5聚类之层次聚类基于划分的聚类(k
4 第四章 聚类分析 -数据挖掘算法与应用(Python实现)-孙家泽-清华大学出版社
西安邮电大学
18
K-means算法概述
K-means算法对初始聚类中心较敏感,相似度 计算方式会影响聚类的划分。 常见的相似度计算方法有:
欧式距离 曼哈顿距离 闵可夫斯基距离
19
多选题 1分 对象i和对象j距离 d(i,j)满足性质( )
基于密度的聚类
➢常见的基于密度的方法:
➢ DBSCAN(具有噪声的基于密度的聚类方法) ➢ OPTICS(通过点排序识别聚类结构)
➢基于网格的方法把对象空间量化为有限个单元,形 成一个网络结构。所有的聚类操作都在这个网络结 构(即量化空间)上进行。这种方法主要优点是处 理速度很快,其处理时间通常独立于数据对象的个 数,而依赖于量化空间中每一维的单元数。
模式
聚类分析的目标
聚类分析的目标就是形成多个数据簇,并且数据 簇需要满足下面两个条件:
同一个簇内的数据尽量相似(high intra-class similarity);
不同簇的数据尽量不相似(low inter-class similarity)。
聚类分析常用算法介绍
常见的聚类分析算法有:
层次聚类算法
无论使用凝聚方法还是分裂方法,一个核心的问题是度量两 个簇间的距离,其中每个簇一般是一个对象集.
西安邮电大学
11
➢ 基于距离的聚类方法的缺点:只能发现球状的簇,难以发现任意形状的 簇。
➢ 基于密度的聚类:只要临近区域的密度(对象或数据点的数目)超过某 个临界值,就继续聚类。
优点:可以过滤掉“噪声”和“离群点”,发现任意形状的簇
第四章聚类分析
西安邮电大学
1
聚类分析
1. 聚类分析 2.基于划分的聚类方法 3.基于层次的聚类方法 4.基于密度的聚类方法 5.基于概率的聚类方法 6.聚类图数据
聚类分析的类型与选择
聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。
通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。
本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。
1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。
下面将分别介绍这两种聚类方法。
1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。
这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。
层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。
另外,它对异常值敏感,若存在异常值可能影响聚类结果。
1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。
该方法通过迭代计算簇的中心和重新分配数据来实现聚类。
k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。
但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。
2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。
下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。
对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。
2.2聚类目标需要考虑聚类的目标。
如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。
而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。
2.3数据质量数据质量也是选择聚类方法的重要因素。
层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。
选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。
常用的聚类算法
常用的聚类算法
1聚类算法概述
聚类算法是一种无监督学习算法,它可以根据样本的内在特征将它们分组到不同的簇中,而不需要人工的参与。
它的实质是把同类的对象划分到同一个簇,把不同类的对象分到不同的簇,以达到将类似的物体进行自动分组的目的。
聚类的结果要求能将类似的对象划分到同一簇,而将不同的对象划分到不同簇,相邻簇中可以有极少数据点的相异。
2常用聚类算法
1.K-Means
K-means是最流行的聚类算法,它简单、速度快,可以根据数据特征把数据点分成K个不同簇,是一种基于划分的聚类算法。
2.层次聚类算法
层次聚类算法是一种树形聚类算法,将数据按照层级结构编码成树结构,采用分支和合并的方法,将给出的数据逐步聚合。
3.谱聚类算法
谱聚类算法对密集网络数据具有很好的分类能力,将相似性LR矩阵作为分析基础,使用其提取节点之间的相似程度,将节点分为多个簇。
4.EM聚类算法
EM聚类算法是一种高效的聚类算法,主要利用期望最大算法,利用概率模型对数据进行聚类,通过计算数据的对应度和估计模型参数,将数据划分到若干个类中。
总的来说,聚类算法最终的目的都是将一些数据表示的对象,根据某种特征的相似性,划分到不同的组中,以构建一种新的结构,使具有相似特征的样本分为一组,从而帮助更好地理解数据并协助作出正确的决策。
聚类算法和分类算法总结
