光伏建筑一体化设计与研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·478·建筑设计建筑工程技术与设计2015年10月上
光伏建筑一体化设计与研究
武铁军
(北京建筑大学)
【摘要】绿色建筑设计应尽量减少建筑的能源需求;尽量提升可再生能源提供率以及尽量提高传统能源使用效率。绿色建筑设计应是从建筑的各个方面出发,实现开源节流,降低建筑的能耗、提高可再生能源的利用(包括利用太阳能、风能、地热能、生物质能等),向着真正的绿色建筑迈进。太阳能无疑是最好的能源来源,本研究主要是针对太阳能的利用,力图早日实现建造“双零建筑”(零能耗、零排放)的目标。本研究以低碳型绿色建筑的原理及相关方法,进行光伏发电与建筑一体化的设计与研究,结合本单位新办公楼屋顶平台加建光伏会所项目,把光伏发电和建筑维护结构结合在一起,主要是从光伏建筑一体化概况、光伏建筑实践、光伏建筑一体化(BIPV)技术通过光伏计算,分析产生的社会效益。
【关键词】BIPV系统、幕墙的材料及热工、社会效益
引 言
本研究主要是针对北京等大城市用地紧张、能源消耗量大、有大量已建建筑屋顶均空闲,屋顶急需解决夏季防热、防水维修,以及屋顶需要加建天台屋等需求进行研究。太阳能技术除被动技术外,还发展了主动技术,这主要表现在太阳能光热利用和太阳能光电利用两个方面。第一,太阳能光热利用主要是用于采暖和制冷,根据利用温度的高低分为高温利用、中温利用和低温利用。第二,太阳能光电技术主要是利用单晶硅或多晶硅将光能转化为电能,一般用于航天飞机、空间站或边远地区。太阳能建筑的光电利用,主要是用来实现太阳能照明和发电。太阳能从单纯的生活热水利用逐步发展成为绿色生态建筑中重要的组成部分。太阳能的有效利用需要与系统的建筑节能设计、先进的建筑节能技术和节能产品等优化组合,才能实现建筑耗能的结构调整,提高利用太阳能的保证率,为建筑提供采暖、制冷和生活用水,营造低能耗、高舒适、健康的生活环境,实现可再生能源的高效利用。
1、光伏建筑一体化概况:
国外光伏与建筑的结合形式大体上分为两类:一是建筑与光伏系统的结合,称为光伏附着设计(BAPV);另一种是建筑与光伏组件的结合,称为光伏和建筑的一体化集成设计(BIPV)要求光伏器件与建筑材料集成化。国内对光伏与建筑的结合形式还没有统一的划分。
1.1 BIPVBIP概念:
光伏建筑一体化(Building Integated Photovoltaies,简称BIPV)指在建筑外围护结构的表面安装光伏组件提供电力,同时作为建筑结构的功能部分,取代部分传统建筑结构如屋顶板、瓦、窗户、建筑立面、遮雨棚等,也可以做成光伏多功能建筑组件,实现更多的功能,如光伏光热系统、与照明结合、与建筑遮阳结合等。
1.2 BIPVBIP系统原理:BIPV 系统有独立发电和并网发电两种形式。独立发电系统就是光伏系统产生的电仅供自己使用;并网发电系统就是光伏系统与公共电网相连,光伏发电系统产生的电除自己使用外,还可向公共电网输出。独立发电和并网发电发电系统。
1.3 BIPV 主要形式:有光伏采光顶(天窗)、光伏屋顶、光伏幕墙、光伏遮阳板(分为有无遮光要求两种)屋顶光伏矩阵、墙面光伏矩阵等几种类型。
