八年级数学下册期末测试卷人教版

合集下载

最新人教版数学八年级下学期《期末检测卷》有答案解析

最新人教版数学八年级下学期《期末检测卷》有答案解析
A.平行四边形的对边相等B.正方形的对角线互相垂直平分且相等
C.菱形的对角线互相垂直D.矩形的对角线互相垂直
【答案】D
【解析】
【分析】
根据几种四边形的性质进行判断即可.
【详解】解:矩形对角线一定相等,但不一定相互垂直,选D说法错误.
其它三个选项说法均正确.
故选:D.
【点睛】本题考查了平行四边形以及三种特殊平行四边形的性质,掌握这几种四边形的性质是解题的键.
27.如图1,在正方形A B C D中,P是对角线B D上的一点,点E在A D的延长线上,且PA=PE,PE交C D于F
(1)证明:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形A B C D改为菱形A B C D,其他条件不变,当∠A B C=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
【答案】13或
【解析】
【分析】
分情况讨论当 的木棒为直角边时以及当 的木棒为斜边时,利用勾股定理解答即可.
【详解】解:当 的木棒为直角边时,第三根木棒的长度为 ;
当 的木棒为斜边时,第三根木棒的长度为 ;
A. B. C. D.
【答案】C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为A×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
详解】2.3μm=2.3×0.000001m=2.3×10-6m,
故选:C.
【点睛】本题考查用科学记数法表示较小的数,一般形式为A×10-n,其中1≤|A|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
22.在一次函数 中,随 的 增大而增大,则 ________.

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题、答案

人教版初中数学八年级下册期末测试题一、选择题(本大题共小题,每小题分,共分)在每小题给出的四个选项中,只有一项是正确的,每小题选对得分,选错、不选或多选均得零分.)A B C D 如图,O A B 为直角三角形,O A =,A B =,则点A 的坐标为()A()B ()C ()D ()如图,矩形A B C D 的对角线A C =,B O C Ð=°,则A B 的长为()A B C D 一次函数()y kx k =-¹的函数值y 随x 的增大而减小,它的图象不经过的象限是()A 第一象限B 第二象限C 第三象限D 第四象限如图,直线y x =和y k x b =+相交于点()P ,则不等式x k x b £+的解集为()A.x ³B.x £C.x ³D.x £一组数据:n a a a ×××的平均数为P ,众数为Z ,中位数为W ,则以下判断正确的是()A P 一定出现在n a a a ×××中B Z 一定出现在n a a a ×××中C W 一定出现在n a a a ×××中D P ,Z ,W 都不会出现在n a a a ×××中二、填空题(本大题共小题,每小题分,共分)将函数y x =的图象向下平移个单位,所得图象的函数解析式为______如图,点P 是正方形A B C D 内位于对角线A C 下方的一点,已知:P C A P B C Ð=Ð,则B P C Ð的度数为______.南吕是国家历史文化名城,其名源于“昌大南疆,南方昌盛”之意,市内的滕王阁、八一起义纪念馆、海昏候遗址、绳金塔、八大山人纪念馆等都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学,人数分别为:,,,,(单位:人),这组数据的中位数是______.一组数据,,,x 的众数只有一个,则x 的值不能为______.如图,在A B C 中,已知:A C B Ð=°,c m A B =,c m A C =,动点P 从点B 出发,沿射线B C 以c m s 的速度运动,设运动的时间为t 秒,连接P A ,当A B P △为等腰三角形时,t 的值为______.三、解答题(本大题共小题,每小题分,共分)()计算:+-()求x =.如图,点C为线段A B上一点且不与A,B两点重合,分别以A C,B C为边向A B的同侧做锐角为°的菱形.请仅用无刻度的直尺分别按下列要求作图.(保留作图痕迹)=,作出线段D F的中点M;()在图中,连接D F,若A C B C()在图中,连接D F,若A C B C¹,作出线段D F的中点N.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图、(图为图的平面示意图),推开双门,双门间隙C D的距离为寸,点C和点D距离门槛A B都为尺(尺寸),则A B 的长是多少?某种子站销售一种玉米种子,单价为元千克,为惠民促销,推出以下销售方案:付款金额y(元)与购买种子数量x(千克)之间的函数关系如图所示.()当x³时,求y与x之间的的函数关系式:()徐大爷付款元能购买这种玉米种子多少千克?已知:①,,,,的平均数是,方差是;②,,,,的平均数是,方差是;③,,,,的平均数是,方差是;④,,,,的平均数是,方差是;请按要求填空:()n,n+,n+,n+,n+的平均数是,方差是;()n,n+,n+,n+,n+的平均数是,方差是;()n,n,n,n,n的平均数是,方差是.四、解答题(本大题共小题,每小题分,共分)下表是某公司员工月收入的资料.职位总经理财务总监部门经理技术人员前台保安保洁人数月收入元()这家公司员工月收入的平均数是元,中位数是和众数是;()在()中的平均数,中位数和众数哪些统计量能反映该公司全体员工收入水平?说明理由;()为了避免技术人员流失,该公司决定给他们每人每月加薪x元至公司员工月收入的平均数,求x的值.已知:一次函数()()y m x m m =+-¹与x 轴、y 轴交于A点,B 点()当m =时,求O A B 的面积;()请选择你喜欢的两个不同的()m m ¹的值,求得到的两个一次函数的交点坐标;()m 为何值时,O A B 是等腰直角三角形?如图,若D E 是A B C 的中位线,则A B C A D E S S =△△,解答下列问题:()如图,点P 是B C 边上一点,连接P D 、P E ①若P D E S =△,则A B CS=;②若P D B S =△,P C E S =△,连接A P ,则A P DS =,A P E S =△,A B CS=.()如图,点P 是A B C 外一点,连接P D 、P E ,已知:P D BS=,P C E S =△,P D E S =△,求A B CS的值;()如图,点P 是正六边形F G H I J K 内一点,连接P G 、P F 、P K ,已知:P G F S =△,P K J S =△,P F K S =△,求F G H I J K S 六边形的值.五、综合题(本大题共小题,共分)已知直线y x =-+分别与x 轴、y 轴交于A 点,B 点,点()n n Q x y 为这条直线上的点,Q P x ^轴于点P ,Q R y ^轴于点R .()①将下表中的空格填写完整:nn x --ny --n nx y +②根据表格中的数据,下列判断正确的是.A .x y =,B .x yS S =,C .x y S +=.()当点Q 在第一象限时,解答下列问题:①求证:矩形O P Q R 的周长是一个定值,并求这个定值;②设矩形O P Q R 的面积为S ,求证:S £.()当点Q 在第四象限时,直接写出Q P ,Q R 满足的等式关系.参考答案B C B A D By x﹣°或或()解:()原式(=+-=(=,∴x-=,∴x=解:()如图点M为D F的中点()如图点N为D F的中点解:取A B的中点O,过D作D E⊥A B于E,如图所示:由题意得:O A O B A D B C,设O A O B A D B C r寸,则A B r(寸),D E寸,O E C D寸,∴A E(r-)寸,在R t△A D E中,A E D E A D,即(r-)r,解得:r,∴r(寸),∴A B寸.解:()当x³时,设y与x之间的的函数关系式为y k x b=+,将点(),()带入解析式得k b k b+=ìí+=î解得k b=ìí=î∴y x=+.()将y=时,带入y x=+中解得x=千克.答:徐大爷付款元能购买这种玉米种子千克.解:()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴数据n,n+,n+,n+,n+的平均数+n E=n+,方差依然是,()∵数据n,n+,n+,n+,n+是在数据,,,,的基础上每个数据均加上(n E)所得,∴n,n+,n+,n+,n+的平均数是+n E=n+,方差依然是,()数据n,n,n,n,n是将,,,,分别乘以n所得,∴数据n,n,n,n,n的平均数为n,方差为n,解:()∵一共有++++++=(人),∴这组数据的中位数是第、个数据的平均数,而第、个数据分别为、,∴中位数是+=(元),∵数据出现次数最多,∴这组数据的众数为元,故答案为:元,元;()中位数和众数能反映该公司全体员工收入水平,该公司员工月收入的平均数为,在这名员工中只有名员工的收入在元以上,有名员工的收入在元以下,因此用平均数不能反映所有员工的收入水平,中位数和众数为元能反映多数员工的收入水平.()由题意列方程:x x +=+,解得x =元∴技术人员需要加薪元.解:()当m =时,y x =-,当x =时,y =-,∴()B -,∴O B =当y =时,x =,∴A æöç÷èø,∴O A =,O A B S O A O B =×=△;()取m =,y x =+,取m =,y x=,∴y x y x =+ìí=î解得x y=ìí=î∴两个一次函数的交点坐标为()()当x =时,y m =-,∴O B m =-;当y =时,m x m-=,∴m O A m -=,∵O A B 是等腰直角三角形,∴O A O B =,即m m m--=;∵m -¹,∴m =±.解:()如图,连接B E ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P D E =S △B D E =,∴S △A B E =,∴S △A B C =,②∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A B C =;()如图,连接A P ,∵D E 是△A B C 的中位线,∴D E ∥B C ,A E =E C ,A D =B D ,S △A B C =S △A D E ,∴S △P B D =S △A P D =,S △A P E =S △P E C =,∴S △A D E =S △A P D S △A P E ﹣S △P D E =,∴S △A B C =S △A D E =;()如图,延长G F ,J K 交于点N ,连接G J ,连接P N ,∵六边形F G H I J K 是正六边形,∴F G =F K =K J ,∠G F K =∠J K F =°,S 六边形F G H I J K =S 四边形F G J K ,∴∠N F K =∠N K F =°,∴△N F K 是等边三角形,∴N F =N K =F K =F G =K J ,∴S △P G F =S △P F N =,S △P K J =S △P K N =,F K 是△N G J 的中位线,∴S △N F K =S △P F N S △P K N ﹣S △P F K =,∵F K 是△N G J 的中位线,∴S △N G J =S △N F K =;∴S 四边形F G J K =﹣=,∴S 六边形F G H I J K =.()①填表如下:n n x --n y --n nx y +②x y ==´--+++++++,故A 正确;[]x S =--+--+-+-+-+-+-+-+-=[]y S =--+--+-+-+-+-+-+-+-=∴x y S S =,故B 正确;∵x y +=∴x y S +=故C 正确;故答案为:A 、B 、C()①设()Q x x -+,∵点Q 在第一象限,∴O P x =,P Q x =-+,∴()O P Q R C O P P Q ==矩形+,∴矩形O P Q R 的周长是一个定值,周长为;②∵()()S x x x x x -=--+=+-=-³∴S £.()设点Q 的坐标为()xx -+,∵点Q 在第四象限,∴Q R x =,Q P x =-,∴Q R Q P -=.。

人教版八年级下册数学期末试卷综合测试卷(word含答案)

人教版八年级下册数学期末试卷综合测试卷(word含答案)