聚类算法和分类算法总结聚类算法总结原⽂:聚类算法的种类:基于划分聚类算法(partition clustering)k-means:是⼀种典型的划分聚类算法,它⽤⼀个聚类的中⼼来代表⼀个簇,即在迭代过程中选择的聚点不⼀定是聚类中的⼀个点,该算法只能处理数值型数据k-modes:K-Means算法的扩展,采⽤简单匹配⽅法来度量分类型数据的相似度k-prototypes:结合了K-Means和K-Modes两种算法,能够处理混合型数据k-medoids:在迭代过程中选择簇中的某点作为聚点,PAM是典型的k-medoids算法CLARA:CLARA算法在PAM的基础上采⽤了抽样技术,能够处理⼤规模数据CLARANS:CLARANS算法融合了PAM和CLARA两者的优点,是第⼀个⽤于空间数据库的聚类算法FocusedCLARAN:采⽤了空间索引技术提⾼了CLARANS算法的效率PCM:模糊集合理论引⼊聚类分析中并提出了PCM模糊聚类算法基于层次聚类算法:CURE:采⽤抽样技术先对数据集D随机抽取样本,再采⽤分区技术对样本进⾏分区,然后对每个分区局部聚类,最后对局部聚类进⾏全局聚类ROCK:也采⽤了随机抽样技术,该算法在计算两个对象的相似度时,同时考虑了周围对象的影响CHEMALOEN(变⾊龙算法):⾸先由数据集构造成⼀个K-最近邻图Gk ,再通过⼀个图的划分算法将图Gk 划分成⼤量的⼦图,每个⼦图代表⼀个初始⼦簇,最后⽤⼀个凝聚的层次聚类算法反复合并⼦簇,找到真正的结果簇SBAC:SBAC算法则在计算对象间相似度时,考虑了属性特征对于体现对象本质的重要程度,对于更能体现对象本质的属性赋予较⾼的权值BIRCH:BIRCH算法利⽤树结构对数据集进⾏处理,叶结点存储⼀个聚类,⽤中⼼和半径表⽰,顺序处理每⼀个对象,并把它划分到距离最近的结点,该算法也可以作为其他聚类算法的预处理过程BUBBLE:BUBBLE算法则把BIRCH算法的中⼼和半径概念推⼴到普通的距离空间BUBBLE-FM:BUBBLE-FM算法通过减少距离的计算次数,提⾼了BUBBLE算法的效率基于密度聚类算法:DBSCAN:DBSCAN算法是⼀种典型的基于密度的聚类算法,该算法采⽤空间索引技术来搜索对象的邻域,引⼊了“核⼼对象”和“密度可达”等概念,从核⼼对象出发,把所有密度可达的对象组成⼀个簇GDBSCAN:算法通过泛化DBSCAN算法中邻域的概念,以适应空间对象的特点DBLASD:OPTICS:OPTICS算法结合了聚类的⾃动性和交互性,先⽣成聚类的次序,可以对不同的聚类设置不同的参数,来得到⽤户满意的结果FDC:FDC算法通过构造k-d tree把整个数据空间划分成若⼲个矩形空间,当空间维数较少时可以⼤⼤提⾼DBSCAN的效率基于⽹格的聚类算法:STING:利⽤⽹格单元保存数据统计信息,从⽽实现多分辨率的聚类WaveCluster:在聚类分析中引⼊了⼩波变换的原理,主要应⽤于信号处理领域。
聚类分析的类型与选择
聚类分析的类型与选择聚类分析是一种常用的数据分析方法,用于将一组数据分成不同的类别或群组。
通过聚类分析,可以发现数据中的内在结构和模式,帮助我们更好地理解数据和做出决策。
在进行聚类分析时,我们需要选择适合的聚类算法和合适的聚类类型。
本文将介绍聚类分析的类型和选择方法。
一、聚类分析的类型1. 划分聚类(Partitioning Clustering)划分聚类是将数据集划分为不相交的子集,每个子集代表一个聚类。
常用的划分聚类算法有K-means算法和K-medoids算法。
K-means算法是一种迭代算法,通过计算数据点与聚类中心的距离来确定数据点所属的聚类。
K-medoids算法是一种基于对象之间的相似性度量的划分聚类算法。
2. 层次聚类(Hierarchical Clustering)层次聚类是将数据集划分为一个层次结构,每个层次代表一个聚类。
常用的层次聚类算法有凝聚层次聚类和分裂层次聚类。
凝聚层次聚类是自底向上的聚类过程,开始时每个数据点都是一个聚类,然后逐步合并相似的聚类,直到形成一个大的聚类。
分裂层次聚类是自顶向下的聚类过程,开始时所有数据点都属于一个聚类,然后逐步将聚类分裂成更小的聚类。
3. 密度聚类(Density Clustering)密度聚类是基于数据点之间的密度来进行聚类的方法。
常用的密度聚类算法有DBSCAN算法和OPTICS算法。
DBSCAN算法通过定义数据点的邻域密度来确定核心对象和边界对象,并将核心对象连接起来形成聚类。
OPTICS算法是DBSCAN算法的一种改进,通过计算数据点的可达距离来确定聚类。
二、选择聚类分析的方法在选择聚类分析的方法时,需要考虑以下几个因素:1. 数据类型不同的聚类算法适用于不同类型的数据。
例如,K-means算法适用于连续型数值数据,而DBSCAN算法适用于密度可测量的数据。
因此,在选择聚类算法时,需要根据数据的类型来确定合适的算法。
2. 数据量和维度聚类算法的计算复杂度与数据量和维度有关。
什么是聚类分析
什么是聚类分析?聚类分析方法的类别聚类分析是指将数据对象的集合分组为由类似的对象组成的多个类的分析过程。
基本概念聚类(Clustering)就是一种寻找数据之间内在结构的技术。
聚类把全体数据实例组织成一些相似组,而这些相似组被称作簇。
处于相同簇中的数据实例彼此相同,处于不同簇中的实例彼此不同。
聚类技术通常又被称为无监督学习,与监督学习不同的是,在簇中那些表示数据类别的分类或者分组信息是没有的。
数据之间的相似性是通过定义一个距离或者相似性系数来判别的。
图1 显示了一个按照数据对象之间的距离进行聚类的示例,距离相近的数据对象被划分为一个簇。
图1 聚类分析示意聚类分析可以应用在数据预处理过程中,对于复杂结构的多维数据可以通过聚类分析的方法对数据进行聚集,使复杂结构数据标准化。
聚类分析还可以用来发现数据项之间的依赖关系,从而去除或合并有密切依赖关系的数据项。
聚类分析也可以为某些数据挖掘方法(如关联规则、粗糙集方法),提供预处理功能。
