (4x² + 2x + 1) * (-2)= 12x³ + 6x² + 3x - 8x² - 4x - 2= 12x³ - 2x² - x - 2答案:12x³ - 2x² - x - 24. 计算下列整式的乘积:(a + b)(a - b)解析:这个式子的形式为两个完全平方式相乘,即 "a² - b²"。
初一数学第二学期第1章第4节整式的乘法_练习题和答案
整式的乘法【知识点考查题】一、容易题1.(2018浙江宁波鄞州区中考模拟)下列计算正确的是( )A. (﹣2xy )2=﹣4x 2y 2B. x 6÷x 3=x 2C. (x ﹣y )2=x 2﹣y 2D. 2x +3x=5x【答案】D【考点】整式的乘法【考查能力】运算求解能力2.(2018湖北武汉市武昌区一模)若(x ﹣2)(x +9)=x 2+px+q ,那么p 、q 的值是( )A. p=7 q=18B. p=7 q=﹣18C. p=﹣7 q=18D. p=﹣7 q=﹣18【答案】B【考点】整式的乘法【考查能力】运算求解能力3.(2018湖北武汉四校联考)计算(x +2)(x +3)的结果为( )A. x 2+6B. x 2+5x +6C. x 2+5x +5D. x 2+6x +6【答案】B【考点】整式的乘法【考查能力】运算求解能力4.(2017-2018山东省青岛市中考模拟)计算()232b a b a ⋅的结果是( ) A. a 5b 5 B. a 4b 5 C. ab 5 D. a 5b 6【答案】A【考点】整式的乘法【考查能力】运算求解能力二、中等题5.(2017-2018广东省佛山市顺德区月考)一个多项式除以3xy 商为错误!未找到引用源。
,则这个多项式是__________________【答案】错误!未找到引用源。
【考点】整式的乘法【考查能力】运算求解能力【答案】1【考点】整式的乘法【考查能力】运算求解能力7.(2017-2018江苏省阜宁县期中)计算: ()3323a b ab ⋅-=__________.【答案】6454a b -【考点】整式的乘法【考查能力】运算求解能力8.(2018盐城市亭湖区)计算 ()()36x y x --= _______.【答案】.2618x xy -+【考点】整式的乘法【考查能力】运算求解能力 【技能技巧考查题】一、较难题9.(2017-2018河南郑州月考)若()222833x px x x q ⎛⎫++-+ ⎪⎝⎭的积中不含2x 与3x 项. (1)求p 、q 的值;(2)求代数式()()3122016201823p q pq p q --++的值. 【答案】(1)p =3 ,q =13-;(2)72159【考点】整式的乘法【考查能力】运算求解能力10.(2017-2018广东省佛山市顺德区月考)观察以下等式:()()23111x x x x +-+=+; ()()232248x x x x +-+=+;()()2333927x x x x +-+=+; ()()23441664x x x x +-+=+;... (1)按以上等式的规律,完成下列填空:①()25(x x +- 325)125x x +=+; ②()26(6x x x +-+ 3)216x =+; ③()a b +(__________________)=33a b +(2)利用多项式的乘法法则,证明(1)中的等式③成立;(3)利用(1)中的公式化简: ()()()()2222x y x xy y x y x xy y +-+--++.【答案】(1)5,36, 22a ab b -+;(2)33a b +; (3)32y【考查能力】运算求解能力以考察知识为主试题一.选择题(共6小题)1.下列运算正确的是()A.(x2)3+(x3)2=2x6B.(x2)3•(x2)3=2x12C.x4•(2x)2=2x6D.(2x)3•(﹣x)2=﹣8x52.计算2x(3x2+1),正确的结果是()A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x3.下列计算正确的是()A.(﹣2a)•(3ab﹣2a2b)=﹣6a2b﹣4a3bB.(2ab2)•(﹣a2+2b2﹣1)=﹣4a3b4C.(abc)•(3a2b﹣2ab2)=3a3b2﹣2a2b3D.(ab)2•(3ab2﹣c)=3a3b4﹣a2b2c4.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.25.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A.﹣3 B.﹣1 C.1 D.56.计算(2x2﹣4)(2x﹣1﹣x)的结果,与下列哪一个式子相同?()A.﹣x2+2 B.x3+4 C.x3﹣4x+4 D.x3﹣2x2﹣2x+4二.填空题(共6小题)7.计算:(﹣5a4)•(﹣8ab2)=.8.计算:(b2﹣4a2)•(﹣4ab)=.9.a n b2[3b n﹣1﹣2ab n+1+(﹣1)2003]=.10.若(2x﹣3)(5﹣2x)=ax2+bx+c,则a+b+c=.11.若﹣2x2y(﹣x m y+3xy3)=2x5y2﹣6x3y n,则m=,n=.12.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为.以考察技能为主试题三.解答题(共5小题)13.计算:(1)(3x+2)(2x﹣1);(2)(2x﹣8y)(x﹣3y);(3)(2m﹣n)(3m﹣4n);(4)(2x2﹣1)(2x﹣3);(5)(2a﹣3)2;(6)(3x﹣2)(3x+2)﹣6(x2+x﹣1).14.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).15.计算(1)(﹣2a2b)2•(ab)3(2)已知a m=2,a n=3,求a2m+3n的值.16.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2.17.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.整式的乘法。