人教版八年级下册数学期末试卷综合测试卷(word 含答案)一、选择题1.要使式子﹣3x -有意义,则x 的值可以为( )A .﹣6B .0C .2D .π2.下列语句不能判定ABC 是直角三角形的是( )A .2220a b c +-=B .::3:4:5A BC ∠∠∠= C .::3:4:5a b c =D .A B C ∠+∠=∠3.如图,四边形ABCD 的对角线AC 、BD 相交于O ,下列判断正确的是( )A .若AC ⊥BD ,则四边形ABCD 是菱形B .若AC =BD ,则四边形ABCD 是矩形C .若AB =DC ,AD ∥BC ,则四边形ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则四边形ABCD 是平行四边形4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( ) A .平均数B .中位数C .众数D .方差5.如图,在△ABC 中,AC =6,AB =8,BC =10,点D 是BC 的中点,连接AD ,分别以点A ,B 为圆心,CD 的长为半径在△ABC 外画弧,两弧交于点E ,连接AE ,BE .则四边形AEBC 的面积为( )A .2B .3C .24D .366.如图,在平面直角坐标系上,直线y =34x ﹣3分别与x 轴、y 轴相交于A 、B 两点,将△AOB 沿x 轴翻折得到△AOC ,使点B 刚好落在y 轴正半轴的点C 处,过点C 作CD ⊥AB 交AB 于D ,则CD 的长为( )A.185B.245C.4 D.57.如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F,分别以点B、F为圆心,以大于12BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.若12BF=,10AB=,则线段AE的长为()A.18 B.17 C.16 D.148.如图,在平面直角坐标系中,点A的坐标是(4,0),点B的坐标是(3,4),点P 是y轴正半轴上的动点,连接AP交线段OB于点Q,若△OPQ是等腰三角形,则点P的坐标是()A.(0,53)B.(0,43)C.(0,43)或(0,163)D.(0,53)或(0,163)二、填空题9.2x-x的取值范围为__________.10.如图,在菱形ABCD中,AC=6,BD=8,则菱形的面积等于 ___.11.图中阴影部分是一个正方形,则此正方形的面积为_______ .12.在平行四边形ABCD 中,AB =5,AD =3,AC ⊥BC ,则BD 的长为____.13.已知一次函数y=kx +b 图像过点(0,5)与(2,3),则该一次函数的表达式为_____. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,将一块等腰直角三角板ABC 放置在平面直角坐标系中,90,ACB AC BC ∠=︒=,点A 在y 轴的正半轴上,点C 在x 轴的负半轴上,点B 在第二象限,AC 所在直线的函数表达式是22y x =+,若保持AC 的长不变,当点A 在y 轴的正半轴滑动,点C 随之在x 轴的负半轴上滑动,则在滑动过程中,点B 与原点O 的最大距离是_______.16.如图,矩形ABCD 中,AB=8,AD=5,点E 为DC 边上一个动点,把△ADE 沿AE 折叠,点D 的对应点D ’落在矩形ABCD 的对称轴上时,DE 的长为____________.三、解答题17.计算:(1)80205-+;+-.(2)(53)(53)18.由于过度采伐森林和破坏植被,我国部分地区频频遭受沙尘暴的侵袭.近日,A城气象局测得沙尘暴中心在A城的正西方向240km的B处,以每时12km的速度向北偏东60°方向移动,距沙尘暴中心150km的范围为受影响区域.(1)A城是否受到这次沙尘暴的影响?为什么?(2)若A城受这次沙尘暴影响,那么遭受影响的时间有多长?A B C均在格点上.19.如图,网格中的每个小正方形的边长为1,点、、(1)直接写出AC的长为___________,ABC的面积为_____;(2)请在所给的网格中,仅用无刻度的直尺作出AC边上的高BD,并保留作图痕迹.20.已知:如图,在Rt△ABC中,D是AB边上任意一点,E是BC边中点,过点C作CF∥AB,交DE的延长线于点F,连接BF、CD.(1)求证:四边形CDBF是平行四边形.(2)当D点为AB的中点时,判断四边形CDBF的形状,并说明理由.21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2269-+,其中a=﹣2018.a a22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费元.23.如图1,以平行四边形的顶点O为坐标原点,以所在直线为x轴,建立平面直角坐标系,,D是对角线AC的中点,点P从点A出发,以每秒1个单位的速度沿AB方向运动到点B,同时点Q从点O出发,以每秒3个单位的速度沿x轴正方向运动,当点P到达点B时,两个点同时停止运动.(1)求点A的坐标.(2)连结PQ,AQ,CP,当PQ经过点D时,求四边形的面积.(3)在坐标系中找点F,使以Q、D、C、F为顶点的四边形是菱形,则点F的坐标为________.(直接写出答案)24.(1)[探究]对于函数y=|x|,当x≥0时,y=x;当x<0时,y=﹣x.在平面直角坐标系中画出函数图象,由图象可知,函数y=|x|的最小值是.(2)[应用]对于函数y =|x ﹣1|+12|x +2|.①当x ≥1时,y = ;当x ≤﹣2时,y = ;当﹣2<x <1时,y = . ②在平面直角坐标系中画出函数图象,由图象可知,函数y =|x ﹣1|+12|x +2|的最小值是 .(3)[迁移]当x = 时,函数y =|x ﹣1|+|2x ﹣1|+|3x ﹣1|+…+|8x ﹣1|取到最小值.(4)[反思]上述问题解决过程中,涉及了一些重要的数学思想或方法,请写出其中一种. 25.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值. (3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由. 26.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明【参考答案】一、选择题 1.D 解析:D 【分析】根据二次根式有意义的条件列出不等式,解不等式即可. 【详解】解:由题意得:x ﹣3≥0, 解得:x ≥3,各个选项中,π符合题意, 故选:D . 【点睛】此题主要考查二次根式有意义的条件,解题的关键是熟知二次根式的性质.2.B解析:B 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可. 【详解】解:A 、由2220a b c +-=,可得222+=a b c ,故是直角三角形,不符合题意; B 、∵::3:4:5A B C ∠∠∠=,∴∠C =180°×575345=︒++,故不是直角三角形,符合题意;C 、32+42=52,能构成直角三角形,不符合题意;D 、∵∠A +∠B =∠C ,∴∠C =90°,故是直角三角形,不符合题意; 故选:B . 【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.D解析:D【分析】根据平行四边形及特殊平行四边形的判定方法,对选项逐个判断即可. 【详解】解:A :对角线相互垂直平行四边形才是菱形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;B :对角线相等的平行四边形才是矩形,四边形ABCD 不一定是平行四边形,故选项错误,不符合题意;C :一组对边相等,另外一组对边平行,不一定是平行四边形,还有可能是等腰梯形,故选项错误,不符合题意;D :对角线互相平分的四边形是平行四边形,故选项正确,符合题意; 故选D . 【点睛】此题考查了平行四边形的判定方法,熟练掌握平行四边形及特殊平行四边形的判定方法是解题的关键.4.B解析:B 【解析】 【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可. 【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了, 故选B . 【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.D解析:D 【分析】根据勾股定理的逆定理求出90BAC ∠=,求出BD CD AD AE BE ====,根据菱形的判定求出四边形AEBD 是菱形,根据菱形的性质求出//AE BD ,求出1122ABE ABD ACD ABC S S S S ∆∆∆∆====,再求出四边形AEBC 的面积即可.【详解】 解:6AC =,8AB =,10BC =,222AB AC BC ∴+=,ABC ∆∴是直角三角形,即90BAC ∠=︒,点D 是BC 的中点,10BC =,5BD DC AD ∴===,即5BE AE BD AD ====,∴四边形AEBD 是菱形,//AE BC ∴,1116812222ABE ABD ACD ABC S S S S ∆∆∆∆∴====⨯⨯⨯=,∴四边形AEBC 的面积是12121236++=,故选:D . 【点睛】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,菱形的性质和判定,三角形的面积等知识点,解题的关键是能求出12ABE ABD ACD ABC S S S S ∆∆∆∆===是解此题的关键,注意:①如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,②等底等高的三角形的面积相等.6.B解析:B 【解析】 【分析】利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,在Rt △AOB 中,利用勾股定理可求出AB 的长,由折叠的性质可得出OC =OB ,进而可得出BC 的长,再利用面积法,即可求出CD 的长. 【详解】解:当x =0时,y =34×0﹣3=﹣3,∴点B 的坐标为(0,﹣3);当y =0时,34x ﹣3=0,解得:x =4,∴点A 的坐标为(4,0).在Rt △AOB 中,∠AOB =90°,OA =4,OB =3, ∴5AB = 由折叠可知:OC =OB =3, ∴BC =OB +OC =6.∵S △ABC =12BC •OA =12AB •CD , ∴245BC OA CD AB == 故选B . 【点睛】本题主要考查了一次函数与坐标轴的交点问题,折叠的性质,三角形的面积公式,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解.7.C解析:C 【解析】 【分析】证明四边形ABEF 是菱形,得到OA=OE ,OB=OF =6,AE ⊥BF ,再在Rt △AOB 中由勾股定理求出OA 即可解决问题. 【详解】解:∵以点A 为圆心,AB 的长为半径画弧交AD 于点F , ∴AF=AB ,∵分别以点B 、F 为圆心,以大于12BF 的长为半径画弧交于点P ,作射线AP 交BC 于点E ,∴直线AE 是线段BF 的垂直平分线, 且AP 为∠F AB 的角平分线, ∴EF=EB ,∠F AE=∠BAE , ∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠F AE =∠AEB , ∴∠AEB =∠BAE , ∴BA =BE , ∴BA =BE=AF=FE , ∴四边形ABEF 是菱形; ∴AE ⊥BF ,OB =OF =6,OA =OE , ∴∠AOB =90°,在Rt △AOB 中:8AO =, ∴216AE AO ==, 故选:C . 【点睛】本题考查的是菱形的判定、垂直平分线、角平分线的尺规作图、勾股定理等相关知识点,掌握特殊四边形的判定方法及重要图形的尺规作图是解决本题的关键.8.C解析:C 【分析】利用待定系数法分别求出OB 、PA 的函数关系式,设(0,)P m ,4(,)3Q n n ,并由P 、Q 点坐标,可表示出OP 、OQ 和PQ ,根据△OPQ 是等腰三角形,可得OP OQ =或OP PQ =或OQ PQ =,则可得到关于m 的方程,求得m 的值,即可求得P 点坐标.【详解】解:设OB 的关系式为y kx =,将B (3,4)代入得:43k =, ∴43OB y x =, 设(0,)P m ,4(,)3Q n n , ∴OP m =,53OQ n =,PQ = 设PA 的关系式为y kx b =+,将(0,)P m ,(4,0)A 代入得:40b m k b =⎧⎨+=⎩, 解得4b m m k =⎧⎪⎨=-⎪⎩, ∴4PA m y x m =-+, 将4PA m y x m =-+,43OB y x =联立方程组得: 443PA OB m y x m y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得12163Q m x n m==+, 若△OPQ 是等腰三角形,则有OP OQ =或OP PQ =或OQ PQ =,当OP OQ =时,53m n =,12163m n m =+, 即5123163m m m=⨯+, 解得43m =,则P 点坐标为(0,43), 当OP PQ =时,m =,12163m n m =+, 解得176m =-,不合题意,舍去, 当OQ PQ =时,根据等腰三角形性质可得:点Q 在OP 的垂直平分线上,12Q y OP =, ∴4132n m =,且12163m n m =+, 即412131632m m m ⨯=+, 解得163m =,则P 点坐标为(0,163)综上可知存在满足条件的点P,其坐标为(0,43)或(0,163).故选:C.【点睛】本题是一次函数的综合问题,考查了待定系数法、等腰三角形的性质等知识,掌握待定系数法与两点间的距离公式并注意分类讨论思想及方程思想的应用是解题的关键,综合性较强.二、填空题9.x≥2且x≠3【解析】【分析】0,且分子二次根式的被开方数非负,则可求得x的取值范围.【详解】由题意得:3020xx-≠⎧⎨-≥⎩,解不等式组得:x≥2且x≠3.故答案为:x≥2且x≠3.【点睛】本题是求使式子有意义的自变量的取值范围的问题,涉及二次根式的意义,分母不为零,不等式组的解法等知识;一般地,当式子为分式时,分母不为零;当式子中含有二次根式时,要求被开方数非负.10.24【解析】【分析】根据菱形的面积=对角线积的一半,可求菱形的面积.