在商业上,聚类分析是细分市场的有效工具,被用来发现不同的客户群,并且它通过对不同的客户群的特征的刻画,被用于研究消费者行为,寻找新的潜在市场。
在生物上,聚类分析被用来对动植物和基因进行分类,以获取对种群固有结构的认识。
在保险行业上,聚类分析可以通过平均消费来鉴定汽车保险单持有者的分组,同时可以根据住宅类型、价值、地理位置来鉴定城市的房产分组。
在互联网应用上,聚类分析被用来在网上进行文档归类。
在电子商务上,聚类分析通过分组聚类出具有相似浏览行为的客户,并分析客户的共同特征,从而帮助电子商务企业了解自己的客户,向客户提供更合适的服务。
聚类分析方法的类别目前存在大量的聚类算法,算法的选择取决于数据的类型、聚类的目的和具体应用。
聚类算法主要分为5 大类:基于划分的聚类方法、基于层次的聚类方法、基于密度的聚类方法、基于网格的聚类方法和基于模型的聚类方法。
1. 基于划分的聚类方法基于划分的聚类方法是一种自顶向下的方法,对于给定的n 个数据对象的数据集D,将数据对象组织成k(k≤n) 个分区,其中,每个分区代表一个簇。
常见的聚类方法及应用
常见的聚类方法及应用常见的聚类方法有层次聚类、K-means聚类、DBSCAN聚类和密度聚类。
层次聚类(Hierarchical clustering)是一种自下而上或自上而下的聚类方法。
这种方法通过划分数据集来构建聚类树,然后根据树的分支情况划分簇。
层次聚类方法有两种:凝聚性(Agglomerative)和分裂性(Divisive)。
凝聚性层次聚类是自下而上的方法,首先将每个样本看作一个簇,然后逐步合并相似的簇,直到形成一个大簇。
而分裂性层次聚类则是自上而下的方法,首先将所有样本看作一个大簇,然后逐步将大簇分割成更小的簇,直到每个样本都成为一个簇。
层次聚类方法的应用包括文本聚类、图像聚类和生物学数据分析等方面。
K-means聚类是一种基于划分的聚类方法。
这种方法将数据集划分为K个簇,每个簇包含与之最相似的数据点。
K-means聚类的过程分为两个步骤:选择初始质心和迭代优化。
选择初始质心可以用多种方法,比如随机选择或根据数据分布选择。
迭代优化通过计算数据点到簇质心的距离,并将每个点分配到最接近的质心,然后更新质心的位置,直到质心位置不再变化或达到预设迭代次数。
K-means聚类的应用包括图像分割、推荐系统和市场分析等方面。
DBSCAN聚类(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类方法。
这种方法将数据点分为核心点、边界点和噪声点。
核心点是一个密度可达的点,即在以该点为圆心,以一定半径内至少包含最小样本数的区域内有足够的样本点。
边界点是在以核心点为圆心,以一定半径内包含小于最小样本数的样本点。
噪声点是既不是核心点也不是边界点的点。
DBSCAN聚类的过程是通过寻找核心点的相邻点和扩展密度直达的样本点,从而形成一个簇。
DBSCAN聚类的应用包括异常检测、土壤学分析和客户细分等方面。
密度聚类(Density-based clustering)是一种基于样本密度的聚类方法。
五种层次聚类法
五种层次聚类法
- K均值聚类:这可能是最知名的聚类算法。
在代码中很容易理解和实现。
该算法的优点是速度非常快,因为它的计算复杂度为线性O(n)。
但缺点是必须选择要使用的类/组的数量,而且结果可能因随机初始化聚类中心而异,缺乏一致性。
- K-Medians聚类:与K-Means类似,但不是使用组的中心点来重新计算组的中心点,而是使用组的中值向量。
这种方法对异常值不太敏感,但对于较大的数据集要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。
- Mean-Shift聚类:这是一种基于滑动窗口的算法,试图找到密集的数据点区域。
这是一个基于中心的算法,通过更新中心点的候选者作为滑动窗口内点的平均值来定位每个组/类的中心点。
然后这些候选窗口被过滤到后处理阶段,以消除近似的重复,形成最终的中心点集及其相应的组。
- DBSCAN Density-Based Spatial Clustering of Applications with Noise)聚类:该算法根据数据点的密度来聚类。
它可以识别任意形状的簇,并且可以处理噪声点。
该算法具有简单、高效的优点,但需要选择两个参数:邻域半径和最小密度阈值。
- OPTICS Ordering Points to Identify the Clustering Structure)聚类:该算法通过创建一个基于距离的层次结构来识别聚类。
它可以处理大型数据集,并且可以识别任意形状的簇。
该算法的优点是速度快,但需要选择一个参数:邻域半径。
数据挖掘考试习题汇总
第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两大类:联机事务处理和联机分析处理。
4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储与管理和数据表现等。
7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。
8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。
9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。
10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。
第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。
2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。