1.4 BIPVBIP优越性:(1) 光伏阵列一般安装在闲置的屋顶或墙面上,无需额外用地或增建其他设施。(2) 可原地发电、原地用电,节省电站送电网的投资。(3) 夏季,处于日照时,由于大量制冷设备的使用,形成电网用电高峰。而这时也是光伏阵列发电最多的时候。BIPV 系统除保证自身建筑用电外,还可以向电网供电,从而缓解高峰电力需求。(4) 由于光伏阵列安装在屋顶和墙壁等外围护结构上,吸收太阳能、转化为电能大大降低了室外综合温度,减少了墙体得热和室内空调冷负荷。(5) 绿色环保,清洁能源。
(6) 用电需求与建筑面积利用最大化。我国每年新增建筑幕墙为2000 万平方米,若 5% 采用光伏幕墙, 则可装机容量约为 40MWp,可年发电约 0.5 5 亿 kWh。据不完全统计,我国建筑屋顶面积总计约 100 亿平方米, 若1 % 的屋顶采用光伏组件覆盖,则年发电约150 亿 kWh。可见推进太阳能光伏发电系统在建筑中的规模化应用,其潜力十分巨大。
2、光伏建筑一体化(BIPV)工程实践
2.1工程现状条件及设计要求:
本项目位于北京西四环与玲珑路的交叉口,玲珑天地项目内,为中国电子工程设计院新办公楼屋顶加建光伏会所。新加屋顶光伏会所建筑面积160平米,在办公楼9层顶的屋顶平台上加建的光伏会所。要求进行光伏建筑一体化(BIPV)设计。
2.2工程做法概述:本工程为高层建筑屋顶加建项目,执行北京地区节能设计标准。本工程采用钢结构,具体构造为:1)原建筑为框架结构,在原屋面框架梁上增设钢柱子,钢柱子上设钢梁,构成维护结构的承载系统。2)钢柱外侧通过墙壁檩条固定彩色压型夹心保温板。3)屋面通过钢梁及檩条固定BIPV幕墙主次龙骨,龙骨上镶嵌玻璃,后打胶密封,做法同玻璃幕墙屋顶天窗。
3、光伏建筑一体化(BIPV)技术
3.1 BIPV主要由两部分构成:1) 为幕墙构造--实现建筑维护结构; 2) 电气系统--直流发电、汇流逆变及计量供电的功能。
3.2 BIPV原理详见右图:
3.3 构造体系组成详见右图
1)建筑结构2) BIPV光伏组件 3) 幕墙框架体系 4) 幕墙转接系统
4、光伏软件计算:
采用PVSYST5.1版本软件对本工程进行模拟太阳能发电量计算:本工程采用的太阳能板尺寸为1650mmX950mm,单块板额定发电功率为发235W,本工程共80块,总量为235X80=18800W。屋面坡度为5%。光伏组件面积为179平米,PVSYST计算结果可见,北京地区,四至六月为太阳能发电效率最高,二月、三月、七至十月发电效率其次,十一月至一月发电量最少。全年发电量较高。
结语-
--光伏发电效益分析:
本光伏系统总装机容量为:18.8KW,预计年平均发电量约为18470kWh。使用太阳能光伏发电将减少火力发电所导致的环境污染,从而减少国家治理污染的支出,具有难以估量的间接收益。(1)、经济效益分析: 25年内节电量为46.176万Kwh,25年内至少可节约电费约¥69万元;25年共节约一次性能源量:151.212吨;节约国家火电建设成本:14.67万元;节约25年火电运营成本:17.55万元;减少25年环境综合治理费用20.72万元。(2)、环境效益分析:每年可减排二氧化碳20.021吨、二氧化硫0.185吨、氧化氮0.054吨;
5、社会效益分析
1)本项目单纯按发电量来算,其经济值是较低的;与常规能源相比,费用仍然比较高,这也是制约太阳能光伏应用的主要因素。然而,我们也应看到,治理常规能源所造成的污染是一项很大的“隐蔽”费用,一些国家对化石燃料的价格也进行了补贴。 2)太阳能光伏发电虽一次性投资较大,但其运行费用很低。 3)太阳能光伏与建筑相结合是一个方兴未艾的领域,有着巨大的市场潜力。