【详解】四边形ABCD是菱形,∴116824 22S AC BD=⋅=⨯⨯=.故答案为:24.【点睛】本题考查菱形的性质,解题的关键是熟练运用菱形的性质.11.36cm2【解析】【分析】利用勾股定理求正方形边长,从而求正方形的面积.【详解】6∴正方形的面积为:6²=36故答案为:36 cm 2.【点睛】本题考查勾股定理解直角三角形,题目比较简单,正确计算是解题关键.12.A 解析:213【分析】根据AC ⊥BC ,AB =5,AD =3,可以得到AC 的长,再根据平行四边形的性质,可以得到DE 和BE 的长,然后根据勾股定理即可求得BD 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD =BC ,∵AC ⊥BC ,AB =5,AD =3,∴∠ACB =90°,BC =3,∴AC =4,作DE ⊥BC 交BC 的延长线于点E ,∵AC ⊥BC ,∴AC ∥DE , 又∵AD ∥CE ,∴四边形ACED 是矩形,∴AC =DE ,AD =CE ,∴DE =4,BE =6,∵∠DEB =90°,∴BD 222264213BE DE ++=故答案为:213【点睛】本题考查了平行四边形的判定和性质、勾股定理,解答本题的关键是熟练掌握勾股定理. 13.y =-x +5【分析】由直线y =kx +b 经过(0,5)、(2,3)两点,代入可求出函数关系式.【详解】解:把点(0,5)和点(2,3)代入y =kx +b 得532b k b =⎧⎨=+⎩,解得:15k b =-⎧⎨=⎩,所以一次函数的表达式为y =-x +5,故答案为:y =-x +5.【点睛】此题主要考查了待定系数法求一次函数解析式,注意利用一次函数的特点,来列出方程组求解是解题关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求【分析】根据自变量与函数值得对应关系,可得A ,C 点坐标,根据勾股定理,可得AC 的长度;根据全等三角形的判定与性质,可得CD ,BD 的长,可得B 点坐标;首先取AC 的中点E ,连接BE ,OE ,OB ,可求得OE 与BE 的长,然后由三角形三边关系,求得点B 到原点的最大距离.【详解】解:当x =0时,y =2x +2=2,∴A (0,2);当y =2x +2=0时,x =-1,∴C (-1,0).∴OA =2,OC =1,∴AC如图所示,过点B 作BD ⊥x 轴于点D .∵∠ACO +∠ACB +∠BCD =180°,∠ACO +∠CAO =90°,∠ACB =90°,∴∠CAO =∠BC D .在△AOC 和△CDB 中,AOC CDB CAO BCD AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AOC ≌△CDB (AAS ),∴CD =AO =2,DB =OC =1,OD =OC +CD =3,∴点B 的坐标为(-3,1).如图所示.取AC 的中点E ,连接BE ,OE ,OB ,∵∠AOC =90°,AC =5, ∴OE =CE =12AC =52, ∵BC ⊥AC ,BC =5,∴BE =22BC CE +=52, 若点O ,E ,B 不在一条直线上,则OB <OE +BE =5522, 若点O ,E ,B 在一条直线上,则OB =OE +BE =5522, ∴当O ,E ,B 三点在一条直线上时,OB 取得最大值,最大值为552+, 故答案为:552+.【点睛】此题考查了一次函数综合题,利用自变量与函数值的对应关系是求AC 长度的关键,又利用了勾股定理;求点B 的坐标的关键是利用全等三角形的判定与性质得出CD ,BD 的长;求点B 与原点O 的最大距离的关键是直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.或【详解】分析:过点D′作MN ⊥AB 于点N ,MN 交CD 于点M ,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理解析:52或533【详解】分析:过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.详解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1、所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=12CD=12AB=4,AD=AD′=5,由勾股定理可知:22=3AD AN'-,∴MD′=MN-ND′=AD-ND′=2,EM=DM-DE=4-a,∵ED′2=EM2+MD′2,即a2=(4-a)2+4,解得:a=52;②当MD′=ND′时,MD′=ND′=12MN=12AD=52,由勾股定理可知:2253 =AD ND'-'∴53,∵ED′2=EM2+MD′2,即a2=53−a)2+(52)2,解得:53.综上知:DE=5253.故答案为52.. 点睛:本题考查了翻转变换、轴对称的性质、矩形的性质以及勾股定理,解题的关键是找出关于DM 长度的一元二次方程.本题属于中档题,难度不大,但在做题过程中容易丢失一种情况,解决该题型题目时,结合勾股定理列出方程是关键.三、解答题17.(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式=(2)原式=5﹣3=2.【点睛】本题考查的是二次根式解析:(1)2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可.【详解】解:(1)原式==(2)原式=5﹣3=2.【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.18.(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC=30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否解析:(1)受影响,理由见解析;(2)15小时【分析】(1)过点作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠ABC =30°,由此可以求出AC 的长度,然后和150km 比较大小即可判断A 城是否受到这次沙尘暴的影响;(2)如图,设点E 、F 是以A 为圆心,150km 为半径的圆与BM 的交点,根据勾股定理可以求出CE 的长度,也就求出了EF 的长度,然后除以沙尘暴的速度即可求出遭受影响的时间.【详解】解:(1)过点A 作AC ⊥BM ,垂足为C ,在Rt △ABC 中,由题意可知∠CBA =30°,∴AC =12AB =12×240=120,∵AC =120<150,∴A 城将受这次沙尘暴的影响.(2)设点E ,F 是以A 为圆心,150km 为半径的圆与MB 的交点,连接AE ,AF , 由题意得,222221*********CE AE AC =-=-=,CE =90∴EF =2CE =2×90=180180÷12=15(小时)∴A 城受沙尘暴影响的时间为15小时.【点睛】本题考查了直角三角形中30°的角所对的直角边等于斜边的一半及勾股定理的应用,正确理解题意,把握好题目的数量关系是解决问题的关键.19.(1),;(2)见解析【解析】 【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1),:(2)如图所示,解析:(1)29AC =9ABC S=;(2)见解析【解析】【分析】(1)根据勾股定理和三角形的面积公式即可得到结论;(2)根据无刻度直尺作图中作垂直的技巧画出线段BD 即可;【详解】解:(1)222529,AC +, 111452425149222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=:(2)如图所示,BD 即为所求.【点睛】本题考查了作图-应用与设计作图,三角形的面积的计算,勾股定理,正确的作出图形是解题的关键.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的;(2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1);(2)21;(3)或或或【分析】(1)过点作轴于,求出AH 和OH 即可;(2)证明≌,表示出AP ,CQ ,根据OC=14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、解析:(1);(2)21;(3)或或或【分析】(1)过点A 作轴于H ,求出AH 和OH 即可; (2)证明≌,表示出AP ,CQ ,根据OC =14求出t 值,得到AP ,CQ ,再根据面积公式计算;(3)由Q 、D 、C 、F 为顶点的四边形是菱形得到以C ,D ,Q 为顶点的三角形是等腰三角形,求出CD ,得到点Q 坐标,再分情况讨论.【详解】解:(1)过点A 作轴于H , ∵,,, ∴, ∴A 点坐标为.(2)∵,∴C点坐标为,∵点D是对角线AC的中点,∴点D的坐标为,∵四边形ABCD是平行四边形,∴,∴,当PQ经过点D时,,在和中,,∴≌,∴,∵,∴,∴,∴,∴四边形APCQ的面积为,即当PQ经过点D时,四边形APCQ的面积为21.(3)∵F是平面内一点,以Q,D,C,F为顶点的四边形是菱形,则以C,D,Q为顶点的三角形是等腰三角形,∵,,∴,∴当时,Q点坐标为或,当Q点坐标为时,F点坐标为,当Q点坐标为时,F点坐标为,当时,点F与点D关于x轴对称,∴点F的坐标为,当时,设Q点坐标为,∴,解得,∴Q点坐标为,∴F点坐标为,∴综上所述,以Q,D,F,C为顶点的四边形是菱形,点F的坐标为或或或.【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,菱形的性质,等腰直角三角形的判定和性质,综合性较强,解题的关键是根据菱形的性质进行分类讨论.24.(1)见解析;0;(2)①x,﹣x,﹣x+2,②见解析;;(3);(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可解析:(1)见解析;0;(2)①32x,﹣32x,﹣12x+2,②见解析;32;(3)16;(4)分段去绝对值.【解析】【分析】(1)画出函数图象,直接得出结论;(2)先去绝对值,得出函数关系式,再画出函数图象,即可得出结论;(3)分段去绝对值,合并同类项,得出函数关系式,即可得出结论;(4)直接得出结论.【详解】解:(1)[探究]图象如图1所示,函数y=|x|的最小值是0,故答案为0;(2)[应用]①当x≥1时,y=x﹣1+12(x+2)=32x;当x≤﹣2时,y=﹣x+1﹣12(x+2)=﹣32x;当﹣2<x<1时,y=﹣x+1+12(x+2)=﹣12x+2;②函数图象如图2所示,由图象可知,函数y=|x﹣1|+12|x+2|的最小值是32,故填:①32x,﹣32x,﹣12x+2,②32;(3)[迁移]当x≤18时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1﹣8x+1=﹣36x+8,∴y≥72,当18<x≤17时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1﹣7x+1+8x﹣1=﹣20x+6,∴227≤y<72,当17<x≤16时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1﹣6x+1+7x﹣1+8x﹣1=﹣6x+4,∴3≤y<227,当16<x≤15时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1﹣5x+1+6x﹣1+7x﹣1+8x﹣1=6x+2,∴3<y≤165,当15<x≤14时,y=﹣x+1﹣2x+1﹣3x+1﹣4x+1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=16x,∴165<y≤4,当14<x≤13时,y=﹣x+1﹣2x+1﹣3x+1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=24x﹣2,∴4<y≤6,当13<x≤12时,y=﹣x+1﹣2x+1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=30x﹣4,∴6<y≤11,当12<x≤1时,y=﹣x+1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=34x﹣6,∴11<y≤28,当x>1时,y=x﹣1+2x﹣1+3x﹣1+4x﹣1+5x﹣1+6x﹣1+7x﹣1+8x﹣1=36x﹣8,∴y>28,∴当x=16时,函数y=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|8x﹣1|取到最小值;(4)[反思]用到的数学思想有:数形结合的数学思想,分段去绝对值,故答案为:分段去绝对值.【点睛】此题主要考查了一次函数的应用,去绝对值,函数图象的画法,用分类讨论的思想解决问题是解本题的关键.25.(1);(2)t=s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:或或或.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2解析:(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B(3,1),设直线BC的解析式为y=kx+b,则有231 bk b=⎧⎨+=⎩,解得:132k b ⎧=-⎪⎨⎪=⎩, ∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴BC=10,∴2103CM BC BM =-=, ∴21021033t =÷=, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB 为菱形的边时,可得菱形OBQP ,菱形OBP 1Q 1.菱形OBP 3Q 3, 连接OQ 交BC 于E ,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13x,∵OQ1,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.26.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;。