整式的乘法练习题
整式的乘法练习题整式的乘法是数学中的一项重要概念,它涉及到对两个以上整式进行乘法运算。
通过练习乘法运算,我们可以加深对整式乘法的理解和掌握。
在本文中,我们将提供一些整式的乘法练习题,以帮助读者更好地掌握这一概念。
练习题1:计算以下乘法:(2x + 3)(4x - 5)解答:(2x + 3)(4x - 5) = 2x × 4x + 2x × (-5) + 3 × 4x + 3 × (-5)= 8x² - 10x + 12x - 15= 8x² + 2x - 15练习题2:计算以下乘法:(3a + 2b)(5a - 4b)(3a + 2b)(5a - 4b) = 3a × 5a + 3a × (-4b) + 2b × 5a + 2b × (-4b) = 15a² - 12ab + 10ab - 8b²= 15a² - 2ab - 8b²练习题3:计算以下乘法:(6x² + 5x - 3)(x - 2)解答:(6x² + 5x - 3)(x - 2) = 6x²× x + 6x²× (-2) + 5x × x + 5x × (-2) - 3 × x - 3 × (-2)= 6x³ - 12x² + 5x² - 10x - 3x + 6= 6x³ - 7x² - 13x + 6练习题4:计算以下乘法:(2x - 3y)(3x + 4y)(2x - 3y)(3x + 4y) = 2x × 3x + 2x × 4y - 3y × 3x - 3y × 4y= 6x² + 8xy - 9xy - 12y²= 6x² - xy - 12y²练习题5:计算以下乘法:(5a² - 4a + 3)(a - 2)解答:(5a² - 4a + 3)(a - 2) = 5a²× a + 5a²× (-2) - 4a × a - 4a × (-2) + 3 × a + 3 × (-2)= 5a³ - 10a² - 4a² + 8a + 3a - 6= 5a³ - 14a² + 11a - 6练习题6:计算以下乘法:(2x - 1)(3x² + 2x - 4)(2x - 1)(3x² + 2x - 4) = 2x × 3x² + 2x × 2x + 2x × (-4) - 1 × 3x² - 1 × 2x - 1 × (-4)= 6x³ + 4x² - 8x - 3x² - 2x + 4= 6x³ + x² - 10x + 4通过以上的练习题,读者可以加深对整式乘法的理解和应用。
人教版数学七年级第二章 整式的乘法综合卷1(带答案 有矢量图)
第二章 整式的乘法综合卷1姓名___________班级__________学号__________分数___________1.化简:a +a =( )A .2;B .a 2;C .2a 2;D .2a ;2.当x =-2时,代数式x +3的值是( )A .1;B .-1;C .5;D .-5;3.下列计算正确的是( )A .2x -x =1;B .2a 2b -3ba 2=-a 2b ;C .(-2)3=8;D .-(x -y )=-x -y ;4.在下列表述中,不能表示代数式“4a ”的意义的是( )A .4的a 倍;B .a 的4倍;C .4个a 相加;D .4个a 相乘;5.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A .2;B .3;C .6;D .x +3;6.化简5(2x -3)+4(3-2x )结果为( )A .2x -3;B .2x +9;C .8x -3;D .18x -3;7.在整式:(21y ,bc ,2x +,225ab ,0,y -,2621x x -+,3abc π中,是单项式的个数为( ) A .3;B .4;C .5;D .6;8.已知33-=-y x ,则y x 35+-的值是( )A .0;B .2;C .5;D .8;9.一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?( )A .甲;B .乙;C .一样;D .无法确定;10.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算( )A .甲;B .乙;C .丙;D .一样;11.下列说法中正确的是( )A .5不是单项式;B .2y x +是单项式;C .2x y 的系数是0;D .32x -是整式;※12.已知a 2+b 2=6,ab =-2,则代数式(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值为( )A .-14;B .