因此,我们要求ETL 过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度高低的一个衡量。
粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。
常规聚类算法
常规聚类算法常规聚类算法是一种重要的数据分析方法,可以帮助我们对大规模数据进行有效的分类和归纳。
通过对数据进行聚类,我们可以发现数据中的隐藏模式、规律和关系,从而为后续的数据挖掘、预测和决策提供有力支持。
常规聚类算法主要分为基于划分的聚类算法、基于层次的聚类算法和基于密度的聚类算法。
每种算法都有其独特的特点和适用场景,下面就分别进行介绍。
基于划分的聚类算法主要包括K-means算法和K-medoids算法。
K-means算法是一种常用且广泛应用的聚类算法,它将数据分成K个簇,每个簇的中心点代表了该簇的平均值。
该算法通过迭代的方式,将数据点不断归类到离其最近的簇中,直到达到稳定状态。
K-medoids算法是一种改进的K-means算法,它将簇的中心点定义为簇中所有数据点中与其他点的平均距离最小的点,从而可以更准确地划分簇。
基于层次的聚类算法主要包括凝聚层次聚类算法和分裂层次聚类算法。
凝聚层次聚类算法从每个数据点作为一个簇开始,然后通过计算两个最相似簇之间的距离来合并簇,直到形成一个大的簇。
分裂层次聚类算法则相反,从一个大的簇开始,然后通过计算簇中数据点之间的距离来分裂簇,直到形成多个小的簇。
这种算法的优点是可以在不同的层次上进行聚类,从而可以灵活地控制聚类的粒度。
基于密度的聚类算法主要包括DBSCAN算法和OPTICS算法。
DBSCAN算法是一种基于密度的聚类算法,它通过确定数据点的密度来划分簇,具有自动确定簇数和可处理噪声的优点。
OPTICS算法是DBSCAN算法的扩展,它通过将数据点的密度和可达距离进行排序,形成一个密度可达图,并根据该图来划分簇。
这种算法可以更好地处理数据中的离群点和噪声。
在使用常规聚类算法时,我们需要注意数据的选择和预处理。
合适的数据选择和预处理可以提高聚类算法的效果和准确性。
同时,我们还需要关注聚类结果的解释和评估。
解释聚类结果可以帮助我们理解数据中的模式和关系,评估聚类结果可以帮助我们判断算法的优劣和稳定性。
聚类分割算法
聚类分割算法聚类分割算法是一类常用于将数据集划分成具有相似特征的子集的方法。
这些算法主要用于无监督学习,即在没有先验标签的情况下,自动发现数据集内在的模式。
以下是一些常见的聚类分割算法:1. K均值聚类(K-Means Clustering):- K均值是最常见的聚类算法之一。
它将数据集分为K个簇,每个簇由其质心表示。
算法的目标是使每个数据点到其所属簇的质心的距离最小化。
2. 层次聚类(Hierarchical Clustering):-层次聚类根据数据点之间的相似性构建树状结构。
可以通过聚合或分割来创建簇。
分为凝聚式层次聚类(自底向上)和分裂式层次聚类(自顶向下)。
3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise):- DBSCAN基于密度的聚类算法,能够发现具有足够密度的区域,并将稀疏区域视为噪声。
它不需要预先指定簇的数量。
4. Mean Shift聚类:- Mean Shift是一种基于梯度上升的聚类算法。
它通过不断迭代调整数据点的位置,使其移向密度最大的区域,从而找到簇的中心。
5. OPTICS(Ordering Points To Identify the Clustering Structure):- OPTICS是一种基于密度的聚类算法,类似于DBSCAN,但允许在数据集中存在不同密度的区域,并通过产生一系列密度相关的点来表示簇。
6. 谱聚类(Spectral Clustering):-谱聚类利用数据集的谱信息,通过将数据投影到低维子空间来执行聚类。
它在处理非凸形状的簇和图分割问题时效果较好。
7. 模糊聚类(Fuzzy Clustering):-模糊聚类考虑了数据点与簇的隶属度,而不是将每个数据点硬性地分配到一个簇。
模糊c均值(FCM)是模糊聚类的一个典型算法。
这只是聚类分割算法的一小部分,每个算法都有其适用的场景和限制。
聚类算法
层次聚类算法优缺点及改进算法
• 优点:适用于任意形状和任意属性的数据集,灵活控制不 同层次的聚类粒度,强聚类能力。 • 缺点:大大延长了算法的执行时间,不能回溯处理。
层次聚类方法尽管简单,但经常会遇到合并或分裂点 的选择的困难。改进层次方法的聚类质量的一个有希望的 方向是将层次聚类和其他聚类技术进行集成,形成多阶段 聚类。下面介绍两个改进的层次聚类方法BIRTH 和CURE 。
层次聚类
当采用划分聚类方法(如k-means)K值选取十分困 难时,我们不妨考虑可以考虑层次聚类。层次聚类是另一 种主要的聚类方法,它具有一些十分必要的特性使得它成 为广泛应用的聚类方法。它生成一系列嵌套的聚类树来完 成聚类。单点聚类处在树的最底层,在树的顶层有一个根 节点聚类。根节点聚类覆盖了全部的所有数据点。 可根据其聚类方式划分为:凝聚(自下而上)聚类和 分裂(自上而下)聚类。层次凝聚的代表是AGNES算法 。层次分裂的代表是DIANA算法。
BIRCH算法试图利用可用的资源来生成最好的聚类结 果。通过一次扫描就可以进行较好的聚类,故该算法的计 算复杂度是O(n),n是对象的数目。
CURE聚类算法
很多聚类算法只擅长处理球形或相似大小的聚类,另 外有些聚类算法对孤立点比较敏感。CURE算法解决了上 述两方面的问题,选择基于质心和基于代表对象方法之间 的中间策略,即选择空间中固定数目的具有代表性的点, 而不是用单个中心或对象来代表一个簇。该算法首先把每 个数据点看成一簇,然后再以一个特定的收缩因子向簇中 心“收缩”它们,即合并两个距离最近的代表点的簇。