人教版数学八年级下册期末考试试题带答案

人教版数学八年级下册期末考试试题带答案

人教版数学八年级下册期末考试试卷一、选择题(本大题10小题,每小题3分,共30分),每小题只有一个正确答案。

1.下列各式是最简二次根式的是( )A.B.C.D.2.要使式子有意义,则x的取值范围是( )A.x>0B.x≥﹣3C.x≥3D.x≤33.数据2,4,3,4,5,3,4的众数是( )A.5B.4C.3D.24.一次函数y=﹣2x+1的图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在菱形ABCD中,对角线AC,BD相交于点O,下列结论中不一定成立的是( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC6.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB′=60°,则矩形ABCD的面积是( )A.12B.24C.12D.167.如图,在△ABC中,AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为( )A.2B.3C.4D.28.由线段a,b,c组成的三角形不是直角三角形的是( )A.a=3,b=4,c=5B.a=12,b=13,c=5C.a=15,b=8,c=17D.a=13,b=14,c=159.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( )A.4B.16C.D.4或10.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能比较二、填空题(本大题6小题,每小题4分,共24分)。

11.求值:= .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 分.13.将直线y=2x向上平移1个单位后所得的图象对应的函数解析式为 .14.如图,字母A所代表的正方形面积为 .15.函数y=kx与y=6﹣x的图象如图所示,则k= .16.已知,如图,正方形ABCD的边长是8,M在DC上,且DM=2,N是AC边上的一动点,则DN+MN的最小值是 .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:÷+×﹣.18.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=2,AC=2,求AB、CD的长.19.如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.四、解答题(二)(本大题3小题,每小题7分,共21分)20.先化简,再求值:﹣,其中x=1+2,y=1﹣2.21.已知一次函数图象经过(3,5)和(﹣4,﹣9)两点(1)求此一次函数的解析式;(2)若点(m,2)在函数图象上,求m的值.22.国家规定“中小学生每天在校体育活动时间不低于1h”,为此,某市就“每天在校体育活动”时间的问题随机调查了辖区内320名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是 ;(2)本次调查数据的中位数落在 组内;(3)若该市辖区内约有32000名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?五、解答题(三)(本大题3小题,每小题9分,共27分)23.小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,以下是她本次去舅舅家所用的时间与路程的关系式示意图.根据图中提供的信息回答下列问题:(1)小红家到舅舅家的路程是 米,小红在商店停留了 分钟;(2)在整个去舅舅家的途中哪个时间段小红骑车速度最快,最快的速度是多少米/分?(3)本次去舅舅家的行程中,小红一共行驶了多少米?一共用了多少分钟?24.在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB上的点,把△ABC 沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.25.如图,在△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△BCA的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在AC运动到什么位置,四边形AECF是矩形,请说明理由.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一项是符合题目要求的,请把答题卡上对应题目所选的选项涂黑1.【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0,解得x≤3,故选:D.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.3.【分析】根据众数的定义:一组数据中出现次数最多的数据求解即可.【解答】解:这组数据的众数为:4.故选:B.【点评】本题考查了众数的知识,属于基础题,解答本题的关键是掌握一组数据中出现次数最多的数据叫做众数.4.【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.【分析】直接利用菱形的性质对边互相平行、对角线互相垂直且平分进而分析即可.【解答】解:∵四边形ABCD是菱形,∴AB∥DC,故选项A正确,不合题意;无法得出AC=BD,故选项B错误,符合题意;AC⊥BD,故选项C正确,不合题意;OA=OC,故选项D正确,不合题意;故选:B.【点评】此题主要考查了菱形的性质,正确把握菱形对角线之间关系是解题关键.6.【分析】由折叠可得AE=A'E=2,∠EFB=∠EFB'=60°,根据平行线性质可得∠A'EF=120°,∠B'EF=60°,解直角三角形A'E'B'可得A'B'的长度,则可求矩形ABCD面积.【解答】解:∵折叠∴∠BFE=∠EFB'=60°,AB=A'B'∠A=∠A'=90°,AE=A'E=2∵ABCD是矩形∴AD∥BC∴∠DEF=∠EFB=60°∵A'E∥B'F∴∠A'EF+∠EFB'=180°∴∠A'EF=120°∴∠A'EB'=60°且∠A'=90°∴∠A'B'E=30°,且A'E=2∴B'E=4,A'B'=2=AB∵AE=2,DE=6∴AD=8∴S矩形ABCD=AB×AD=2×8=16故选:D.【点评】本题考查了折叠问题,等边三角形的性质,矩形的性质,关键灵活运用折叠的性质解决问题.7.【分析】先由含30°角的直角三角形的性质,得出BC的长,再由三角形的中位线定理得出DE的长即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选:A.【点评】本题考查了三角形的中位线定理,解答本题的关键是掌握含30°角的直角三角形的性质及三角形的中位线定理.8.【分析】根据判断三条线段是否能构成直角三角形的三边,需验证两小边的平方和是否等于最长边的平方,分别对每一项进行分析,即可得出答案.【解答】解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.【点评】本题主要考查了勾股定理的逆定理:用到的知识点是已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.9.【分析】此题要分两种情况:当3和5都是直角边时;当5是斜边长时;分别利用勾股定理计算出第三边长即可.【解答】解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.【点评】此题主要考查了利用勾股定理,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.10.【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【解答】解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题正确答案填写在答题卷相应的位置上11.【分析】根据二次根式的性质,求出算术平方根即可.【解答】解:原式=.故答案为:.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.12.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.【点评】此题考查了加权平均数,关键是根据加权平均数的计算公式列出算式,用到的知识点是加权平均数.13.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1.故答案为:y=2x+1.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故答案为:64.【点评】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.15.【分析】首先根据一次函数y=6﹣x与y=kx图象的交点横坐标为2,代入一次函数y=6﹣x求得交点坐标为(2,4),然后代入y=kx求得k值即可.【解答】解:∵一次函数y=6﹣x与y=kx图象的交点横坐标为2,∴4=6﹣2,解得:y=4,∴交点坐标为(2,4),代入y=kx,2k=4,解得k=2.故答案为:2【点评】本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=6﹣x与y=kx两个解析式.16.【分析】要求DN+MN的最小值,DN,MN不能直接求,可考虑通过作辅助线转化DN,MN的值,从而找出其最小值求解.【解答】解:∵正方形是轴对称图形,点B与点D是关于直线AC为对称轴的对称点,∴连接BNBD,则直线AC即为BD的垂直平分线,∴BN=ND∴DN+MN=BN+MN连接BM交AC于点P,∵点N为AC上的动点,由三角形两边和大于第三边,知当点N运动到点P时,BN+MN=BP+PM=BM,BN+MN的最小值为BM的长度,∵四边形ABCD为正方形,∴BC=CD=8,CM=8﹣2=6,BCM=90°,∴BM==10,∴DN+MN的最小值是10.故答案为10.【点评】考查正方形的性质和轴对称及勾股定理等知识的综合应用.三、解答题(一)(本大题3小题,每小题6分,共18分)17.【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:原式=+﹣2=4+﹣2=4﹣.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.18.【分析】根据勾股定理可求出AB的长度,然后利用三角形的面积即可求出CD的长度.【解答】解:在Rt△ABC中,∠ACB=90°根据勾股定理,得AB2=AC2+BC2=16,∴AB=4,又CD⊥AB∴AB•CD=AC•BC∴4CD=2×2即CD=【点评】本题考查勾股定理,解题的关键是熟练运用勾股定理,本题属于基础题型.19.【分析】根据“平行四边形ABCD的对边平行且相等的性质”证得四边形AECF为平行四边形,然后由“平行四边形的对边相等”的性质证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC;又∵点E、F分别是AD、BC的中点,∴AE∥CF,AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形(对边平行且相等的四边形为平行四边形),∴AF=CE(平行四边形的对边相等).【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.四、解答题(二)(本大题3小题,每小题7分,共21分)20.【分析】根据分式的减法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.【解答】解:﹣===x+y,当x=1+2,y=1﹣2时,原式=1+2+1﹣2=2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.【分析】(1)设一次函数解析式为y=kx+b(k≠0),再把点(3,5)和(﹣4,﹣9)代入即可求出k,b的值,进而得出一次函数的解析式;(2)把点(m,2)代入一次函数的解析式,求出m的值即可.【解答】解:(1)设一次函数的解析式为y=kx+b,则有,解得:,∴一次函数的解析式为y=2x﹣1;(2)∵点(m,2)在一次函数y=2x﹣1图象上∴2m﹣1=2,∴m=.【点评】本题考查的是用待定系数法求正比例函数的解析式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.22.【分析】(1)根据直方图可得总人数以及各小组的已知人数,进而根据其间的关系可计算C组的人数;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得答案;(3)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数.【解答】解:(1)根据题意有:C组的人数为320﹣20﹣100﹣60=140;(2)根据中位数的概念,中位数应是第160、161人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;(3)达国家规定体育活动时间的人数约占×100%=62.5%.所以,达国家规定体育活动时间的人约有32000×62.5%=20000(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.五、解答题(三)(本大题3小题,每小题9分,共27分)23.【分析】(1)根据图象,路程的最大值即为小红家到舅舅家的路程;读图,对应题意找到其在商店停留的时间段,进而可得其在书店停留的时间;(2)分析图象,找函数变化最快的一段,可得小明骑车速度最快的时间段,进而可得其速度;(3)分开始行驶的路程,折回商店行驶的路程以及从商店到舅舅家行驶的路程三段相加即可求得小红一共行驶路程;读图即可求得本次去舅舅家的行程中,小红一共用的时间.【解答】解:(1)根据图象舅舅家纵坐标为1500,小红家的纵坐标为0,故小红家到舅舅家的路程是1500米;据题意,小红在商店停留的时间为从8分到12分,故小红在商店停留了4分钟.故答案为:1500,4;(2)根据图象,12≤x≤14时,直线最陡,故小红在12﹣14分钟最快,速度为=450米/分.(3)读图可得:小红共行驶了1200+600+900=2700米,共用了14分钟.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.24.【分析】(1)如图(1),设CE=x,则BE=8﹣x;根据勾股定理列出关于x的方程,解方程即可解决问题.(2)如图(2),首先求出CB′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【解答】解:(1)如图(1),设CE=x,则BE=8﹣x;由题意得:AE=BE=8﹣x,由勾股定理得:x2+62=(8﹣x)2,解得:x=,即CE的长为:.(2)如图(2),∵点B′落在AC的中点,∴CB′=AC=3;设CE=x,类比(1)中的解法,可列出方程:x2+32=(8﹣x)2解得:x=.即CE的长为:.【点评】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.25.【分析】(1)由题意可证OE=OC,OF=OC,即可得OE=OF;(2)根据三角形内角和定理可求∠ECF=90°,根据勾股定理可求EF的长,根据直角三角形斜边上中线等于斜边的一半,可得OC的长;(3)当点O在AC的中点时,且OE=OF可证四边形AECF是平行四边形,再根据∠ECF=90°,可证四边形AECF是矩形.【解答】证明:(1)∵CF平分∠ACD,且MN∥BD∴∠ACF=∠FCD=∠CFO∴OF=OC同理可证:OC=OE∴OE=OF(2)由(1)知:OF=OC=OE∴∠OCF=∠OFC,∠OCE=∠OEC∴∠OCF+∠OCE=∠OFC+∠OEC而∠OCF+∠OCE+∠OFC+∠OEC=180°∴∠ECF=∠OCF+∠OCE=90°∴∴(3)当点O移动到AC中点时,四边形AECF为矩形理由如下:∵当点O移动到AC中点时∴OA=OC且OE=OF∴四边形AECF为平行四边形又∵∠ECF=90°∴四边形AECF为矩形【点评】本题考查了矩形的性质判定,等腰三角形的性质和判定,勾股定理,熟练运用这些性质解决问题是本题的关键.。

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)

