材料力学拉伸实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料的拉伸压缩实验

徐浩1221241020 机械一班

一、实验目的

1.观察试件受力和变形之间的相互关系;

2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物

理现象。观察铸铁在压缩时的破坏现象。

3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。测定压缩

时铸铁的强度极限σb。

二、实验设备

1.微机控制电子万能试验机;

2.游标卡尺。

三、实验材料

拉伸实验所用试件(材料:低碳钢)如图所示,

四、实验原理

低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理,并输入计算机,得到F-∆l曲线,即低碳钢拉伸曲线,见图2。

对于低碳钢材料,由图2曲线中发现OA直线,说明F正比于∆l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线

屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb=F b/A0计算强度极限(A0为试件变形前的横截面积)。

根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即

%100001⨯-=

l l l δ,%1000

1

0⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤

(1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。

(2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。

(5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。

(6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1

(一般从相

互垂直方向测量两次后取平均值)。

六、实验数据记录及处理结果

1.低碳钢F-△l拉伸曲线

2.实验数据及数据处理

3.铸铁断口呈不平整状,是典型的脆性断裂;低炭钢断口外围光滑,是塑性变形区域,中部区域才呈现脆性断裂的特征。这表明,铸铁在超屈服应力下,瞬时断开;而低碳钢在超应力的时候,有塑性形变过程,发生颈缩,直到断面面积减小到一定程度时,才瞬时断裂。

压缩实验报告

徐浩1221241020 机械一班

一、实验目的

4.观察试件受力和变形之间的相互关系;

5.观察铸铁在压缩时的破坏现象。

6.测定压缩时铸铁的强度极限 b。

二、实验设备

1.微机控制电子万能试验机;

2.游标卡尺。

三、实验材料

压缩实验所用试件(材料:铸铁)如图所示:四、实验原理

铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-∆l曲线,即铸铁压缩曲线,见图4。

图4 铸铁压缩曲线

对铸铁材料,当承受压缩载荷达到最大载荷F b时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45︒~55︒的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。

材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。

铸铁压缩实验的强度极限:σb=F b/A0(A0为试件变形前的横截面积)。

低碳钢试样压缩时同样存在弹性极限、比例极限、屈服极限而且数值和拉伸所得的相应数值差不多,但是在屈服时却不像拉伸那样明显。从进入屈服开始,试样塑性变形就有较大的增长,试样截面面积随之增大。由于截面面积的增大,要维持屈服时的应力,载荷也就要要维持屈服时的应力,载荷也就要相应增大。因此,在整个屈服阶段,载荷也是上升的,在测力盘上看不到指针倒退现象,这样,判定压缩时的Ps要特别小心地注意观察。在缓慢均匀加载下,测力指针是等速转动的,当材料发生屈服时,测力指针的转动将出现减慢,这时所对应的载荷即为屈服载荷Ps。由于指针转动速度的减慢不十分明显,故还要结合自动绘图装置上绘出的压缩曲线中的拐点来判断和确定Ps。因此,在整个屈服阶段,载荷也是上升的,在测力盘上看不到指针倒退现象,这样,判定压缩时的Ps要特别小心地注意观察。在缓慢均匀加载下,测力指针是等速转动的,当材料发生屈服时,测力指针的转动将出现减慢,这时所对应的载荷即为屈服载荷Ps。由于指针转动速度的减慢不十分明显,故还要结合自动绘图装置上绘出的压缩曲线中的拐点来判断和确定Ps。

低碳钢超过屈服之后,低碳钢试样由原来的圆柱形逐渐被压成鼓形继续不断加压,试样将愈压愈扁,但总不破坏。所以,低碳钢不具有抗压强度极限(也可将它的抗压强度极限理解为无限大)。

五、实验步骤及注意事项

(1)试件准备:用游标卡尺在试件中点处两个相互垂直的方向测量直径d0,取其算术平均值,并测量试件高度h0。

(2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热

相关文档
最新文档