同分类不同,对于一个分类器,通常需要你告诉它 “这个东西被分为某某类”这样一些例子,理想情况下, 一个 分类器会从它得到的训练集中进行“学习”,从而具 备对未知数据进行分类的能力,这种提供训练数据的过 程通常叫做监督学习。 而在聚类的时候,我们并不关心某一类是什么, 我们需要实现的目标只是把相似的东西聚到一起,一个 聚类算法通常只需要知道如何计算相似 度就可以开始工 作了,因此 ,聚类通常并不需要使用训练数据进行学习, 这在 机器学习中被称作无监督学习。
基于划分的聚类方法
基于划分的聚类方法基于划分的聚类是一种有效的聚类方法,旨在将数据样本划分为相关的子类,以便更有效地发现群组中的模式。
它的运行原理是通过有效地组织数据来实现,分析师将可能相关的数据样本分组归纳出不同类别。
划分法成功实现对密集数据,也可以有效处理多变量和多维度数据。
基于划分的聚类方法大致分为三种:层次聚类、K均值聚类和聚类中心(cores)聚类。
(1)层次聚类(Hierarchical Clustering)层次聚类方法,依靠距离度量将数据样本划分成许多子组,要求每组中的数据都是相似的。
层次聚类有两种方法:凝聚层次聚类和分裂层次聚类。
经常使用的距离度量是欧氏距离(Euclidean distance),也可以使用更现代的度量,例如余弦相似度(cosine similarity)。
K均值聚类是一种常用的基于划分的聚类方法。
它工作的原理是通过计算数据样本与一个或多个聚类中心(Cores)之间的距离来将样本将样本分配给正确的聚类。
与层次聚类不同之处在于,K均值聚类中的类别数量(K值)是从数据集中曲线拟合得出的,而不是手动设定的。
K均值聚类可以有效的处理大规模数据集。
(3)聚类中心(Cores)聚类聚类中心聚类和K均值聚类有些相似之处,但是目标不同。
K均值聚类注重在清楚已分配到每个聚类的样本,而聚类中心聚类首先找到最佳的聚类中心,然后再将样本细分到聚类中心中。
这种方法的一个重要的好处是它可以处理大规模的数据集。
2. 优点3. 缺点基于划分的聚类也有一些缺点,如果没有正确的参数,它的结果可能不准确。
它的聚类效果也依赖于聚类特征的质量,特征提取错误或选择不当,会对聚类有相应的影响。
最后,它的结果可能是不稳定的; 就是说,更改点参数或重新运行,得到的聚类结果有可能会发生变化。
聚类分析(三)——层次聚类算法
聚类分析(三)——层次聚类算法层次聚类算法:前面介绍的K-means算法和K中心点算法都属于划分式(partitional)聚类算法。
层次聚类算法是将所有的样本点自底向上合并组成一棵树或者自顶向下分裂成一棵树的过程,这两种方式分别称为凝聚和分裂。
凝聚层次算法:初始阶段,将每个样本点分别当做其类簇,然后合并这些原子类簇直至达到预期的类簇数或者其他终止条件。
分裂层次算法:初始阶段,将所有的样本点当做同一类簇,然后分裂这个大类簇直至达到预期的类簇数或者其他终止条件。
两种算法的代表:传统的凝聚层次聚类算法有AGENES,初始时,AGENES将每个样本点自为一簇,然后这些簇根据某种准则逐渐合并,例如,如果簇C1中的一个样本点和簇C2中的一个样本点之间的距离是所有不同类簇的样本点间欧几里得距离最近的,则认为簇C1和簇C2是相似可合并的。
传统的分裂层次聚类算法有DIANA,初始时DIANA将所有样本点归为同一类簇,然后根据某种准则进行逐渐分裂,例如类簇C中两个样本点A和B之间的距离是类簇C中所有样本点间距离最远的一对,那么样本点A和B将分裂成两个簇C1和C2,并且先前类簇C中其他样本点根据与A和B之间的距离,分别纳入到簇C1和C2中,例如,类簇C中样本点O与样本点A的欧几里得距离为2,与样本点B的欧几里得距离为4,因为Distance(A,O)<Distance(B,O)那么O将纳入到类簇C1中。
如图所示:算法:AGENES。
传统凝聚层次聚类算法输入:K:目标类簇数 D:样本点集合输出:K个类簇集合方法:1) 将D中每个样本点当做其类簇;2) repeat3) 找到分属两个不同类簇,且距离最近的样本点对;4) 将两个类簇合并;5) util 类簇数=K算法:DIANA。
传统分裂层次聚类算法输入:K:目标类簇数 D:样本点集合输出:K个类簇集合方法:1) 将D中所有样本点归并成类簇;2) repeat3) 在同类簇中找到距离最远的样本点对;4) 以该样本点对为代表,将原类簇中的样本点重新分属到新类簇5) util 类簇数=K缺点:传统的层次聚类算法的效率比较低O(tn2) t:迭代次数n:样本点数,最明显的一个缺点是不具有再分配能力,即如果样本点A在某次迭代过程中已经划分给类簇C1,那么在后面的迭代过程中A将永远属于类簇C1,这将影响聚类结果的准确性。
系统聚类法
系统聚类法是一种聚类分析方法,它通过迭代不断调整类簇中心来将数据点聚类到相应的类簇中。
常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。
这些算法的共同点是都通过迭代来改进聚类结果。
系统聚类法是一种基于计算机的数据分析方法,它可以将相似的数据点聚类到同一类簇中,从而发现数据的结构和模式。
系统聚类法通常用于无监督学习,即对于没有标记的数据进行聚类。
常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。
基于划分的聚类方法,如K-Means,是一种迭代算法。
它首先随机选取K个数据点作为类簇中心,然后将其他的数据点分配到最近的类簇中。
接着,它会根据分配的数据点重新计算类簇中心,并再次重新分配数据点。
这个过程会不断重复直到满足某种停止条件。
基于层次的聚类方法,如层次聚类,是一种
分治算法。
它首先将所有数据点看作是单独的类簇,然后不断地将最相似的两个类簇合并。
每次合并都会形成一层新的类簇层次结构,直到所有数据点被合并为一个类簇。