人教版八年级下学期期末考试数学试卷及答案(共四套)人教版八年级下学期期末考试数学试卷(一)一、选择题1.下列各式中,化简后能与2合并的是A。

12B。

8C。

$\frac{2}{3}$D。

$\frac{2}{5}$2.以下以各组数为边长,不能构成直角三角形的是A。

5,12,13B。

1,2,5C。

1,3,2D。

4,5,63.用配方法解方程$x^2-4x-1=0$,方程应变形为A。

$(x+2)^2=3$B。

$(x+2)^2=5$C。

$(x-2)^2=3$D。

$(x-2)^2=5$4.如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是A。

矩形B。

菱形C。

正方形D。

无法判断5.下列函数的图象不经过第一象限,且y随x的增大而减小的是A。

$y=-x$B。

$y=x+1$C。

$y=-2x+1$D。

$y=x-1$6.下表是两名运动员10次比赛的成绩,$s_1^2$,$s_2^2$ 分别表示甲、乙两名运动员测试成绩的方差,则有成绩。

|。

8分。

|。

9分。

|。

10分。

|甲(频数)|。

4.|。

2.|。

3.|乙(频数)|。

3.|。

2.|。

5.|A。

$s_1^2>s_2^2$B。

$s_1^2=s_2^2$C。

$s_1^2<s_2^2$D。

无法确定7.若$a,b,c$满足$\begin{cases}a+b+c=0,\\\ a-b+c=0,\end{cases}$则关于$x$的方程$ax^2+bx+c=0(a\neq 0)$的解是A。

1,0B。

-1,1C。

1,-1D。

无实数根8.如图,在△ABC中,$AB=AC$,$MN$是边$BC$上一条运动的线段(点$M$不与点$B$重合,点$N$不与点$C$重合),且$MN=\frac{1}{2}BC$,$MD\perp BC$交$AB$于点$D$,$NE\perp BC$交$AC$于点$E$,$BM=NC=x$,$\triangle BMD$和$\triangle CNE$的面积之和为$y$,则下列图象中,能表示$y$与$x$的函数关系的图象大致是A。

新人教版八年级数学下册期末考试卷(完整)

新人教版八年级数学下册期末考试卷(完整)

新人教版八年级数学下册期末考试卷(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是( )A .-2B .12-C .12D .22.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4B .4C .﹣2D .2 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,直线y=ax+b 过点A (0,2)和点B (﹣3,0),则方程ax+b=0的解是( )A .x=2B .x=0C .x=﹣1D .x=﹣37.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b 的结果是________.2.分解因式:22a 4a 2-+=__________.3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+.2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.6.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、B6、D7、C8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、()2 2a1-3、2x(x﹣1)(x﹣2).4、145、96、8三、解答题(本大题共6小题,共72分)1、4x=2、1a b-+,-13、(1)略(2)1或24、(1)略;(2)4.5、(1)略(2)等腰三角形,理由略6、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】

2023年人教版八年级数学下册期末考试题及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC=BD D .AB ⊥BC3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩5.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或346.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.已知直线a ∥b ,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )A .80°B .70°C .85°D .75°9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A表示的数为a,化简:a244a a+-+=________.2.已知三角形ABC的三边长为a,b,c满足a+b=10,ab=18,c=8,则此三角形为__________三角形.3.分解因式6xy2-9x2y-y3 = _____________.4.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm ,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.5.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为___________cm(杯壁厚度不计).6.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC =8,则EF的长为______.三、解答题(本大题共6小题,共72分)2.解方程组(1)43524x yx y+=⎧⎨-=⎩(2)12163213x yx y--⎧-=⎪⎨⎪+=⎩2.先化简,后求值:(a+5)(a ﹣5)﹣a(a﹣2),其中a=12+2.3.解不等式组20{5121123xx x->+-+≥①②,并把解集在数轴上表示出来.4.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.5.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、D6、A7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、直角3、-y(3x-y)24、255、206、1三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=-⎩;(2)53xy=⎧⎨=⎩.2、224-3、﹣1≤x<2.4、(1)反比例函数解析式为y=12x;(2)点B的坐标为(9,3);(3)△OAP的面积=5.5、(1)2.5小时;(2)y=﹣100x+550;(3)175千米.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)略.。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。

()2. 任何两个无理数相加都是无理数。

()3. 两条平行线的斜率相等。

()4. 一次函数的图像是一条直线。

()5. 任意两个等腰三角形的面积相等。

()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。

2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。

3. 若x^2 5x + 6 = 0,则x的值为_______或_______。

4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。

5. 平行四边形的对边_______且_______。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是正比例函数?请举例说明。

初二数学下册期末考试试卷(含-答案)人教版

初二数学下册期末考试试卷(含-答案)人教版

明.)20。

如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。

(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。

21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。

下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。

如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。

点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。

八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 1/2B. 3/4C. 5/6D. 7/82. 如果a=2,b=3,那么a+b等于多少?A. 5B. 6C. 7D. 83. 下列哪个选项是正确的?A. 2x+3y=6B. 2x3y=6C. 3x+2y=6D. 3x2y=64. 如果x=4,那么x²等于多少?A. 8B. 16C. 24D. 325. 下列哪个选项是正确的?A. 2a+3b=5B. 2a3b=5C. 3a+2b=5D. 3a2b=5二、填空题(每题5分,共20分)1. 如果a=5,b=3,那么a+b等于______。

2. 如果x=2,那么x²等于______。

3. 如果a=4,b=2,那么a+b等于______。

4. 如果x=3,那么x²等于______。

三、解答题(每题10分,共40分)1. 解答下列方程组:2x+3y=63x2y=52. 解答下列方程:4x3y=73. 解答下列方程组:2a+3b=63a2b=54. 解答下列方程:3x+2y=7四、计算题(每题10分,共30分)1. 计算:2x²+3y²=6,其中x=2,y=3。

2. 计算:3x²2y²=5,其中x=3,y=2。

3. 计算:2a²+3b²=6,其中a=4,b=2。

五、证明题(每题10分,共20分)1. 证明:如果a+b=c,那么a+c=b。

2. 证明:如果x²=y²,那么x=y。

六、应用题(每题10分,共20分)1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时,求它行驶的距离。