-34;C .-2;D .2;13.当x =1时,代数式x 2+1=____________.14.对单项式“5x ”,我们可以这样解释:香蕉每千克5元,某人买了x 千克,共付款5x 元.请你对“5x ”再给出另一个实际生活方面的合理解释:________________________.15.一个多项式与222x x -+的和是2321x x -+,则这个多项式为____________.16.多项式123243-+-x x x 有 项,其中次数最高的项是 .17.一种商品每件成本a 元,按成本增加40%定价,现因出现库存积压减价,按定价的8折出售,每件8折出售,每件还能盈利____________元.(结果用含a 的式子表示)18.按下面程序计算:输入x =3,则输出的答案是____________.19.吉林广播电视塔“五一”假期第一天接待游客m 人,第二天接待游客n 人,则这2天平均每天接待游客____________人(用含m 、n 的代数式表示).※20.设(2x -1)5=ax 5+bx 4+cx 3+dx 2+ex +f ,则f 的值为____________.21.合并同类项:a a a a 742322-+-.22.去括号:-7x 3-[4x 2-(2x -1)];23.如图,在一块正方形白铁皮的右上角切去一个边长是 3cm 的小正方形.若余下部分的面积是 16cm 2,求这块正方形铁皮原来的边长.24.规定一种新运算:a ﹡b =a -b ,当a =5,b =3时,求(a 2b )﹡(3ab +5a 2b -4ab )的值.25.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下: +(-3x 2+5x -7)=-2x 2+5x -6(1)求所捂多项式;(2)若x 是2x +5=-1的解,求所捂多项式的值.※26.“十·一”期间,某生态公园在7天中每天游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日的游客人数记为a,用a的代数式表示10月2日游客人数为_______万人.(2)七天内游客人数最多的这天是10月____________日,总人数为____________万人.(3)若每天进园的人均消费10元,9月30日的游客人数为1万人.求:10月7日这天所有游园人员在生态园的总消费是多少?(结果用科学计算法表示)第二章 整式的乘法综合卷1答案1.D .;2.A .;解:当x =-2时,x +3=-2+3=1.3.B .;4.D .;5.B .;解:根据题意得:(x ×2+6)÷2-x =x +3-x =3;6.A .;解:原式=10x -15+12-8x =2x -3.7.D .;8.D .;9.B .;解:甲的面积=100π平方厘米,甲的卖价为π101元/平方厘米;乙的面积=225π平方厘米,乙的卖价为π151元/平方厘米;∵π101>π151,∴乙种煎饼划算. 10.C .;解:设商品原价为x ,甲超市的售价为:x (1-20%)(1-10%)=0.72x ;乙超市售价为:x (1-15%)2=0.7225x ;丙超市售价为:x (1-30%)=70%x =0.7x ;故到丙超市合算.11.D .;12.B .;13.解:x =1时,x 2+1=12+1=1+1=2.14.某人以5千米/时的速度走了x 小时,他走的路程是5x 千米(答案不唯一)15.x 2-x -1;16.4,-3x 4;17.0.12a ;18.解:根据题意得:(x 3-x )÷2,∵x =3,∴原式=(27-3)÷2=24÷2=12.19.解:2天平均每天接待游客2m n +. 20.-1;令x =0,f =-1;21.7a 2-9a ;22.-7x 3-4x 2+2x -1分析:渗透两种方法:(1)由里往外,先去小括号,再去中括号;(2)由外往里,先中括号,再去小括号;23.解:设这块正方形的铁皮原来长为aa 2-32=16a =5答:这块正方形铁皮原来的长为5;24.解:原式=(a2b)-(3ab+5a2b-4ab)=a2b-3ab-5a2b+4ab=-4a2b+ab当a=5,b=3时,原式=-4×25×3+5×3=-285;25.解:(1)设所捂住的多项式的为A,A=(-2x2+5x-6)-(-3x2+5x-7)=-2x2+5x-6+3x2-5x+7=x2+1;(2)2x+5=-1,x=-3,x2+1=9+1=10;26.解:(1)a+2.6;(2)七天内游客人数分别是a+1.8,a+2.6,a+3.2,a+2.8,a+2,a+2.2,a+0.7,所以3日人最多,总人数为:a+1.8+a+2.6+a+3.2+a+2.8+a+2+a+2.2+a+0.7=7a+15.3(万人).(3)10月7日这天游园人员a+0.7(万人),当a=1时,a+0.7=1.7(万人),∴10月7日这天所有游园人员在生态园的总消费是17000×10=1.7×104(元).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.多项式与多项式相乘乘法法则
(a+b)(m+n)
=(a+b)m+(a+b)n
=am+bm+an+bn
一般地,多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加
6.一种特殊的多项式乘法
4.