系统聚类法还可以根据不同的度量标准来计算类簇相似度,常用的度量标准有欧几里得距离、曼哈顿距离、余弦相似度等。
系统聚类法在很多领域都有广泛的应用,如市场细分、文本分类、图像识别、生物信息学等。
不过,系统聚类法也有一些缺陷,如对异常值敏感、对初始聚类中心的选择敏感、对类簇数量的限制等。
因此,在使用系统聚类法时需要谨慎选择算法和参数,并结合其他方法进行验证。
系统聚类的方法解析
系统聚类的方法解析系统聚类是一种数据分析技术,用于将一组对象划分为不同的类别或群组,使得同一类别内的对象具有相似的特征,而不同类别之间的对象具有明显的差异。
系统聚类方法基于对象之间的相似度或距离来判断它们是否属于同一类别。
本文将介绍几种常见的系统聚类方法,包括层次聚类、K-均值聚类和DBSCAN聚类。
层次聚类是一种将对象以树形结构进行组织的聚类方法。
它可以分为凝聚式聚类和分裂式聚类两种类型。
凝聚式聚类从每个对象作为一个类开始,逐步合并最相似的类,直到所有对象都合并为一个类为止。
分裂式聚类从所有对象作为一个类开始,将其分解为越来越小的类,直到每个类只包含一个对象为止。
层次聚类方法可以根据不同的相似度度量(如欧几里得距离、曼哈顿距离等)来计算对象之间的距离。
K-均值聚类是一种基于距离的聚类方法。
它将要聚类的对象划分为K 个类别,其中K是预先指定的。
它通过迭代优化的方式,计算每个对象与每个类别的距离,并将对象划分到距离最近的类别中。
在每次迭代后,重新计算每个类别的质心(即所有对象的平均值),并调整对象的归属,直到达到一定的停止准则(如达到最大迭代次数或类别的变化小于一些阈值)。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类方法。
它将对象的密度定义为一些半径内的对象数目。
DBSCAN通过定义两个参数:半径(ε)和最小对象数目(MinPts),来判断对象是否是核心对象、边界对象还是噪声对象。
从核心对象开始,递归地将密度可达的对象划分到同一类别中,直到没有更多的密度可达对象。
DBSCAN可以有效地发现任意形状和大小的聚类,且对噪声对象的影响较小。
系统聚类方法适用于无监督学习任务,因为它们不需要事先的标记数据。
它们可以通过计算对象之间的相似度或距离,自动发现潜在的模式和结构。
然而,系统聚类方法需要选择合适的聚类数目、参数和相似度度量,这对于不同的数据集可能是挑战性的。
基于改进的K-means算法的异常检测
基于改进的K-means算法的异常检测摘要:聚类算法通常用于数据的聚类。
除此,它还可以用于异常数据的检测。
首先介绍了基于划分的聚类算法K-means ,然后给出改进算法I-K-means的算法描述,最后通过实例进行异常分析。
关键词:异常检测;聚类分析;K-means;I-K-means0 引言在进行数据挖掘的原始数据中,往往包含一些这样的数据对象,它们与数据的一般行为或模型不一致, 这些数据对象被称为异常数据(或称孤立点)。
对于异常的定义很多,目前较多采用的是著名统计学家Douglas Hawkins给出的定义:异常点是在数据集中与众不同的数据,使人怀疑这些数据并非随机偏差,而是产生于完全不同的机制。
大部分数据挖掘方法对异常数据的处理是在数据清洗阶段,其目的是清除这些有可能对研究带来影响的数据。
然而在另一些挖掘过程中,罕见事件(异常数据)的检测比正常事件的检测更有意义,如金融欺诈识别、网络入侵检测、违规交易检测、恶劣天气预报等。
本文主要讨论应用基于划分的I-K-means算法进行异常数据的检测。
1 聚类分析聚类是一个将数据集划分为若干组或类的过程,并使得同一个组内的数据对象具有较高的相似度;而不同组中的数据对象是不相似的。
相似或不相似的描述是基于数据描述属性的取值来确定的。
(1)聚类算法。
目前聚类算法较多,这些算法大致可分为五类:层次方法、划分方法、密度方法、网格方法、模型方法。
层次聚类方法是对给定的数据集进行层次分解,直到满足某种条件为止。
如BIRCH、CURE算法。
划分方法的主要思想是给定一个有n个对象的数据集,划分算法构造K个划分,每一个划分就代表一个簇,k≤n。
最终达到同一簇中的对象是“相似的”,不同簇中的对象是“相异的”。
如k-means算法。
基于密度的聚类思想是,只要一个点的密度大于某个阈值,就把它加到与之相近的簇中去。
如DBSCAN、OPTICS。
基于网格聚类方法先将空间量化为有限数目的单元,然后在这个量化空间上进行聚类操作。
常见的聚类算法
常见的聚类算法聚类算法是数据挖掘中常用的一种算法,它可以将原始数据根据其内在特性划分为多个组别。
常见的聚类算法有:(一)K-means聚类K-means聚类是最常用的聚类算法,具有易于实现的特点。
它的基本思想是:将相似的数据分组,使每个组的数据尽可能的相似。
它的核心就是把数据划分到K个不同的簇中,K一般通过轮廓系数来设置,轮廓系数越大,簇内数据差异性越低。
K-means聚类算法的缺点是容易受到噪声和异常值影响,并且计算非常耗时、无法选择最优K值。
(二)层次聚类层次聚类是基于层次分层的聚类方法,它可以根据数据间的相似度自动划分出簇,不需要设置K值,具有很好的可解释性。
它一般分为两种:综合层次聚类法和分裂层次聚类法。
综合层次聚类法是将所有的元素链接起来,然后再从上到下进行分割,最终得到若干个簇。
分割层次聚类法,则是将每个元素单独作为一个簇,然后再从下到上进行合并、分割,最终得到簇的结果。
层次聚类的缺点是受到噪声和异常值的影响比较严重,计算量比较大,不适用于数据量较大的情况。
(三)DBSCAN聚类DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的簇,是最为灵活的聚类算法。
它的基本思想是:如果一个点的邻域(epsilon 距离内的点)足够的密集,那么这个点就是核心对象,属于某一类;而其他点如果与任何一个核心对象的距离都小于给定的值,也就是说他们都和核心对象关联在一起,这就是噪声点。