2. 一个长方形的长是5厘米,宽是3厘米,求它的面积。

七、简答题(每题10分,共20分)1. 简述方程的基本概念。

2. 简述不等式的基本概念。

八、论述题(每题10分,共20分)1. 论述数学在生活中的应用。

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试题含答案

人教版八年级下册数学期末考试试卷一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每题的四个选项中,只有一项是符合要求的)1.若二次根式有意义,则x应满足的条件是()A.x=B.x<C.x≥D.x≤2.已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4B.12C.24D.283.下列各式中,最简二次根式是()A.B.C.D.4.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()A.1个B.2个C.3个D.4个5.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,b=8,c=10;③a=7,b=24,c=25;④a=2,b=3,c=4.A.1个B.2个C.3个D.4个7.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成2=36,S乙2=30,则两组成绩的稳定性()绩相同,方差分别是S甲A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定8.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1﹣y2>0D.y1﹣y2<09.下列条件之一能使菱形ABCD是正方形的为()①AC⊥BD②∠BAD=90°③AB=BC④AC=BD.A.①③B.②③C.②④D.①②③10.一次函数y=kx﹣b的图象(其中k<0,b>0)大致是()A.B.C.D.11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3B.3,4C.3,3.5D.4,312.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为()A.x≥﹣8B.x≤﹣8C.x≥13D.x≤1313.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.14.如图,矩形ABCD中,点E,F分别是AB、CD的中点,连接DE和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=,BC=,则图中阴影部分的面积为()A.4B.2C.2D.215.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.616.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1B.1C.2D.4二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.=.18.数据﹣2,﹣1,0,3,5的方差是.19.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为.20.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.三、解答题(本大题共6个小题,共66分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2)22.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE 的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?23.如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示,已知展开图中每个正方形的边长为1,(1)求线段A′C′的长度;(2)试比较立体图中∠BAC与展开图中∠B′A′C′的大小关系?并写出过程.24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.25.某商场统计了每个营业员在某月的销售额,统计图如下,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x <20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有多少人?所占百分比是多少?(2)根据(1)中规定,所有称职以上(职称和优秀)的营业员月销售额的中位数、众数和平均数分别是多少?(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.26.我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)80120150某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学生,设购买A种票x 张,B种票张数是A种票的3倍还多7张,C种票y张,根据以上信息解答下列问题:(1)直接写出x与y之间的函数关系式;(2)设购票总费用为W元,求W(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?参考答案与试题解析一、选择题(本大题共16个小题;1-6小题,每题2分;7-16小题,每题3分;共42分.在每题的四个选项中,只有一项是符合要求的)1.若二次根式有意义,则x应满足的条件是()A.x=B.x<C.x≥D.x≤【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件得出x的取值范围.【解答】解:∵要使有意义,∴5﹣2x≥0,解得:x≤.故选:D.2.已知平行四边形ABCD的周长为32,AB=4,则BC的长为()A.4B.12C.24D.28【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.3.下列各式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:被开方数含分母,不是最简二次根式,A错误;=2不是最简二次根式,B错误;=x不是最简二次根式,C错误;,是最简二次根式,D正确,故选:D.4.以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()A.1个B.2个C.3个D.4个【考点】一次函数图象上点的坐标特征.【分析】把四个点的坐标分别代入直线解析式,看其是否满足解析式,可判断其是否在直线上.【解答】解:在y=2x+1中,当x=1时,代入得y=3,所以点(1,2)不在直线上,当x=2时,代入得y=5,所以点(2,3)不在直线上,当x=0时,代入得y=1,所以点(0,1)在直线上,当x=﹣2时,代入得y=﹣4+3=﹣1,所以点(﹣2,3)不在直线上,综上可知在直线y=2x+1上的点只有一个,故选A.5.能够判定一个四边形是矩形的条件是()A.对角线互相平分且相等B.对角线互相垂直平分C.对角线相等且互相垂直D.对角线互相垂直【考点】矩形的判定.【分析】根据矩形的判定定理逐一进行判定即可.【解答】解:A、对角线互相平分且相等的四边形是矩形,故正确;B、对角线互相垂直平分的是菱形,故错误;C、对角线相等且互相垂直的四边形不一定是矩形,故错误;D、对角线互相垂直的四边形不一定是矩形,故错误,故选A.6.适合下列条件的△ABC中,直角三角形的个数为()①a=,b=,c=;②a=6,b=8,c=10;③a=7,b=24,c=25;④a=2,b=3,c=4.A.1个B.2个C.3个D.4个【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理以及直角三角形的定义,验证四组条件中数据是否满足“较小两边平方的和等于最大边的平方”由此即可得出结论.【解答】解:①∵a=,b=,c=),∵()2+()2≠();∴满足①的三角形不是直角三角形;②a=6,b=8,c=10,∵62+82=102,∴满足②的三角形是直角三角形;③a=7,b=24,c=25,∵72+242=252,∴满足③的三角形为直角三角形;④a=2,b=3,c=4.∵22+32≠42,∴满足④的三角形不是直角三角形.综上可知:满足②③的三角形均为直角三角形.故选B.7.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S甲2=36,S乙2=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定【考点】方差.【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵甲、乙两组的平均成绩相同,方差分别是S甲2=36,S乙2=30,∴S甲2>S乙2,∴乙组比甲组的成绩稳定;故选B.8.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1﹣y2>0D.y1﹣y2<0【考点】一次函数图象上点的坐标特征;正比例函数的图象.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y1>y2,∴y1﹣y2>0.故选:C.9.下列条件之一能使菱形ABCD是正方形的为()①AC⊥BD②∠BAD=90°③AB=BC④AC=BD.A.①③B.②③C.②④D.①②③【考点】正方形的判定.【分析】直接利用正方形的判定方法,有一个角是90°的菱形是正方形,以及利用对角线相等的菱形是正方形进而得出即可.【解答】解:∵四边形ABCD是菱形,∴当∠BAD=90°时,菱形ABCD是正方形,故②正确;∵四边形ABCD是菱形,∴当AC=BD时,菱形ABCD是正方形,故④正确;故选:C.10.一次函数y=kx﹣b的图象(其中k<0,b>0)大致是()A.B.C.D.【考点】一次函数的图象.【分析】利用一次函数图象的性质分析得出即可.【解答】解:∵一次函数y=kx﹣b的图象(其中k<0,b>0),∴图象过二、四象限,﹣b<0,则图象与y轴交于负半轴,故选:D.11.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3B.3,4C.3,3.5D.4,3【考点】中位数;算术平均数.【分析】根据题意可知x=2,然后根据平均数、中位数的定义求解即可.【解答】解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=(2+2+2+4+4+7)÷6=3.5,中位数为:3.故选:A.12.直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点,则不等式kx+b≥0的解集为()A.x≥﹣8B.x≤﹣8C.x≥13D.x≤13【考点】一次函数与一元一次不等式.【分析】把A(﹣8,0),B(0,13)两点代入解析式解答,再利用一次函数与一元一次不等式的关系解答即可.【解答】解:由直线y=kx+b交坐标轴于A(﹣8,0),B(0,13)两点可以看出,x轴上方的函数图象所对应自变量的取值为x≥﹣8,故不等式kx+b≥0的解集是x≥﹣8.故选:A.13.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1B.﹣+1C.﹣1D.【考点】勾股定理;实数与数轴.【分析】先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A 点的坐标.【解答】解:图中的直角三角形的两直角边为1和2,∴斜边长为:=,∴﹣1到A 的距离是,那么点A 所表示的数为:﹣1.故选C .14.如图,矩形ABCD 中,点E ,F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,连接AM ,CN ,MN ,若AB=,BC=,则图中阴影部分的面积为()A .4B .2C .2D .2【考点】矩形的性质.【分析】利用三角形中线的性质以及平行线的性质得出S △AEM =S △AMD ,S △BNC =S △FNC ,S四边形EBNM=S 四边形DMNF ,即可得出答案.【解答】解:∵点E 、F 分别是AB 、CD 的中点,连接DE 和BF ,分别取DE 、BF 的中点M 、N ,∴S △AEM =S △AMD ,S △BNC =S △FNC ,S 四边形EBNM =S 四边形DMNF ,∴图中阴影部分的面积=×AB×BC=××=2.故选B .15.如图,周长为16的菱形ABCD中,点E,F分别在AB,AD边上,AE=1,AF=3,P为BD上一动点,则线段EP+FP的长最短为()A.3B.4C.5D.6【考点】轴对称-最短路线问题;菱形的性质.【分析】在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.EG的长就是EP+FP的最小值,据此即可求解.【解答】解:在DC上截取DG=FD=AD﹣AF=4﹣3=1,连接EG,则EG与BD的交点就是P.∵AE=DG,且AE∥DG,∴四边形ADGE是平行四边形,∴EG=AD=4.故选B.16.如图,在平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B在第一象限,直线y=与边AB、BC分别交于点D、E,若点B的坐标为(m,1),则m的值可能是()A.﹣1B.1C.2D.4【考点】一次函数图象上点的坐标特征.【分析】求出点E和直线y=﹣x+2与x轴交点的坐标,即可判断m的范围,由此可以解决问题.【解答】解:∵B、E两点的纵坐标相同,B点的纵坐标为1,∴点E的纵坐标为1,∵点E在y=﹣x+2上,∴点E的坐标(,1),∵直线y=﹣x+2与x轴的交点为(3,0),∴由图象可知点B的横坐标<m<3,∴m=2.故选C.二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.=.【考点】二次根式的乘除法.【分析】直接利用二次根式的除法运算法则化简求出即可.【解答】解:===.故答案为:.18.数据﹣2,﹣1,0,3,5的方差是.【考点】方差.【分析】先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.19.如右图,Rt△ABC的面积为20cm2,在AB的同侧,分别以AB,BC,AC为直径作三个半圆,则阴影部分的面积为20cm2.【考点】勾股定理.【分析】根据阴影部分的面积等于以AC、CB为直径的两个半圆的面积加上△ABC的面积再减去以AB为直径的半圆的面积列式并整理,再利用勾股定理解答.【解答】解:由图可知,阴影部分的面积=π(AC)2+π(BC)2+S△ABC﹣π(AB)2,=(AC2+BC2﹣AB2)+S△ABC,在Rt△ABC中,AC2+BC2=AB2,2.∴阴影部分的面积=S△ABC=20cm故答案为:20cm2.20.如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为.【考点】三角形中位线定理;两条直线相交或平行问题.【分析】根据直线方程易求点B、C的坐标,由两点间的距离得到BC的长度.所以根据三角形中位线定理来求EF的长度.【解答】解:如图,∵直线l1:y=k1x+4,直线l2:y=k2x﹣5,∴B(0,4),C(0,﹣5),则BC=9.又∵点E,F分别为线段AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=.故答案是:.三、解答题(本大题共6个小题,共66分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2).【考点】二次根式的混合运算.【分析】(1)利用平方差公式计算;(2)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=(2)2﹣()2=20﹣3=17;(2)原式=2﹣﹣﹣=﹣.22.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE 的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?【考点】菱形的判定;平行四边形的判定.【分析】(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;(2)利用直角三角形的性质结合菱形的判定方法得出即可.【解答】(1)证明:∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是直角三角形时,四边形ADCF是菱形,理由:∵点D是边BC的中点,△ABC是直角三角形,∴AD=DC,∴平行四边形ADCF是菱形.23.如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示,已知展开图中每个正方形的边长为1,(1)求线段A′C′的长度;(2)试比较立体图中∠BAC与展开图中∠B′A′C′的大小关系?并写出过程.【考点】几何体的展开图.【分析】(1)由长方形中最长的线段为对角线,从而可根据已知运用勾股定理求得最长线段的长;(2)要确定角的大小关系,一般把两个角分别放在两个三角形中,然后根据三角形的特点或者全等或者相似形来解.【解答】解:(1)如图(1)中的A′C′,在Rt△A′C′D′中,∵C′D′=1,A′D′=3,由勾股定理得,∴(2)∵立体图中∠BAC为平面等腰直角三角形的一锐角,∴∠BAC=45°.在平面展开图中,连接线段B′C′,由勾股定理可得:A'B'=,B'C'=.又∵A′B′2+B′C′2=A′C′2,由勾股定理的逆定理可得△A'B'C'为直角三角形.又∵A′B′=B′C′,∴△A′B′C′为等腰直角三角形.∴∠B′A′C′=45°.∴∠BAC与∠B′A′C′相等.24.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了0.5h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.【考点】一次函数的应用.【分析】(1)利用图象得出CD这段时间为2.5﹣2=0.5,得出答案即可;(2)利用D点坐标为:(2.5,80),E点坐标为:(4.5,300),求出函数解析式即可;(3)利用OA的解析式得出,当60x=110x﹣195时,即可求出轿车追上货车的时间.【解答】解:(1)利用图象可得:线段CD表示轿车在途中停留了:2.5﹣2=0.5小时;(2)根据D点坐标为:(2.5,80),E点坐标为:(4.5,300),代入y=kx+b,得:,解得:,故线段DE对应的函数解析式为:y=110x﹣195(2.5≤x≤4.5);(3)∵A点坐标为:(5,300),代入解析式y=ax得,300=5a,解得:a=60,故y=60x,当60x=110x﹣195,解得:x=3.9,故3.9﹣1=2.9(小时),答:轿车从甲地出发后经过2.9小时追上货车.25.某商场统计了每个营业员在某月的销售额,统计图如下,根据统计图中给出的信息,解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x <20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.称职和优秀的营业员共有多少人?所占百分比是多少?(2)根据(1)中规定,所有称职以上(职称和优秀)的营业员月销售额的中位数、众数和平均数分别是多少?(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职以上(称职和优秀)的营业员有一半能获奖,你认为这个奖励标准应定月销售额为多少元合适?并简述其理由.【考点】条形统计图;加权平均数;中位数;众数.【分析】(1)首先求出称职、优秀层次营业员人数,进而根据百分比的意义求解;(2)根据中位数、众数和平均数的意义解答即可;(3)如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,月销售额奖励标准可以定为称职和优秀这两个层次销售额的中位数,因为中位数以上的人数占总人数的一半左右.【解答】解:(1)由图可知营业员优秀人数为2+1=3(人),由图可知营业员总人数为1+1+1+1+1+2+2+5+4+3+3+3+2+1=30(人),则称职的有18人,所占百分比为×100%=70%;(2)中位数是22万元;众数是20万元;平均数是:=22(万元).(3)这个奖励标准应定月销售额为22万元合适.因为称职以上的营业员月销售额的中位数是22万元,说明销售额达到和超过22万元的营业员占称职营业员的一半,正好使称职以上营业员有一半能获奖.26.我市某游乐场在暑假期间推出学生个人门票优惠活动,各类门票价格如下表:票价种类(A)夜场票(B)日通票(C)节假日通票单价(元)80120150某慈善单位欲购买三种类型的门票共100张奖励品学兼优的留守学生,设购买A种票x 张,B种票张数是A种票的3倍还多7张,C种票y张,根据以上信息解答下列问题:(1)直接写出x与y之间的函数关系式;(2)设购票总费用为W元,求W(元)与x(张)之间的函数关系式;(3)为方便学生游玩,计划购买学生的夜场票不低于20张,且节假日通票至少购买5张,有哪几种购票方案?哪种方案费用最少?【考点】一次函数的应用.【分析】(1)根据总票数为100得到x+3x+7+y=100,然后用x表示y即可;(2)利用表中数据把三种票的费用加起来得到w=80x+120(3x+7)+150(93﹣4x),然后整理即可;(3)根据题意得到不等式组,再解不等式组且确定不等式组的整数解为20、21、22,于是得到共有3种购票方案,然后根据一次函数的性质求w的最小值.【解答】解:(1)根据题意,x+3x+7+y=100,所以y=93﹣4x;(2)w=80x+120(3x+7)+150(93﹣4x)=﹣160x+14790;(3)依题意得解得20≤x≤22,因为整数x为20、21、22,所以共有3种购票方案(A、20,B、67,C、13;A、21,B、70,C、9;A、22,B、73,C、5);而w=﹣160x+14790,因为k=﹣160<0,所以y随x的增大而减小,(﹣160)+14790=11270,所以当x=22时,y最小=22×即当A种票为22张,B种票73张,C种票为5张时费用最少,最少费用为11270元.。

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷及详细答案解析(部分试题选自全国各地中考真题)

人教版八年级下册数学期末考试卷附详细答案解析(部分试题选自全国各地中考真题)一、选择题(每小题3分,共30分)1.下列计算正确的是( )。

A.×=4 B.+= C.÷=2 D.=-152.要使式子错误!未找到引用源。

有意义,则x 的取值范围是( )。

A.x>0B.x ≥-2C.x ≥2D.x ≤23.矩形具有而菱形不具有的性质是( )。

A.两组对边分别平行B.对角线相等C.对角线互相平分D.两组对角分别相等4.根据表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )。