5.
6.
7. m=-2
8. 0
9. x=-4
(注:可编辑下载,若有不当之处,请指正,谢谢!)
A. B. C. D.
6.计算 的结果是()
A. B. C. D.
7.若 ,则m、n、k为()
A. 6,3,1B. 3,6,1C. 3,1,1D. 2,1,1
8.若(x+2)(x-5) ,则常数p、q的值为()
A. p=-3 ,q=10B. p=-3,q=-10
C. p=7,q=-10D. p=7,q=10
北师大版七年级数学(下)第一章整式的运算第五节:同底数幂的除法第六节:整式的乘法
教学要求
1.会用同底数幂的除法性质进行计算,并能理解一些实际问题,理解零指数与负整数指数的意义,会用科学记数法表示绝对值较小的数。
2.会进行整式的乘法计算。
重点及难点
1.重点是同底数幂的除法运算性质及其应用,难点是准确熟练的运用法则进行同底数幂的除法运算,理解负整数指数和零指数的意义。
7.如果 ,求m的值
8.化简求值 ,其中,a=-2,b= 。
9.解方程(3x+8)(2x-1)=3x(2x+5)
【试题答案】
一、选择题
1. B2. B3. A4. B5. A
6. D7. A8. B9. C
二、填空题
1. 4 2.≠-1
3. , 4.-1.69 ,
5. 6.-3a
7.
三、计算
1. 2. 3.
解:(1)
(2)
(3)(x+4)(x-1)
(4)(3a+b)(a-2b)
【模拟试题】(答题时间:50分钟)
一、选择题
1. 等于()
A. B. C. D.
2. 等于()
A. B. C. D. a
3. 等于()
A. B. C. D.
4. ,则 值为()
A. –2B. C. 675D. 225
5. 的运算结果是()
2.重点是单项式、多项式的乘法法则及其运算,难点是对法则的理解和准确的运用。
[知识要点]
1.同底数幂的除法性质
(a≠0,m,n都是正整数,并且m>n)
这就是说,同底数幂相除,底数不变,指数相减
注意:
(1)此运算性质的条件是:同底数幂相除,结论是:底数不变,指数相减
(2)因为0不能做除数,所以底数a≠0
7.(x+a)(x+b)=x2+(a+b)x+ab(a,b是常数)
公式的特点:(1)相乘的两个因式都只含有一个相同的字母,都是一次二项式并且一次项的系数是1。
(2)乘积是二次三项式,二次项系数是1,一次项系数等于两个因式中常数项之和,常数项等于两个因式中常数项之积。
【典型例题】
例1.计算
(1) (2)
(3)应用运算性质时,要注意指数为“1”的情况,如 ,而不是
2.零指数与负整数指数的意义
(1)零指数
( )
即任何不等于0的数的0次幂都等于1
(2)负整数指数
,p是正整数)
即任何不等于零的数-p次幂,等于这个数的p次幂的倒数
注意: 中a为分数时利用变形公式 为正整数),计算更简单
如: , ,
3.单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
(3) (4)
解:(1)
(2) =
(3)
(4)
例2.计算
(1)
(2)
(3)
解:(1)
(2)
例3.计算
(1)
解:(1)
(2)
注意:若 ,则a与 互为倒数, 与 互为倒数
例4.计算
(1) (2)
解:(1)
(2)
例5.计算
(1)
(2)
解:(1)
(2)
例6.计算
(1) (2)
(3)(x+4)(x-1)(4)(3a+b)(a-2b)
9.如果 的乘积中不含x的二次项,那么常数m的值为()
A. 0B. C.- D.
二、填空题
1. =(), ()=
2.当y()时,
3.若 ,若 =(), =()
4.(1.3 ) =(), =()
5. =()
6. ()= , =()
7. =(), =()(用科学记数法表示)
三、计算
1.
2.
3.
4.
5.
6.