DBSCAN聚类算法的优点是具有良好的可解释性,而且不需要预先估计K值;它的缺点是受到数据结构和分布影响较大,且计算量较大,效率不够高。
(四)密度聚类密度聚类要求数据点有一定的密度,只有一定的密度的数据才能够被归为一类。
其核心思想是:把距离较近的数据归为一类,距离较远的数据归为不同的类。
它最大的优点在于可以有效的发现异常数据,并且改善数据分布密度不均的情况;它的缺点是受到噪音的影响比较严重,易带偏,聚类效果不尽如人意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5 聚类之层次聚类基于划分的聚类(k、层次聚类1、层次聚类的原理及分类1)层次法(Hierarchicalmethods )先计算样本之间的距离。
每次将距离最近的点合并到同一个类。
然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。
不停的合并,直到合成了一个类。
其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。
比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。
层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法agglomerative 和divisive ),也可以理解为自下而上法bottom-up )和自上而下法(top-down )。
自下而上法就是开始每个个体(object )都是一个类,然后根据linkage 寻找同类,最后形成一个“类” 。
自上而下法就是反过来,开始所有个体都属于一个“类”,然后根据linkage 排除异己,劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。
最后每个个体都成为一个“类” 。
这两种路方法没有孰优孰至于根据Linkage 判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。
为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。
2)Hierarchical methods 中比较新的算法有BIRCH( BalancedIterative Reducingand Clustering Using Hierarchies 利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical 。
首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK ( AHierarchical ClusteringAlgorithm for Categorical Attributes )主要用在categorical 的数据类型上;Chameleon(A HierarchicalClustering AlgorithmUsing Dynamic Modeling )里用到的linkage 是kNN (k-nearest-neighbor)算法,并以此构建一个graph,Chameleon 的聚类效果被认为非常强大,比BIRCH 好用,但运算复杂度很高,0(22)。
2、层次聚类的流程凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。
绝大多数层次聚类属于凝聚型层次聚类, 它们只是在簇间相似度的定义上有所不同。
里给出采用最小距离的凝聚层次聚类算法流程:(1) 将每个对象看作一类,计算两两之间的最小距离;(2) 将距离最小的两个类合并成一个新类;(3) 重新计算新类与所有类之间的距离;(4) 重复 (2)、(3) ,直到所有类最后合并成一类。
聚类的效果如下图,黑色是噪音点:另外我们可以看出凝聚部极小问题或是很难选择初始点的问题。
合并的操作往往是 最终的,一旦合并两个簇之后就不会撤销。
当然其计算存储 的代价是昂贵的。
3、层次聚类的优缺点类成其它形状 缺点: 1,计算复杂度太高; 2,奇异值也能产生很大影响; 3,算法很可能聚类成链状 r 语言中使用 hclust(d,method = "complete", members=NULL) :进行层次聚类。
d 为距离矩阵; method表示类的合并方法, single 最短距离法, complete的层次聚类并没有类似基本K 均值的全局目标函数, 没有局优点: 1,距离和规则的相似度容易定义,限制少;2,不需 要预先制定聚类数; 3,可以发现类的层次关系;4,可以聚最长距离法,median 中间距离法,mcquitty 相似法,average 类平均法,centroid重心法,ward离差平方和法;members为NULL 或d长度的矢量。
、划分聚类法k-means基于划分的方法(Partition-based methods):其原理简单来说就是,想象你有一堆散点需要聚类,想要的聚类效果就是“类内的点都足够近,类间的点都足够远” 。
首先你要确定这堆散点最后聚成几类,然后挑选几个点作为初始中心点,再然后依据预先定好的启发式算法( heuristicalgorithms )给数据点做迭代重置( iterativerelocation ),直到最后到达“类内的点都足够近,类间的点都足够远”的目标效果。
Partition-based methods 聚类多适用于中等体量的数据集,但数据集越大,越有可能陷入局部最小。
我们也不知道“中等”到底有多“中” ,所以不妨理解成,1、Kmeans 算法的原理k-means 算法以k 为参数,把n 个对象分成k 个簇,使簇内具有较高的相似度,而簇间的相似度较低。