A.1B.-1C.3D.-35.某公司10名职工的5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是( )。

A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元x -2 0 1 y 3 p 0 工资(元) 2 000 2 200 2 400 2 600 人数(人) 1 3 4 26.如右图,四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )。

A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC7.如右图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是( )。

A.24B.16C.4错误!未找到引用源。

D.2错误!未找到引用源。

8.如右图,图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD长( )A.错误!未找到引用源。

B.2错误!未找到引用源。

C.3错误!未找到引用源。

D.4错误!未找到引用源。

9.如图,正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=x+k的图象大致是( )10.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为( )A.x<错误!未找到引用源。

新人教版八年级数学下册期末试卷(完整)

新人教版八年级数学下册期末试卷(完整)

新人教版八年级数学下册期末试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为()A.4cm B.2cm C.4cm或2cm D.小于或等于4cm,且大于或等于2cm4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0C.k>0,且b<0 D.k<0,且b<05.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.下列图形中,是轴对称图形的是()A.B. C.D.8.如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④ 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是 .2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.32|1|0a b -++=,则2020()a b +=_________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D在同一直线上.若AB=2,则CD=________.5.如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3= _________度。

人教版八年级下册数学期末试卷及答案

人教版八年级下册数学期末试卷及答案

人教版八年级下册数学期末试卷及答案八年级数学期末考试将至。

你准备好接受挑战了吗?下面是小编为大家精心整理的人教版八年级下册数学期末试卷,仅供参考。

人教版八年级下册数学期末试题一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个正确的,请将正确答案的字母填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分。

)1.若式子在实数范围内有意义,则x的取值范围是( )A. x≥B. x>C. x≥D. x>2.下列二次根式中,是最简二次根式的是( )A. B. C. D.3.下列长度的三条线段能组成直角三角形的是( )A. 1,1,B. 2,3,4C. 4,5,6D. 6,8,114.在下列命题中,正确的是( )A. 一组对边平行的四边形是平行四边形B. 有一组邻边相等的平行四边形是菱形C. 有一个角是直角的四边形是矩形D. 对角线互相垂直平分的四边形是正方形5.如图,小亮在操场上玩,一段时间内沿M﹣A﹣B﹣M的路径匀速散步,能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是( )A. B. C. D.6.一次函数y=﹣2x+5的图象性质错误的是( )A. y随x的增大而减小B. 直线经过第一、二、四象限C. 直线从左到右是下降的D. 直线与x轴交点坐标是(0,5)7.下列计算,正确的是( )A. B. C. D.8.如果正比例函数y=(k﹣5)x的图象在第二、四象限内,则k的取值范围是( )A. k<0B. k>0C. k>5D. k<59.如果一组数据3,7,2,a,4,6的平均数是5,则a的值是( )A. 8B. 5C. 4D. 310.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是( )A. 5:8B. 3:4C. 9:16D. 1:211.如图,有一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则BE的长为( )A. 2cmB. 3cmC. 4cmD. 5cm12.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A8的坐标是( )A. (﹣8,0)B. (0,8)C. (0,8)D. (0,16)二、填空题(本大题共6小题,每小题3分,共18分,请把答案填写在题中的横线上)13.= .14.若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.15.对角线长分别为6cm和8cm的菱形的边长为cm.16.如图,▱ABCD的对角线AC与BD相交于点O,E为CD边中点,已知BC=6cm,则OE的长为cm.17.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.18.如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.三、解答题:(本大题共8小题,满分66分,解答题应写出文字说明或演算步骤)1)计算:﹣×.(2)已知实数a、b满足ab=1,a+b=2,求代数式a2b+ab2的值.20.在如图所示的4×3网格中,每个小正方形的边长为1,正方形顶点叫格点,连结两个网格格点的线段叫网格线段.点A固定在格点上.请你画一个顶点都在格点上,且边长为的菱形ABCD,直接写出你画出的菱形面积为多少?21.如图,在▱ABCD中,点E,F分别在BC,AD上,且BE=FD,求证:四边形AECF是平行四边形.22.某公司为了了解员工每人所创年利润情况,公司从各部抽取部分员工对每年所创年利润情况进行统计,并绘制如图1,图2统计图.(1)将图补充完整;(2)本次共抽取员工人,每人所创年利润的众数是,平均数是;(3)若每人创造年利润10万元及(含10万元)以上位优秀员工,在公司1200员工中有多少可以评为优秀员工?23.如图,直线l1、l2相交于点A,l1与x轴的交点坐标为(﹣1,0),l2与y轴的交点坐标为(0,﹣2),结合图象解答下列问题:(1)求出直线l2表示的一次函数的表达式;(2)当x为何值时,l1、l2表示的两个一次函数的函数值都大于0.24.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=60°,求AB的长.25.甲、乙两地距离300km,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA表示货车离甲地的距离y(km)与时间x(h)之间的函数关系,折线BCDE表示轿车离甲地的距离y(km)与时间x(h)之间的函数关系,根据图象,解答下列问题:(1)线段CD表示轿车在途中停留了h;(2)求线段DE对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.26.定义:如图(1),若分别以△ABC的三边AC,BC,AB为边向三角形外侧作正方形ACDE,BCFG和ABMN,则称这三个正方形为△ABC的外展三叶正方形,其中任意两个正方形为△ABC的外展双叶正方形.(1)作△ABC的外展双叶正方形ACDE和BCFG,记△ABC,△DCF 的面积分别为S1和S2;①如图(2),当∠ACB=90°时,求证:S1=S2;②如图(3),当∠ACB≠90°时,S1与S2是否仍然相等,请说明理由.(2)已知△ABC中,AC=3,BC=4,作∠ACB的度数发生变化时,S的值是否发生变化?若不变,求出S的值;若变化,求出S的最大值. 人教版八年级下册数学期末试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一个正确的,请将正确答案的字母填入题后的括号内,每小题选对得3分,选错、不选或多选均得零分。

新人教版八年级数学下册期末考试卷及答案【可打印】

新人教版八年级数学下册期末考试卷及答案【可打印】

新人教版八年级数学下册期末考试卷及答案【可打印】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 4.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣345.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是( )A .70°B .60°C .55°D .50°7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在矩形ABCD 中,BC =20cm ,点P 和点Q 分别从点B 和点D 出发,按逆时针方向沿矩形ABCD 的边运动,点P 和点Q 的速度分别为3cm /s 和2cm /s ,则最快_________s 后,四边形ABPQ 成为矩形.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.2017年5月,某县突降暴雨,造成山体滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1 000件帐篷与乙种货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷;(2)如果这批帐篷有1 490件,用甲、乙两种汽车共16辆装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其余装满,求甲、乙两种货车各有多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、A6、A7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、22()1y x =-+3、3m ≤.4、20°.5、49136、4三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、3.3、(1)102b -≤≤;(2)2 4、(1)k=;(2)△OPA 的面积S=x+18 (﹣8<x <0);(3)点P 坐标为(,)或(,)时,三角形OPA 的面积为.5、CD 的长为3cm.6、(1)甲种货车每辆车可装100件帐篷,乙种货车每辆车可装80件帐篷;(2)甲种货车有12辆,乙种货车有4辆.。

新人教版八年级(下)数学期末试卷及答案

新人教版八年级(下)数学期末试卷及答案

新人教版八年级(下)数学期末试卷及答案八年级下期末考试数学试题一、选择题(本小题共12小题,每小题3分,共36分)1、如果分式 $\frac{1}{x-1}$ 有意义,那么 x 的取值范围是A、$x>1$B、$x<1$C、$x\neq1$D、$x=1$2、已知反比例数 $y=\frac{k}{x}$ 的图象过点(2,4),则下面也在反比例函数图象上的点是A、(2,-4)B、(4,-2)C、(-1,8)D、(16,1)3、一直角三角形两边分别为3和5,则第三边为A、4B、$\frac{3}{4}$或$\frac{4}{3}$C、4或$\frac{4}{3}$ D、24、用两个全等的等边三角形,可以拼成下列哪种图形A、矩形B、菱形C、正方形D、等腰梯形5、菱形的面积为2,其对角线分别为 x、y,则 y 与 x 的图象大致为无法确定,需补充题意)6、小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号服装,此时小明应重点参考A、众数B、平均数C、加权平均数D、中位数7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成60夹角,测得 AB 长60cm,则荷花处水深 OA 为A、120cmB、60$\sqrt{3}$cmC、60cmD、20$\sqrt{3}$cm8、如图,□ABCD的对角线 AC、BD 相交于 O,EF 过点O 与 AD、BC 分别相交于 E、F,若 AB=4,BC=5,OE=1.5,则四边形 EFCD 的周长为A、16B、14C、12D、109、如图,把菱形 ABCD 沿 AH 折叠,使 B 点落在 BC 上的 E 点处,若∠B=70,则∠EDC 的大小为A、10B、15C、20D、3010、下列命题正确的是A、同一边上两个角相等的梯形是等腰梯形;B、一组对边平行,一组对边相等的四边形是平行四边形;C、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。