k-means 算法的处理过程如下:首先,随机地选择k 个对象,每个对象初始地代表了一个簇的平均值或中心,即选择K 个初始质心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。
这个过程不断重复,直到准则函数收敛,直到质心不发生明显的变化。
通常,采用平方误差准则,误差的平方和SSE 作为全局的目标函数, 即 最小化每个点到最近质心的欧几里得距离的平方和。
此时, 簇的质心就是该簇内所有数据点的平均值。
选择 K 个点作为初始质心repeat将每个点指派到最近的质心,形成 K 个簇 重新计算每个簇的质心 until 簇不发生变化或达到最大迭代次数O(tKmn),其中,t 为迭代次数,K 为簇的数目,从上图中,我们可以看到, A, B, C, D, E 是五个在图中点 而灰色的点是我们的种子点,也就是我们用来找点群的点。
有两个种子点,所以 K=2 。
然后, K-Means 的算法如下:① 随机在图中取 K (这里K=2 )个种子点。
② 然后对图中的所有点求到这 K 个种子点的距离,假如点Pi 离种子点Si 最近,那么Pi 属于Si 点群。
(我们可以看到A,B 属于上面的种子点, C,D,E 属于下面中部的种子点) ③接下来,我们要移动种子点到属于他的“点群”的中心。
见图上的第三步)时间复杂度: m 为记录数, n 为维数空间复杂度:O((m+K)n) ,其中, K 为簇的数目, m 为记录 数, n 为维数 K-Means 算法的详细过程④然后重复第 2)和第 3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了 A,B,C ,下面 的种子点聚合了 D , E )。
聚类的效果如下图,折线是历次循环时 3 个簇的质心的更新步骤及上面的聚类效果可以发现,该聚类算法将所有数据点 都进行了指派,不识别噪音点。
另外选择适当的初试质心是 基本 K 均值过程的关键。
2、 k 均值的优缺点及分类优点: 1,简单,易于理解和实现;2,时间复杂度低缺点: 1) kmeans 要手工输入类数目,对初始值的设置很敏感;所 以有了 k-means++、intelligent k-means 、genetic k-means ;2) k-means 对噪声和离群值非常敏感,所以有了 和 k-medians ; 3) k-means 只用于 numerical 类型数据, 不适用于 categorical 类型数据,所以 k-modes ;4) k-means 不能解决非凸(non-convex)数据,所以有了 kernel k-means 。
5) k-means 主要发现圆形或者球形簇, 不能识别非球形的簇。
3、 k-means 与 DBSCAN 的区别轨迹,黑点是初始质心:我们查看基本 K 均值算法实现k-medoidsk-means 聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定。
k-means属于动态聚类,往往聚出来的类有点圆形或者椭圆形。
kmeans对于圆形区域聚类效果较好,dbscan 基于密度,对于集中区域效果较好。
对于不规则形状,kmeans完全无法用,dbscan可以起到很好的效果。
4、k-means 注意问题1) K 如何确定K 是用户kmenas 算法首先选择K 个初始质心,其中指定的参数,即所期望的簇的个数。
这样做的前提是我们已经知道数据集中包含多少个簇,但很多情况下,我们并不知道数据的分布情况,实际上聚类就是我们发现数据分布的种手段。
如何有效的确定K 值,这里大致提供几种方法:①与层次聚类结合[2]经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。
②稳定性方法[3]稳定性方法对一个数据集进行2 次重采样产生2 个数据子集,再用相同的聚类算法对2 个数据子集进行聚类,产生2 个具有k 个聚类的聚类结果,计算2 个聚类结果的相似度的分布情况。
2个聚类结果具有高的相似度说明k个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数。
采用次方法试探多个k,找到合适的k值。
③系统演化方法[3]系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为K 个聚类时称系统处于状态K 。
系统由初始状态K=1 出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态Ki ,所对应的聚类结构决定了最优类数系统演化方法能提供关Ki。
于所有聚类之间的相对边界距离或可分程度,适用于明显分离的聚类结构和轻微重叠的聚类结构。
④使用canopy 算法进行初始划分[4]基于CanopyMethod 的聚类算法将聚类过程分为两个阶段Stagel、聚类最耗费计算的地方是计算对象相似性的时候,CanopyMethod 在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy,通过一系列计算得到若干Canopy,Canopy 之间可以是重叠的,但不会存在某个对象不属于任何Canopy 的情况,可以把这一阶段看做数据预处理;Stage2、在各个Canopy内使用传统的聚类方法(如K-means),不属于同一Canopy的对象之间不进行相似性计算。
从这个方法起码可以看出两点好处:首先,Canopy 不要太大且Canopy 之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于K-means 这样的聚类方法是需要人为指出K 的值的,通过Stagel得到的Canopy个数完全可以作为这个K 值,一定程度上减少了选择K 的盲目性。