人教版初中数学八年级下册期末测试题、参考答案

人教版初中数学八年级下册期末测试题、参考答案

人教版初中数学八年级下册期末测试卷一、选择题(本大题共个小题,每小题分,共分。

在每小题给出的四个选项中,只有一项是符合题目要求的).(分)在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是()A.太阳光强弱B.水的温度C.所晒时间D.热水器的容积.(分)若二次根式有意义,则x的值不可以是()A.B.C.D..(分)下列各组数中,能够作为直角三角形的三边长的一组是()A.,,B.,,C.,,D.,,.(分)如图,A D,C E是△A B C的高,过点A作A F∥B C,则下列线段的长可表示图中两条平行线之间的距离的是()A.A B B.A D C.C E D.A C.(分)下列二次根式是最简二次根式的是()A.B.C.D..(分)一组数据:,,,,若添加一个数据,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数.(分)实数不可以写成的形式是()A.B.﹣C.D.(﹣).(分)如图,在△A B C中,∠A C B=°,D是A B的中点,则下列结论不一定正确的是()A.C D=B D B.∠A=∠D C AC.B D=A C D.∠B∠A C D=°.(分)对于n(n>)个数据,平均数为,则去掉最小数据和最大数据后得到一组新数据的平均数()A.大于B.小于C.等于D.无法确定.(分)若点P(m,n)在直角坐标系的第二象限,则一次函数y=m x n的大致图象是()A.B.C.D..(分)如图,在平面直角坐标系中,已知点A(﹣,),B(,),以点A为圆心,A B长为半径画弧,交x轴的正半轴于点C,则点C的横坐标介于()A.和之间B.和之间C.和之间D.和之间.(分)某速度滑冰队从甲、乙、丙、丁四位选手中选取一名参加省冰雪运动会,对他们进行了十次测试,结果他们的平均成绩均相同,方差如下表:选手甲乙丙丁方差(秒)a若决定发挥最稳定的丁参加省运会,则a的值可以是()A.B.C.D..(分)已知某四边形的两条对角线相交于点O.动点P从点A出发,沿四边形的边按A→B→C的路径匀速运动到点C.设点P运动的时间为x,线段O P的长为y,表示y与x的函数关系的图象大致如图所示,则该四边形可能是()A.B.C.D..(分)勾股定理是人类最伟大的科学发现之一,在我国古算术《周髀算经》中早有记载.以直角三角形纸片的各边分别向外作正方形纸片,再把较小的两张正方形纸片按如图的方式放置在最大正方形纸片内.若已知图中阴影部分的面积,则可知()A.直角三角形纸片的面积B.最大正方形纸片的面积C.最大正方形与直角三角形的纸片面积和D.较小两个正方形纸片重叠部分的面积二、填空题(本小题共个小题,每个空分,共分).(分)计算的结果为..(分)如图,E F是△A B C的中位线,B D平分∠A B C交E F于D,B E=,D F=,则B C的长度为..(分)在四边形A B C D中,∠B=∠B A D,∠D=°,B C=,A C=,延长B C到E,若C D平分∠A C E,则A D=;点D到B C的距离是.三、解答题(本大题共个小题,满分分,解答题应写出必要的解题步骤或文字说明).(分)已知x=﹣,y=﹣,求(x y)..(分)如图,车高m(A C=m),货车卸货时后面挡板A B弯折落在地面A处,经过测量A C=m,求B C的长..(分)某公司销售部有营业员人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这人某月的销售量,如下表所示:月销售量件数人数()直接写出这名营业员该月销售量数据的平均数、中位数、众数;()如果想让一半左右的营业员都能达到月销售目标,你认为()中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由..(分)已知矩形A B C D,A E平分∠D A B交D C的延长线于点E,过点E作E F⊥A B,垂足F在边A B的延长线上,求证:四边形A D E F是正方形..(分)如图,直角坐标系x O y中,过点A(,)的直线l与直线l:y=k x﹣相交于点C(,),直线l与x轴交于点B.()求k的值及l的函数表达式;的值;()求S△A B C()直线y=a与直线l和直线l分别交于点M,N.直接写出点M,N都在y轴右侧时a的取值范围..(分)如图,菱形A B C D中,E,F分别为A D,A B上的点,且A E=A F,连接并延长E F,与C B的延长线交于点G,连接B D.()求证:四边形E G B D是平行四边形;()连接A G,若∠F G B=°,G B=A E=,求A G的长..(分)A城有肥料t,B城有肥料t.现要把这些肥料全部运往C、D两乡,C 乡需要肥料t,D乡需要肥料t,其运往C、D两乡的运费如下表:两城两乡C(元t)D(元t)AB设从A城运往C乡的肥料为x t,从A城运往两乡的总运费为y元,从B城运往两乡的总运费为y元()分别写出y、y与x之间的函数关系式(不要求写自变量的取值范围).()试比较A、B两城总运费的大小.()若B城的总运费不得超过元,怎样调运使两城总费用的和最少?并求出最小值.参考答案.B A D B D.C B C C B.B D A D...;.解:由题意可得:x y=(﹣)(﹣)=﹣﹣=﹣,∴(x y)=(﹣)=﹣()=﹣=﹣..解:由题意得,A B=A B,∠B C A=°,设B C=x m,则A B=A B=(﹣x)m,在R t△A B C中,A C B C=A B,即:x=(﹣x),解得:x=.答:B C的长为米.解:()这名营业员该月销售量数据的平均数==(件),中位数为件,∵出现了次,出现的次数最多,∴众数是件;()如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为件,月销售量大于和等于的人数超过一半,所以中位数最适合作为月销售目标,有一半以上的营业员能达到销售目标..解:∵四边形A B C D是矩形,∴∠D=∠D A B=°,∵A E平分∠D A B,∴∠E A F=°,∵E F⊥A B,∴∠D=∠D A F=∠F=°,∴四边形A F E D是矩形,∵∠E A F=°,∴∠A E F=°,∴∠E A F=∠A F E,∴A F=E F,∴矩形A D E F是正方形..解:()将C(,)代入y=k x﹣,得:=k﹣,解得:k=;设直线l的函数表达式为y=m x n(m≠),将A(,),C(,)代入y=m x n,得:,解得:,∴直线l的函数表达式为y=﹣x;()当y=时,x﹣=,解得:x=,∴点B的坐标为(,),∴A B=﹣=,∴S=A B•y C=××=;△A B C()当x=时,y=x﹣=﹣,y=﹣x=,∴M,N都在y轴右侧时a的取值范围为﹣<a<..证明:()连接A C,如图:∵四边形A B C D是菱形,∴A C平分∠D A B,且A C⊥B D,∵A F=A E,∴A C⊥E F,∴E G∥B D.又∵菱形A B C D中,E D∥B G,∴四边形E G B D是平行四边形.()过点A作A H⊥B C于H.∵∠F G B=°,∴∠D B C=°,∴∠A B H=∠D B C=°,∵G B=A E=,∴A B=A D=,在R t△A B H中,∠A H B=°,∴A H=,B H=.∴G H=,∴A G===..解:()根据题意得:y=x(﹣x)=﹣x,y=(﹣x)(﹣x)=x.()若y=y,则﹣x=x,解得x=,A、B两城总费用一样;若y<y,则﹣x<x,解得x>,A城总费用比B城总费用小;若y>y,则﹣x>x,解得<x<,B城总费用比A城总费用小.()依题意得:y=x≤,解得x≤,设两城总费用为y,则y=y y=﹣x,∵﹣<,∴y随x的增大而减小,∴当x=时,y有最小值.答:当从A城调往C乡肥料t,调往D乡肥料t,从B城调往C乡肥料t,调往D乡肥料t,两城总费用的和最少,最小值为元。

2022—2023年人教版八年级数学(下册)期末试卷及答案(完整)

2022—2023年人教版八年级数学(下册)期末试卷及答案(完整)

2022—2023年人教版八年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >> 2.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( )A .m >2B .m ≥2C .m ≥2且m ≠3D .m >2且m ≠33.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG ;②BE ⊥DG ;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个7.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人8.下列图形中,不是轴对称图形的是()A.B.C.D.9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()A.30°B.32°C.42°D.58°二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.21a+8a=__________.3.若214x x x++=,则2211x x ++= ________. 4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,O 为数轴原点,A ,B 两点分别对应-3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为__________ .6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:a 3a 2++÷22a 6a 9a -4++-a 1a 3++,其中50+-113⎛⎫ ⎪⎝⎭2(-1).3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE 交BC 于点F ,连接BE .1()求证:ACD ≌BCE ;2()当AD BF =时,求BEF ∠的度数.5.如图,△ABC 中,AB=AC ,∠BAC=90°,点D ,E 分别在AB ,BC 上,∠EAD=∠EDA ,点F 为DE 的延长线与AC 的延长线的交点.(1)求证:DE=EF ;(2)判断BD 和CF 的数量关系,并说明理由;(3)若AB=3,AE=5,求BD 的长.6.学校需要添置教师办公桌椅A 、B 两型共200套,已知2套A 型桌椅和1套B 型桌椅共需2000元,1套A 型桌椅和3套B 型桌椅共需3000元.(1)求A ,B 两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、D6、D7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、13、84、255.56、42.三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、-33a +,;12-.3、(1)102b -≤≤;(2)2 4、()1略;()2BEF 67.5∠=.5、(1)略;(2略;(3)BD=1.6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x ≤130);(3)购买A 型桌椅130套,购买B 型桌椅70套,总费用最少,最少费用为136000元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2012第二学年八年级数学期末考试试卷
一、选择题(每小题3分,共30分。


1. 使分式21
x x -有意义...
的x 的取值范围是( ) A 12x ≥
B 12x ≤
C 12x >
D 12
x ≠ 2.下列计算正确的是( ) A 2
(0.1)
100--= B 31101000--=
C 211525-=
D 3
3
122a a
-= 3.下列约分正确的是( )
A 63
2x x x = B
0x y x y +=+ C 21x y x xy x
+=+ D 222142xy x y = 4.某班抽取6名同学参加体能测试的成绩如下:80,90,75,75,80,80。

下列表述错误的是( ) A 众数是80 B 中位数是75 C 平均数是80 D 极差是15 5.以下线段a 、b 、c 的长为边,能构成直角三角形的是( ) A a=3,b=4,c=6 B a=5,b=6,c=7 C a=6,b=8,c=9 D a=7,b=24,c=25 6.关于x 的分式方程
15
m
x =-,下列说法正确的是( ) A 方程的解是5x m =+ B 5m >-时,方程的解是正数 C 5m <-时,方程的解是负数 D 无法确定
7.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:3
/kg m )是体积V (单位:3
m )的反比例函数,它的图像如图所示,当V=103
m 时,气体的密度是( ) A 13
/kg m B 23
/kg m
C 53/kg m
D 1003
/kg m
8.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( ) A 当AB=BC 时,它是菱形 B 当AC ⊥BD 时,它是菱形 C 当0
90ABC ∠=时,它是矩形 D 当AC=BD 时,它是正方形
9.如图,将两张对边平行且宽度相等的纸条交叉叠放在一起
若0
60DAB ∠=,AD=2,则重合部分的面积为( ) A 2 B 23 C 3 D
3
2
10.把长为10cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,如果剪掉部分的面积为122
cm ,则打开后梯形的周长是( )
A 22cm
B 20cm
C (10+25)cm
D (12+25)cm
二、填空题(每小题3分,共24分)
11.写出一个含有字母x 的分式(要求:不论x 取任何实数,该分式都有意义): 12.人体中成熟的红细胞的平均直径为0.00000077m ,用科学计数法表示为 。

13.元旦晚会,班长对全班学生爱吃哪几种水果做了民意调查,那么决定买什么水果,最值得关注的应该是统计调查数据的 (中位数,平均数,众数)
14.今年以来受各种因素的影响,猪肉的市场价格仍在不断下降,根据调查,今年1月份一级猪肉
的价格是5月份猪肉价格的1.25倍。

小英同学的妈妈同样用20元钱在一月份购得一级猪肉比在5月份购得的一级猪肉少0.4斤,那么今年一月份的一级猪肉每斤的价格 是 元
15.如图,直线1y mx n =+与双曲线2k y x =
两个交点的横坐标分别是4
23
--和,则使12y y >时的x 取值范围是 。

16.如图,菱形ABCD 的对角线AC=8,BD=6,则菱形的面积S= 。

17.如图,在梯形ABCD 中,AD//CD ,对角线AC ⊥BD ,且AC=5cm ,BD=12cm ,则该梯形的中位线的长度等于 cm 。

18.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴的正半轴上,0
30ABO ∠=,AB=6,D 是AB 边上的一点,将ADO ∆沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在反比例函数y k
x
=
的图像上,则k= 。

三、解答题(共46分) 19.(本题满分4分)解方程 31
3221x x
+=--
20.(本题满分6分)先化简222422()4422
x x x
x x x x -+-÷-+--,然后选取一个你喜欢,且使原式有
意义的x 的值代入求值。

21.(本题满分8分)如图,在四边形ABCD 中,0
90B ∠=,3AB =
,030BAC ∠=,2CD =,
22AD =,求ACD ∠的度数。

22.(本题满分10分)如图,已知矩形ABCD 的边BC 在x 轴上,E 为对角线BD 的中点,点B 、D 的坐标分别为B (1,0)D (3,3),反比例函数k
y x
=的图像经过A 点, (1)写出点A 和点E 的坐标: (2)求反比例函数的解析式:
(3)判断点E是否在这个函数的图像上?
23.(本题满分10分)某公司投资某个工程项目,甲、乙两个工程队有能力承包这个项目,公司调查发现:乙队单独完成工程的时间是甲队的2倍:甲、乙两队合作完成工程需要20天:甲队每天的工作费用为1000元、乙队每天的工作费用为550元。

根据以上信息回答:
(1)甲、乙两队单独完成此项工程各需多少天?
(2)从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?24.(本题满分10分)如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16。

动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。

设运动的时间为t(秒)
(1)设△DPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,四边形PCDQ是平行四边形?
(3)当t为何值时PD=PQ?当t为何值时DQ=PQ?。

相关文档
最新文档